Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire

ilustraciones, gráficos

Autores:
Galeano Caro, Dahiana
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85892
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85892
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Agua potable
Residuos industriales
Carbón activado
Adsorción
Procesos de potabilización del agua
Acidificación superficial
Adsorción
Carbones activados
PET
Producción de agua dulce
Activated carbons
Adsorption
Freshwater production
Surface acidification
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2b9593d008e0cee4be0382d51b51cb03
oai_identifier_str oai:repositorio.unal.edu.co:unal/85892
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
dc.title.translated.eng.fl_str_mv Development of carbonaceous materials obtained by thermochemical transformation of industrial waste for freshwater production from air dehumidification
title Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
spellingShingle Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Agua potable
Residuos industriales
Carbón activado
Adsorción
Procesos de potabilización del agua
Acidificación superficial
Adsorción
Carbones activados
PET
Producción de agua dulce
Activated carbons
Adsorption
Freshwater production
Surface acidification
title_short Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
title_full Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
title_fullStr Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
title_full_unstemmed Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
title_sort Desarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aire
dc.creator.fl_str_mv Galeano Caro, Dahiana
dc.contributor.advisor.none.fl_str_mv Cortés Correa, Farid Bernardo
dc.contributor.author.none.fl_str_mv Galeano Caro, Dahiana
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie Michael Polanyi
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?user=feYIAEsAAAAJ&hl=es&oi=ao
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
topic 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
Agua potable
Residuos industriales
Carbón activado
Adsorción
Procesos de potabilización del agua
Acidificación superficial
Adsorción
Carbones activados
PET
Producción de agua dulce
Activated carbons
Adsorption
Freshwater production
Surface acidification
dc.subject.lemb.none.fl_str_mv Agua potable
Residuos industriales
Carbón activado
Adsorción
Procesos de potabilización del agua
dc.subject.proposal.spa.fl_str_mv Acidificación superficial
Adsorción
Carbones activados
PET
Producción de agua dulce
dc.subject.proposal.eng.fl_str_mv Activated carbons
Adsorption
Freshwater production
Surface acidification
description ilustraciones, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-10T00:19:13Z
dc.date.available.none.fl_str_mv 2024-04-10T00:19:13Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Image
Text
Other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85892
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85892
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv W. Musie and G. Gonfa, "Fresh water resource, scarcity, water salinity challenges and possible remedies: A review," Heliyon, 2023.
M. Roggenburg, D. M. Warsinger, H. B. Evans, and L. Castillo, "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, vol. 291, p. 116765, 2021.
J. Bundschuh, N. Ghaffour, H. Mahmoudi, M. Goosen, S. Mushtaq, and J. Hoinkis, "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and sustainable energy reviews, vol. 43, pp. 196-206, 2015.
G. Chen, "Electrochemical technologies in wastewater treatment," Separation and purification Technology, vol. 38, pp. 11-41, 2004.
J. W. Patterson, "Industrial wastewater treatment technology," 1985.
J. Ji, R. Wang, and L. Li, "New composite adsorbent for solar-driven fresh water production from the atmosphere," Desalination, vol. 212, pp. 176-182, 2007.
J. Wang, J. Liu, R. Wang, and L. Wang, "Experimental research of composite solid sorbents for fresh water production driven by solar energy," Applied Thermal Engineering, vol. 121, pp. 941-950, 2017.
S.-I. Kim, T.-U. Yoon, M.-B. Kim, S.-J. Lee, Y. K. Hwang, J.-S. Chang, et al., "Metal–organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production," Chemical Engineering Journal, vol. 286, pp. 467-475, 2016.
C. Y. Tso and C. Y. Chao, "Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems," International journal of refrigeration, vol. 35, pp. 1626-1638, 2012.
J. Wang, R. Wang, L. Wang, and J. Liu, "A high efficient semi-open system for fresh water production from atmosphere," Energy, vol. 138, pp. 542-551, 2017.
A. J. Rieth, S. Yang, E. N. Wang, and M. Dincă, "Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit," ACS central science, vol. 3, pp. 668-672, 2017.
F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, and O. M. Yaghi, "Practical water production from desert air," Science advances, vol. 4, p. eaat3198, 2018.
L. G. Gordeeva, M. V. Solovyeva, A. Sapienza, and Y. I. Aristov, "Potable water extraction from the atmosphere: Potential of MOFs," Renewable energy, vol. 148, pp. 72-80, 2020.
B. H. Blanca, T. D. Y. Azucena, and L. T. Adriana, "Utilización de residuos agroindustriales," Revista sistemas ambientales, vol. 2, pp. 44-50, 2008.
J. M. Sierra González and D. S. Valbuena Rojas, "Diseño de una mezcla entre material granular y borras petroleras para uso como capa Granular en una estructura de vía."
J. Rouquerol, P. Llewellyn, and F. Rouquerol, "Is the BET equation applicable to microporous adsorbents," Stud. Surf. Sci. Catal, vol. 160, pp. 49-56, 2007.
G. A. Perdomo, "Plásticos y medio ambiente," Revista iberoamericana polimeros, vol. 3, pp. 1-13, 2002.
L. Liu, S. J. Tan, T. Horikawa, D. Do, D. Nicholson, and J. Liu, "Water adsorption on carbon-A review," Advances in Colloid and Interface Science, vol. 250, pp. 64-78, 2017.
H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, et al., "Water adsorption in porous metal–organic frameworks and related materials," Journal of the American Chemical Society, vol. 136, pp. 4369-4381, 2014.
J. Wang, R. Wang, and L. Wang, "Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents," Applied thermal engineering, vol. 100, pp. 893-901, 2016.
X. Li, X. Chen, and Z. Li, "Adsorption equilibrium and desorption activation energy of water vapor on activated carbon modified by an oxidation and reduction treatment," Journal of Chemical & Engineering Data, vol. 55, pp. 3164-3169, 2010.
