Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.

Ilustraciones

Autores:
Quenguan Cuaran, Franklin Edmundo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80087
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80087
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Frijol - Enfermedades y plagas
Mejoramiento genético
Frijol
Elicitores
ácido 1-oxo- 4-indanoil carboxílico
phytoalexins
beans
1-oxo-4-indanoyl carboxylic acid
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2b4006fa20ca0c38834ec4bdd0bfad20
oai_identifier_str oai:repositorio.unal.edu.co:unal/80087
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
dc.title.translated.eng.fl_str_mv Derivatives of 1-oxo-4-indanoyl carboxylic acid as potential elicitors of chemical defenses in legumes grown in Colombia
title Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
spellingShingle Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
540 - Química y ciencias afines
Frijol - Enfermedades y plagas
Mejoramiento genético
Frijol
Elicitores
ácido 1-oxo- 4-indanoil carboxílico
phytoalexins
beans
1-oxo-4-indanoyl carboxylic acid
title_short Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
title_full Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
title_fullStr Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
title_full_unstemmed Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
title_sort Derivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.
dc.creator.fl_str_mv Quenguan Cuaran, Franklin Edmundo
dc.contributor.advisor.none.fl_str_mv Durango Restrepo, Diego Luis
dc.contributor.author.none.fl_str_mv Quenguan Cuaran, Franklin Edmundo
dc.contributor.researchgroup.spa.fl_str_mv Química de los Productos Naturales y los Alimentos (QUIPRONAL)
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Frijol - Enfermedades y plagas
Mejoramiento genético
Frijol
Elicitores
ácido 1-oxo- 4-indanoil carboxílico
phytoalexins
beans
1-oxo-4-indanoyl carboxylic acid
dc.subject.lemb.spa.fl_str_mv Frijol - Enfermedades y plagas
dc.subject.lemb.Spa.fl_str_mv Mejoramiento genético
dc.subject.proposal.spa.fl_str_mv Frijol
Elicitores
ácido 1-oxo- 4-indanoil carboxílico
dc.subject.proposal.eng.fl_str_mv phytoalexins
beans
1-oxo-4-indanoyl carboxylic acid
description Ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-08-02
dc.date.accessioned.none.fl_str_mv 2021-09-02T21:44:10Z
dc.date.available.none.fl_str_mv 2021-09-02T21:44:10Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80087
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80087
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdulazeez, A., Ogbe, J., & Finnie, J. (2020). The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 134, 126-134. https://doi.org/10.1016/j.sajb.2020.06.023.
AGROSAVIA. (2018). Modelo productivo de frijoles para el Caribe húmedo colombiano- driana Patricia Tofiño Rivera. Biblioteca Agropecuaria de Colombia, 227. ISBN e- Book : 978-958-740-265-0.
Ahuja, I., Ralph, K., & Bones, A. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science. 17(2), 73-90. doi.org/10.1016/j.tplants.2011.11.002.
Aktaruzzaman, M., Afroz, T., Lee, Y.-G., & Kim, B.-S. (2017). Botrytis cinerea is the causal agent of post-harvest grey mould rot on green bean (Phaseolus vulgaris) in Korea. Australasian Plant Disease Notes, 12(1), 32. DOI: 10.1007/s13314-017-0261-6.
Almagro, L., Belchí-Navarro, S., Martínez-Márquez, A., Bru, R., & Pedreño, M. (2015). Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine. Plant Physiology and Biochemistry, 97, 361-367. doi: 10.1016/j.plaphy.2015.10.025.
Álvarez-Sánchez, D. (2019). Typology of pea-producing farms (Pisum sativum L.). Ciencia y Tecnología Agropecuaria, 20(3), 659-677. DOI: https://doi.org/10.21930/rcta.vol20_num3_art:1593.
Anu, K., Limiya, J., & Bindu, R. (2019). An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 17, 33-41. https://doi.org/10.1016/j.cpb.2018.11.009.
Arias, J., Jaramillo, M., & Rengifo, T. (2007). Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de fríjol voluble. . CORPOICA - MANA- FAO. La Selva Medellín.
Arias, J., Rengifo, T., & Jaramillo, M. (2007). Manual: Buenas Practicas Agricolas, en la Produccion de Frijol Voluble. FAO, Gobernacion de Antioquia, MANA, CORPOICA. Medellin, Colombia. 168.
Ballaré, C. (2011). Jasmonate-induced defenses: A tale of intelligence, collaborators and rascals. Trends Plant Sci. 16, 249–257.
Banoo, A., Nabi, A., Rovidha, S., Mahiya-Farooq, Mehraj, D., Mushtaq, A., y otros. (2020). North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. Front Plant Sci., 11, 571618; https://doi.org/10.3389/fpls.2020.571618.
Bardas, G., Lagopodi, A., K. K., & Tzavella-Klonari, K. (2009). Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biological Control 49(2), 139-145. DOI: 10.1016/j.biocontrol.2009.01.012.
Baskar, V., Gururani, M., Yu, J., & Park, S. (2012). Engineering glucosinolates in plants: current knowledge and potential uses. . Appl. Biochem. Biotechnol. 168, 1694–717.
Benevenuto, R.F., Seldal, T., Hegland, S.J. et al. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.). BMC Plant Biol 19, 70 (2019). https://doi.org/10.1186/s12870-019-1650-0
Bender, C. L., Alarcón-Chaidez, F., & C., D. (1999). Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiology and Molecular Biology, 63(2), 266-292. DOI: 10.1128/mmbr.63.2.266-292.1999.
Berlin, J., Dewick, P., & Grisebach, W. H. (1972). Biosynthesis of coumestrol in Phaseolus aureus,. Phytochemistry,, 1689-1693. https://doi.org/10.1016/0031-9422(72)85020-9.
Blair, M., Wu, X., Bhandari, D., Zhang, X., & Hao, J. (2016). Role of Legumes for and as Horticultural Crops in Sustainable Agriculture. . Organic Farming for Sustainable Agriculture. 9, 185-211. DOI https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-319-26803-3_9.
Blechert, A., Bockelmann, C., FuBlein, M., Schrader, T., B., S., Niesel, U., y otros. (1999). Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta Springer-Verlag, 207, 470-479. DOI:10.1007/s004250050506.
Boedeker, W., Watts, M., & Clausing, P. e. (2020). he global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20, 1875. https://doi.org/10.1186/s12889-020-09939-0.
Bohlool, B., Ladha, J., & Garrity, D. G. (1992). Biological nitrogen fixation for sustainable agriculture: a perspective. In: Biological nitrogen fixation for sustainable agriculture. . Plant Soil 141, 1–11. DOI: https://doi.org/10.1007/BF00011307.
Boland, W., Donath, J., Nüske, J., & Bublitz, F. (1995). Jasmonic Acid and Coronatin Induce Odor Production in Plants. Angewandte Chemie is a journal of the German Chemical Society (GDCh); 34(15), 1600-1602. doi: 10.1002/anie.199516001.
Bonett, L., Schewe, I., & Silva, L. (2008). Variability of Colletotrichum lindemuthianum in common bean in western Paraná. Scientia Agrária 9, 207-210.
Boue, S., Cleveland, T., Carter-Wientjes, C., Shih, B., Bhatnagar, D., McLachlan, J., y otros. ( 2009). Phytoalexin-enriched functional foods. J. Agric. Food Chem. 57. , 2614-2622. DOI: 10.1021/jf8040403.
Braga, M., Claudia, M., Young, M., Dietrich, S., & Gottlieb, O. (1991). Phytoalexin induction in rubiaceae. J Chem Ecol. 17(6), 1079-90. doi: 10.1007/BF01402935. PMID: 24259169.
Breen, S., Williams, S., Outram, M., Kobe, B., & Solomon, P. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871-879. DOI: 10.1016/j.tplants.2017.06.013.
Bruce, T., & Pickett, J. (2007). Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol. 10(4):, 387-92. doi: 10.1016/j.pbi.2007.05.002. Epub 2007 Jul 12. PMID: 17627867.
Bürger, M., & Chory, J. (2019). Stressed Out About Hormones: How Plants Orchestrate Immunity (Review). Cell Host & Microbe, 26(2), 163-172. https://doi.org/10.1016/j.chom.2019.07.006.
Byrde, R., & Cutting, C. (1971). Fungal Pathogenicity and the Plants Response. Elsevier. New York.
Carrasco, H., Robles-Kelly, C., Rubio, J., Olea, A., Martínez, R., & Silva-Moreno, E. (2017). Antifungal effect of polygodial on Botrytis cinerea, a fungal pathogen affecting table grapes. International Journal of Molecular Sciences, 18(11), 2251-2263. Article number 2251. DOI: 10.3390/ijms18112251.
Cherng J-M, Chiang W, Chiang L-C: Immunomodulatory activities of edible beans and related constituents from soybean. Food Chem. 2007, 104 (2): 613-618. 10.1016/j.foodchem.2006.12.011.
CIAT. (2019). Beans. Cali, Columbia: CIAT. CIAT, https://ciat.cgiar.org/what-we-do/breeding-better-crops/beans/.
Collinge, D. (2016). Plant Pathogen Resistance Biotechnology. . John Wiley & Sons, 978-1-118-86776-1, 440.
Conner, R., Gillard, K., Mcrae, S.-F., Hwang, Y.-Y., Chen, A., Hou, W., y otros. (2019). Survival of the bean anthracnose fungus (Colletotrichum lindemuthianum) on crop debris in Canada. Canadian Journal of Plant Pathology. 41(2), 209-217. https://doi.org/10.1080/07060661.2018.1563830. .
Cornelissen, C., & Schram, A. (2000). Transgenic Approaches to Control Epidemic Spread of Diseases. Mechanisms of Resistance to Plant Diseases, 575-599. doi.org/10.1007/978-94-011-3937-3_14.
Cory, H., Passarelli, S., Szeto, J., Tamez, M., & & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in nutrition, 87. , https://doi.org/10.3389/fnut.2018.00087.
Cruickshank, I., & Perrin, D. (1960). Isolation of a phytoalexin from Pisum sativum L. Nature. 27(187), 799-800. doi: 10.1038/187799b0. PMID: 13813085.
Dakora, F., & Phillips, D. (1996). Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology, 49. , 1–20. doi.org/10.1006/pmpp.1996.0035.
De Freitas, M., & Stadnik, M. (2012). Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum,. Physiological and Molecular Plant Pathology, 78, 8-13. https://doi.org/10.1016/j.pmpp.2011.12.004.
Deavours, B., & Dixon, R. (2005). Ingeniería metabólica de la biosíntesis de isoflavonoides en alfalfa. . Fisiología vegetal , 138 (4),, 2245-2259. https://doi.org/10.1104/pp.105.062539.
Dempsey, D., Vlot, A., Wildermuth, M. C., & and Klessig, D. (2011). Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9, , 156. doi: 10.1199/tab.0156.
Dewick, P., Steele, M., Dixon, R., & & Whitehead, I. (1982). Biosynthesis of Isoflavonoid Phytoalexins: Incorporation of Sodium [1,2-13C2] Acetate into Phaseollin and Kievitone. Zeitschrift für Naturforschung C, 37,, 363 - 368.
Dicke, M., Gols, R., & Ludeking, D. (1999). Jasmonic Acid and Herbivory Differentially Induce Carnivore-Attracting Plant Volatiles in Lima Bean Plants. Journal of Chemical Ecology. 25, 1907–1922. doi: 10.1023/A:1020942102181.
Diwaker, T., Gaurav, R., & Dhirendra, K. (2019). Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Current Plant Biology 17, 48-49. https://doi.org/10.1016/j.cpb.2019.03.002.
Dominik, K. G. (2012). Phytoalexin transgenics in crop protection—Fairy tale with a happy end. Plant Science, 195, 54-70. https://doi.org/10.1016/j.plantsci.2012.06.008.
Dominik, K., Großkinsky, E., & Thomas, R. (2012). Phytoalexin transgenics in crop protection—Fairy tale with a happy end? Plant Science, 195, 54-70. doi:10.1016/j.plantsci.2012.06.008.
Du, M., Li, Y., Tian, X., Duan, L., Zhang, M., Tan, W., y otros. (2014). The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLoS ONE 9(5): , e97652. doi: 10.1371/journal.pone.0097652.
Durango, D., Pulgarin, N., Echeverri, F., Escobar, G., & Quiñones, W. (2013). Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules;18(10), 10609–10628 doi: 10.3390 / moleculas180910609.
