Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes
ilustraciones, diagramas, mapas
- Autores:
-
Palacio Cordoba, Johnnatan Arley
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85027
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Landslides
Desprendimientos de tierra
Landslide
Cluster landslides
Shallow landslides
Runout
Propagation
Modeling
Natural hazard
Risk management
Deslizamiento
Propagación
Deslizamientos superficiales
Modelación
Gestión del riesgo
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_2bda506486b4de8eeb6a7d1a3b7e12e7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85027 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
dc.title.translated.spa.fl_str_mv |
Propagación de deslizamientos superficiales en terrenos montañosos tropicales. Caso de estudio: Andes colombianos |
title |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
spellingShingle |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes 620 - Ingeniería y operaciones afines::624 - Ingeniería civil 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Landslides Desprendimientos de tierra Landslide Cluster landslides Shallow landslides Runout Propagation Modeling Natural hazard Risk management Deslizamiento Propagación Deslizamientos superficiales Modelación Gestión del riesgo |
title_short |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
title_full |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
title_fullStr |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
title_full_unstemmed |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
title_sort |
Shallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian Andes |
dc.creator.fl_str_mv |
Palacio Cordoba, Johnnatan Arley |
dc.contributor.advisor.none.fl_str_mv |
Aristizábal Giraldo, Edier Vicente Echeverri Ramírez, Óscar Mergili, Martin |
dc.contributor.author.none.fl_str_mv |
Palacio Cordoba, Johnnatan Arley |
dc.contributor.colaborator.spa.fl_str_mv |
Echeverri Ramírez, Óscar Mergili, Martin Aristizábal Giraldo, Edier Vicente |
dc.contributor.researchgroup.spa.fl_str_mv |
Investigación en Geología Ambiental Gea |
dc.contributor.orcid.spa.fl_str_mv |
Palacio Cordoba, Johnnatan Arley [0000-0002-1603-4614] Mergili, Martin [0000-0001-5085-4846] Echeverri Ramírez, Óscar [0000-0002-4665-8786] Aristizábal Giraldo, Edier Vicente [0000-0002-2648-2197] |
dc.contributor.researchgate.spa.fl_str_mv |
Palacio Cordoba, Johnnatan Arley [Johnnatan-Palacio] |
dc.contributor.googlescholar.spa.fl_str_mv |
Palacio Cordoba, Johnnatan Arley [WSGNHRUAAAAJ&hl] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Landslides Desprendimientos de tierra Landslide Cluster landslides Shallow landslides Runout Propagation Modeling Natural hazard Risk management Deslizamiento Propagación Deslizamientos superficiales Modelación Gestión del riesgo |
dc.subject.lemb.eng.fl_str_mv |
Landslides |
dc.subject.lemb.spa.fl_str_mv |
Desprendimientos de tierra |
dc.subject.proposal.eng.fl_str_mv |
Landslide Cluster landslides Shallow landslides Runout Propagation Modeling Natural hazard Risk management |
dc.subject.proposal.spa.fl_str_mv |
Deslizamiento Propagación Deslizamientos superficiales Modelación Gestión del riesgo |
description |
ilustraciones, diagramas, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-30T15:28:55Z |
dc.date.available.none.fl_str_mv |
2023-11-30T15:28:55Z |
dc.date.issued.none.fl_str_mv |
2023-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85027 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85027 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
(2017). INMLCF identifica 191 cuerpos en Mocoa. Anderson, S. A. and Sitar, N. (1995). Analysis of Rainfall-Induced Debris Flows. Journal of Geotechnical Engineering, 121(12):544–552. Aristiz´abal, E. (2013). SHIA – Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments. PhD thesis, Universidad Nacional de Colombia. Aristizábal, E., Carmona, M. I. A., and López, I. K. G. (2020). Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos. Cuadernos de Geografía: Revista Colombiana de Geografía, 29(1):242–258. Aristizábal, E., Martínez, E., and Vélez-Upegui, J. I. (2017). Influencia de la lluvia antecedente y la conductividad hidráulica en la ocurrencia de deslizamientos detonados por lluvias utilizando el modelo SHIA landslide. EIA, 13(January) : 31 −−46. Aristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. Disasters Baum, R. L., Savage, W. Z., and Godt, J. W. (2008). TRIGRS— A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey, (2008-1159):75. Beguería, S., W. J. Van Asch, T., Malet, J. P., and Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Science, 9(6):1897–1909. Benda, L. E. and Cundy, T. W. (1990). Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal, 27(4):409–417. Berti, M. and Simoni, A. (2007). Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90(1-2):144–161. Berti, M. and Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers and Geosciences, 67:14–23. Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(1):1–10. Borga, M., Dalla Fontana, G., Daros, D., and Marchi, L. (1998). Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol, 28:81–88. Caine, N. (1980). The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler. Series A, Physical Geography, 62:23–27. Campbell, R. H. (1974). Debris flows originating from soil slips during rainstorms in southern california. Journal of Engineering Geology and Hydrogeology, 7(4):339–349. Cannon, S. H. (1993). Empirical model for the volume-change behavior of debris flows. In Proceedings - National Conference on Hydraulic Engineering, pages 1768–1773, San Francisco, CA, USA. Caracol Radio (2007). Terrible calamidad enfrenta Antioquia por lluvias y derrumbes. Caracol Radio (2020a). 438 afectados por deslizamiento en Dabeiba permanecen en albergues. Caracol Radio (2020b). Un muerto y quince municipios afectados por lluvias en Antioquia. Carmona Arango, M. I., Aristizábal, E., Jaboyedoff, M., and McArdell, B. (2021). Assessing torrential flow susceptibility using triggering and propagation models for tropical mountainous regions, a case study of the northern Andes, Colombia. In Cabrera, M. A., Prada-Sarmiento, L. F., and Montero, J., editors, SCG-XIII INTERNATIONAL SYMPOSIUM ON LANDSLIDES, number June 2020, page 9, Cartagena. International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). Cascini, L., Cuomo, S., Pastor, M., and Sorbino, G. (2010). Modeling of rainfall-induced shallow landslides of the flow-type. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):85–98. Castro López, F. R. (2018). Simulación de flujos granulares detonados desde el Cerro Montoso (Nariñoo, Colombia) e implicaciones para amenazas por remoción en masa. PhD thesis, Universidad de los Andes. Christen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2):1–14. Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 2(33):260–271. Crosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2-3):131–145. Crosta, G. and Frattini, P. (2001). Rainfall thresholds for soil slip and debris flow triggering. Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, (January 2001):463– 487. Crosta, G., Imposimato, S., and Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Science, 3(6):523–538. Crozier, M. J. (2005). Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides, 2(4):247–256. Crozier, M. J. (2017). A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping. Geomorphology, 295(July):480–488. Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43:27–29. Cruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. pages 36–75. Cuomo, S. (2020). Modelling of flowslides and debris avalanches in natural and engineered slopes: a review. Geoenvironmental Disasters, 7(1):1–25. Dai, F. C., Lee, C. F., and Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1):65–87. Dai, L., Scaringi, G., Fan, X., Yunus, A. P., Liu-Zeng, J., Xu, Q., and Huang, R. (2021). Coseismic Debris Remains in the Orogen Despite a Decade of Enhanced Landsliding. Geophysical Research Letters, 48(19). Devoli, G., De Blasio, F. V., Elverhøi, A., and Høeg, K. (2009). Statistical analysis of landslide events in Central America and their run-out distance. Geotechnical and Geological Engineering, 27(1):23–42. Dilley, M., Chen, R. S., Deichmann, U., Lener-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., Yetman, G., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G. (2005). Natural Disaster Hotspots A Global Risk Analysis. El Tiempo (2007). Tarazá (Bajo Cauca antioqueño) fue declarado en estado de emergencia. Engelen, G. (1967). Landslides in the metamorphic northern border of the dolomites (north italy). Engineering Geology, 2(3):135–147. Fairfield, J. and Leymarie, P. (1991). Drainage Networks From Grid Digital Elevation Models. Water Resources Research, 27(5):709–717. Fannin, R. J. and Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5):982–994. Fawcett, T. (2005). An introduction to ROC analysis. 35(6):299–309. Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31(2):261–272. Freeman, T. G. (1991). Calculating catchment area with divergent flow based on a regular grid. Computers 6eosciences, 17(3):413–422. Froude, M. J. and Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., (18):2161–2181. Gamma, P. (2000). Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. PhD thesis, Geographisches Institut der Universit¨at Bern. Gingold, R. and Monaghan, J. (1977). Smoothed particles hydrodynam ics: theory and application to non-spherical stars. Mon Not R Astron Soc, 181:375–389. Gómez, D., García, E. F., and Aristizábal, E. (2023). Spatial and temporal landslide distributions using global and open landslide databases, volume 117. Springer Netherlands. González, J. L., Chavez, O. A., and Hermelin, M. (2005). Aspectos geomorfológicos de la avenida torrencial del 31 de enero de 1994 en la cuenca del río Fraile y sus fenómenos asociados. In Hermelin, M., editor, Desastres de origen natural en Colombia 1979-2004, chapter 11, pages 135–150. Fondo Editorial Universidad EAFIT, Medellín. Guthrie, R. and Befus, A. (2021). DebrisFlow Predictor : an agent-based runout program for shallow landslides. Nat. Hazards Earth Syst. Sci., 21:1029–1049. Guzmán, F., Ruíz, J., and Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). pages 1–55. Haeberli, W. (1984). Permafrost glacier relationships in the Swiss Alps: today and in the past. In Fourth International Conference on Permafrost, pages 415–420, Fairbanks, Alaska. Versuchsanst. für Wasserbau, Hydrologie u. Glaziologie an d. Eidg. Techn. Hochsch. Heim, A. (1932). Bergsturz und Menschenleben. Zürich. Hermelin, M. and Hoyos, N. (2010a). Convulsive Events , a Widespread Hazard in the Colombian Andes. In Latrubesse, E. M., editor, Natural hazards and human-exacerbated disasters in LatinAmerica : special volumes of geomorphology, volume 13, chapter 7, pages 131–148. Earth Surface Processes. Hernández, A. F. (2015). Avenida Torrencial en Salgar, Antioquia (Colombia). Holmgren, P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8(4):327–334. Horton, P., Jaboyedoff, M., and Bardou, E. (2008). Debris flow susceptibility mapping at a regional scale. In 4th Canadian Conference on Geohazards, Qu´ebec, Canada, 20–24 May 2008. Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4):869–885. Huggel, C., K¨a¨ab, A., Haeberli, W., Teysseire, P., and Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2):316–330. Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4):610–623. Hungr, O., Corominas, J., and Eberhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. pages 99–128. Hungr, O., Evans, S. G., Bovis, M. J., and Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3):221–238. Hungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2):167–194. Hunter, G. and Fell, R. (2003). Travel distance angle for ”rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6):1123–1141. H¨urlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008). Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102(3-4):152–163. Hutchinson, J. N. (1986). A sliding–consolidation model for flow slides. Canadian Geotechnical Journal, 23(2):115–126. International Union of Geological Sciences Working Group on Landslides (1995). A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology, 52(1):75–78. Iverson, R. M., Schilling, S. P., and Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. GSA Bulletin, 110(8):972–984. Kappes, M. S., Malet, J. P., Remaítre, A., Horton, P., Jaboyedoff, M., and Bell, R. (2011). Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Science, 11(2):627–641. Kirschbaum, D., Stanley, T., and Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249:4–15. Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A. (2009). A global landslide catalog for hazard applications: method, results, and limitations. pages 561–575. Kjekstad, O. and Highland, L. (2009). Economic and Social Impacts of Landslides. Springer, Berlin, Heidelberg. Kwan, J. S. and Sun, H. W. (2006). An improved landslide mobility model. Canadian Geotechnical Journal, 43(5):531–539. Kwan, J. S. H., Sun, H. W., and of Engineers, H. K. I. (2007). Benchmarking exercise on landslide mobility modelling - runout analyses using 3dDMM. In International Forum, Landslide disaster management, Hong Kong, Hong Kong, China. Geotechnical Division, Hong Kong Institution of Engineers. Li, T. (1983). A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie, 27:473–482. Llano Serna, M. A., Muniz-de Farias, M., and Martínez-Carvajal, H. E. (2015). Numerical modelling of Alto Verde landslide using the material point method. Dyna, 82(194):150–159. Maros, H. and Juniar, S. (2019). Modelación de flujos de escombros con DAN3D en quebradas susceptibles del sector norte del AMSS. PhD thesis, Universidad del Salvador. McDougall, S. (2017). 2014 canadian geotechnical colloquium: Landslide runout analysis— current practice and challenges. Canadian Geotechnical Journal, 54(5):605–620. McDougall, S. and Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6):1084–1097. McDougall, S. and Hungr, O. (2005). Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5):1437–1448. Medina, V., Hürlimann, M., and Bateman, A. (2008). Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1):127–142. Medina Bello, E., Reyes Merchan, A. A., Castro, J. A., Sandoval Martínez, A., Torres, J., and Pérez Moreno, M. A. (2018). Observaciones de campo de la avenida torrencial del 12 de agosto de 2018 en el municipio de Mocoa - Putumayo. Technical report. Mergili, M. (2008). Integrated modelling of debris flows with Open Source GIS. PhD thesis, University of Innsbruck, Austria. Mergili, M., Fellin, W., Moreiras, S. M., and Stötter, J. (2012). Simulation of debris flows in the Central Andes based on Open Source GIS: Possibilities, limitations, and parameter sensitivity. Natural Hazards, 61(3):1051–1081. Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P. (2017). r.avaflow v1, an advanced open source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2):553–569. Mergili, M., Krenn, J., and Chu, H. J. (2015). r.randomwalk v1, a multi-functional conceptual tool for mass movement routing. Geoscientific Model Development, 8(12):4027–4043. Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-muntau, B., Rossi, M., and Guzzetti, F. (2014). A strategy for GIS-based 3-D slope stability modelling over large areas. Geoscientific Model Development, 7(6):2969–2982. Mesa,Ó., Poveda, G., Vélez-Upegui, J. I., Mejía, Valencia, J. F., Hoyos Ortiz, C. D., Mantilla Gutiérrez, R., Barco Mejía, O. J., Cuartas Pineda, L. A., Botero Hernández, B., and Montoya, M. (2000). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. XIV Seminario de Hidráulica e Hidrología, (1):1–9. Molinari, M. E., Cannata, M., and Meisina, C. (2014). r.massmov: An open-source landslide model for dynamic early warning systems. Natural Hazards, 70(2):1153–1179. Moncayo, C. (2021). Evaluación de la distancia de viaje de movimientos en masa en Colombia a partir de registros históricos. PhD thesis, Universidad Nacional de Colombia (Bogotá). Moser, M. and Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3):185–211. Nadim, F. and Kjekstad, O. (2009). Assessment of global high-risk landslide disaster hotspots. Noticias RCN (2020). Cinco muertos y 16 heridos por deslizamientos en Dabeiba, Antioquia. Núñez Tello, A. (2003). Reconocimiento geológico regional de la Planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Technical report, INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTIFICA MINERO AMBIENTAL Y NULEAR INGEOMINAS, Bogotá, D. C. O’brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119:244–261. O’Callaghan, J. F. and Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28:323–344. Palacio, J., Aristizábal, E., Guthrie, R., and Echeverri, O. (2021a). DebrisFlow Predictor : Herramienta para la propagación de movimientos en masa tipo flujos . In XVIII Congreso Colombiano de Geología, Medellín, 18-20 August 2021. Sociedad Colombiana de Geología. Palacio, J., Aristizábal, E., Mergili, M., and Echeverri, O. (2021b). Shallow landslide occurrence and propagation in tropical mountainous terrain with open source models . A case study in the Colombian Andes . In EGU General Assembly 2021, online, 19–30 Apr 2021. Palacio, J., Gómez, F., Aristizábal, E., and Guthrie, R. (2022). Modelos empíricos para la evaluación de la amenaza por movimientos en masa tipo flujo. In XXI Congreso Geológico Argentino, page 3, Puerto Madryn, Chubut. Palacio, J., Mergili, M., and Aristizábal, E. (2020). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20:815–829. Papa, M. N., Sarno, L., Vitiello, F. S., and Medina, V. (2018). Application of the 2D depth-averaged model, FLATModel, to pumiceous debris flows in the Amalfi Coast. Water (Switzerland), 10(9). Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S. (2014). Application of a SPH depthintegrated model to landslide run-out analysis. Landslides, 11(5):793–812. Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V. (2009). A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Meth. Geomech., 32:143–172. Perla, R., Cheng, T. T., and McClung, D. (1980). A two–parameter model of snow–avalanche motion. Journal of Glaciology, 26(94):197–207. Petley, D. (2008). The global occurrence of fatal landslides in 2007. In Geophysical Research Abstracts, EGU General Assembly 2008, page 3, Vienna, Austria. Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10):927–930. Pirulli, M. (2005). Numerical Modelling of Landslides Runout. Phd, Politecnico di Torino. Poisel, R., Preh, A., and Hungr, O. (2008). Run Out of Landslides - Continuum Mechanics versus Discontinuum Mechanics Models. Geomechanik und Tunnelbau, 1(5):358–366. Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, XVIII(107):201–222. Prada-Sarmiento, L. F., Cabrera, M. A., Camacho, R., Estrada, N., and Ramos-Cañón, A. M. (2019). The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont. Landslides, 16(12):2459–2468. Pudasaini, S. P. (2012). A general two-phase debris flow model. JGR Earth Surface, 117(3):1–28. Pudasaini, S. P. and Krautblatter, M. (2021). The mechanics of landslide mobility with erosion. Nature Communications, 12(1). Pudasaini, S. P. and Mergili, M. (2019). A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12):2920–2942. Qiu, C., Xie, M., and Esaki, T. (2007). Application of GIS Technique in Three-Dimensional Slope Stability Analysis. COMPUTATIONAL MECHANICS, 3(1):703–712. Quan Luna, B., Remaítre, A., van Asch, T. W., Malet, J. P., and van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128:63–75. Quan Luna, B. R. (2012). Dynamic numerical run out modeling for quantitative landslide risk assessment. Phd, University of Twente, ITC. Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5 (October 1990):59–79. Ramos Cañón, A. M., Merchán Reyes, A. A., Munévar Peña, M. A., Ruiz Peña, G. L., Machuca Castellanos, S. V., Rangel Flórez, M. S., Prada Sarmiento, L. F., Cabrera, A., Rodríguez, M. Pineda, C. E., Escobar Castañeda, N., Quintero Ortíz, C. A., Escobar Vargas, J. A., Juan Diego, G. O., Medina Orjuela, M. S., Durán Santana, L., Trujillo Osorio, D. E., Medina Ávila, D. F., Capachero Martínez, C. A., León Delgado, D., Ramírez Hernández, K. C., González Rojas, E. E., Rincón Chisino, S. L., Solarte Blandón, P. A., Castro Malaver, L. C., López Marín, C., Navarro Alarcón, S. d. R., and Pérez Moreno, M. A. (2021). Guía metodológica para zonificación de amenaza por avenidas torrenciales. RCN Radio (2017). Aumenta el número de personas muertas por avalancha en Mocoa. Rickenmann, D. (1999). Empirical relationships for Debris Flow. Natural hazards, 19(47):47–77. Rickenmann, D. (2005). Runout prediction methods, pages 305–324. Springer Berlin Heidelberg, Berlin, Heidelberg. Rickenmann, D. and Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3):175–189. Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18:221–226. Sassa, K. (1988). Geotechnical model for the motion of landslides. In 5th International Symposium on Landslides, pages 37–55, Rotterdam. Savage, S. B. and Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(2697):177–215. Savage, S. B. and Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta Mechanica, 86:201–223. Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics Felsmechanik M´ecanique des Roches, 5:231–236. Scheidl, C. and Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf. Process. Landforms, 35(2):157–173. Scheidl, C., Rickenmann, D., and McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. Landslide Science and Practice: Spatial Analysis and Modelling, 3 (September 2012):221–229. Schilling, S. P. (1998). LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. Technical report, USGS, Vancouver, Washington. Schuster, R. and Highland, L. (2003). Impact of landslides and innovative landslide-mitigation measures on the natural environment. Geologic Hazards Team, US Geological survey, Denver, Colorado, U.S.A. Schuster, R. L. (1996). Socioeconomic significance of landslides. In Landslides investigation and mitigation, chapter 2, pages 12–35. Washington, D.C. Schuster, R. L. and Highland, L. (2001). Socioeconomic Impacts of Landslides in the Western Hemisphere. Technical report. Sepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Science, 15(8):1821– 1833. SGC (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá, D. C. SGC (2017). Caracterización del movimiento en masa tipo flujo 31 de marzo 2017 en Mocoa Putumayo. Technical report, Servicio Geológico Colombiano (SGC), Bogotá. SGC (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000. Servicio Geológico Colombiano (SGC), Bogotá, D. C. SGC (2017a). Sistema de Información de Movimientos en Masa - SIMMA. SGC (2017b). Zonificación de susceptibilidad y amenaza por movimientos en masa de las subcuencas de las quebradas Taruca, Taruquita, San antonio, El carmen y los ríos Mulato y Sangoyaco del municipio de Mocoa – Putumayo. Escala 1:25.000. Technical report, Servicio Geológico Colombiano (SGC), Putumayo. SGC (2018a). Amenaza por movimientos en masa tipo flujo de las cuencas de las quebradas Taruga, Taruquita, San Antonio y El Carmen y los ríos Mulato y Sangoyaco, municipio de Mocoa, escala 1:5000. Technical report, Servicio Geológico Colombiano (SGC), Bogotá. SGC (2018b). Evaluación de la amenaza por movimientos en masa en el área urbana, periurbana y de expansión del municipio de Mocoa – Putumayo. Escala 1:5.000. Technical report, Servicio Geológico Colombiano (SGC), Mocoa. Skempton, A. and Hutchinson, J. (1969). Stability of natural slopes and embankment foundations. pages 291–340. Sovilla, B., Burlando, P., and Bartelt, P. (2006). Field experiments and numerical modeling of mass entrainment in snow avalanches. Journal of Geophysical Research: Earth Surface, 111(3):1–16. Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res., 33(2):309–319. Tayyebi, S. M., Pastor, M., Stickle, M. M., Yagüe, Á., Manzanal, D., Molinos, M., and Navas, P. (2022). SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term. European Journal of Mechanics, B/Fluids, 96:1–14. Te Chow, V. (1959). Open-channel Hydraulics. Civil engineering series. McGraw-Hill, New York. UNGRD and Fundación Instituto Geofísico Universidad Javeriana (2016). Consultoría de estudios y diseño para la implementación del sistema de alerta temprana por avenidas torrenciales en la microcuenca de la quebrada la Liboriana, quebrada la Clara y río Barroso del municipio de Salgar (Antioquia). Technical report, Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD), Bogotá. UNGRD and Universidad Pontificia Javeriana (2017). Consultoría de los estudios de diseño del sistema de alerta temprana para avenidas torrenciales y crecientes súbitas generadas por precipitaciones de la microcuenca de los ríos Mulato, Sangoyaco, quebradas Taruca y Taruquita del municipio de Mocoa. Technical report, Bogotá. Único de información normativa, S. (2011). DECRETO 4131 DE 2011. Varnes, D. J. (1978). Slope Movement Types and Processes. pages 11 – 33. Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Unesco, Paris, France. Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73(15). Von Neumann, J. (1966). Theory of self-reproducing automata. von Ruette, J., Lehmann, P., and Or, D. (2016). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13(5):1097–1107. Wang, F. and Sassa, K. (2000a). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6. Wang, F. and Sassa, K. (2000b). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6. Wang, Y., Hutter, K., and Pudasaini, S. P. (2004). The savage-hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 84(8):507–527. Witt, A., Malamud, B. D., Rossi, M., Guzzetti, F., and Peruccacci, S. (2010). Temporal correlations and clustering of landslides. Earth Surface Processes and Landforms, 35(10):1138–1156. Zimmermann, F., McArdell, B. W., Rickli, C., and Scheidl, C. (2020). 2D runout modelling of hillslope debris flows, based on well-documented events in Switzerland. Geosciences, 10(2):1–17. Zimmermann, M. N., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G. (1997). Murganggefahr und klimaänderung - ein gis-basierter ansatz. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 77 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Andes, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Geotecnia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85027/5/1040040602_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85027/9/license.txt https://repositorio.unal.edu.co/bitstream/unal/85027/10/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo1.pdf https://repositorio.unal.edu.co/bitstream/unal/85027/11/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo2.pdf https://repositorio.unal.edu.co/bitstream/unal/85027/12/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo3.pdf https://repositorio.unal.edu.co/bitstream/unal/85027/13/1040040602_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
5b4e3bd8c4fd3836139a69ace8a8843c eb34b1cf90b7e1103fc9dfd26be24b4a 20908bbad90d0cd97351ec529f8e5dd5 cd07d9f3dd558bf7b81aa7d249cc502b 1d9ccb6f06da9830cfc1add58d7a4476 ecf6e9b50ffae5cd9a422272a71981b5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090053022908416 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aristizábal Giraldo, Edier Vicentefc0f511b018ee39d8c368b91780e0fa7Echeverri Ramírez, Óscara286e8d4e3890127d0f5ff80c36fa77eMergili, Martin27f6642dd8ff4ee221dc1bdc4d89ca47600Palacio Cordoba, Johnnatan Arley513c24910434c85e67ef97474143f8bcEcheverri Ramírez, ÓscarMergili, MartinAristizábal Giraldo, Edier VicenteInvestigación en Geología Ambiental GeaPalacio Cordoba, Johnnatan Arley [0000-0002-1603-4614]Mergili, Martin [0000-0001-5085-4846]Echeverri Ramírez, Óscar [0000-0002-4665-8786]Aristizábal Giraldo, Edier Vicente [0000-0002-2648-2197]Palacio Cordoba, Johnnatan Arley [Johnnatan-Palacio]Palacio Cordoba, Johnnatan Arley [WSGNHRUAAAAJ&hl]2023-11-30T15:28:55Z2023-11-30T15:28:55Z2023-11https://repositorio.unal.edu.co/handle/unal/85027Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasApproximately one-fifth of the Earth’s surface is considered vulnerable to at least one natural hazards such as cyclones, droughts, floods, earthquakes, volcanoes, and landslides. Landslides are one of the most destructive; there are several triggering factors. In the Colombian Andes, rainfall is the primary triggering factor. Historical records of landslide occurrences in the country between 1900 and 2018 found that rainfall was responsible for 87 percent of them. These landslides are typically shallow and can evolve into more rapid movements such as flows or avalanches. According to recent records, debris flows have caused some of the most severe damage and some of them happened as a result of the occurrence of Clustered Shallow Landslides (CSL). In terms of spatial analysis, most study in the country focuses on estimating the areas most susceptible to the occurrence of Shallow Landslides (SL). But what happens when an SL propagates? This research focuses on parameters for modelling the propagation of SL triggered by rainfall occurred on March 31, 2017, in Mocoa that supply mass to bigger chain processes that affect the city and surrounding villages with approximately 306 dead people. The modeling is carried out through two useful tools. The empirical tool Flow-R, it requires little input information, the propagation is performed using different algorithms and friction laws, fundamental factors are the travel distance angle, velocity, and dispersion. And r.avaflow that incorporates various physics-based models. It was established for each tool the best-fit parameters for modeling with minimal requirements. Results indicated a maximum velocity of 10 m s−1, minimum travel distance angle of 15, and x value of 2 and 4 for modeling in Flow-R. In addition, the cut-off for the probability of impact was set to 25% as the minimal threshold for zoning. The results concerning to the parameters to modeling SL in r.avaflow suggest; to consider the basal friction equal to the internal friction of the material as the starting value. And to use the minimum heights in the range of 0.51 m to 0.61 m to perform hazard zoning of the possible affected areas.Aproximadamente