H. Huang, T. Oike, F. Watanabe, Y. Osaka, N. Kobayashi, and M. Hasatani, "Development research on composite adsorbents applied in adsorption heat pump," Applied thermal engineering, vol. 30, pp. 1193-1198, 2010.
R. K. Liew, E. Azwar, P. N. Y. Yek, X. Y. Lim, C. K. Cheng, J.-H. Ng, et al., "Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption," Bioresource technology, vol. 266, pp. 1-10, 2018.
S. Lv, C. Li, J. Mi, and H. Meng, "A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification," Applied Surface Science, vol. 510, p. 145425, 2020.
I. I. Salame and T. J. Bandosz, "Study of water adsorption on activated carbons with different degrees of surface oxidation," Journal of colloid and interface science, vol. 210, pp. 367-374, 1999.
O. Talu and F. Meunier, "Adsorption of associating molecules in micropores and application to water on carbon," AIChE journal, vol. 42, pp. 809-819, 1996.
S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.
S. J. Gregg, K. S. W. Sing, and H. Salzberg, "Adsorption surface area and porosity," Journal of The electrochemical society, vol. 114, p. 279Ca, 1967.
C. Nguyen and D. Do, "The Dubinin–Radushkevich equation and the underlying microscopic adsorption description," Carbon, vol. 39, pp. 1327-1336, 2001.
A. Esfandiari, T. Kaghazchi, and M. Soleimani, "Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes," Journal of the Taiwan Institute of Chemical Engineers, vol. 43, pp. 631-637, 2012.
A. Ramirez, S. Giraldo, M. Ulloa, E. Flórez, and N. Acelas, "Production and characterization of activated carbon from wood wastes," in Journal of Physics: Conference Series, 2017, p. 012012.
M. Olam, "Production of activated carbon from waste PET’chars," Int J Environ Monit Anal, vol. 10, p. 39, 2022.
E. Ali, K. Tahereh, and S. Mansooreh, "Preparation of high surface area activated carbon from polyethylene terephthalate (PET) waste by physical activation," Research Journal of Chemistry and Environment, vol. 15, pp. 433-437, 2011.
D. Hernández-Monje, L. Giraldo, and J. Moreno-Piraján, "Estudio entálpico de la inmersión de carbones activados granulares modificados en benceno, hexano y ciclohexano," Afinidad, vol. 73, 2016.
J. Fu, J. Zhang, C. Jin, Z. Wang, T. Wang, X. Cheng, et al., "Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process," Bioresource technology, vol. 310, p. 123413, 2020.
P. Carrott and K. Sing, "Assessment of microporosity," in Studies in Surface Science and Catalysis. vol. 39, ed: Elsevier, 1988, pp. 77-87.
K. Sing, "The use of nitrogen adsorption for the characterisation of porous materials," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 187, pp. 3-9, 2001.
J. Singh, H. Bhunia, and S. Basu, "Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios," Journal of environmental management, vol. 250, p. 109457, 2019.
J. Choma, J. Jagiello, and M. Jaroniec, "Assessing the contribution of micropores and mesopores from nitrogen adsorption on nanoporous carbons: Application to pore size analysis," Carbon, vol. 183, pp. 150-157, 2021.
W. Bratek, A. Świątkowski, M. Pakuła, S. Biniak, M. Bystrzejewski, and R. Szmigielski, "Characteristics of activated carbon prepared from waste PET by carbon dioxide activation," Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 192-198, 2013.
N. Kartel', N. Gerasimenko, N. Tsyba, A. Nikolaichuk, and G. Kovtun, "Synthesis and study of carbon sorbent prepared from polyethylene terephthalate," Russian Journal of Applied Chemistry, vol. 74, pp. 1765-1767, 2001.
M. Domingo-García, J. Fernández, M. Almazán-Almazán, F. López-Garzón, F. Stoeckli, and T. Centeno, "Poly (ethylene terephthalate)-based carbons as electrode material in supercapacitors," Journal of Power Sources, vol. 195, pp. 3810-3813, 2010.
C. Rodríguez Correa, M. Stollovsky, T. Hehr, Y. Rauscher, B. Rolli, and A. Kruse, "Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses," ACS Sustainable Chemistry & Engineering, vol. 5, pp. 8222-8233, 2017.
M. Dizbay-Onat, U. K. Vaidya, and C. T. Lungu, "Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics," Industrial crops and products, vol. 95, pp. 583-590, 2017.
C. Reyes Guzmán, F. Carrillo Pedroza, and S. Castillo, "Oxidación de cianuro en disolución acuosa mediante ozonización en presencia de carbón activado modificado," 2013.
X. Chen, X. Wang, and D. Fang, "A review on C1s XPS-spectra for some kinds of carbon materials," Fullerenes, Nanotubes and Carbon Nanostructures, vol. 28, pp. 1048-1058, 2020.
K. Nakagawa, H. Tamon, T. Suzuki, and S. Nagano, "Improvement of mesoporosity of activated carbons from PET by novel pre-treatment for steam activation," in Adsorption Science And Technology, ed: World Scientific, 2000, pp. 456-460.
J. Boudou, A. Martinez-Alonzo, and J. Tascon, "Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure," Carbon, vol. 38, pp. 1021-1029, 2000.
B. Strzemiecka, A. Voelkel, J. Donate-Robles, and J. M. Martín-Martínez, "Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis," Applied surface science, vol. 316, pp. 315-323, 2014.
A. E. Serrano, "Síntesis y caracterización de materiales híbridos carbonosos dopados con nitrógeno para la aplicación en pilas de combustible."
J. J. Ternero-Hidalgo, J. Palomo, J. Rodriguez-Mirasol, J. A. Cordero, and J. M. Rosas, "Influencia de la presencia de compuestos superficiales de P sobre la funcionalización de carbones activos con HNO3," 2015.