Ebrahim, S., Usha, K., Singh, B., Pathogenesis related (PR) pro-teins in p lant defense mechanism, in: M´endez-Vilas, A. (Ed.),Science against Microbial Pathogens: Communicating CurrentResearch and Technological Advances, Microbiology Series No.3, Formatex, Spain 2011, 1, pp. 1043–1054.
Ebel, J., & Cosio, E. (1994). Elicitors of plant defense responses. International Review of Cytology 148, 1-36. doi: 10.1016 / S0074-7696 (08) 62404-3.
Eldakak, M., Milad, S., Nawar, A., & Rohila, J. (2013). Proteomics: a biotechnology tool for crop improvement. Frontiers in Plant Science., 4 , 35. DOI: 10.3389/fpls.2013.00035.
Evans, A., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current Opinion in Environmental Sustainability 36, , 20–27.
Fang, Z., Peifeng, Z., Jingqi, Z., & Xiaofang, L. (2020). Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review,. Carbohydrate Polymers, 230, https://doi.org/10.1016/j.carbpol.2019.115637.
FAO, F. a. (2016). Organización de las Naciones Unidas para la Agricultura y la Alimentación, International Year of Pulses (IYP) (A/RES/68/231). FAO, http://www.fao.org/pulses-2016/about/en/.
FAO. (2018). Organización de las Naciones Unidas para la Agricultura y la Alimentación, Legumbres. Pequeñas semillas, grandes soluciones. Ciudad de Panamá., 292.
FAO. (2019). The State of Food Security and Nutrition In The World. International fund for agricultural Development, 236. ISBN 978-92-5-131570-5.
FAOSTAT. (2019). “Crops – Beans, dry – Production quantity, years 1988 to 2017”– Export and import quantities, years 2012 to 2016; Food supply quantity, bean, kg/capita, year 2013”. FAO Statistics Database, Food and Agriculture Organisation of the United Nations (FAO), http://faostat.fao.org.
FENALCE. (2018). Federacion Nacional de Cultivadores de Cereales y Leguminosas, Informe de gestion 2018. Federacion Nacional de Leguminosas, http://fenalce.org/siembras/archivos_lt/lt_55IG-FNL-2018-CONSOLIDADO.pdf.
FENALCE. (2020). Federación Nacional de Cultivadores de Cereales y Leguminosas. Estadisticas area produccion de frijol - Colombia. Estadisticas, https://www.fenalce.org/archivos/indicerealista2020B.pdf.
Ferreira, R., Monteiro, S., Freitas, R., Santos, C., Chen, Z., Batista, L., y otros. (2007 ). The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol. 8(5), 677-700. doi: 10.1111/j.1364-3703.2007.00419.x. PMID: 20507530.
Filho, P., Gonçalves-Vidigal, M., Kelly, J., & & Kirk, W. (2007). Sources of Resistance to Anthracnose in Traditional Common Bean Cultivars from Paraná, Brazil. Journal of Phytopathology, 155, , 108-113. DOI:10.1111/J.1439-0434.2007.01203.XCorpus ID: 85823304.
Fliegmann, J., Schüler, G., Boland, W., Ebel, J., & Mithöfer, A. (2003). The role of octadecanoids and functional mimics in soybean defense responses. Biological Chemistry, 348 (3), 437-446. DOI: 10.1515/BC.2003.049.
Flora, S., Shrivastava, R., & Mittal, M. (2013). Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity. Curr Med Chem. 20(36), 4540-74. DOI: 10.2174/09298673113209990146.
Fonseca, S., & Chico, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12:, 539–547. https://doi.org/10.1016/j.pbi.2009.07.013.
Fonseca, S., Chico, C., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology; 12(5), 539-547. doi: 10.1016/j.pbi.2009.07.013.
Forrest, J., Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., y otros. (2012). Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. . Biol. Conserv. 150, , 129–135. DOI: 10.1016/j.biocon.2012.03.001.
García-Díaz, Y., Aquino-Bolaños, E., & Chávez-Servia, J. (2018). Bioactive compounds and antioxidant activity. CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 78(2), 255-265. doi:10.4067/S0718-58392018000200255.
Garratt, M., Bommarco, R., Kleijn, D., Martin, E., Mortimer, S., & Redlich, S. (2018). Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21,, 1404–1415. https://doi.org/10.1016/j.jhazmat.2020.122954.
Gérard, D., Hesha, A., Shiying, B., Jens, B., Virginie, B., Antonio, M., y otros. (2015). Breeding Annual Grain Legumes for Sustainable Agriculture: New Methods to Approach Complex Traits and Target New Cultivar Ideotypes,. Critical Reviews in Plant Sciences, 34:1-3,, 381-411. DOI: 10.1080/07352689.2014.898469.
Gillard, C., & Ranatunga, N. (2013). Interaction between seed treatments, surfactants and foliar fungicides on controlling dry bean anthracnose (Colletotrichum lindemuthianum). Crop Protection, 45, 22-28. https://doi.org/10.1016/j.cropro.2012.11.019.
Giri, C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tiss Organ Cult 126, , 1–18. https://doi.org/10.1007/s11240-016-0985-6.
Glawischnig, E. (2007). Camalexin. Phytochemistry 68 , 401–406.
Grayer, J., & Kokubun, T. (2001). Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry, 56(3), 253-263. doi.org/10.1016/S0031-9422(00)00450-7.
Greulich, F., & Yoshihara, T. (1996). Coronatine, a bacterial phytotoxin, acts as a stereospecific analog of jasmonate type signals in tomato cells and potato tissues. journal of Plant Physiology. 147(3-4), 359-366.
Guo, Z. J., Lamb, C., & & Dixon, R. A. (1998). Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. . Plant physiology, 118(4), 1487–1494. https://doi.org/10.1104/pp.118.4.1487.
Haider, G., Von Schrader, T., Fublein, M., Blechert, S., & Kutchan, T. (2000). Structure-activity relationship of synthetic analogs of jasmonic acid and coronatine on induction of benzo[c]phenanthridine alkaloid accumulation in Eschscholzia californica cell cultures. Biological Chemistry, 381(8), 741-748. PubMed ID: 11030431.
Hakim, A. A., Muhammad, S., Hamid, K., & Summia, G. (2018). Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry, 123, 149-159. https://doi.org/10.1016/j.plaphy.2017.12.012.
Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37,, 285-306. DOI: 10.1146/annurev.phyto.37.1.285.
Harris, D., & Fuller, D. (2014). Agriculture: Definition and Overview. Encyclopedia of Global Archaeology. Springer, New York, , doi-org.ezproxy.unal.edu.co/10.1007/978-1-4419-0465-2_64.
Hayat, I. A., Masud, T., Ahmed, A., & Bashir, S. (2014). Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Critical Reviews in Food Science and Nutrition, 54(5), 580-592. DOI: 10.1080/10408398.2011.596639.
Heichel, G., & Helsel, Z. (1987). Legume nitrogen: symbiotic fixation and recovery by subsequent crops. Energy in plant nutrition and pest control. Energy in World Agriculture, 75(2). , 63–80. ISBN : 0444427538.
Herba-Ingredients. (2017). Herba rice mills. S.L. Ebro Foods Group, http://www.herbaingredients.com/.
Holland, K., & OKeefe, S. (2010). Recent applications of peanut phytoalexins. Recent Pat. Food Nutr. Agric., 2, 221-232.
Ian T. Major, Q., Guo, J., Zhai, G., & Kapali, D. (2020). A Phytochrome B-Independent Pathway Restricts Growth at High Levels of Jasmonate Defense. Plant Physiology 183 (2) , 733-749. DOI: 10.1104/pp.19.01335.
ICCA. (2016). Guia de identificación y manejo integrado de enfermedades del frijol en America Central. Proyecto Red SICTA, COSUDE. . instituto Interamericano de Cooperación para la agricultura, 32.
Iriti, M., & Varoni, E. (2017). Pulses, healthy, and sustainable food sources for feeding the planet. International Journal of Molecular Science, 18 (2), 1-6.
Jahangir, M., Kim, H., Choi, Y., & Verpoorte, R. (2009). Health-affecting compounds in Brassicaceae. Compr. Rev. Food. Sci. Food Saf., 8, 31-43. DOI: 10.1111/j.1541-4337.2008.00065.x.
Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., y otros. (2010). Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors, 36 , 331-341. DOI: 10.1002/biof.108.
Jesus, W., Vle, F., Coelho, B., Hau, L., Z. L., & C. (2007). Effects of Angular Leaf Spot and Rust on Yield Loss of Phaseolus vulgaris. The American Phytopathological Society (APS), 1045-1053. https://doi.org/10.1094/PHYTO.2001.91.11.1045.
Jianbin Yan, Ruifeng Yao, Li Chen, Suhua Li, Min Gu, Fajun Nan, Daoxin Xie. Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant. VOLUME 11, ISSUE 10, P1237-1247, OCTOBER 08, 2018.
Joginder, S., & Ajar, N. (2020). Natural Bioactive Products in Sustainable Agriculture (eBook). ISBN 978-981-15-3023-4 ISBN 978-981-15-3024-1, https://doi.org/10.1007/978-981-15-3024-1.
Kajiwara, V., & Moda-Cirino, V. (2021). The influence of chemical composition diversity in the cooking quality of Andean bean genotypes. Food Chemistry, 339, 127917. doi.org/10.1016/j.foodchem.2020.127917.
Katare, D., Aeri, V., & Bora, M. (2009). Secondary metabolites and metabolic engineering. Journal of Cell and Tissue Research, 9 , 2027-2036.
Katsir, L., Schilmiller, A., Staswick, P., He, S., & Howe, G. (2018). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. . Proc. Natl. Acad. Sci. USA 105: , 7100–7105.
Katsir, L., Schilmiller, A., Staswick, P., Sheng, Y., & Howe, G. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America; 105(19), 7100-7105.
Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. . Trends Plant Sci. 20(4), 219-29. doi: 10.1016/j.tplants.2015.02.001. Epub 2015 Feb 24. PMID: 25731753.
Keen, N. (1975). Specific elicitors of plant phytoalexin production: detenninants of race specificity in pathogens? Science. 10;187(4171), 74-5. doi: 10.1126/science.187.4171.74. PMID: 17844213.
Kemal, K., & Rebecca, L. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. The Plant Cell Jun, 26 (6) , 2285-2309; DOI: 10.1105/tpc.114.125419.
Knoblauch, E., Rodrigues, R., & al., e. ( 2020). Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to Callosobruchus maculatus infestation. Journal of Stored Products Research, 87, 101580. https://doi.org/10.1016/j.jspr.2020.101580.
Krishnan, A., Joseph, L., & Roy, B. (2019). An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 17, 33-41 doi: 10.1016/j.cpb.2018.11.009.
Krumm, T., Bandemer, K., & Boland, W. (1995). Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalli. FEBS Letters, Volume 377, Issue 3, 27, 523-529, DOI: 10.1016/0014-5793(95)01398-9.
Krumm, T., Bandermer, K., & Boland, W. (1995). Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid . Federation of European Biochemical Societies , 523-529.
Kuć, J., & Rush, J. (1985). Phytoalexins. Archives of Biochemistry and Biophysics, 236(2), 455-472. https://doi.org/10.1016/0003-9861(85)90648-4.
Lamb, C., Lawton, M., Dron, M., & Dixon, R. (1989). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56(2), 215-224. DOI: 10.1016/0092-8674(89)90894-5.
Lauchli, R., & Boland, W. (2003). Indanoyl amino acid conjugates: Tunable elicitors of plant secondary metabolism. The Chemical Record. 3(1), 12-21. Doi:10.1002/tcr.10043.
Lehner, M., Paula-Júnior, T., Silva, R., Vieira, R., Carneiro, J., & Schnabel, G. (2015). Fungicide sensitivity of Sclerotinia sclerotiorum: a thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and Description of New Point Mutation Associated with Thiophanate-Methyl Resistance. Plant Dis. 99(11), 1537-1543. doi: 10.1094/PDIS-11-14-1231-RE. Epub 2015 Aug 17. PMID: 30695953.
Li, Y., Cai, Y., Liang, Y., Ji, P., & Lankun, X. (2020). Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea. Postharvest Biology and Technology, 161, 111086. https://doi.org/10.1016/j.postharvbio.2019.111086 .