una quinta parte de la superficie terrestre se considera vulnerable a al menos una amenaza de origen natural, como: ciclones, sequías, inundaciones, terremotos, volcanes y movimientos en masa. Siendo este último uno de los más destructivos; existen varios factores detonantes. En los Andes colombianos, las lluvias son el principal factor detonante, según registros históricos entre 1900 y 2018 el 87% de los movimientos en masa fueron detonados por lluvias, los cuales suelen ser poco profundos y pueden evolucionar a movimientos más rápidos y destructivos como flujos y avalanchas. Según registros recientes, la ocurrencia de decenas a cientos de movimientos en masa detonados por lluvias, Resultó en la ocurrencia de avenidas torrenciales, causando afectaciones sobre la población y la infraestructura. En términos de análisis espacial, la mayoría de los estudios realizados se centran en estimar las zonas más susceptibles a la ocurrencia de movimientos en masa superficiales. Pero ¿Qué ocurre cuando un movimiento en masa se propaga? Esta investigación se centra en los parámetros para la modelación de la propagación de movimientos en masa superficiales detonados por las lluvias ocurridas el 31 de marzo de 2017, en Mocoa, que fueron suplemento para un evento concatenado de mayor poder destructivo, que afecto la infraestructura y causó la muerte de aproximadamente 306 personas. La modelación se ejecuta mediante la herramienta empírica Flow-R, la cual requiere poca información de entrada, la propagación se realiza utilizando diferentes algoritmos y reglas. Y r.avaflow incorpora varios modelos basados en la física, teniendo como insumo básico la distribución de la fricción interna del material y fricción basal material – superficie. Se estableció para cada herramienta los parámetros de mejor ajuste para el modelado con requisitos mínimos. Los resultados indicaron para Flow-R una velocidad máxima de 10 m/s, un ángulo de distancia de viaje de 15 grados, y un valor para el, exponte de dispersión x de 2 y 4. Además, el umbral mínimo de la probabilidad de impacto se fijó en 25% para la zonificación. Respecto a r.avaflow, los resultados sugieren considerar la fricción basal igual a la fricción interna del material como valor de partida. Y utilizar las alturas mínimas en el rango de 0, 51 m a 0, 61 m para realizar la zonificación de la amenaza de las posibles áreas afectadas. (Texto tomado de la fuente)Brief review of state of propagation models for flow-like landslides and current state in Colombia / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar EcheverríExploring best-fit parameters for propagation modeling of shallow landslides, using Flow-R / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar EcheverríExploration of basal friction parameter in shallow landslide propagation modeling using r.avaflow / This chapter was written with support of Edier Aristizábal, Martin Mergili and, Oscar EcheverríMaestríaMaestría en Ingeniería - GeotecniaLandslide and risk managementÁrea Curricular de Ingeniería Civilx, 77 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::624 - Ingeniería civil550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaLandslidesDesprendimientos de tierraLandslideCluster landslidesShallow landslidesRunoutPropagationModelingNatural hazardRisk managementDeslizamientoPropagaciónDeslizamientos superficialesModelaciónGestión del riesgoShallow landslide cluster propagation in tropical mountainous terrains. Case study Colombian AndesPropagación de deslizamientos superficiales en terrenos montañosos tropicales. Caso de estudio: Andes colombianosTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAndes, ColombiaRedColLaReferencia(2017). INMLCF identifica 191 cuerpos en Mocoa.Anderson, S. A. and Sitar, N. (1995). Analysis of Rainfall-Induced Debris Flows. Journal of Geotechnical Engineering, 121(12):544–552.Aristiz´abal, E. (2013). SHIA – Landslide: Developing a physically based model to predict shallow landslides triggered by rainfall in tropical environments. PhD thesis, Universidad Nacional de Colombia.Aristizábal, E., Carmona, M. I. A., and López, I. K. G. (2020). Definición y clasificación de las avenidas torrenciales y su impacto en los Andes colombianos. Cuadernos de Geografía: Revista Colombiana de Geografía, 29(1):242–258.Aristizábal, E., Martínez, E., and Vélez-Upegui, J. I. (2017). Influencia de la lluvia antecedente y la conductividad hidráulica en la ocurrencia de deslizamientos detonados por lluvias utilizando el modelo SHIA landslide. EIA, 13(January) : 31 −−46.Aristizábal, E. and Sánchez, O. (2019). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous Colombian Andes. DisastersBaum, R. L., Savage, W. Z., and Godt, J. W. (2008). TRIGRS— A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. U.S. Geological Survey, (2008-1159):75.Beguería, S., W. J. Van Asch, T., Malet, J. P., and Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Science, 9(6):1897–1909.Benda, L. E. and Cundy, T. W. (1990). Predicting deposition of debris flows in mountain channels. Canadian Geotechnical Journal, 27(4):409–417.Berti, M. and Simoni, A. (2007). Prediction of debris flow inundation areas using empirical mobility relationships. Geomorphology, 90(1-2):144–161.Berti, M. and Simoni, A. (2014). DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Computers and Geosciences, 67:14–23.Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., and Coll, A. (2014). Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(1):1–10.Borga, M., Dalla Fontana, G., Daros, D., and Marchi, L. (1998). Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol, 28:81–88.Caine, N. (1980). The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler. Series A, Physical Geography, 62:23–27.Campbell, R. H. (1974). Debris flows originating from soil slips during rainstorms in southern california. Journal of Engineering Geology and Hydrogeology, 7(4):339–349.Cannon, S. H. (1993). Empirical model for the volume-change behavior of debris flows. In Proceedings - National Conference on Hydraulic Engineering, pages 1768–1773, San Francisco, CA, USA.Caracol Radio (2007). Terrible calamidad enfrenta Antioquia por lluvias y derrumbes.Caracol Radio (2020a). 438 afectados por deslizamiento en Dabeiba permanecen en albergues.Caracol Radio (2020b). Un muerto y quince municipios afectados por lluvias en Antioquia.Carmona Arango, M. I., Aristizábal, E., Jaboyedoff, M., and McArdell, B. (2021). Assessing torrential flow susceptibility using triggering and propagation models for tropical mountainous regions, a case study of the northern Andes, Colombia. In Cabrera, M. A., Prada-Sarmiento, L. F., and Montero, J., editors, SCG-XIII INTERNATIONAL SYMPOSIUM ON LANDSLIDES, number June 2020, page 9, Cartagena. International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE).Cascini, L., Cuomo, S., Pastor, M., and Sorbino, G. (2010). Modeling of rainfall-induced shallow landslides of the flow-type. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):85–98.Castro López, F. R. (2018). Simulación de flujos granulares detonados desde el Cerro Montoso (Nariñoo, Colombia) e implicaciones para amenazas por remoción en masa. PhD thesis, Universidad de los Andes.Christen, M., Kowalski, J., and Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1-2):1–14.Corominas, J. (1996). The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 2(33):260–271.Crosta, G. (1998). Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environmental Geology, 35(2-3):131–145.Crosta, G. and Frattini, P. (2001). Rainfall thresholds for soil slip and debris flow triggering. Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, (January 2001):463– 487.Crosta, G., Imposimato, S., and Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Natural Hazards and Earth System Science, 3(6):523–538.Crozier, M. J. (2005). Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides, 2(4):247–256.Crozier, M. J. (2017). A proposed cell model for multiple-occurrence regional landslide events: Implications for landslide susceptibility mapping. Geomorphology, 295(July):480–488.Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43:27–29.Cruden, D. M. and Varnes, D. J. (1996). Landslide types and processes. pages 36–75.Cuomo, S. (2020). Modelling of flowslides and debris avalanches in natural and engineered slopes: a review. Geoenvironmental Disasters, 7(1):1–25.Dai, F. C., Lee, C. F., and Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1):65–87.Dai, L., Scaringi, G., Fan, X., Yunus, A. P., Liu-Zeng, J., Xu, Q., and Huang, R. (2021). Coseismic Debris Remains in the Orogen Despite a Decade of Enhanced Landsliding. Geophysical Research Letters, 48(19).Devoli, G., De Blasio, F. V., Elverhøi, A., and Høeg, K. (2009). Statistical analysis of landslide events in Central America and their run-out distance. Geotechnical and Geological Engineering, 27(1):23–42.Dilley, M., Chen, R. S., Deichmann, U., Lener-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., Yetman, G., Lerner-Lam, A. L., Arnold, M., Agwe, J., Buys, P., Kjekstad, O., Lyon, B., and Yetman, G. (2005). Natural Disaster Hotspots A Global Risk Analysis.El Tiempo (2007). Tarazá (Bajo Cauca antioqueño) fue declarado en estado de emergencia.Engelen, G. (1967). Landslides in the metamorphic northern border of the dolomites (north italy). Engineering Geology, 2(3):135–147.Fairfield, J. and Leymarie, P. (1991). Drainage Networks From Grid Digital Elevation Models. Water Resources Research, 27(5):709–717.Fannin, R. J. and Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5):982–994.Fawcett, T. (2005). An introduction to ROC analysis. 35(6):299–309.Fell, R. (1994). Landslide risk assessment and acceptable risk. Canadian Geotechnical Journal, 31(2):261–272.Freeman, T. G. (1991). Calculating catchment area with divergent flow based on a regular grid. Computers 6eosciences, 17(3):413–422.Froude, M. J. and Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci., (18):2161–2181.Gamma, P. (2000). Ein Murgang-Simulationsprogramm zur Gefahrenzonierung. PhD thesis, Geographisches Institut der Universit¨at Bern.Gingold, R. and Monaghan, J. (1977). Smoothed particles hydrodynam ics: theory and application to non-spherical stars. Mon Not R Astron Soc, 181:375–389.Gómez, D., García, E. F., and Aristizábal, E. (2023). Spatial and temporal landslide distributions using global and open landslide databases, volume 117. Springer Netherlands.González, J. L., Chavez, O. A., and Hermelin, M. (2005). Aspectos geomorfológicos de la avenida torrencial del 31 de enero de 1994 en la cuenca del río Fraile y sus fenómenos asociados. In Hermelin, M., editor, Desastres de origen natural en Colombia 1979-2004, chapter 11, pages 135–150. Fondo Editorial Universidad EAFIT, Medellín.Guthrie, R. and Befus, A. (2021). DebrisFlow Predictor : an agent-based runout program for shallow landslides. Nat. Hazards Earth Syst. Sci., 21:1029–1049.Guzmán, F., Ruíz, J., and Cadena, M. (2014). Regionalización de Colombia según la estacionalidad de la precipitación media mensual, a través de análisis de componentes principales (ACP). pages 1–55.Haeberli, W. (1984). Permafrost glacier relationships in the Swiss Alps: today and in the past. In Fourth International Conference on Permafrost, pages 415–420, Fairbanks, Alaska. Versuchsanst. für Wasserbau, Hydrologie u. Glaziologie an d. Eidg. Techn. Hochsch.Heim, A. (1932). Bergsturz und Menschenleben. Zürich.Hermelin, M. and Hoyos, N. (2010a). Convulsive Events , a Widespread Hazard in the Colombian Andes. In Latrubesse, E. M., editor, Natural hazards and human-exacerbated disasters in LatinAmerica : special volumes of geomorphology, volume 13, chapter 7, pages 131–148. Earth Surface Processes.Hernández, A. F. (2015). Avenida Torrencial en Salgar, Antioquia (Colombia).Holmgren, P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrological Processes, 8(4):327–334.Horton, P., Jaboyedoff, M., and Bardou, E. (2008). Debris flow susceptibility mapping at a regional scale. In 4th Canadian Conference on Geohazards, Qu´ebec, Canada, 20–24 May 2008.Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4):869–885.Huggel, C., K¨a¨ab, A., Haeberli, W., Teysseire, P., and Paul, F. (2002). Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Canadian Geotechnical Journal, 39(2):316–330.Hungr, O. (1995). A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal, 32(4):610–623.Hungr, O., Corominas, J., and Eberhardt, E. (2005). Estimating landslide motion mechanism, travel distance and velocity. pages 99–128.Hungr, O., Evans, S. G., Bovis, M. J., and Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3):221–238.Hungr, O., Leroueil, S., and Picarelli, L. (2014). The Varnes classification of landslide types, an update. Landslides, 11(2):167–194.Hunter, G. and Fell, R. (2003). Travel distance angle for ”rapid” landslides in constructed and natural soil slopes. Canadian Geotechnical Journal, 40(6):1123–1141.H¨urlimann, M., Rickenmann, D., Medina, V., and Bateman, A. (2008). Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Engineering Geology, 102(3-4):152–163.Hutchinson, J. N. (1986). A sliding–consolidation model for flow slides. Canadian Geotechnical Journal, 23(2):115–126.International Union of Geological Sciences Working Group on Landslides (1995). A suggested method for describing the rate of movement of a landslide. Bulletin of the International Association of Engineering Geology, 52(1):75–78.Iverson, R. M., Schilling, S. P., and Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. GSA Bulletin, 110(8):972–984.Kappes, M. S., Malet, J. P., Remaítre, A., Horton, P., Jaboyedoff, M., and Bell, R. (2011). Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Science, 11(2):627–641.Kirschbaum, D., Stanley, T., and Zhou, Y. (2015). Spatial and temporal analysis of a global landslide catalog. Geomorphology, 249:4–15.Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A. (2009). A global landslide catalog for hazard applications: method, results, and limitations. pages 561–575.Kjekstad, O. and Highland, L. (2009). Economic and Social Impacts of Landslides. Springer, Berlin, Heidelberg.Kwan, J. S. and Sun, H. W. (2006). An improved landslide mobility model. Canadian Geotechnical Journal, 43(5):531–539.Kwan, J. S. H., Sun, H. W., and of Engineers, H. K. I. (2007). Benchmarking exercise on landslide mobility modelling - runout analyses using 3dDMM. In International Forum, Landslide disaster management, Hong Kong, Hong Kong, China. Geotechnical Division, Hong Kong Institution of Engineers.Li, T. (1983). A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie, 27:473–482.Llano Serna, M. A., Muniz-de Farias, M., and Martínez-Carvajal, H. E. (2015). Numerical modelling of Alto Verde landslide using the material point method. Dyna, 82(194):150–159.Maros, H. and Juniar, S. (2019). Modelación de flujos de escombros con DAN3D en quebradas susceptibles del sector norte del AMSS. PhD thesis, Universidad del Salvador.McDougall, S. (2017). 