O. E. Medina, J. Gallego, A. F. Perez-Cadenas, F. Carrasco-Marin, F. B. Cortés, and C. A. Franco, "Insights into the morphology effect of ceria on the catalytic performance of NiO–PdO/CeO2 nanoparticles for thermo-oxidation of n-C7 asphaltenes under isothermal heating at different pressures," Energy & Fuels, vol. 35, pp. 18170-18184, 2021.
A. Puziy, O. Poddubnaya, R. Socha, J. Gurgul, and M. Wisniewski, "XPS and NMR studies of phosphoric acid activated carbons," Carbon, vol. 46, pp. 2113-2123, 2008.
P. Burg, P. Fydrych, D. Cagniant, G. Nanse, J. Bimer, and A. Jankowska, "The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods," Carbon, vol. 40, pp. 1521-1531, 2002.
W. Kiciński, M. Norek, and M. Bystrzejewski, "Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels," Journal of Physics and Chemistry of Solids, vol. 74, pp. 101-109, 2013.
B. Kishore, D. Shanmughasundaram, T. R. Penki, and N. Munichandraiah, "Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors," Journal of Applied Electrochemistry, vol. 44, pp. 903-916, 2014.
L. D. Ramírez Valencia, "Obtención de materiales carbonosos a partir de la cascarilla de cacao para su aplicación como electrodos en supercapacitores," 2018.
B. Huang, G. Liu, P. Wang, X. Zhao, and H. Xu, "Effect of nitric acid modification on characteristics and adsorption properties of lignite," Processes, vol. 7, p. 167, 2019.
A. Slasli, M. Jorge, F. Stoeckli, and N. Seaton, "Water adsorption by activated carbons in relation to their microporous structure," Carbon, vol. 41, pp. 479-486, 2003.
F. Carrasco-Marin, A. Mueden, T. A. Centeno, F. Stoeckli, and C. Moreno-Castilla, "Water adsorption on activated carbons with different degrees of oxidation," Journal of the Chemical Society, Faraday Transactions, vol. 93, pp. 2211-2215, 1997.
E. A. Taborda, C. A. F. Ariza, W. A. Jurado, N. N. Nassar, and F. B. Cortés, "Effects of glycerol on the minimization of water readsorption on sub-bituminous coal," Drying Technology, vol. 35, pp. 249-260, 2017.
M. OMAÑA, F. CORTES, C. ISÁZA, and A. GARCÍA, "SORPTION ISOTHERMS OF WATER IN ORANGE JUICE EXTRACTION RESIDUES," Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 8, pp. 61-67, 2010.
D. Galeano-Caro, A. A. Rios, F. Chejne, C. Moreno-Castilla, A. Pérez-Cadenas, F. Carrasco-Marin, et al., "Freshwater production from air dehumidification using novel SiO2-based supported material and solar energy: Colombia case study," Energy Reports, vol. 8, pp. 3115-3126, 2022.
J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.
M. s. L. Pinto, A. S. Mestre, A. P. Carvalho, and J. o. Pires, "Comparison of methods to obtain micropore size distributions of carbonaceous materials from CO2 adsorption based on the Dubinin− Radushkevich isotherm," Industrial & engineering chemistry research, vol. 49, pp. 4726-4730, 2010.
C. S. de Castro, L. N. Viau, J. T. Andrade, T. A. P. Mendonça, and M. Gonçalves, "Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: pollutant adsorption in aqueous solution," New Journal of Chemistry, vol. 42, pp. 14612-14619, 2018
J. Alcañiz-Monge, A. Linares-Solano, and B. Rand, "Water adsorption on activated carbons: study of water adsorption in micro-and mesopores," The Journal of Physical Chemistry B, vol. 105, pp. 7998-8006, 2001.
F. B. Cortes Correa, "Adsorción de agua en materiales compuestos y en zeolita," Facultad de Minas, 2009.
M. R. Basila, "Hydrogen bonding interaction between adsorbate molecules and surface hydroxyl groups on silica," The Journal of Chemical Physics, vol. 35, pp. 1151-1158, 1961.
W. Hertl and M. Hair, "Adsorption of water on silica," Nature, vol. 223, pp. 1150-1151, 1969.
M. D. Donohue and G. L. Aranovich, "Classification of Gibbs adsorption isotherms," Advances in colloid and interface science, vol. 76, pp. 137-152, 1998.
H. ShamsiJazeyi and T. Kaghazchi, "Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal," Journal of Industrial and Engineering Chemistry, vol. 16, pp. 852-858, 2010.
J. Zawadzki, M. Wiśniewski, and K. Skowrońska, "Heterogeneous reactions of NO2 and NO–O2 on the surface of carbons," Carbon, vol. 41, pp. 235-246, 2003.
G. Quezada, J. Saavedraa, and R. R. P. Toledoa, "SIMULACION MOLECULAR DE POLIACRILAMIDA ANIONICA EN PRESENCIA DE SALES."
L. E. R. D. Mirón and M. E. L. Magaña, "¿ Qué sabemos del agua?."
A. Ramírez, L. G. Navarro, and J. Conde Acevedo, "Degradación química del poli (etilen tereftalato)," Revista Colombiana de Química, vol. 39, pp. 321-331, 2010.
R. Agarwal, J. Noh, J. Schwarz, and P. Davini, "Effect of surface acidity of activated carbon on hydrogen storage," Carbon, vol. 25, pp. 219-226, 1987
J. Nishino, "Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal," Fuel, vol. 80, pp. 757-764, 2001.
T. Ohba, H. Kanoh, and K. Kaneko, "Structures and stability of water nanoclusters in hydrophobic nanospaces," Nano letters, vol. 5, pp. 227-230, 2005.
E. W. Bittner, M. R. Smith, and B. C. Bockrath, "Characterization of the surfaces of single-walled carbon nanotubes using alcohols and hydrocarbons: a pulse adsorption technique," Carbon, vol. 41, pp. 1231-1239, 2003.
M. Hernández-Rodríguez, A. Otero-Calvis, J. Falcón-Hernández, and Y. Yperman, "Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO3," Revista Cubana de Química, vol. 29, pp. 26-38, 2017
P. D. Húmpola, "Estudio de la adsorción de compuestos biorrefractarios en soluciones acuosas," 2013.
W. Ma, L. Zhang, and C. Yang, "Discussion of the applicability of the generalized Clausius–Clapeyron equation and the frozen fringe process," Earth-Science Reviews, vol. 142, pp. 47-59, 2015.
G. Domínguez, R. Hernández-Huesca, and G. Aguilar-Armenta, "Isosteric heats of adsorption of N2O and NO on natural zeolites," Journal of the Mexican Chemical Society, vol. 54, pp. 111-116, 2010.
A. Ayala Aponte, L. Serna Cock, and G. Rodriguez de la Pava, "Moisture adsorption isotherms in yellow pitahaya (Selenicereusmegalanthus)," Dyna, vol. 78, pp. 7-14, 2011.
F. B. CORTÉS, A. BETANCOURT, B. ROJANO, V. LÓPEZ, and E. Arenas, "Evaluación de las propiedades termodinámicas de sorción de la uchuva (physalis peruviana l.)," Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 10, pp. 32-41, 2012.
D. Shen, M. Bülow, F. Siperstein, M. Engelhard, and A. L. Myers, "Comparison of experimental techniques for measuring isosteric heat of adsorption," Adsorption, vol. 6, pp. 275-286, 2000.
D. P. ASCHERI and S. BASTOS, "Propiedades de adsorción de agua de dos genotipos de arroz rojo," Engenharia Agrícola, vol. 35, pp. 134-143, 2015.
T. Horikawa, Y. Zeng, D. Do, K.-I. Sotowa, and J. R. A. Avila, "On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black," Journal of colloid and interface science, vol. 439, pp. 1-6, 2015.
M. Dubinin, "Water vapor adsorption and the microporous structures of carbonaceous adsorbents," Carbon, vol. 18, pp. 355-364, 1980.
E. A. Taborda-Acevedo, W. J. Jurado, and F. B. Cortés, "Efecto de la temperatura en el proceso de adsorción de agua en Carbón sub-bituminoso colombiano," Boletín de Ciencias de la Tierra, pp. 57-64, 2016.
P. Leuk, M. Schneeberger, U. Hirn, and W. Bauer, "Heat of sorption: a comparison between isotherm models and calorimeter measurements of wood pulp," Drying technology, vol. 34, pp. 563-573, 2016.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85892/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85892/4/1098779289.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85892/5/1098779289.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e3c9099bcc4fc36eed6623c6faa8434f
a672b009c8c10c3b3783a5c7177b8000
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886318027833344
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid Bernardo3b35826f8c2b2379b0289696615550a4Galeano Caro, Dahiana54eee3eda8cc70aae1ca972f020a8cfaFenómenos de Superficie Michael Polanyihttps://scholar.google.com/citations?user=feYIAEsAAAAJ&hl=es&oi=ao2024-04-10T00:19:13Z2024-04-10T00:19:13Z2024https://repositorio.unal.edu.co/handle/unal/85892Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosEl agua potable es un recurso indispensable para la humanidad. Sin embargo, en zonas de alto estrés hídrico es difícil encontrarlo en condiciones adecuadas para su consumo y uso. Por ello, el principal objetivo de este estudio es la producción de agua dulce a partir de la deshumidificación del aire utilizando carbones activados obtenidos a partir de residuos industriales para hacer frente a esta situación. Se sinterizaron carbones activados a partir de la transformación termoquímica de residuos de tereftalato de polietileno (PET) y su desempeño se comparó con carbones activados comerciales sintetizados a partir de residuos agroindustriales de café y coco. Adicionalmente, los carbones fueron modificados superficialmente con ácido nítrico para mejorar su afinidad por compuestos polares. Los materiales fueron caracterizados profundamente a través de microscopía electrónica de barrido (SEM), espectroscopia de fotoemisión de rayos (XPS), espectroscopia Raman y adsorción de nitrógeno. Los resultados mostraron materiales con área superficial de hasta 1313 m2‧g-1 para aquellos sin acidificación superficial. Mientras que, aquellos modificados superficialmente disminuyeron su área superficial hasta en un 65% para los materiales sintetizados a partir de residuos de café y coco, y del 5% para aquellos sintetizados a partir de residuos PET. La acidificación superficial de los carbones permitió la exhibición de múltiples grupos oxigenados y nitrogenados, lo cual maximizó la interacción con las moléculas de agua a través de la formación de puentes de hidrógeno. Las isotermas de adsorción de agua sobre los carbones activados a 20 °C tuvieron un comportamiento Tipo IV según la clasificación de la Unión Internacional de Química Pura y Aplicada (IUPAC), mientras que, para temperaturas de 30 y 40 °C se obtuvieron isotermas tipo I. La máxima capacidad adsortiva fue de 1.55 g‧g-1 para el material P800N (carbón activado carbonizado hasta una temperatura de 800 °C y modificado superficialmente con ácido nítrico) para una humedad relativa del 84% y una temperatura de 20 °C. El proceso se puede definir como espontáneo y exotérmico según las propiedades termodinámicas de la sorción. Para las pruebas de campo se diseñó un prototipo para evaluación en Medellín, Antioquía, Colombia. Durante la prueba de campo, la sorción/captura de agua se realizó durante la noche, mientras que la liberación y producción de agua se produjo durante el día con uso exclusivo de energía solar. La humedad relativa promedio durante la etapa de adsorción fue de 80%, mientras que la velocidad del viento fue de 2.3 m‧s-1 y la temperatura fue de 20.7 °C. Durante la etapa de desorción la temperatura promedia fue de 26.2°C. La productividad del agua fue igual a 0.9 g de agua condensada por g de material seco. Estos resultados indican que los materiales sintetizados pueden producir agua de manera eficiente en áreas desafiantes en el marco de una economía circular, contribuyendo a la sostenibilidad y el bienestar social en zonas con alta escases hídrica. (Tomado de la fuente)Access to drinking water is a vital necessity for humanity. However, finding water in suitable conditions for consumption and use is challenging, particularly in areas experiencing high-water stress. The primary objective of this study is to address this issue by producing fresh water through air dehumidification using activated carbons derived from industrial waste. Commercial activated carbons, synthesized from agro-industrial coffee and coconut waste, as well as activated carbons synthesized from the thermochemical transformation of polyethylene terephthalate (PET) waste, underwent thorough characterization through techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nitrogen. The results showed materials with a surface area of up to 1313 m2‧g-1 for those without surface acidification. Meanwhile, those superficially modified decreased their surface area by up to 65% for materials synthesized from coffee and coconut waste and 5% for those synthesized from PET waste. The surface acidification of the coals allowed the display of multiple oxygenated and nitrogenous groups, which maximized the interaction with water molecules by forming hydrogen bonds. The water isotherms on the activated carbons at 20 °C had Type IV behavior according to the International Union of Pure and Applied Chemistry (IUPAC) classification. In contrast, type I isotherms were obtained for 30 and 40 °C temperatures. The maximum adsorptive capacity was 1.55 g‧g-1 for the P800N material (activated carbon carbonized up to a temperature of 800 °C and surface modified with nitric acid) with a relative humidity of 84% and a temperature of 20 °C. The process can be defined as spontaneous and exothermic according to the thermodynamic properties of the sorption. For field tests, a prototype was designed for evaluation in Medellín, Antioquia, Colombia. During the field test, water sorption/capture occurred at night, while water release and production occurred during the day with the exclusive use of solar energy. The average relative humidity during the adsorption stage was 80%, while the wind speed was 2.3 m‧s-1, and the temperature was 20.7 °C. During the desorption stage, the average temperature was 26.2°C. The water productivity was equal to 0.9 g of condensed water per g of dry material. These results indicate that the synthesized materials can efficiently produce water in challenging areas within the framework of a circular economy, contributing to sustainability and social well-being in areas with high water scarcity.MaestríaMagíster en Ingeniería - Ingeniería QuímicaAdsorción, nanotecnologíaIngeniería Química E Ingeniería De Petróleos.Sede Medellín59 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::628 - Ingeniería sanitariaAgua potableResiduos industrialesCarbón activadoAdsorciónProcesos de potabilización del aguaAcidificación superficialAdsorciónCarbones activadosPETProducción de agua dulceActivated carbonsAdsorptionFreshwater productionSurface acidificationDesarrollo de materiales carbonosos obtenidos por transformación termoquímica de residuos industriales para la producción de agua dulce a partir de la deshumidificación del aireDevelopment of carbonaceous materials obtained by thermochemical transformation of industrial waste for freshwater production from air dehumidificationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageTextOtherhttp://purl.org/redcol/resource_type/TMLaReferenciaW. Musie and G. Gonfa, "Fresh water resource, scarcity, water salinity challenges and possible remedies: A review," Heliyon, 2023.M. Roggenburg, D. M. Warsinger, H. B. Evans, and L. Castillo, "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, vol. 291, p. 116765, 2021.J. Bundschuh, N. Ghaffour, H. Mahmoudi, M. Goosen, S. Mushtaq, and J. Hoinkis, "Low-cost low-enthalpy geothermal heat for freshwater production: Innovative applications using thermal desalination processes," Renewable and sustainable energy reviews, vol. 43, pp. 196-206, 2015.G. Chen, "Electrochemical technologies in wastewater treatment," Separation and purification Technology, vol. 38, pp. 11-41, 2004.J. W. Patterson, "Industrial wastewater treatment technology," 1985.J. Ji, R. Wang, and L. Li, "New composite adsorbent for solar-driven fresh water production from the atmosphere," Desalination, vol. 212, pp. 176-182, 2007.J. Wang, J. Liu, R. Wang, and L. Wang, "Experimental research of composite solid sorbents for fresh water production driven by solar energy," Applied Thermal Engineering, vol. 121, pp. 941-950, 2017.S.-I. Kim, T.-U. Yoon, M.-B. Kim, S.-J. Lee, Y. K. Hwang, J.-S. Chang, et al., "Metal–organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production," Chemical Engineering Journal, vol. 286, pp. 467-475, 2016.C. Y. Tso and C. Y. Chao, "Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems," International journal of refrigeration, vol. 35, pp. 1626-1638, 2012.J. Wang, R. Wang, L. Wang, and J. Liu, "A high efficient semi-open system for fresh water production from atmosphere," Energy, vol. 138, pp. 542-551, 2017.A. J. Rieth, S. Yang, E. N. Wang, and M. Dincă, "Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit," ACS central science, vol. 3, pp. 668-672, 2017.F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, and O. M. Yaghi, "Practical water production from desert air," Science advances, vol. 4, p. eaat3198, 2018.L. G. Gordeeva, M. V. Solovyeva, A. Sapienza, and Y. I. Aristov, "Potable water extraction from the atmosphere: Potential of MOFs," Renewable energy, vol. 148, pp. 72-80, 2020.B. H. Blanca, T. D. Y. Azucena, and L. T. Adriana, "Utilización de residuos agroindustriales," Revista sistemas ambientales, vol. 2, pp. 44-50, 2008.J. M. Sierra González and D. S. Valbuena Rojas, "Diseño de una mezcla entre material granular y borras petroleras para uso como capa Granular en una estructura de vía."J. Rouquerol, P. Llewellyn, and F. Rouquerol, "Is the BET equation applicable to microporous adsorbents," Stud. Surf. Sci. Catal, vol. 160, pp. 49-56, 2007.G. A. Perdomo, "Plásticos y medio ambiente," Revista iberoamericana polimeros, vol. 3, pp. 1-13, 2002.L. Liu, S. J. Tan, T. Horikawa, D. Do, D. Nicholson, and J. Liu, "Water adsorption on carbon-A review," Advances in Colloid and Interface Science, vol. 250, pp. 64-78, 2017.H. Furukawa, F. Gandara, Y.-B. Zhang, J. Jiang, W. L. Queen, M. R. Hudson, et al., "Water adsorption in porous metal–organic frameworks and related materials," Journal of the American Chemical Society, vol. 136, pp. 4369-4381, 2014.J. Wang, R. Wang, and L. Wang, "Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents," Applied thermal engineering, vol. 100, pp. 893-901, 2016.X. Li, X. Chen, and Z. Li, "Adsorption equilibrium and desorption activation energy of water vapor on activated carbon modified by an oxidation and reduction treatment," Journal of Chemical & Engineering Data, vol. 55, pp. 3164-3169, 2010.H. Huang, T. Oike, F. Watanabe, Y. Osaka, N. Kobayashi, and M. Hasatani, "Development research on composite adsorbents applied in adsorption heat pump," Applied thermal engineering, vol. 30, pp. 1193-1198, 2010.R. K. Liew, E. Azwar, P. N. Y. Yek, X. Y. Lim, C. K. Cheng, J.-H. Ng, et al., "Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption," Bioresource technology, vol. 266, pp. 1-10, 2018.S. Lv, C. Li, J. Mi, and H. Meng, "A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification," Applied Surface Science, vol. 510, p. 145425, 2020.I. I. Salame and T. J. Bandosz, "Study of water adsorption on activated carbons with different degrees of surface oxidation," Journal of colloid and interface science, vol. 210, pp. 367-374, 1999.O. Talu and F. Meunier, "Adsorption of associating molecules in micropores and application to water on carbon," AIChE journal, vol. 42, pp. 809-819, 1996.S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of gases in multimolecular layers," Journal of the American chemical society, vol. 60, pp. 309-319, 1938.S. J. Gregg, K. S. W. Sing, and H. Salzberg, "Adsorption surface area and porosity," Journal of The electrochemical society, vol. 114, p. 279Ca, 1967.C. Nguyen and D. Do, "The Dubinin–Radushkevich equation and the underlying microscopic adsorption description," Carbon, vol. 39, pp. 1327-1336, 2001.A. Esfandiari, T. Kaghazchi, and M. Soleimani, "Preparation and evaluation of activated carbons obtained by physical activation of polyethyleneterephthalate (PET) wastes," Journal of the Taiwan Institute of Chemical Engineers, vol. 43, pp. 631-637, 2012.A. Ramirez, S. Giraldo, M. Ulloa, E. Flórez, and N. Acelas, "Production and characterization of activated carbon from wood wastes," in Journal of Physics: Conference Series, 2017, p. 012012.M. Olam, "Production of activated carbon from waste PET’chars," Int J Environ Monit Anal, vol. 10, p. 39, 2022.E. Ali, K. Tahereh, and S. Mansooreh, "Preparation of high surface area activated carbon from polyethylene terephthalate (PET) waste by physical activation," Research Journal of Chemistry and Environment, vol. 15, pp. 433-437, 2011.D. Hernández-Monje, L. Giraldo, and J. Moreno-Piraján, "Estudio entálpico de la inmersión de carbones activados granulares modificados en benceno, hexano y ciclohexano," Afinidad, vol. 73, 2016.J. Fu, J. Zhang, C. Jin, Z. Wang, T. Wang, X. Cheng, et al., "Effects of temperature, oxygen and steam on pore structure characteristics of coconut husk activated carbon powders prepared by one-step rapid pyrolysis activation process," Bioresource technology, vol. 310, p. 123413, 2020.P. Carrott and K. Sing, "Assessment of microporosity," in Studies in Surface Science and Catalysis. vol. 39, ed: Elsevier, 1988, pp. 77-87.K. Sing, "The use of nitrogen adsorption for the characterisation of porous materials," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 187, pp. 3-9, 2001.J. Singh, H. Bhunia, and S. Basu, "Adsorption of CO2 on KOH activated carbon adsorbents: Effect of different mass ratios," Journal of environmental management, vol. 250, p. 109457, 2019.J. Choma, J. Jagiello, and M. Jaroniec, "Assessing the contribution of micropores and mesopores from nitrogen adsorption on nanoporous carbons: Application to pore size analysis," Carbon, vol. 183, pp. 150-157, 2021.W. Bratek, A. Świątkowski, M. Pakuła, S. Biniak, M. Bystrzejewski, and R. Szmigielski, "Characteristics of activated carbon prepared from waste PET by carbon dioxide activation," Journal of Analytical and Applied Pyrolysis, vol. 100, pp. 192-198, 2013.N. Kartel', N. Gerasimenko, N. Tsyba, A. Nikolaichuk, and G. Kovtun, "Synthesis and study of carbon sorbent prepared from polyethylene terephthalate," Russian Journal of Applied Chemistry, vol. 74, pp. 1765-1767, 2001.M. Domingo-García, J. Fernández, M. Almazán-Almazán, F. López-Garzón, F. Stoeckli, and T. Centeno, "Poly (ethylene terephthalate)-based carbons as electrode material in supercapacitors," Journal of Power Sources, vol. 195, pp. 3810-3813, 2010.C. Rodríguez Correa, M. Stollovsky, T. Hehr, Y. Rauscher, B. Rolli, and A. Kruse, "Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses," ACS Sustainable Chemistry & Engineering, vol. 5, pp. 8222-8233, 2017.M. Dizbay-Onat, U. K. Vaidya, and C. T. Lungu, "Preparation of industrial sisal fiber waste derived activated carbon by chemical activation and effects of carbonization parameters on surface characteristics," Industrial crops and products, vol. 95, pp. 583-590, 2017.C. Reyes Guzmán, F. Carrillo Pedroza, and S. Castillo, "Oxidación de cianuro en disolución acuosa mediante ozonización en presencia de carbón activado modificado," 2013.X. Chen, X. Wang, and D. Fang, "A review on C1s XPS-spectra for some kinds of carbon materials," Fullerenes, Nanotubes and Carbon Nanostructures, vol. 28, pp. 1048-1058, 2020.K. Nakagawa, H. Tamon, T. Suzuki, and S. Nagano, "Improvement of mesoporosity of activated carbons from PET by novel pre-treatment for steam activation," in Adsorption Science And Technology, ed: World Scientific, 2000, pp. 456-460.J. Boudou, A. Martinez-Alonzo, and J. Tascon, "Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure," Carbon, vol. 38, pp. 1021-1029, 2000.B. Strzemiecka, A. Voelkel, J. Donate-Robles, and J. M. Martín-Martínez, "Assessment of the surface chemistry of carbon blacks by TGA-MS, XPS and inverse gas chromatography using statistical chemometric analysis," Applied surface science, vol. 316, pp. 315-323, 2014.A. E. Serrano, "Síntesis y caracterización de materiales híbridos carbonosos dopados con nitrógeno para la aplicación en pilas de combustible."J. J. Ternero-Hidalgo, J. Palomo, J. Rodriguez-Mirasol, J. A. Cordero, and J. M. Rosas, "Influencia de la presencia de compuestos superficiales de P sobre la funcionalización de carbones activos con HNO3," 2015.O. E. Medina, J. Gallego, A. F. Perez-Cadenas, F. Carrasco-Marin, F. B. Cortés, and C. A. Franco, "Insights into the morphology effect of ceria on the catalytic performance of NiO–PdO/CeO2 nanoparticles for thermo-oxidation of n-C7 asphaltenes under isothermal heating at different pressures," Energy & Fuels, vol. 35, pp. 18170-18184, 2021.A. Puziy, O. Poddubnaya, R. Socha, J. Gurgul, and M. Wisniewski, "XPS and NMR studies of phosphoric acid activated carbons," Carbon, vol. 46, pp. 2113-2123, 2008.P. Burg, P. Fydrych, D. Cagniant, G. Nanse, J. Bimer, and A. Jankowska, "The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods," Carbon, vol. 40, pp. 1521-1531, 2002.W. Kiciński, M. Norek, and M. Bystrzejewski, "Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels," Journal of Physics and Chemistry of Solids, vol. 74, pp. 101-109, 2013.B. Kishore, D. Shanmughasundaram, T. R. Penki, and N. Munichandraiah, "Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors," Journal of Applied Electrochemistry, vol. 44, pp. 903-916, 2014.L. D. Ramírez Valencia, "Obtención de materiales carbonosos a partir de la cascarilla de cacao para su aplicación como electrodos en supercapacitores," 2018.B. Huang, G. Liu, P. Wang, X. Zhao, and H. Xu, "Effect of nitric acid modification on characteristics and adsorption properties of lignite," Processes, vol. 7, p. 167, 2019.A. Slasli, M. Jorge, F. Stoeckli, and N. Seaton, "Water adsorption by activated carbons in relation to their microporous structure," Carbon, vol. 41, pp. 479-486, 2003.F. Carrasco-Marin, A. Mueden, T. A. Centeno, F. Stoeckli, and C. Moreno-Castilla, "Water adsorption on activated carbons with different degrees of oxidation," Journal of the Chemical Society, Faraday Transactions, vol. 93, pp. 2211-2215, 1997.E. A. Taborda, C. A. F. Ariza, W. A. Jurado, N. N. Nassar, and F. B. Cortés, "Effects of glycerol on the minimization of water readsorption on sub-bituminous coal," Drying Technology, vol. 35, pp. 249-260, 2017.M. OMAÑA, F. CORTES, C. ISÁZA, and A. GARCÍA, "SORPTION ISOTHERMS OF WATER IN ORANGE JUICE EXTRACTION RESIDUES," Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 8, pp. 61-67, 2010.D. Galeano-Caro, A. A. Rios, F. Chejne, C. Moreno-Castilla, A. Pérez-Cadenas, F. Carrasco-Marin, et al., "Freshwater production from air dehumidification using novel SiO2-based supported material and solar energy: Colombia case study," Energy Reports, vol. 8, pp. 3115-3126, 2022.J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, and K. S. Sing, Adsorption by powders and porous solids: principles, methodology and applications: Academic press, 2013.M. s. L. Pinto, A. S. Mestre, A. P. Carvalho, and J. o. Pires, "Comparison of methods to obtain micropore size distributions of carbonaceous materials from CO2 adsorption based on the Dubinin− Radushkevich isotherm," Industrial & engineering chemistry research, vol. 49, pp. 4726-4730, 2010.C. S. de Castro, L. N. Viau, J. T. Andrade, T. A. P. Mendonça, and M. Gonçalves, "Mesoporous activated carbon from polyethyleneterephthalate (PET) waste: pollutant adsorption in aqueous solution," New Journal of Chemistry, vol. 42, pp. 14612-14619, 2018J. Alcañiz-Monge, A. Linares-Solano, and B. Rand, "Water adsorption on activated carbons: study of water adsorption in micro-and mesopores," The Journal of Physical Chemistry B, vol. 105, pp. 7998-8006, 2001.F. B. Cortes Correa, "Adsorción de agua en materiales compuestos y en zeolita," Facultad de Minas, 2009.M. R. Basila, "Hydrogen bonding interaction between adsorbate molecules and surface hydroxyl groups on silica," The Journal of Chemical Physics, vol. 35, pp. 1151-1158, 1961.W. Hertl and M. Hair, "Adsorption of water on silica," Nature, vol. 223, pp. 1150-1151, 1969.M. D. Donohue and G. L. Aranovich, "Classification of Gibbs adsorption isotherms," Advances in colloid and interface science, vol. 76, pp. 137-152, 1998.H. ShamsiJazeyi and T. Kaghazchi, "Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal," Journal of Industrial and Engineering Chemistry, vol. 16, pp. 852-858, 2010.J. Zawadzki, M. Wiśniewski, and K. Skowrońska, "Heterogeneous reactions of NO2 and NO–O2 on the surface of carbons," Carbon, vol. 41, pp. 235-246, 2003.G. Quezada, J. Saavedraa, and R. R. P. Toledoa, "SIMULACION MOLECULAR DE POLIACRILAMIDA ANIONICA EN PRESENCIA DE SALES."L. E. R. D. Mirón and M. E. L. Magaña, "¿ Qué sabemos del agua?."A. Ramírez, L. G. Navarro, and J. Conde Acevedo, "Degradación química del poli (etilen tereftalato)," Revista Colombiana de Química, vol. 39, pp. 321-331, 2010.R. Agarwal, J. Noh, J. Schwarz, and P. Davini, "Effect of surface acidity of activated carbon on hydrogen storage," Carbon, vol. 25, pp. 219-226, 1987J. Nishino, "Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal," Fuel, vol. 80, pp. 757-764, 2001.T. Ohba, H. Kanoh, and K. Kaneko, "Structures and stability of water nanoclusters in hydrophobic nanospaces," Nano letters, vol. 5, pp. 227-230, 2005.E. W. Bittner, M. R. Smith, and B. C. Bockrath, "Characterization of the surfaces of single-walled carbon nanotubes using alcohols and hydrocarbons: a pulse adsorption technique," Carbon, vol. 41, pp. 1231-1239, 2003.M. Hernández-Rodríguez, A. Otero-Calvis, J. Falcón-Hernández, and Y. Yperman, "Características fisicoquímicas del carbón activado de conchas de coco modificado con HNO3," Revista Cubana de Química, vol. 29, pp. 26-38, 2017P. D. Húmpola, "Estudio de la adsorción de compuestos biorrefractarios en soluciones acuosas," 2013.W. Ma, L. Zhang, and C. Yang, "Discussion of the applicability of the generalized Clausius–Clapeyron equation and the frozen fringe process," Earth-Science Reviews, vol. 142, pp. 47-59, 2015.G. Domínguez, R. Hernández-Huesca, and G. Aguilar-Armenta, "Isosteric heats of adsorption of N2O and NO on natural zeolites," Journal of the Mexican Chemical Society, vol. 54, pp. 111-116, 2010.A. Ayala Aponte, L. Serna Cock, and G. Rodriguez de la Pava, "Moisture adsorption isotherms in yellow pitahaya (Selenicereusmegalanthus)," Dyna, vol. 78, pp. 7-14, 2011.F. B. CORTÉS, A. BETANCOURT, B. ROJANO, V. LÓPEZ, and E. Arenas, "Evaluación de las propiedades termodinámicas de sorción de la uchuva (physalis peruviana l.)," Biotecnología en el Sector Agropecuario y Agroindustrial, vol. 10, pp. 32-41, 2012.D. Shen, M. Bülow, F. Siperstein, M. Engelhard, and A. L. Myers, "Comparison of experimental techniques for measuring isosteric heat of adsorption," Adsorption, vol. 6, pp. 275-286, 2000.D. P. ASCHERI and S. BASTOS, "Propiedades de adsorción de agua de dos genotipos de arroz rojo," Engenharia Agrícola, vol. 35, pp. 134-143, 2015.T. Horikawa, Y. Zeng, D. Do, K.-I. Sotowa, and J. R. A. Avila, "On the isosteric heat of adsorption of non-polar and polar fluids on highly graphitized carbon black," Journal of colloid and interface science, vol. 439, pp. 1-6, 2015.M. Dubinin, "Water vapor adsorption and the microporous structures of carbonaceous adsorbents," Carbon, vol. 18, pp. 355-364, 1980.E. A. Taborda-Acevedo, W. J. Jurado, and F. B. Cortés, "Efecto de la temperatura en el proceso de adsorción de agua en Carbón sub-bituminoso colombiano," Boletín de Ciencias de la Tierra, pp. 57-64, 2016.P. Leuk, M. Schneeberger, U. Hirn, and W. Bauer, "Heat of sorption: a comparison between isotherm models and calorimeter measurements of wood pulp," Drying technology, vol. 34, pp. 563-573, 2016.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85892/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1098779289.2024.pdf1098779289.2024.pdfTesis de maestría en Ingenieríaapplication/pdf2765081https://repositorio.unal.edu.co/bitstream/unal/85892/4/1098779289.2024.pdfe3c9099bcc4fc36eed6623c6faa8434fMD54THUMBNAIL1098779289.2024.pdf.jpg1098779289.2024.pdf.jpgGenerated Thumbnailimage/jpeg8006https://repositorio.unal.edu.co/bitstream/unal/85892/5/1098779289.2024.pdf.jpga672b009c8c10c3b3783a5c7177b8000MD55unal/85892oai:repositorio.unal.edu.co:unal/858922024-04-09 23:05:31.512Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=