Littleson, M., J., C., Frye, E., Ling, K., & Jamieson, C. (2016). Synthetic approaches to coronafacic acid, coronamic acid, and coronatine. Journal or Publication, https://doi.org/10.1055/s-0035-1562552.
Li ST, Zhang P, Zhang M, Fu C, Zhao C, Dong Y, Guo A, Yu L. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genomics. 2012;13.
Liu, Y., & Song, M. (2020). Enhanced dissipation of xenobiotic agrochemicals harnessing soil microbiome in the tillage-reduced rice-dominated agroecosystem. Journal of Hazardous Materials 398(5), 122954. https://doi.org/10.1016/j.jhazmat.2020.122954.
Mahoney, K., & Gillard, C. (2014). Plant health and yield of dry bean not affected by strobilurin fungicides under disease-free or simulated hail conditions. Can. J. Plant Pathol. 94, 1385-1389.
Malinovsky, F., Fangel, J., & Willats, W. (2014). The role of the cell wall in plant immunity. Front. Plant Sci. 5, , 178. doi: 10.3389/fpls.2014.00178. PMID: 24834069; PMCID: PMC4018530.
Manish Kumar, Amandeep Brar, Monika Yadav, Aakash Chawade, V. Vivekan Nidhi Pareek, Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens, Agriculture (2018), 8, 88; doi:10.3390/agriculture8070088
Martin-Rivilla, H., Gutierrez-Mañero, F. J., Gradillas, A., P Navarro, M., & Andrade, G. (2020). Identifying the Compounds of the Metabolic Elicitors of Pseudomonas fluorescens N 21.4 Responsible for Their Ability to Induce Plant Resistance. Plants (Basel, Switzerland), 9(8), , 1020. https://doi.org/10.3390/plants9081020.
Martins, S. (2016). PROTECTION AGAINST BIOTIC AND . (TESIS), 86. http://177.105.2.222/bitstream/1/10969/1/TESE_Protection%20against%20biotic%20and%20abiotic%20stresses%20in%20common%20bean%20by%20rhizobacteria.pdf.
Martins, S., Flausino, A., Pozzobon, M., Gomes, M., Rubia, M., & Henrique, F. (2019). Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biological Control, 131, 36-42. https://doi.org/10.1016/j.biocontrol.2019.01.003.
McCreary, C., Depuydt, D., Vyn, R., & Gillard, C. (2016). Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure. Crop Prot. 82, , 75-81. https://doi.org/10.1016/j.cropro.2015.12.020.
Menéndez Daimy Costales, Trudy Ann Gordon, Alejandro B. Falcón Rodríguez (2014), Variations in the response of defensive markers and in the contents of primary metabolism components in tobacco (Nicotiana tabacum, L.) seedlings applied with chitosan, cultrop vol.35 no.2 La Habana abr.--jun.
Meziadi, C., Richard, M., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., y otros. (2016). Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Science 242, 351-357. DOI: 10.1016/j.plantsci.2015.09.006.
Michael, D., & Woodward. (1980). Phaseollin formation and metabolism in Phaseolus vulgaris. Phytochemistry, 19(5), 921-927. https://doi.org/10.1016/0031-9422(80)85139-9.
Miklas, P., Porter, L., Kelly, J., & Myers, J. (2013). Characterization of white mold disease avoidance in common bean. European Journal of Plant Pathology, 135, 525–543. https://doi.org/10.1007/s10658-012-0153-8.
Mohamed, A., Farag, D., . Huhman, R., & Dixon, L. ( 2008). Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in Medicago truncatula Cell Cultures. Plant Physiology, 146 (2) , 387-402. DOI: 10.1104/pp.107.108431.
Mosquera-Vásquez, T., Del Castillo, S., & Gálvez, D. e. (2017). Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia. Potato Res. 60, , 361–381. https://doi-org.ezproxy.unal.edu.co/10.1007/s11540-018-9389-9 .
Mubarak A: Nutritional composition and antinutritional factors of mung bean seeds (phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89: 489-495. 10.1016/j.foodchem.2004.01.007.
Muller, K. (1958). Relationship between Phytoalexin Output and the Number of Infections Involved. Nature, 182., 167–168. doi-org.ezproxy.unal.edu.co/10.1038/182167a0.
Müller, K., & Börger, H. (1940). Experimentelle Untersuchungen über die Phythophthora-Resistenz der Kartoffel. Zugleich ein Beitrag zum Problem der ‘erworbenen Resistenz’ im Pflanzenreich. Arbeiten der Biologischen Reichsanstalt für Land- und Forstwirtschaft, 23., 189-231 .
Multari, S., Stewart, D., & Russell, W. (2015). Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 14(5), 511-522. DOI: 10.1111/1541-4337.12146.
Naoumkina, M., Farag, M., Sumner, L., Tang, Y., Liu, C., & Dixon, R. (2007). Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci U S A. 104(46), 17909-15. doi: 10.1073/pnas.0708697104.
Nara, S., Toshima, H., & Ichihara, A. (1997). Asymmetric total syntheses of (+)-coronafacic acid and (+)-coronatine, phytotoxins isolated from Pseudomonas syringae pathovars. Tetrahedron, 53(28), 9509-9524. doi: 10.1016/S0040-4020(97)00614-5.
Netea, M., & Quintin, J. (2011). Trained immunity: a memory for innate host defense. . Cell Host Microbe 9: 355–361., 355–361.
Ng, T., Ye, X., Wong, J., Fang, E., Chan, Y., Pan, W., y otros. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Appl. Microbiol. Biotechnol., 90, 59-68. DOI: 10.1007/s00253-011-3169-7.
Nguyen Hoang Loc, Nguyen Duc Huy, Hoang Tan Quang, Tran Thuy Lan & Tran Thi Thu Ha (2020) Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34, Mycology, 11:1, 38-48, DOI: 10.1080/21501203.2019.1703839
Ntahimpera, N., & Dillard, H. C. (2007). Influence of Tillage Practices on Anthracnose Development and Distribution in Dry Bean Fields. The American Phytopathological Society (APS), https://doi.org/10.1094/PDIS.1997.81.1.71.
Nürnberger, T. (1999 ). Signal perception in plant pathogen defense. Cell Mol Life Sci. 55(2), 167-82. doi: 10.1007/s000180050283. PMID: 24481912.
Ombra, M., Nazzaro, F., Riccardi, R., Patrizia, S., & Massimo, Z. (2016). Phenolic Composition and Antioxidant and Antiproliferative Activities of the Extracts of Twelve Common Bean (Phaseolus vulgaris L.) Endemic Ecotypes of Southern Italy before and after Cooking. Oxidative Medicine and Cellular Longevity, 12. https://doi.org/10.1155/2016/1398298.
Onrubia, M., Moyano, E., Bonfill, M., Cusidó, R., Goossens, A., & Palazón, J. (2013). Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. Journal of Plant Physiology; 170(2), 211-219. DOI: 10.1016/j.jplph.2012.09.004.
ONU. (1990). Organizacion de Naciones Unidas UNEP, health impact of pesticides used in agriculture. Geneva: World Health Organization. Editors. Public , 128.
Orak, H., Karamać, M., & Orak, A. A. (2016). Antioxidant Potential andPhenolic Compounds ofSome Widely Consumed Turkish White Bean (Phaseolus vulgaris L.) Varieties. Pol. J.Food Nutr. Sci., 66(4), DOI: 10.1515/pjfns-2016-0022http://journal.pan.olsztyn.pl.
Padder, B. A., Sharma, P. N., Awale, H., & Kelly, J. D. (2017). Colletotrichum lindemuthiam the Casual Agent of Bean Anthracnose. J. Plant Pathol. 99,, 317–330; doi: 10.4454/jpp.v99i2.3867.
Páez, C., & García, J. (2020). Evaluación del crecimiento del frijol mungo (Vigna radiata) bajo aplicación de fósforo y bioestimulante en El Espinal-Tolima. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente ECAPMA, TESIS, https://repository.unad.edu.co/bitstream/handle/10596/36835/capaesm.pdf?sequence=3&isAllowed=y .
Pastor-Corrales, M., Otoya, M., & Maya, M. (1993). Diversidad de la virulencia de colletotrichum lindemuthianum en mesoamerica y la region andina. . Fitopatologia Colombiana 17(1), 31-37.
Paxton, J. (1980). A new working definition of the term “phytoalexin”. Plant Dis, 64:734.
Pedras, M., Yaya, E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Natural Product Reports, 28(8), 1381-1405. DOI: 10.1039/c1np00020a.
Peoples, M., Herridge, D., & Ladha, J. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural, 3-28. https://doi.org/10.1007/978-94-011-00.
Pérez-Balibrea, S., Moreno, D., & García-Viguera, C. (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry; 129(1), 35-44; DOI: 10.1016/j.foodchem.2011.03.049.
Pierre, J. d. (2016). Cladosporium fulvum Effectors: Weapons in the Arms Race with Tomato. Journal Article, Annual Review of Phytopathology, 54, 1-23. Doi: 10.1146/annurev-phyto-011516-040249.
Pierre, P., Louise, N., & Therese, V. (2019). Improved nutrient status and Fusarium root rot mitigation with an inoculant of two biocontrol fungi in the common bean (Phaseolus vulgaris L.). Journal Pre-proof, DOI: https://doi.org/10.1016/j.rhisph.2019.100172.
Pina-Pérez, M., & Ferrús Pérez, M. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. . Trends in Food Science & Technology, 72, 114-124. https://doi.org/10.1016/j.tifs.2017.12.007.
Poornananda, M., Naik, J., & Al-Khayri, M. (2016). Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review. J Adv Res Biotech 1(2), 7. DOI: http://dx.doi.org/10.15226/2475-4714/1/2/00102.
Qin, H. (2010). Rural-to-urban labor migration, household livelihoods, and the rural environment in Chongqing Municipality, Southwest China. Hum Ecol, 38, 675–690. doi:10.1007/s10745-010-9353-z.
Raasch-Fernandes, L., & Bonaldo, S. (2019). Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PloS one, 14(1), 211020. https://doi.org/10.1371/journal.pone.0211020.
Rahe, J., E., K. J., Chuang, C., & Williams, E. (1969). Correlation of phenolic metabolism with histological changes in Phaseolus vulgaris inoculated with fungi. . Neth. J. Pl. Path. 75, 58-71.
Rajiv, K., George, H., Upendra, P., & Chandrajeet. (2016). Embarking on second green revolution by vermiculture for production of chemical free organic foods, protection of crops and farm soils and elimination of deadly agrochemicals from earth: Meeting the challenges of food security of 21st century by earthworm. Agricultural Research Updates, Nova Science Publishers, Inc. New York, , 1-49. .
Ramirez-Villegas, J., Salzar, M., Jarvis, A., & Navarro-Racines, E. (2012). A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050. Climatic Change 115, , 611–628. https://doi.org/10.1007/s10584-012-0500-y.
Reinhold, L. H., & Swain, T. (1978). Progress in Phytochemistry. First ed. Pergamon press LTDA.
Rezende, A., Pacheco, M., da SILVA, V., & Ferreira, T. (2018). Nutritional and protein quality of dry brazilian beans (Phaseolus vulgaris l.). Food Science and Technology, 38(3), 421-427. DOI: 10.1590/1678-457x.05917.
Rossi, G.D., Zucchi, T.D., Guidolin, A.S. et al. Chitin-degrading enzymes from an actinomycete ectosymbiont of Acromyrmex subterraneus brunneus (Hymenoptera: Formicidae) Ann Microbiol 65, 565–574 (2015). https://doi.org/10.1007/s13213-014-0892-1
S. Ali , B. Ahmad , AN Kamili , A. Ali , Z. Ahmad , J. Akhter , A. Tyagi , S. Tajamul , M. Mushtaq , P. Yadav , S. Rawat , A. Grover Proteínas y péptidos relacionados con la patogenia como herramientas prometedoras para la ingeniería de plantas con tolerancia múltiple al estrés Microbiol. Res. , 212–213 ( 2018 ) , págs. 29 – 37, https://doi-org.ezproxy.unal.edu.co/10.1016/j.micres.2018.04.008
Samari, E., Sharifi, M., Ghanati, F. et al. Chitosan-induced phenolics production is mediated by nitrogenous regulatory molecules: NO and PAs in Linum album hairy roots. Plant Cell Tiss Organ Cult 140, 563–576 (2020). https://doi-org.ezproxy.unal.edu.co/10.1007/s11240-019-01753-w
Sánchez-Bayo, F., & Wyckhuys, K. (2019). Worldwide decline of the entomofauna: a review of its drivers. . Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.
Sandhu, J. S., & Yadav, I. (2017). Control of Fungal Diseases in Agricultural Crops by Chitinase and Glucanase Transgenes. In: Lichtfouse E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 22., 163-212. doi-org.ezproxy.unal.edu.co/10.1007/978-3-319-48006-0_6.
Santra, H., & Banerjee, D. (2020). Natural Products as Fungicide and Their Role in Crop Protection. Natural Bioactive Products in Sustainable Agriculture. Springer, Singapore, 131-219. doi-org.ezproxy.unal.edu.co/10.1007/978-981-15-3024-1_9.
Satterthwaite, D., McGranahan, G., & Tacoli, C. (2010). Urbanization and its implications for food and farming. Philos T R Soc B 365, 2809–2820. doi.org/10.1098/rstb.2010.0136.
Schmelz, E., A., H., Sims, A., & Christensen, X. (2014). Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. The Plant Journal, 79, 659–678. https://doi.org/10.1111/tpj.12436.
Schüler, G., Mithöfer, A., Baldwin, I., Berger, S., Ebel, J., Santos, J., y otros. (2004). Coronalon: a powerful tool in plant stress physiology. FEBS Letters; Apr;563(1-3), 17-22. DOI: 10.1016/s0014-5793(04)00239-x.
Schwartz, H. F. (1991). Anthracnose. Compendium of bean diseases. . The American Phytopathological Society APS, St Paul, MN., 16–17.
Sellitti, S., Vaiknoras, K., & Smale, M. e. (2020). The contribution of the CIAT genebank to the development of iron-biofortified bean varieties and well-being of farm households in Rwanda. Food Sec. 12, 975–991. https://doi-org.ezproxy.unal.edu.co/10.1007/s12571-020-01038-7.
Shabab, M., Takayuki, S., Christian, G., Farnusch, K., Twinkal, P., Raju, C., y otros. (2008). Fungal Effector Protein AVR2 Targets Diversifying Defense-Related Cys Proteases of Tomato. The Plant Cell Apr, 20 (4). , 1169-1183. DOI: 10.1105/tpc.107.056325.
Sharma, P. N., Sharma, O. P., Padder, B. A., & Kapil, R. (2008). Yield Loss Assessment in Common Bean Due to Anthracnose (Colletotrichum lindemuthianum) Under Sub-Temperate Conditions of North-Western Himalayas. Indian Phytopathol, 61, 323–330.
Shibuya, N., & Minami, E. (2001). Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology, 59(5), 223-233. doi.org/10.1006/pmpp.2001.0364.
Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & B., M.-M. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158: , 835–843.
Smoliga, J., & Baur, J. H. (2011). Resveratrol and health – a comprehensive review of human clinical trials. Mol. Nutr. Food Res., 55 , 1129-1141. DOI: 10.1002/mnfr.201100143.
Sousa, S., de Oliveira, T., Gonçalves, G., Lopes, M., dos Santos, G., & Fidelis, R. (2014). Características agronômicas e resistência de genótipos de feijão comum à mela no sul do estado do Tocantins. J. Biotec. Biodivers. 5, 130-139.
Struik, P., & Kuyper, T. (2017). Sustainable intensification in agriculture: the richer shade of green. A review. Agron. Sustain. Dev. , 37, 39. https://doi-org.ezproxy.unal.edu.co/10.1007/s13593-017-0445-7.
Struik, P., Kuyper, T., Brussaard, L., & Leeuwis, C. (2014). Deconstructing and unpacking scientific controversies in intensification and sustainability: why the tensions in concepts and values? Current Opinion in Environmental Sustainability, 8, 80-88. https://doi.org/10.1016/j.cosust.2014.10.002.
Sunilkumar, G., LeAnne, M., Campbell, L., & Puckhaber, R. (2006. ). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences 103 (48) , 18054-18059. DOI: 10.1073/pnas.0605389103.
Tamogami, S., & Kodama, O. (2000). Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry, 54(7), 689-694. DOI: 10.1016/S0031-9422(00)00190-4.
Tang, D., Dong, Y., Ren, H. et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8, 4 (2014). https://doi.org/10.1186/1752-153X-8-4 DOIhttps://doi.org/10.1186/1752-153X-8-4
Thapakorn Somboon, et al., Methyl jasmonate and cyclodextrin-mediated defense mechanism and protective effect in response to paraquat-induced stress in peanut hairy root, Phytochemistry Volume 163, 2019, Pages 11-22, ISSN 0031-9422, https://doi.org/10.1016/j.phytochem.2019.03.017.
Toshima, H., & Nara, S. (1997). Assymetric total synthesis of (+)-coronafacic acid and (+)-coronatine. Bioscience, Biotechnology, and Biochemistry. 61(4), 752-753.
Trabanco, N. P.-V., Campa, A. R., & Ferreira, J. (2012). Genetic resistance to powdery mildew in common bean, 186(3). Euphytica, 875-882. DOI: 10.1007/s10681-012-0663-7.
Trkulja, N., Pfad-Dolovac, E., Milosavljevic, A., Bošković, J., Jović, J., Mitrović, M., y otros. (2016). First report of QoI resistance in Botrytis cinerea isolates causing gray mold in strawberry fields in Serbia. Plant Dis. 100, 221. .
Trouvelot, S. H.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., & Combier, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Sci. 5, 592. doi: 10.3389/fpls.2014.00592.
Tu, J. (1981). Anthracnose (Colletotrichum lindemuthianum) on white bean (Phaseolus vulgaris L.) in southern Ontario: spread of the disease from an infection focus. Plant Disease 65(6), 477-480. DOI : 10.1094/PD-65-477.
Uppalapati, S., Ayoubi, P., Weng, H., Palmer, D., Mitchell, R., Jones, W., y otros. (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant Journal, 42(2), 201-217. DOI: 10.1111/j.1365-313X.2005.02366.x.
Van Loon, L., Rep, M., & Pieterse, C. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135-162. DOI: 10.1146/annurev.phyto.44.070505.143425.
Van-Loon, L. (2016). The intelligent behavior of plants. Trends Plant Sci., DOI: 10.1016/j.tplants.2015.11.009.
Van-Loon, L., Rep, M., & Pieterse, C. (2006). Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 44, 135-62. doi: 10.1146/annurev.phyto.44.070505.143425. PMID: 16602946.
Veneault-Fourrey, C., Laugé, R., & Langin, T. (2005). Nonpathogenic strains of Colletotrichum lindemuthianum trigger progressive bean defense responses during appressorium-mediated penetration. Applied and Environmental Microbiology 71(8) , 4761-4770. DOI: 10.1128/AEM.71.8.4761-4770.2005.
Weiler, E., Kutchan, T., Gorba, T., Brodschelm, W., & Niesel, U. (1999). The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. . FEBS Lett. 345, 9–13. doi: 10.1016/0014-5793(94)00411-0.
Weng, J., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. . New Phytol. 187, 273–285. doi: 10.1111/j.1469-8137.2010.03327.x.
Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection(Review). Biochemical Journal 322(3), 681-692. DOI: 10.1042/bj3220681.
Wu, G., Fanzo, J., Miller, D., Pingali, P., Mark, P., & al., e. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Anales de la Academia de Ciencias de Nueva York 1321 (1), 1-19. DOI: 10.1111 / nyas.12500.
Xueqing, G., Jiye, C., Anju, G., & David, M. (2012). The Coronatine Toxin of Pseudomonas syringae Is a Multifunctional Suppressor of Arabidopsis Defense. The Plant Cell, 24 (11) , 4763-4774; DOI: 10.1105/tpc.112.105312.
Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. . Molecules 23, 1-9. https://doi.org/10.3390/molecules23040762.
Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., y otros. (2002). Apoptotic cell death is a common response to pathogen attack in oats. Molecular Plant-Microbe Interactions, 15(10), 1000-1007, DOI: 10.1094/MPMI.2002.15.10.1000.
Yasunori Koda, Kiyoshi Takahashi, Yosio Kikuta, Friedemann Greulich, Hiroaki Toshima, Akitami Ichihara (1996). Similarities of the biological activities of coronatine and coronafacic acid to those of jasmonic acid. Phytochemistry, Volume 41(1), January 1996, Pages 93-96
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 189 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Escuela de química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80087/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80087/2/1086298642.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80087/3/1086298642.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
9404b03ef05c14606acb20a25ed914f8
f3ae15759e19af93a84f5f92f636fc38
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090233849839616
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Durango Restrepo, Diego Luis1b4cbd36eb2a707cfb816d7c27dfe8e7600Quenguan Cuaran, Franklin Edmundo085c71a38527d1cf8932530b9eab87e2Química de los Productos Naturales y los Alimentos (QUIPRONAL)2021-09-02T21:44:10Z2021-09-02T21:44:10Z2020-08-02https://repositorio.unal.edu.co/handle/unal/80087Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLegumes, such as common beans (Phaseolus vulgaris L.) and mung beans (Vigna radiata L., R. Wilczek), are important crops for nutrition, employment and income generation, and essential products in the diet of the Colombian population. A limitation of the cultivation of legumes in Colombia is represented by the presence of pests and diseases, especially those of fungal origin such as anthracnose. Traditionally, the control of this disease has been carried out through the application of synthetic biocidal substances, which have adverse effects on human health and the environment. In addition, varietal resistance has been used; Unfortunately, this approach presents difficulties in detecting resistant materials quickly and reliably for plant breeding programs, and resistance is not long-lasting. Therefore, new alternatives are required to control the disease, but from a non-biocidal approach, and ecologically safer. A novel alternative to the use of current fungicides is the possibility of stimulating the innate chemical defenses of plants, through the use of chemical elicitors (chemical substances that activate the defense mechanisms of the plant; such as methyl jasmonate, coronatin, salicylic acid and acetylsalicylic acid).Las leguminosas, como el frijol común (Phaseolus vulgaris L.) y el frijol mungo (Vigna radiata L., ‎R.Wilczek), son cultivos importantes a nivel nutricional, generación de empleo e ingresos, y productos esenciales en la dieta de la población colombiana. Una limitante del cultivo de leguminosas en Colombia lo representa la presencia de plagas y enfermedades, especialmente aquellas de origen fúngico como la antracnosis. Tradicionalmente el control de esta enfermedad se ha realizado mediante la aplicación de sustancias sintéticas biocidas, que presentan efectos adversos para la salud humana y el medio ambiente. Además, se ha empleado resistencia varietal; lamentablemente esta aproximación presenta dificultades para detectar materiales resistentes rápidamente y de manera confiable para los programas de fitomejoramiento, además que la resistencia no es duradera. Por lo anterior, se requieren nuevas alternativas que permitan controlar la enfermedad, pero desde un enfoque no biocida, y ecológicamente más seguro. Una alternativa novedosa al uso de los fungicidas actuales es la posibilidad de estimular las defensas químicas innatas de las plantas, mediante el uso de elicitores químicos (sustancias químicas que activan los mecanismos de defensa de la planta; tales como metil jasmonato, coronatina, ácido salicílico y ácido acetilsalicílico). Estas defensas químicas incluyen mecanismos complejos y sofisticados como la producción de metabolitos secundarios antimicrobianos constitutivos o inducidos, denominados respectivamente fitoanticipinas y fitoalexinas, y la activación de enzimas potentes relacionadas con la defensa, como la fenilalanina amonio liasa (PAL) y enzimas hidrolíticas, como quitinasas y β-1,3-glucanasas, que evitan el establecimiento del patógeno. En la presente tesis se prepararon derivados del ácido 1-oxo-4-indanoilcarboxílico relacionados estructuralmente con la coronatina, los cuales se purificaron por técnicas cromatográficas y se identificaron por métodos espectroscópicos. Soluciones hidro-alcoholicas de estos compuestos se aplicaron sobre plántulas de variedades de fríjol común con diferente comportamiento fitopatológico (cultivares Andino, Calima e ICA-Bachué, entre otros) y frijol mungo. Como controles positivos se emplearon soluciones de los elicitores reconocidos metiljasmonato, ácido salicílico, y ácido acetilsalicílico. Posteriormente se analizó por cromatografía líquida de alta eficiencia (CLAE-DAD) la producción de nueve fitoanticipinas y/o fitoalexinas (dalbergioidina, 2’-hidroxigenisteina, daidzeina, genisteina, coumestrol, phaseollidina, kievitona, phaseollinisoflavano, y phaseollina) previamente aisladas por técnicas cromatográficas e identificadas por métodos espectroscópicos (Resonancia magnética nuclear de 1H y 13C, UV, y espectrometría de masas). Además, se determinó la actividad de las enzimas PAL, quitinasa y β-1,3-glucanasa por métodos espectrofotométricos. La cuantificación de las fitoalexinas y/o fitoanticipinas y la actividad enzimática, demostraron que la composición de los extractos de frijol común y frijol mungo es dependiente de la especie y cultivar, la estructura y concentración del derivado indanoilo (elicitor potencial), y el tiempo post-inducción. Adicionalmente se encontró que el compuesto 1-oxo-4-indanoil L-isoleucina metil ester presentó un efecto inductor de fitoalexinas comparable al de los elicitores reconocidos metil jasmonato y ácido salicílico. Los resultados de la presente tesis aportan información valiosa para los programas de fitomejoramiento en frijol y el diseño de nuevos elicitores de defensas químicas, para el agro colombiano. 8Texto tomado de la fuente)MaestríaMagister en Ciencias QuímicasQuímica de los Productos Naturales y los Alimentos (QUIPRONAL)189 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afinesFrijol - Enfermedades y plagasMejoramiento genéticoFrijolElicitoresácido 1-oxo- 4-indanoil carboxílicophytoalexinsbeans1-oxo-4-indanoyl carboxylic acidDerivados del acido 1-oxo- 4-indanoil carboxílico como potenciales elicitores de defensas química en leguminosas cultivadas en Colombia.Derivatives of 1-oxo-4-indanoyl carboxylic acid as potential elicitors of chemical defenses in legumes grown in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAbdulazeez, A., Ogbe, J., & Finnie, J. (2020). The role of endophytes in secondary metabolites accumulation in medicinal plants under abiotic stress. South African Journal of Botany, 134, 126-134. https://doi.org/10.1016/j.sajb.2020.06.023.AGROSAVIA. (2018). Modelo productivo de frijoles para el Caribe húmedo colombiano- driana Patricia Tofiño Rivera. Biblioteca Agropecuaria de Colombia, 227. ISBN e- Book : 978-958-740-265-0.Ahuja, I., Ralph, K., & Bones, A. (2012). Phytoalexins in defense against pathogens. Trends in Plant Science. 17(2), 73-90. doi.org/10.1016/j.tplants.2011.11.002.Aktaruzzaman, M., Afroz, T., Lee, Y.-G., & Kim, B.-S. (2017). Botrytis cinerea is the causal agent of post-harvest grey mould rot on green bean (Phaseolus vulgaris) in Korea. Australasian Plant Disease Notes, 12(1), 32. DOI: 10.1007/s13314-017-0261-6.Almagro, L., Belchí-Navarro, S., Martínez-Márquez, A., Bru, R., & Pedreño, M. (2015). Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine. Plant Physiology and Biochemistry, 97, 361-367. doi: 10.1016/j.plaphy.2015.10.025.Álvarez-Sánchez, D. (2019). Typology of pea-producing farms (Pisum sativum L.). Ciencia y Tecnología Agropecuaria, 20(3), 659-677. DOI: https://doi.org/10.21930/rcta.vol20_num3_art:1593.Anu, K., Limiya, J., & Bindu, R. (2019). An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 17, 33-41. https://doi.org/10.1016/j.cpb.2018.11.009.Arias, J., Jaramillo, M., & Rengifo, T. (2007). Manual Técnico: Buenas Prácticas Agrícolas (BPA) en la producción de fríjol voluble. . CORPOICA - MANA- FAO. La Selva Medellín.Arias, J., Rengifo, T., & Jaramillo, M. (2007). Manual: Buenas Practicas Agricolas, en la Produccion de Frijol Voluble. FAO, Gobernacion de Antioquia, MANA, CORPOICA. Medellin, Colombia. 168.Ballaré, C. (2011). Jasmonate-induced defenses: A tale of intelligence, collaborators and rascals. Trends Plant Sci. 16, 249–257.Banoo, A., Nabi, A., Rovidha, S., Mahiya-Farooq, Mehraj, D., Mushtaq, A., y otros. (2020). North-Western Himalayan Common Beans: Population Structure and Mapping of Quantitative Anthracnose Resistance Through Genome Wide Association Study. Front Plant Sci., 11, 571618; https://doi.org/10.3389/fpls.2020.571618.Bardas, G., Lagopodi, A., K. K., & Tzavella-Klonari, K. (2009). Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biological Control 49(2), 139-145. DOI: 10.1016/j.biocontrol.2009.01.012.Baskar, V., Gururani, M., Yu, J., & Park, S. (2012). Engineering glucosinolates in plants: current knowledge and potential uses. . Appl. Biochem. Biotechnol. 168, 1694–717.Benevenuto, R.F., Seldal, T., Hegland, S.J. et al. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.). BMC Plant Biol 19, 70 (2019). https://doi.org/10.1186/s12870-019-1650-0Bender, C. L., Alarcón-Chaidez, F., & C., D. (1999). Pseudomonas syringae Phytotoxins: Mode of Action, Regulation, and Biosynthesis by Peptide and Polyketide Synthetases. Microbiology and Molecular Biology, 63(2), 266-292. DOI: 10.1128/mmbr.63.2.266-292.1999.Berlin, J., Dewick, P., & Grisebach, W. H. (1972). Biosynthesis of coumestrol in Phaseolus aureus,. Phytochemistry,, 1689-1693. https://doi.org/10.1016/0031-9422(72)85020-9.Blair, M., Wu, X., Bhandari, D., Zhang, X., & Hao, J. (2016). Role of Legumes for and as Horticultural Crops in Sustainable Agriculture. . Organic Farming for Sustainable Agriculture. 9, 185-211. DOI https://doi-org.ezproxy.unal.edu.co/10.1007/978-3-319-26803-3_9.Blechert, A., Bockelmann, C., FuBlein, M., Schrader, T., B., S., Niesel, U., y otros. (1999). Structure-activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta Springer-Verlag, 207, 470-479. DOI:10.1007/s004250050506.Boedeker, W., Watts, M., & Clausing, P. e. (2020). he global distribution of acute unintentional pesticide poisoning: estimations based on a systematic review. BMC Public Health 20, 1875. https://doi.org/10.1186/s12889-020-09939-0.Bohlool, B., Ladha, J., & Garrity, D. G. (1992). Biological nitrogen fixation for sustainable agriculture: a perspective. In: Biological nitrogen fixation for sustainable agriculture. . Plant Soil 141, 1–11. DOI: https://doi.org/10.1007/BF00011307.Boland, W., Donath, J., Nüske, J., & Bublitz, F. (1995). Jasmonic Acid and Coronatin Induce Odor Production in Plants. Angewandte Chemie is a journal of the German Chemical Society (GDCh); 34(15), 1600-1602. doi: 10.1002/anie.199516001.Bonett, L., Schewe, I., & Silva, L. (2008). Variability of Colletotrichum lindemuthianum in common bean in western Paraná. Scientia Agrária 9, 207-210.Boue, S., Cleveland, T., Carter-Wientjes, C., Shih, B., Bhatnagar, D., McLachlan, J., y otros. ( 2009). Phytoalexin-enriched functional foods. J. Agric. Food Chem. 57. , 2614-2622. DOI: 10.1021/jf8040403.Braga, M., Claudia, M., Young, M., Dietrich, S., & Gottlieb, O. (1991). Phytoalexin induction in rubiaceae. J Chem Ecol. 17(6), 1079-90. doi: 10.1007/BF01402935. PMID: 24259169.Breen, S., Williams, S., Outram, M., Kobe, B., & Solomon, P. (2017). Emerging Insights into the Functions of Pathogenesis-Related Protein 1. Trends in Plant Science, 22(10), 871-879. DOI: 10.1016/j.tplants.2017.06.013.Bruce, T., & Pickett, J. (2007). Plant defence signalling induced by biotic attacks. Curr Opin Plant Biol. 10(4):, 387-92. doi: 10.1016/j.pbi.2007.05.002. Epub 2007 Jul 12. PMID: 17627867.Bürger, M., & Chory, J. (2019). Stressed Out About Hormones: How Plants Orchestrate Immunity (Review). Cell Host & Microbe, 26(2), 163-172. https://doi.org/10.1016/j.chom.2019.07.006.Byrde, R., & Cutting, C. (1971). Fungal Pathogenicity and the Plants Response. Elsevier. New York.Carrasco, H., Robles-Kelly, C., Rubio, J., Olea, A., Martínez, R., & Silva-Moreno, E. (2017). Antifungal effect of polygodial on Botrytis cinerea, a fungal pathogen affecting table grapes. International Journal of Molecular Sciences, 18(11), 2251-2263. Article number 2251. DOI: 10.3390/ijms18112251.Cherng J-M, Chiang W, Chiang L-C: Immunomodulatory activities of edible beans and related constituents from soybean. Food Chem. 2007, 104 (2): 613-618. 10.1016/j.foodchem.2006.12.011.CIAT. (2019). Beans. Cali, Columbia: CIAT. CIAT, https://ciat.cgiar.org/what-we-do/breeding-better-crops/beans/.Collinge, D. (2016). Plant Pathogen Resistance Biotechnology. . John Wiley & Sons, 978-1-118-86776-1, 440.Conner, R., Gillard, K., Mcrae, S.-F., Hwang, Y.-Y., Chen, A., Hou, W., y otros. (2019). Survival of the bean anthracnose fungus (Colletotrichum lindemuthianum) on crop debris in Canada. Canadian Journal of Plant Pathology. 41(2), 209-217. https://doi.org/10.1080/07060661.2018.1563830. .Cornelissen, C., & Schram, A. (2000). Transgenic Approaches to Control Epidemic Spread of Diseases. Mechanisms of Resistance to Plant Diseases, 575-599. doi.org/10.1007/978-94-011-3937-3_14.Cory, H., Passarelli, S., Szeto, J., Tamez, M., & & Mattei, J. (2018). The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Frontiers in nutrition, 87. , https://doi.org/10.3389/fnut.2018.00087.Cruickshank, I., & Perrin, D. (1960). Isolation of a phytoalexin from Pisum sativum L. Nature. 27(187), 799-800. doi: 10.1038/187799b0. PMID: 13813085.Dakora, F., & Phillips, D. (1996). Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiological and Molecular Plant Pathology, 49. , 1–20. doi.org/10.1006/pmpp.1996.0035.De Freitas, M., & Stadnik, M. (2012). Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum,. Physiological and Molecular Plant Pathology, 78, 8-13. https://doi.org/10.1016/j.pmpp.2011.12.004.Deavours, B., & Dixon, R. (2005). Ingeniería metabólica de la biosíntesis de isoflavonoides en alfalfa. . Fisiología vegetal , 138 (4),, 2245-2259. https://doi.org/10.1104/pp.105.062539.Dempsey, D., Vlot, A., Wildermuth, M. C., & and Klessig, D. (2011). Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9, , 156. doi: 10.1199/tab.0156.Dewick, P., Steele, M., Dixon, R., & & Whitehead, I. (1982). Biosynthesis of Isoflavonoid Phytoalexins: Incorporation of Sodium [1,2-13C2] Acetate into Phaseollin and Kievitone. Zeitschrift für Naturforschung C, 37,, 363 - 368.Dicke, M., Gols, R., & Ludeking, D. (1999). Jasmonic Acid and Herbivory Differentially Induce Carnivore-Attracting Plant Volatiles in Lima Bean Plants. Journal of Chemical Ecology. 