2014 canadian geotechnical colloquium: Landslide runout analysis— current practice and challenges. Canadian Geotechnical Journal, 54(5):605–620.McDougall, S. and Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal, 41(6):1084–1097.McDougall, S. and Hungr, O. (2005). Dynamic modelling of entrainment in rapid landslides. Canadian Geotechnical Journal, 42(5):1437–1448.Medina, V., Hürlimann, M., and Bateman, A. (2008). Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula. Landslides, 5(1):127–142.Medina Bello, E., Reyes Merchan, A. A., Castro, J. A., Sandoval Martínez, A., Torres, J., and Pérez Moreno, M. A. (2018). Observaciones de campo de la avenida torrencial del 12 de agosto de 2018 en el municipio de Mocoa - Putumayo. Technical report.Mergili, M. (2008). Integrated modelling of debris flows with Open Source GIS. PhD thesis, University of Innsbruck, Austria.Mergili, M., Fellin, W., Moreiras, S. M., and Stötter, J. (2012). Simulation of debris flows in the Central Andes based on Open Source GIS: Possibilities, limitations, and parameter sensitivity. Natural Hazards, 61(3):1051–1081.Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P. (2017). r.avaflow v1, an advanced open source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2):553–569.Mergili, M., Krenn, J., and Chu, H. J. (2015). r.randomwalk v1, a multi-functional conceptual tool for mass movement routing. Geoscientific Model Development, 8(12):4027–4043.Mergili, M., Marchesini, I., Alvioli, M., Metz, M., Schneider-muntau, B., Rossi, M., and Guzzetti, F. (2014). A strategy for GIS-based 3-D slope stability modelling over large areas. Geoscientific Model Development, 7(6):2969–2982.Mesa,Ó., Poveda, G., Vélez-Upegui, J. I., Mejía, Valencia, J. F., Hoyos Ortiz, C. D., Mantilla Gutiérrez, R., Barco Mejía, O. J., Cuartas Pineda, L. A., Botero Hernández, B., and Montoya, M. (2000). Distribución espacial y ciclos anual y semianual de la precipitación en Colombia. XIV Seminario de Hidráulica e Hidrología, (1):1–9.Molinari, M. E., Cannata, M., and Meisina, C. (2014). r.massmov: An open-source landslide model for dynamic early warning systems. Natural Hazards, 70(2):1153–1179.Moncayo, C. (2021). Evaluación de la distancia de viaje de movimientos en masa en Colombia a partir de registros históricos. PhD thesis, Universidad Nacional de Colombia (Bogotá).Moser, M. and Hohensinn, F. (1983). Geotechnical aspects of soil slips in Alpine regions. Engineering Geology, 19(3):185–211.Nadim, F. and Kjekstad, O. (2009). Assessment of global high-risk landslide disaster hotspots.Noticias RCN (2020). Cinco muertos y 16 heridos por deslizamientos en Dabeiba, Antioquia.Núñez Tello, A. (2003). Reconocimiento geológico regional de la Planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco departamentos de Caquetá, Cauca, Huila, Nariño y Putumayo. Technical report, INSTITUTO DE INVESTIGACIÓN E INFORMACIÓN GEOCIENTIFICA MINERO AMBIENTAL Y NULEAR INGEOMINAS, Bogotá, D. C.O’brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-Dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, 119:244–261.O’Callaghan, J. F. and Mark, D. M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28:323–344.Palacio, J., Aristizábal, E., Guthrie, R., and Echeverri, O. (2021a). DebrisFlow Predictor : Herramienta para la propagación de movimientos en masa tipo flujos . In XVIII Congreso Colombiano de Geología, Medellín, 18-20 August 2021. Sociedad Colombiana de Geología.Palacio, J., Aristizábal, E., Mergili, M., and Echeverri, O. (2021b). Shallow landslide occurrence and propagation in tropical mountainous terrain with open source models . A case study in the Colombian Andes . In EGU General Assembly 2021, online, 19–30 Apr 2021.Palacio, J., Gómez, F., Aristizábal, E., and Guthrie, R. (2022). Modelos empíricos para la evaluación de la amenaza por movimientos en masa tipo flujo. In XXI Congreso Geológico Argentino, page 3, Puerto Madryn, Chubut.Palacio, J., Mergili, M., and Aristizábal, E. (2020). Probabilistic landslide susceptibility analysis in tropical mountainous terrain using the physically based r.slope.stability model. Natural Hazards and Earth System Sciences, 20:815–829.Papa, M. N., Sarno, L., Vitiello, F. S., and Medina, V. (2018). Application of the 2D depth-averaged model, FLATModel, to pumiceous debris flows in the Amalfi Coast. Water (Switzerland), 10(9).Pastor, M., Blanc, T., Haddad, B., Petrone, S., Sanchez Morles, M., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G., and Cuomo, S. (2014). Application of a SPH depthintegrated model to landslide run-out analysis. Landslides, 11(5):793–812.Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., and Drempetic, V. (2009). A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Meth. Geomech., 32:143–172.Perla, R., Cheng, T. T., and McClung, D. (1980). A two–parameter model of snow–avalanche motion. Journal of Glaciology, 26(94):197–207.Petley, D. (2008). The global occurrence of fatal landslides in 2007. In Geophysical Research Abstracts, EGU General Assembly 2008, page 3, Vienna, Austria.Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10):927–930.Pirulli, M. (2005). Numerical Modelling of Landslides Runout. Phd, Politecnico di Torino.Poisel, R., Preh, A., and Hungr, O. (2008). Run Out of Landslides - Continuum Mechanics versus Discontinuum Mechanics Models. Geomechanik und Tunnelbau, 1(5):358–366.Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter-decadal hasta la escala diurna. Revista de la Academia Colombiana de Ciencias, XVIII(107):201–222.Prada-Sarmiento, L. F., Cabrera, M. A., Camacho, R., Estrada, N., and Ramos-Cañón, A. M. (2019). The Mocoa Event on March 31 (2017): analysis of a series of mass movements in a tropical environment of the Andean-Amazonian Piedmont. Landslides, 16(12):2459–2468.Pudasaini, S. P. (2012). A general two-phase debris flow model. JGR Earth Surface, 117(3):1–28.Pudasaini, S. P. and Krautblatter, M. (2021). The mechanics of landslide mobility with erosion. Nature Communications, 12(1).Pudasaini, S. P. and Mergili, M. (2019). A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12):2920–2942.Qiu, C., Xie, M., and Esaki, T. (2007). Application of GIS Technique in Three-Dimensional Slope Stability Analysis. COMPUTATIONAL MECHANICS, 3(1):703–712.Quan Luna, B., Remaítre, A., van Asch, T. W., Malet, J. P., and van Westen, C. J. (2012). Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Engineering Geology, 128:63–75.Quan Luna, B. R. (2012). Dynamic numerical run out modeling for quantitative landslide risk assessment. Phd, University of Twente, ITC.Quinn, P., Beven, K., Chevallier, P., and Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5 (October 1990):59–79.Ramos Cañón, A. M., Merchán Reyes, A. A., Munévar Peña, M. A., Ruiz Peña, G. L., Machuca Castellanos, S. V., Rangel Flórez, M. S., Prada Sarmiento, L. F., Cabrera, A., Rodríguez, M. Pineda, C. E., Escobar Castañeda, N., Quintero Ortíz, C. A., Escobar Vargas, J. A., Juan Diego, G. O., Medina Orjuela, M. S., Durán Santana, L., Trujillo Osorio, D. E., Medina Ávila, D. F., Capachero Martínez, C. A., León Delgado, D., Ramírez Hernández, K. C., González Rojas, E. E., Rincón Chisino, S. L., Solarte Blandón, P. A., Castro Malaver, L. C., López Marín, C., Navarro Alarcón, S. d. R., and Pérez Moreno, M. A. (2021). Guía metodológica para zonificación de amenaza por avenidas torrenciales.RCN Radio (2017). Aumenta el número de personas muertas por avalancha en Mocoa.Rickenmann, D. (1999). Empirical relationships for Debris Flow. Natural hazards, 19(47):47–77.Rickenmann, D. (2005). Runout prediction methods, pages 305–324. Springer Berlin Heidelberg, Berlin, Heidelberg.Rickenmann, D. and Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3):175–189.Salm, B. (1993). Flow, flow