A Study of Cumulative Quantity Control Chart for a Mixture of Rayleigh Model under a Bayesian Framework
This study deals with the cumulative charting technique based on a simple and a mixture of Rayleigh models. The respective charting schemes are referred as the SRCQC-chart and the MRCQC-chart. These are stimulated from existing statistical control charts in this direction i.e. the cumulative quantit...
- Autores:
-
Aslam, Muhammad
Riaz, Muhammad
Sindhu, Tabassum Naz
Ahmed, Zaheer
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66518
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66518
http://bdigital.unal.edu.co/67546/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Quality control
Inverse Transformation Method
Loss Functions and Bayes Estimators
MRCQC-Chart
SRCQC-Char
Control de calidad
Método de la transformación
Función de pérdida
Estimador bayesiano
Carta MRCQC
Carta SRCQC
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | This study deals with the cumulative charting technique based on a simple and a mixture of Rayleigh models. The respective charting schemes are referred as the SRCQC-chart and the MRCQC-chart. These are stimulated from existing statistical control charts in this direction i.e. the cumulative quantity control (CQC) chart, based on exponential and Weibull models, and the cumulative count control (CCC) chart, based on the simple geometricmodel. Another motivation for this study is the mixture cumulative count control (MCCC) chart based on the two component geometric model. The use of mixture cumulative quantity is an attractive approach for process monitoring. The design structure of the proposed control chart is derived by using the cumulative distribution function of simple, and two components of mixture distribution(s). We observed that the proposed charting structure is efficient in detecting the changes in process parameters. The application of the proposed scheme is illustrated using a real dataset. |
---|