25, 1907–1922. doi: 10.1023/A:1020942102181.Diwaker, T., Gaurav, R., & Dhirendra, K. (2019). Chemical elicitors of systemic acquired resistance—Salicylic acid and its functional analogs. Current Plant Biology 17, 48-49. https://doi.org/10.1016/j.cpb.2019.03.002.Dominik, K. G. (2012). Phytoalexin transgenics in crop protection—Fairy tale with a happy end. Plant Science, 195, 54-70. https://doi.org/10.1016/j.plantsci.2012.06.008.Dominik, K., Großkinsky, E., & Thomas, R. (2012). Phytoalexin transgenics in crop protection—Fairy tale with a happy end? Plant Science, 195, 54-70. doi:10.1016/j.plantsci.2012.06.008.Du, M., Li, Y., Tian, X., Duan, L., Zhang, M., Tan, W., y otros. (2014). The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton. PLoS ONE 9(5): , e97652. doi: 10.1371/journal.pone.0097652.Durango, D., Pulgarin, N., Echeverri, F., Escobar, G., & Quiñones, W. (2013). Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules;18(10), 10609–10628 doi: 10.3390 / moleculas180910609.Ebrahim, S., Usha, K., Singh, B., Pathogenesis related (PR) pro-teins in p lant defense mechanism, in: M´endez-Vilas, A. (Ed.),Science against Microbial Pathogens: Communicating CurrentResearch and Technological Advances, Microbiology Series No.3, Formatex, Spain 2011, 1, pp. 1043–1054.Ebel, J., & Cosio, E. (1994). Elicitors of plant defense responses. International Review of Cytology 148, 1-36. doi: 10.1016 / S0074-7696 (08) 62404-3.Eldakak, M., Milad, S., Nawar, A., & Rohila, J. (2013). Proteomics: a biotechnology tool for crop improvement. Frontiers in Plant Science., 4 , 35. DOI: 10.3389/fpls.2013.00035.Evans, A., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current Opinion in Environmental Sustainability 36, , 20–27.Fang, Z., Peifeng, Z., Jingqi, Z., & Xiaofang, L. (2020). Carbohydrate polymers exhibit great potential as effective elicitors in organic agriculture: A review,. Carbohydrate Polymers, 230, https://doi.org/10.1016/j.carbpol.2019.115637.FAO, F. a. (2016). Organización de las Naciones Unidas para la Agricultura y la Alimentación, International Year of Pulses (IYP) (A/RES/68/231). FAO, http://www.fao.org/pulses-2016/about/en/.FAO. (2018). Organización de las Naciones Unidas para la Agricultura y la Alimentación, Legumbres. Pequeñas semillas, grandes soluciones. Ciudad de Panamá., 292.FAO. (2019). The State of Food Security and Nutrition In The World. International fund for agricultural Development, 236. ISBN 978-92-5-131570-5.FAOSTAT. (2019). “Crops – Beans, dry – Production quantity, years 1988 to 2017”– Export and import quantities, years 2012 to 2016; Food supply quantity, bean, kg/capita, year 2013”. FAO Statistics Database, Food and Agriculture Organisation of the United Nations (FAO), http://faostat.fao.org.FENALCE. (2018). Federacion Nacional de Cultivadores de Cereales y Leguminosas, Informe de gestion 2018. Federacion Nacional de Leguminosas, http://fenalce.org/siembras/archivos_lt/lt_55IG-FNL-2018-CONSOLIDADO.pdf.FENALCE. (2020). Federación Nacional de Cultivadores de Cereales y Leguminosas. Estadisticas area produccion de frijol - Colombia. Estadisticas, https://www.fenalce.org/archivos/indicerealista2020B.pdf.Ferreira, R., Monteiro, S., Freitas, R., Santos, C., Chen, Z., Batista, L., y otros. (2007 ). The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol. 8(5), 677-700. doi: 10.1111/j.1364-3703.2007.00419.x. PMID: 20507530.Filho, P., Gonçalves-Vidigal, M., Kelly, J., & & Kirk, W. (2007). Sources of Resistance to Anthracnose in Traditional Common Bean Cultivars from Paraná, Brazil. Journal of Phytopathology, 155, , 108-113. DOI:10.1111/J.1439-0434.2007.01203.XCorpus ID: 85823304.Fliegmann, J., Schüler, G., Boland, W., Ebel, J., & Mithöfer, A. (2003). The role of octadecanoids and functional mimics in soybean defense responses. Biological Chemistry, 348 (3), 437-446. DOI: 10.1515/BC.2003.049.Flora, S., Shrivastava, R., & Mittal, M. (2013). Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity. Curr Med Chem. 20(36), 4540-74. DOI: 10.2174/09298673113209990146.Fonseca, S., & Chico, R. (2009). The jasmonate pathway: The ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12:, 539–547. https://doi.org/10.1016/j.pbi.2009.07.013.Fonseca, S., Chico, C., & Solano, R. (2009). The jasmonate pathway: the ligand, the receptor and the core signalling module. Current Opinion in Plant Biology; 12(5), 539-547. doi: 10.1016/j.pbi.2009.07.013.Forrest, J., Wikramanayake, E., Shrestha, R., Areendran, G., Gyeltshen, K., Maheshwari, A., y otros. (2012). Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. . Biol. Conserv. 150, , 129–135. DOI: 10.1016/j.biocon.2012.03.001.García-Díaz, Y., Aquino-Bolaños, E., & Chávez-Servia, J. (2018). Bioactive compounds and antioxidant activity. CHILEAN JOURNAL OF AGRICULTURAL RESEARCH 78(2), 255-265. doi:10.4067/S0718-58392018000200255.Garratt, M., Bommarco, R., Kleijn, D., Martin, E., Mortimer, S., & Redlich, S. (2018). Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21,, 1404–1415. https://doi.org/10.1016/j.jhazmat.2020.122954.Gérard, D., Hesha, A., Shiying, B., Jens, B., Virginie, B., Antonio, M., y otros. (2015). Breeding Annual Grain Legumes for Sustainable Agriculture: New Methods to Approach Complex Traits and Target New Cultivar Ideotypes,. Critical Reviews in Plant Sciences, 34:1-3,, 381-411. DOI: 10.1080/07352689.2014.898469.Gillard, C., & Ranatunga, N. (2013). Interaction between seed treatments, surfactants and foliar fungicides on controlling dry bean anthracnose (Colletotrichum lindemuthianum). Crop Protection, 45, 22-28. https://doi.org/10.1016/j.cropro.2012.11.019.Giri, C., & Zaheer, M. (2016). Chemical elicitors versus secondary metabolite production in vitro using plant cell, tissue and organ cultures: recent trends and a sky eye view appraisal. Plant Cell Tiss Organ Cult 126, , 1–18. https://doi.org/10.1007/s11240-016-0985-6.Glawischnig, E. (2007). Camalexin. Phytochemistry 68 , 401–406.Grayer, J., & Kokubun, T. (2001). Plant–fungal interactions: the search for phytoalexins and other antifungal compounds from higher plants. Phytochemistry, 56(3), 253-263. doi.org/10.1016/S0031-9422(00)00450-7.Greulich, F., & Yoshihara, T. (1996). Coronatine, a bacterial phytotoxin, acts as a stereospecific analog of jasmonate type signals in tomato cells and potato tissues. journal of Plant Physiology. 147(3-4), 359-366.Guo, Z. J., Lamb, C., & & Dixon, R. A. (1998). Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. . Plant physiology, 118(4), 1487–1494. https://doi.org/10.1104/pp.118.4.1487.Haider, G., Von Schrader, T., Fublein, M., Blechert, S., & Kutchan, T. (2000). Structure-activity relationship of synthetic analogs of jasmonic acid and coronatine on induction of benzo[c]phenanthridine alkaloid accumulation in Eschscholzia californica cell cultures. Biological Chemistry, 381(8), 741-748. PubMed ID: 11030431.Hakim, A. A., Muhammad, S., Hamid, K., & Summia, G. (2018). Osmotin: A plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry, 123, 149-159. https://doi.org/10.1016/j.plaphy.2017.12.012.Hammerschmidt, R. (1999). Phytoalexins: What have we learned after 60 years? Annual Review of Phytopathology, 37,, 285-306. DOI: 10.1146/annurev.phyto.37.1.285.Harris, D., & Fuller, D. (2014). Agriculture: Definition and Overview. Encyclopedia of Global Archaeology. Springer, New York, , doi-org.ezproxy.unal.edu.co/10.1007/978-1-4419-0465-2_64.Hayat, I. A., Masud, T., Ahmed, A., & Bashir, S. (2014). Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Critical Reviews in Food Science and Nutrition, 54(5), 580-592. DOI: 10.1080/10408398.2011.596639.Heichel, G., & Helsel, Z. (1987). Legume nitrogen: symbiotic fixation and recovery by subsequent crops. Energy in plant nutrition and pest control. Energy in World Agriculture, 75(2). , 63–80. ISBN : 0444427538.Herba-Ingredients. (2017). Herba rice mills. S.L. Ebro Foods Group, http://www.herbaingredients.com/.Holland, K., & OKeefe, S. (2010). Recent applications of peanut phytoalexins. Recent Pat. Food Nutr. Agric., 2, 221-232.Ian T. Major, Q., Guo, J., Zhai, G., & Kapali, D. (2020). A Phytochrome B-Independent Pathway Restricts Growth at High Levels of Jasmonate Defense. Plant Physiology 183 (2) , 733-749. DOI: 10.1104/pp.19.01335.ICCA. (2016). Guia de identificación y manejo integrado de enfermedades del frijol en America Central. Proyecto Red SICTA, COSUDE. . instituto Interamericano de Cooperación para la agricultura, 32.Iriti, M., & Varoni, E. (2017). Pulses, healthy, and sustainable food sources for feeding the planet. International Journal of Molecular Science, 18 (2), 1-6.Jahangir, M., Kim, H., Choi, Y., & Verpoorte, R. (2009). Health-affecting compounds in Brassicaceae. Compr. Rev. Food. Sci. Food Saf., 8, 31-43. DOI: 10.1111/j.1541-4337.2008.00065.x.Jeandet, P., Delaunois, B., Conreux, A., Donnez, D., Nuzzo, V., Cordelier, S., y otros. (2010). Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors, 36 , 331-341. DOI: 10.1002/biof.108.Jesus, W., Vle, F., Coelho, B., Hau, L., Z. L., & C. (2007). Effects of Angular Leaf Spot and Rust on Yield Loss of Phaseolus vulgaris. The American Phytopathological Society (APS), 1045-1053. https://doi.org/10.1094/PHYTO.2001.91.11.1045.Jianbin Yan, Ruifeng Yao, Li Chen, Suhua Li, Min Gu, Fajun Nan, Daoxin Xie. Dynamic Perception of Jasmonates by the F-Box Protein COI1. Molecular Plant. VOLUME 11, ISSUE 10, P1237-1247, OCTOBER 08, 2018.Joginder, S., & Ajar, N. (2020). Natural Bioactive Products in Sustainable Agriculture (eBook). ISBN 978-981-15-3023-4 ISBN 978-981-15-3024-1, https://doi.org/10.1007/978-981-15-3024-1.Kajiwara, V., & Moda-Cirino, V. (2021). The influence of chemical composition diversity in the cooking quality of Andean bean genotypes. Food Chemistry, 339, 127917. doi.org/10.1016/j.foodchem.2020.127917.Katare, D., Aeri, V., & Bora, M. (2009). Secondary metabolites and metabolic engineering. Journal of Cell and Tissue Research, 9 , 2027-2036.Katsir, L., Schilmiller, A., Staswick, P., He, S., & Howe, G. (2018). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. . Proc. Natl. Acad. Sci. USA 105: , 7100–7105.Katsir, L., Schilmiller, A., Staswick, P., Sheng, Y., & Howe, G. (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America; 105(19), 7100-7105.Kazan, K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. . Trends Plant Sci. 20(4), 219-29. doi: 10.1016/j.tplants.2015.02.001. Epub 2015 Feb 24. PMID: 25731753.Keen, N. (1975). Specific elicitors of plant phytoalexin production: detenninants of race specificity in pathogens? Science. 10;187(4171), 74-5. doi: 10.1126/science.187.4171.74. PMID: 17844213.Kemal, K., & Rebecca, L. (2014). Intervention of Phytohormone Pathways by Pathogen Effectors. The Plant Cell Jun, 26 (6) , 2285-2309; DOI: 10.1105/tpc.114.125419.Knoblauch, E., Rodrigues, R., & al., e. ( 2020). Identification, biochemical characterization and biological role of defense proteins from common bean genotypes seeds in response to Callosobruchus maculatus infestation. Journal of Stored Products Research, 87, 101580. https://doi.org/10.1016/j.jspr.2020.101580.Krishnan, A., Joseph, L., & Roy, B. (2019). An insight into Hevea - Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology, 17, 33-41 doi: 10.1016/j.cpb.2018.11.009.Krumm, T., Bandemer, K., & Boland, W. (1995). Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalli. FEBS Letters, Volume 377, Issue 3, 27, 523-529, DOI: 10.1016/0014-5793(95)01398-9.Krumm, T., Bandermer, K., & Boland, W. (1995). Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid . Federation of European Biochemical Societies , 523-529.Kuć, J., & Rush, J. (1985). Phytoalexins. Archives of Biochemistry and Biophysics, 236(2), 455-472. https://doi.org/10.1016/0003-9861(85)90648-4.Lamb, C., Lawton, M., Dron, M., & Dixon, R. (1989). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56(2), 215-224. DOI: 10.1016/0092-8674(89)90894-5.Lauchli, R., & Boland, W. (2003). Indanoyl amino acid conjugates: Tunable elicitors of plant secondary metabolism. The Chemical Record. 3(1), 12-21. Doi:10.1002/tcr.10043.Lehner, M., Paula-Júnior, T., Silva, R., Vieira, R., Carneiro, J., & Schnabel, G. (2015). Fungicide sensitivity of Sclerotinia sclerotiorum: a thorough assessment using discriminatory dose, EC50, high-resolution melting analysis, and Description of New Point Mutation Associated with Thiophanate-Methyl Resistance. Plant Dis. 99(11), 1537-1543. doi: 10.1094/PDIS-11-14-1231-RE. Epub 2015 Aug 17. PMID: 30695953.Li, Y., Cai, Y., Liang, Y., Ji, P., & Lankun, X. (2020). Assessment of antifungal activities of a biocontrol bacterium BA17 for managing postharvest gray mold of green bean caused by Botrytis cinerea. Postharvest Biology and Technology, 161, 111086. https://doi.org/10.1016/j.postharvbio.2019.111086 .Littleson, M., J., C., Frye, E., Ling, K., & Jamieson, C. (2016). Synthetic approaches to coronafacic acid, coronamic acid, and coronatine. Journal or Publication, https://doi.org/10.1055/s-0035-1562552.Li ST, Zhang P, Zhang M, Fu C, Zhao C, Dong Y, Guo A, Yu L. Transcriptional profile of Taxus chinensis cells in response to methyl jasmonate. BMC Genomics. 2012;13.Liu, Y., & Song, M. (2020). Enhanced dissipation of xenobiotic agrochemicals harnessing soil microbiome in the tillage-reduced rice-dominated agroecosystem. Journal of Hazardous Materials 398(5), 122954. https://doi.org/10.1016/j.jhazmat.2020.122954.Mahoney, K., & Gillard, C. (2014). Plant health and yield of dry bean not affected by strobilurin fungicides under disease-free or simulated hail conditions. Can. J. Plant Pathol. 94, 1385-1389.Malinovsky, F., Fangel, J., & Willats, W. (2014). The role of the cell wall in plant immunity. Front. Plant Sci. 5, , 178. doi: 10.3389/fpls.2014.00178. PMID: 24834069; PMCID: PMC4018530.Manish Kumar, Amandeep Brar, Monika Yadav, Aakash Chawade, V. Vivekan Nidhi Pareek, Chitinases—Potential Candidates for Enhanced Plant Resistance towards Fungal Pathogens, Agriculture (2018), 8, 88; doi:10.3390/agriculture8070088Martin-Rivilla, H., Gutierrez-Mañero, F. J., Gradillas, A., P Navarro, M., & Andrade, G. (2020). Identifying the Compounds of the Metabolic Elicitors of Pseudomonas fluorescens N 21.4 Responsible for Their Ability to Induce Plant Resistance. Plants (Basel, Switzerland), 9(8), , 1020. https://doi.org/10.3390/plants9081020.Martins, S. (2016). PROTECTION AGAINST BIOTIC AND . (TESIS), 86. http://177.105.2.222/bitstream/1/10969/1/TESE_Protection%20against%20biotic%20and%20abiotic%20stresses%20in%20common%20bean%20by%20rhizobacteria.pdf.Martins, S., Flausino, A., Pozzobon, M., Gomes, M., Rubia, M., & Henrique, F. (2019). Microbial volatiles organic compounds control anthracnose (Colletotrichum lindemuthianum) in common bean (Phaseolus vulgaris L.). Biological Control, 131, 36-42. https://doi.org/10.1016/j.biocontrol.2019.01.003.McCreary, C., Depuydt, D., Vyn, R., & Gillard, C. (2016). Fungicide efficacy of dry bean white mold [Sclerotinia sclerotiorum (Lib.) de Bary, causal organism] and economic analysis at moderate to high disease pressure. Crop Prot. 82, , 75-81. https://doi.org/10.1016/j.cropro.2015.12.020.Menéndez Daimy Costales, Trudy Ann Gordon, Alejandro B. Falcón Rodríguez (2014), Variations in the response of defensive markers and in the contents of primary metabolism components in tobacco (Nicotiana tabacum, L.) seedlings applied with chitosan, cultrop vol.35 no.2 La Habana abr.--jun.Meziadi, C., Richard, M., Derquennes, A., Thareau, V., Blanchet, S., Gratias, A., y otros. (2016). Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Science 242, 351-357. DOI: 10.1016/j.plantsci.2015.09.006.Michael, D., & Woodward. (1980). Phaseollin formation and metabolism in Phaseolus vulgaris. Phytochemistry, 19(5), 921-927. https://doi.org/10.1016/0031-9422(80)85139-9.Miklas, P., Porter, L., Kelly, J., & Myers, J. (2013). Characterization of white mold disease avoidance in common bean. European Journal of Plant Pathology, 135, 525–543. https://doi.org/10.1007/s10658-012-0153-8.Mohamed, A., Farag, D., . Huhman, R., & Dixon, L. ( 2008). Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in Medicago truncatula Cell Cultures. Plant Physiology, 146 (2) , 387-402. DOI: 10.1104/pp.107.108431.Mosquera-Vásquez, T., Del Castillo, S., & Gálvez, D. e. (2017). Breeding Differently: Participatory Selection and Scaling Up Innovations in Colombia. Potato Res. 60, , 361–381. https://doi-org.ezproxy.unal.edu.co/10.1007/s11540-018-9389-9 .Mubarak A: Nutritional composition and antinutritional factors of mung bean seeds (phaseolus aureus) as affected by some home traditional processes. Food Chem. 2005, 89: 489-495. 10.1016/j.foodchem.2004.01.007.Muller, K. (1958). Relationship between Phytoalexin Output and the Number of Infections Involved. Nature, 182., 167–168. doi-org.ezproxy.unal.edu.co/10.1038/182167a0.Müller, K., & Börger, H. (1940). Experimentelle Untersuchungen über die Phythophthora-Resistenz der Kartoffel. Zugleich ein Beitrag zum Problem der ‘erworbenen Resistenz’ im Pflanzenreich. Arbeiten der Biologischen Reichsanstalt für Land- und Forstwirtschaft, 23., 189-231 .Multari, S., Stewart, D., & Russell, W. (2015). Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Comprehensive Reviews in Food Science and Food Safety, 14(5), 511-522. DOI: 10.1111/1541-4337.12146.Naoumkina, M., Farag, M., Sumner, L., Tang, Y., Liu, C., & Dixon, R. (2007). Different mechanisms for phytoalexin induction by pathogen and wound signals in Medicago truncatula. Proc Natl Acad Sci U S A. 104(46), 17909-15. doi: 10.1073/pnas.0708697104.Nara, S., Toshima, H., & Ichihara, A. (1997). Asymmetric total syntheses of (+)-coronafacic acid and (+)-coronatine, phytotoxins isolated from Pseudomonas syringae pathovars. Tetrahedron, 53(28), 9509-9524. doi: 10.1016/S0040-4020(97)00614-5.Netea, M., & Quintin, J. (2011). Trained immunity: a memory for innate host defense. . Cell Host Microbe 9: 355–361., 355–361.Ng, T., Ye, X., Wong, J., Fang, E., Chan, Y., Pan, W., y otros. (2011). Glyceollin, a soybean phytoalexin with medicinal properties. Appl. Microbiol. Biotechnol., 90, 59-68. DOI: 10.1007/s00253-011-3169-7.Nguyen Hoang Loc, Nguyen Duc Huy, Hoang Tan Quang, Tran Thuy Lan & Tran Thi Thu Ha (2020) Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34, Mycology, 11:1, 38-48, DOI: 10.1080/21501203.2019.1703839Ntahimpera, N., & Dillard, H. C. (2007). Influence of Tillage Practices on Anthracnose Development and Distribution in Dry Bean Fields. The American Phytopathological Society (APS), https://doi.org/10.1094/PDIS.1997.81.1.71.Nürnberger, T. (1999 ). Signal perception in plant pathogen defense. Cell Mol Life Sci. 55(2), 167-82. doi: 10.1007/s000180050283. PMID: 24481912.Ombra, M., Nazzaro, F., Riccardi, R., Patrizia, S., & Massimo, Z. (2016). Phenolic Composition and Antioxidant and Antiproliferative Activities of the Extracts of Twelve Common Bean (Phaseolus vulgaris L.) Endemic Ecotypes of Southern Italy before and after Cooking. Oxidative Medicine and Cellular Longevity, 12. https://doi.org/10.1155/2016/1398298.Onrubia, M., Moyano, E., Bonfill, M., Cusidó, R., Goossens, A., & Palazón, J. (2013). Coronatine, a more powerful elicitor for inducing taxane biosynthesis in Taxus media cell cultures than methyl jasmonate. Journal of Plant Physiology; 170(2), 211-219. DOI: 10.1016/j.jplph.2012.09.004.ONU. (1990). Organizacion de Naciones Unidas UNEP, health impact of pesticides used in agriculture. Geneva: World Health Organization. Editors. Public , 128.Orak, H., Karamać, M., & Orak, A. A. (2016). Antioxidant Potential andPhenolic Compounds ofSome Widely Consumed Turkish White Bean (Phaseolus vulgaris L.) Varieties. Pol. J.Food Nutr. Sci., 66(4), DOI: 10.1515/pjfns-2016-0022http://journal.pan.olsztyn.pl.Padder, B. A., Sharma, P. N., Awale, H., & Kelly, J. D. (2017). Colletotrichum lindemuthiam the Casual Agent of Bean Anthracnose. J. Plant Pathol. 99,, 317–330; doi: 10.4454/jpp.v99i2.3867.Páez, C., & García, J. (2020). Evaluación del crecimiento del frijol mungo (Vigna radiata) bajo aplicación de fósforo y bioestimulante en El Espinal-Tolima. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente ECAPMA, TESIS, https://repository.unad.edu.co/bitstream/handle/10596/36835/capaesm.pdf?sequence=3&isAllowed=y .Pastor-Corrales, M., Otoya, M., & Maya, M. (1993). Diversidad de la virulencia de colletotrichum lindemuthianum en mesoamerica y la region andina. . Fitopatologia Colombiana 17(1), 31-37.Paxton, J. (1980). A new working definition of the term “phytoalexin”. Plant Dis, 64:734.Pedras, M., Yaya, E., & Glawischnig, E. (2011). The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Natural Product Reports, 28(8), 1381-1405. DOI: 10.1039/c1np00020a.Peoples, M., Herridge, D., & Ladha, J. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Management of Biological Nitrogen Fixation for the Development of More Productive and Sustainable Agricultural, 3-28. https://doi.org/10.1007/978-94-011-00.Pérez-Balibrea, S., Moreno, D., & García-Viguera, C. (2011). Improving the phytochemical composition of broccoli sprouts by elicitation. Food Chemistry; 129(1), 35-44; DOI: 10.1016/j.foodchem.2011.03.049.Pierre, J. d. (2016). Cladosporium fulvum Effectors: Weapons in the Arms Race with Tomato. Journal Article, Annual Review of Phytopathology, 54, 1-23. Doi: 10.1146/annurev-phyto-011516-040249.Pierre, P., Louise, N., & Therese, V. (2019). Improved nutrient status and Fusarium root rot mitigation with an inoculant of two biocontrol fungi in the common bean (Phaseolus vulgaris L.). Journal Pre-proof, DOI: https://doi.org/10.1016/j.rhisph.2019.100172.Pina-Pérez, M., & Ferrús Pérez, M. (2018). Antimicrobial potential of legume extracts against foodborne pathogens: A review. . Trends in Food Science & Technology, 72, 114-124. https://doi.org/10.1016/j.tifs.2017.12.007.Poornananda, M., Naik, J., & Al-Khayri, M. (2016). Impact of Abiotic Elicitors on In vitro Production of Plant Secondary Metabolites: A Review. J Adv Res Biotech 1(2), 7. DOI: http://dx.doi.org/10.15226/2475-4714/1/2/00102.Qin, H. (2010). Rural-to-urban labor migration, household livelihoods, and the rural environment in Chongqing Municipality, Southwest China. Hum Ecol, 38, 675–690. doi:10.1007/s10745-010-9353-z.Raasch-Fernandes, L., & Bonaldo, S. (2019). Induction of phytoalexins and proteins related to pathogenesis in plants treated with extracts of cutaneous secretions of southern Amazonian Bufonidae amphibians. PloS one, 14(1), 211020. https://doi.org/10.1371/journal.pone.0211020.Rahe, J., E., K. J., Chuang, C., & Williams, E. (1969). Correlation of phenolic metabolism with histological changes in Phaseolus vulgaris inoculated with fungi. . Neth. J. Pl. Path. 75, 58-71.Rajiv, K., George, H., Upendra, P., & Chandrajeet. (2016). Embarking on second green revolution by vermiculture for production of chemical free organic foods, protection of crops and farm soils and elimination of deadly agrochemicals from earth: Meeting the challenges of food security of 21st century by earthworm. Agricultural Research Updates, Nova Science Publishers, Inc. New York, , 1-49. .Ramirez-Villegas, J., Salzar, M., Jarvis, A., & Navarro-Racines, E. (2012). A way forward on adaptation to climate change in Colombian agriculture: perspectives towards 2050. Climatic Change 115, , 611–628. https://doi.org/10.1007/s10584-012-0500-y.Reinhold, L. H., & Swain, T. (1978). Progress in Phytochemistry. First ed. Pergamon press LTDA.Rezende, A., Pacheco, M., da SILVA, V., & Ferreira, T. (2018). Nutritional and protein quality of dry brazilian beans (Phaseolus vulgaris l.). Food Science and Technology, 38(3), 421-427. DOI: 10.1590/1678-457x.05917.Rossi, G.D., Zucchi, T.D., Guidolin, A.S. et al. Chitin-degrading enzymes from an actinomycete ectosymbiont of Acromyrmex subterraneus brunneus (Hymenoptera: Formicidae) Ann Microbiol 65, 565–574 (2015). https://doi.org/10.1007/s13213-014-0892-1S. Ali , B. Ahmad , AN Kamili , A. Ali , Z. Ahmad , J. Akhter , A. Tyagi , S. Tajamul , M. Mushtaq , P. Yadav , S. Rawat , A. Grover Proteínas y péptidos relacionados con la patogenia como herramientas prometedoras para la ingeniería de plantas con tolerancia múltiple al estrés Microbiol. Res. , 212–213 ( 2018 ) , págs. 29 – 37, https://doi-org.ezproxy.unal.edu.co/10.1016/j.micres.2018.04.008Samari, E., Sharifi, M., Ghanati, F. et al. Chitosan-induced phenolics production is mediated by nitrogenous regulatory molecules: NO and PAs in Linum album hairy roots. Plant Cell Tiss Organ Cult 140, 563–576 (2020). https://doi-org.ezproxy.unal.edu.co/10.1007/s11240-019-01753-wSánchez-Bayo, F., & Wyckhuys, K. (2019). Worldwide decline of the entomofauna: a review of its drivers. . Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020.Sandhu, J. S., & Yadav, I. (2017). Control of Fungal Diseases in Agricultural Crops by Chitinase and Glucanase Transgenes. In: Lichtfouse E. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, 22., 163-212. doi-org.ezproxy.unal.edu.co/10.1007/978-3-319-48006-0_6.Santra, H., & Banerjee, D. (2020). Natural Products as Fungicide and Their Role in Crop Protection. Natural Bioactive Products in Sustainable Agriculture. Springer, Singapore, 131-219. doi-org.ezproxy.unal.edu.co/10.1007/978-981-15-3024-1_9.Satterthwaite, D., McGranahan, G., & Tacoli, C. (2010). Urbanization and its implications for food and farming. Philos T R Soc B 365, 2809–2820. doi.org/10.1098/rstb.2010.0136.Schmelz, E., A., H., Sims, A., & Christensen, X. (2014). Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. The Plant Journal, 79, 659–678. https://doi.org/10.1111/tpj.12436.Schüler, G., Mithöfer, A., Baldwin, I., Berger, S., Ebel, J., Santos, J., y otros. (2004). Coronalon: a powerful tool in plant stress physiology. FEBS Letters; Apr;563(1-3), 17-22. DOI: 10.1016/s0014-5793(04)00239-x.Schwartz, H. F. (1991). Anthracnose. Compendium of bean diseases. . The American Phytopathological Society APS, St Paul, MN., 16–17.Sellitti, S., Vaiknoras, K., & Smale, M. e. (2020). The contribution of the CIAT genebank to the development of iron-biofortified bean varieties and well-being of farm households in Rwanda. Food Sec. 12, 975–991. https://doi-org.ezproxy.unal.edu.co/10.1007/s12571-020-01038-7.Shabab, M., Takayuki, S., Christian, G., Farnusch, K., Twinkal, P., Raju, C., y otros. (2008). Fungal Effector Protein AVR2 Targets Diversifying Defense-Related Cys Proteases of Tomato. The Plant Cell Apr, 20 (4). , 1169-1183. DOI: 10.1105/tpc.107.056325.Sharma, P. N., Sharma, O. P., Padder, B. A., & Kapil, R. (2008). Yield Loss Assessment in Common Bean Due to Anthracnose (Colletotrichum lindemuthianum) Under Sub-Temperate Conditions of North-Western Himalayas. Indian Phytopathol, 61, 323–330.Shibuya, N., & Minami, E. (2001). Oligosaccharide signalling for defence responses in plant. Physiological and Molecular Plant Pathology, 59(5), 223-233. doi.org/10.1006/pmpp.2001.0364.Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., & B., M.-M. (2012). Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158: , 835–843.Smoliga, J., & Baur, J. H. (2011). Resveratrol and health – a comprehensive review of human clinical trials. Mol. Nutr. Food Res., 55 , 1129-1141. DOI: 10.1002/mnfr.201100143.Sousa, S., de Oliveira, T., Gonçalves, G., Lopes, M., dos Santos, G., & Fidelis, R. (2014). Características agronômicas e resistência de genótipos de feijão comum à mela no sul do estado do Tocantins. J. Biotec. Biodivers. 5, 130-139.Struik, P., & Kuyper, T. (2017). Sustainable intensification in agriculture: the richer shade of green. A review. Agron. Sustain. Dev. , 37, 39. https://doi-org.ezproxy.unal.edu.co/10.1007/s13593-017-0445-7.Struik, P., Kuyper, T., Brussaard, L., & Leeuwis, C. (2014). Deconstructing and unpacking scientific controversies in intensification and sustainability: why the tensions in concepts and values? Current Opinion in Environmental Sustainability, 8, 80-88. https://doi.org/10.1016/j.cosust.2014.10.002.Sunilkumar, G., LeAnne, M., Campbell, L., & Puckhaber, R. (2006. ). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proceedings of the National Academy of Sciences 103 (48) , 18054-18059. DOI: 10.1073/pnas.0605389103.Tamogami, S., & Kodama, O. (2000). Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry, 54(7), 689-694. DOI: 10.1016/S0031-9422(00)00190-4.Tang, D., Dong, Y., Ren, H. et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8, 4 (2014). https://doi.org/10.1186/1752-153X-8-4 DOIhttps://doi.org/10.1186/1752-153X-8-4Thapakorn Somboon, et al., Methyl jasmonate and cyclodextrin-mediated defense mechanism and protective effect in response to paraquat-induced stress in peanut hairy root, Phytochemistry Volume 163, 2019, Pages 11-22, ISSN 0031-9422, https://doi.org/10.1016/j.phytochem.2019.03.017.Toshima, H., & Nara, S. (1997). Assymetric total synthesis of (+)-coronafacic acid and (+)-coronatine. Bioscience, Biotechnology, and Biochemistry. 61(4), 752-753.Trabanco, N. P.-V., Campa, A. R., & Ferreira, J. (2012). Genetic resistance to powdery mildew in common bean, 186(3). Euphytica, 875-882. DOI: 10.1007/s10681-012-0663-7.Trkulja, N., Pfad-Dolovac, E., Milosavljevic, A., Bošković, J., Jović, J., Mitrović, M., y otros. (2016). First report of QoI resistance in Botrytis cinerea isolates causing gray mold in strawberry fields in Serbia. Plant Dis. 100, 221. .Trouvelot, S. H.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., & Combier, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front. Plant Sci. 5, 592. doi: 10.3389/fpls.2014.00592.Tu, J. (1981). Anthracnose (Colletotrichum lindemuthianum) on white bean (Phaseolus vulgaris L.) in southern Ontario: spread of the disease from an infection focus. Plant Disease 65(6), 477-480. DOI : 10.1094/PD-65-477.Uppalapati, S., Ayoubi, P., Weng, H., Palmer, D., Mitchell, R., Jones, W., y otros. (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant Journal, 42(2), 201-217. DOI: 10.1111/j.1365-313X.2005.02366.x.Van Loon, L., Rep, M., & Pieterse, C. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135-162. DOI: 10.1146/annurev.phyto.44.070505.143425.Van-Loon, L. (2016). The intelligent behavior of plants. Trends Plant Sci., DOI: 10.1016/j.tplants.2015.11.009.Van-Loon, L., Rep, M., & Pieterse, C. (2006). Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 44, 135-62. doi: 10.1146/annurev.phyto.44.070505.143425. PMID: 16602946.Veneault-Fourrey, C., Laugé, R., & Langin, T. (2005). Nonpathogenic strains of Colletotrichum lindemuthianum trigger progressive bean defense responses during appressorium-mediated penetration. Applied and Environmental Microbiology 71(8) , 4761-4770. DOI: 10.1128/AEM.71.8.4761-4770.2005.Weiler, E., Kutchan, T., Gorba, T., Brodschelm, W., & Niesel, U. (1999). The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. . FEBS Lett. 345, 9–13. doi: 10.1016/0014-5793(94)00411-0.Weng, J., & Chapple, C. (2010). The origin and evolution of lignin biosynthesis. . New Phytol. 187, 273–285. doi: 10.1111/j.1469-8137.2010.03327.x.Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection(Review). Biochemical Journal 322(3), 681-692. DOI: 10.1042/bj3220681.Wu, G., Fanzo, J., Miller, D., Pingali, P., Mark, P., & al., e. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Anales de la Academia de Ciencias de Nueva York 1321 (1), 1-19. DOI: 10.1111 / nyas.12500.Xueqing, G., Jiye, C., Anju, G., & David, M. (2012). The Coronatine Toxin of Pseudomonas syringae Is a Multifunctional Suppressor of Arabidopsis Defense. The Plant Cell, 24 (11) , 4763-4774; DOI: 10.1105/tpc.112.105312.Yang, L., Wen, K., Ruan, X., Zhao, Y., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. . Molecules 23, 1-9. https://doi.org/10.3390/molecules23040762.Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., y otros. (2002). Apoptotic cell death is a common response to pathogen attack in oats. Molecular Plant-Microbe Interactions, 15(10), 1000-1007, DOI: 10.1094/MPMI.2002.15.10.1000.Yasunori Koda, Kiyoshi Takahashi, Yosio Kikuta, Friedemann Greulich, Hiroaki Toshima, Akitami Ichihara (1996). Similarities of the biological activities of coronatine and coronafacic acid to those of jasmonic acid. Phytochemistry, Volume 41(1), January 1996, Pages 93-96EspecializadaMincienciasLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80087/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1086298642.2021.pdf1086298642.2021.pdfTesis Maestría en Ciencias - Químicaapplication/pdf8806255https://repositorio.unal.edu.co/bitstream/unal/80087/2/1086298642.2021.pdf9404b03ef05c14606acb20a25ed914f8MD52THUMBNAIL1086298642.2021.pdf.jpg1086298642.2021.pdf.jpgGenerated Thumbnailimage/jpeg4515https://repositorio.unal.edu.co/bitstream/unal/80087/3/1086298642.2021.pdf.jpgf3ae15759e19af93a84f5f92f636fc38MD53unal/80087oai:repositorio.unal.edu.co:unal/800872023-07-27 23:03:27.836Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==