transition and runout distances of flowing avalanches. Annals of Glaciology, 18:221–226.Sassa, K. (1988). Geotechnical model for the motion of landslides. In 5th International Symposium on Landslides, pages 37–55, Rotterdam.Savage, S. B. and Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199(2697):177–215.Savage, S. B. and Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I. Analysis. Acta Mechanica, 86:201–223.Scheidegger, A. E. (1973). On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics Felsmechanik M´ecanique des Roches, 5:231–236.Scheidl, C. and Rickenmann, D. (2010). Empirical prediction of debris-flow mobility and deposition on fans. Earth Surf. Process. Landforms, 35(2):157–173.Scheidl, C., Rickenmann, D., and McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. Landslide Science and Practice: Spatial Analysis and Modelling, 3 (September 2012):221–229.Schilling, S. P. (1998). LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. Technical report, USGS, Vancouver, Washington.Schuster, R. and Highland, L. (2003). Impact of landslides and innovative landslide-mitigation measures on the natural environment. Geologic Hazards Team, US Geological survey, Denver, Colorado, U.S.A.Schuster, R. L. (1996). Socioeconomic significance of landslides. In Landslides investigation and mitigation, chapter 2, pages 12–35. Washington, D.C.Schuster, R. L. and Highland, L. (2001). Socioeconomic Impacts of Landslides in the Western Hemisphere. Technical report.Sepúlveda, S. A. and Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Natural Hazards and Earth System Science, 15(8):1821– 1833.SGC (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá, D. C.SGC (2017). Caracterización del movimiento en masa tipo flujo 31 de marzo 2017 en Mocoa Putumayo. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.SGC (2017). Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000. Servicio Geológico Colombiano (SGC), Bogotá, D. C.SGC (2017a). Sistema de Información de Movimientos en Masa - SIMMA.SGC (2017b). Zonificación de susceptibilidad y amenaza por movimientos en masa de las subcuencas de las quebradas Taruca, Taruquita, San antonio, El carmen y los ríos Mulato y Sangoyaco del municipio de Mocoa – Putumayo. Escala 1:25.000. Technical report, Servicio Geológico Colombiano (SGC), Putumayo.SGC (2018a). Amenaza por movimientos en masa tipo flujo de las cuencas de las quebradas Taruga, Taruquita, San Antonio y El Carmen y los ríos Mulato y Sangoyaco, municipio de Mocoa, escala 1:5000. Technical report, Servicio Geológico Colombiano (SGC), Bogotá.SGC (2018b). Evaluación de la amenaza por movimientos en masa en el área urbana, periurbana y de expansión del municipio de Mocoa – Putumayo. Escala 1:5.000. Technical report, Servicio Geológico Colombiano (SGC), Mocoa.Skempton, A. and Hutchinson, J. (1969). Stability of natural slopes and embankment foundations. pages 291–340.Sovilla, B., Burlando, P., and Bartelt, P. (2006). Field experiments and numerical modeling of mass entrainment in snow avalanches. Journal of Geophysical Research: Earth Surface, 111(3):1–16.Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resour. Res., 33(2):309–319.Tayyebi, S. M., Pastor, M., Stickle, M. M., Yagüe, Á., Manzanal, D., Molinos, M., and Navas, P. (2022). SPH numerical modelling of landslide movements as coupled two-phase flows with a new solution for the interaction term. European Journal of Mechanics, B/Fluids, 96:1–14.Te Chow, V. (1959). Open-channel Hydraulics. Civil engineering series. McGraw-Hill, New York.UNGRD and Fundación Instituto Geofísico Universidad Javeriana (2016). Consultoría de estudios y diseño para la implementación del sistema de alerta temprana por avenidas torrenciales en la microcuenca de la quebrada la Liboriana, quebrada la Clara y río Barroso del municipio de Salgar (Antioquia). Technical report, Unidad Nacional para la Gestión del Riesgo de Desastres (UNGRD), Bogotá.UNGRD and Universidad Pontificia Javeriana (2017). Consultoría de los estudios de diseño del sistema de alerta temprana para avenidas torrenciales y crecientes súbitas generadas por precipitaciones de la microcuenca de los ríos Mulato, Sangoyaco, quebradas Taruca y Taruquita del municipio de Mocoa. Technical report, Bogotá.Único de información normativa, S. (2011). DECRETO 4131 DE 2011.Varnes, D. J. (1978). Slope Movement Types and Processes. pages 11 – 33.Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. Unesco, Paris, France.Voellmy, A. (1955). Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung, 73(15).Von Neumann, J. (1966). Theory of self-reproducing automata.von Ruette, J., Lehmann, P., and Or, D. (2016). Linking rainfall-induced landslides with predictions of debris flow runout distances. Landslides, 13(5):1097–1107.Wang, F. and Sassa, K. (2000a). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6.Wang, F. and Sassa, K. (2000b). A modified geotechnical simulation model for the areal prediction of Landslide motion. Annuals of Disas. Prev. Res. Inst., 43:6.Wang, Y., Hutter, K., and Pudasaini, S. P. (2004). The savage-hutter theory: A system of partial differential equations for avalanche flows of snow, debris, and mud. ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 84(8):507–527.Witt, A., Malamud, B. D., Rossi, M., Guzzetti, F., and Peruccacci, S. (2010). Temporal correlations and clustering of landslides. Earth Surface Processes and Landforms, 35(10):1138–1156.Zimmermann, F., McArdell, B. W., Rickli, C., and Scheidl, C. (2020). 2D runout modelling of hillslope debris flows, based on well-documented events in Switzerland. Geosciences, 10(2):1–17.Zimmermann, M. N., Mani, P., Gamma, P., Gsteiger, P., Heiniger, O., and Hunziker, G. (1997). Murganggefahr und klimaänderung - ein gis-basierter ansatz.Evaluación de amenaza por movimientos en masa y flujos torrenciales en ambientes tropicales y montañososUniversidad Nacional de Colombia - Sede MedellínEstudiantesInvestigadoresORIGINAL1040040602_2023.pdf1040040602_2023.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf38343193https://repositorio.unal.edu.co/bitstream/unal/85027/5/1040040602_2023.pdf5b4e3bd8c4fd3836139a69ace8a8843cMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85027/9/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD59Johnnatan Arley Palacio Cordoba License Capítulo1.pdfJohnnatan Arley Palacio Cordoba License Capítulo1.pdflicencia coautorapplication/pdf395805https://repositorio.unal.edu.co/bitstream/unal/85027/10/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo1.pdf20908bbad90d0cd97351ec529f8e5dd5MD510Johnnatan Arley Palacio Cordoba License Capítulo2.pdfJohnnatan Arley Palacio Cordoba License Capítulo2.pdflicencia coautorapplication/pdf394240https://repositorio.unal.edu.co/bitstream/unal/85027/11/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo2.pdfcd07d9f3dd558bf7b81aa7d249cc502bMD511Johnnatan Arley Palacio Cordoba License Capítulo3.pdfJohnnatan Arley Palacio Cordoba License Capítulo3.pdflicencia coautorapplication/pdf395807https://repositorio.unal.edu.co/bitstream/unal/85027/12/Johnnatan%20Arley%20Palacio%20Cordoba%20License%20%20Cap%c3%adtulo3.pdf1d9ccb6f06da9830cfc1add58d7a4476MD512THUMBNAIL1040040602_2023.pdf.jpg1040040602_2023.pdf.jpgGenerated Thumbnailimage/jpeg4468https://repositorio.unal.edu.co/bitstream/unal/85027/13/1040040602_2023.pdf.jpgecf6e9b50ffae5cd9a422272a71981b5MD513unal/85027oai:repositorio.unal.edu.co:unal/850272024-08-19 23:11:26.194Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |