Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications

Durante los procesos de recuperación mejorada de petróleo (EOR, por sus siglas en inglés), se crean canales de flujo debido a las heterogeneidades del yacimiento y la distribución de fluidos. Los geles obturantes que consisten en un polímero reticulado se usan a menudo para bloquear los canales pref...

Full description

Autores:
Pérez Robles, Saray
Tipo de recurso:
Work document
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/75785
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/75785
Palabra clave:
Química y ciencias afines
Acrylamide/Sodium Acrylate Copolymer /Chromium (III) Acetate
HPAM/resorcinol/formaldehyde
Hydroxypropyl methylcellulose (HPMC)
viscoelastic modulus
Water Shut-Off
Copolímero Acrilamida/Sodio Acrilato/Acetato de Cromo
Hidroxipropilmetilcelulosa
HPAM/resorcinol/formaldehído
Módulos Viscoelásticos
Water Shut-Off.
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2ae2a6ff24d59c853e443498c61acc4a
oai_identifier_str oai:repositorio.unal.edu.co:unal/75785
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
dc.title.alternative.spa.fl_str_mv Efecto de las Nanopartículas en la Estabilidad de Sistemas de Gel para Procesos de Conformance y Water Shut-off
title Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
spellingShingle Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
Química y ciencias afines
Acrylamide/Sodium Acrylate Copolymer /Chromium (III) Acetate
HPAM/resorcinol/formaldehyde
Hydroxypropyl methylcellulose (HPMC)
viscoelastic modulus
Water Shut-Off
Copolímero Acrilamida/Sodio Acrilato/Acetato de Cromo
Hidroxipropilmetilcelulosa
HPAM/resorcinol/formaldehído
Módulos Viscoelásticos
Water Shut-Off.
title_short Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
title_full Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
title_fullStr Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
title_full_unstemmed Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
title_sort Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applications
dc.creator.fl_str_mv Pérez Robles, Saray
dc.contributor.advisor.spa.fl_str_mv Franco Ariza, Camilo Andrés
Cortés Correa, Farid Bernardo
dc.contributor.author.spa.fl_str_mv Pérez Robles, Saray
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie - Michael Polanyi
dc.subject.ddc.spa.fl_str_mv Química y ciencias afines
topic Química y ciencias afines
Acrylamide/Sodium Acrylate Copolymer /Chromium (III) Acetate
HPAM/resorcinol/formaldehyde
Hydroxypropyl methylcellulose (HPMC)
viscoelastic modulus
Water Shut-Off
Copolímero Acrilamida/Sodio Acrilato/Acetato de Cromo
Hidroxipropilmetilcelulosa
HPAM/resorcinol/formaldehído
Módulos Viscoelásticos
Water Shut-Off.
dc.subject.proposal.eng.fl_str_mv Acrylamide/Sodium Acrylate Copolymer /Chromium (III) Acetate
HPAM/resorcinol/formaldehyde
Hydroxypropyl methylcellulose (HPMC)
viscoelastic modulus
Water Shut-Off
dc.subject.proposal.spa.fl_str_mv Copolímero Acrilamida/Sodio Acrilato/Acetato de Cromo
Hidroxipropilmetilcelulosa
HPAM/resorcinol/formaldehído
Módulos Viscoelásticos
Water Shut-Off.
description Durante los procesos de recuperación mejorada de petróleo (EOR, por sus siglas en inglés), se crean canales de flujo debido a las heterogeneidades del yacimiento y la distribución de fluidos. Los geles obturantes que consisten en un polímero reticulado se usan a menudo para bloquear los canales preferenciales debido a las diferentes combinaciones posibles según las condiciones del yacimiento. Sin embargo, los entornos hostiles deterioran las redes de gel y reabren los canales en poco tiempo, lo que conduce a una baja eficiencia de barrido. En este sentido, las nanopartículas se proponen como una alternativa para inhibir la degradación del gel y mejorar sus propiedades. Por lo tanto, el objetivo principal de este trabajo es evaluar la inclusión de nanopartículas en tres sistemas de gel diferentes: i) Poliacrilamida parcialmente hidrolizada (HPAM) / resorcinol / formaldehído, ii) Copolímero de acrilamida acrilato de sodio / Acetato de cromo (III) y, iii) hidroxipropilmetilcelulosa (HPMC). Para este efecto, se evaluaron las concentraciones de polímero, reticulante y diferentes aditivos para encontrar la mejor combinación de reactivos posible. Se probaron dosis de nanopartículas que varían de 20 a 2000 mg/L de SiO2, Al2O3, MgO, Cr2O3 y nanoesferas de carbono (CNS). Se evaluó el fenómeno de sinéresis durante varios días y se realizaron mediciones reológicas para evaluar la influencia de las nanopartículas en la resistencia del gel. Los resultados concluyeron que es posible modificar la microestructura de los geles utilizando la nanopartícula adecuada considerando los grupos funcionales presentes en el polímero y en la superficie de la partícula. Esta investigación debería proporcionar un enfoque para la comprensión de las interacciones nanopartículas-polímero en presencia de un catalizador o un agente reticulante que busca la mejora y la estabilidad del gel.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-10-31
dc.date.accessioned.spa.fl_str_mv 2020-03-02T21:19:56Z
dc.date.available.spa.fl_str_mv 2020-03-02T21:19:56Z
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/75785
url https://repositorio.unal.edu.co/handle/unal/75785
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv E. J. Manrique, C. P. Thomas, R. Ravikiran, M. Izadi Kamouei, M. Lantz, J. L. Romero, et al., "EOR: current status and opportunities," in SPE improved oil recovery symposium, 2010.
K. Guo, H. Li, and Z. Yu, "In-situ heavy and extra-heavy oil recovery: A review," Fuel, vol. 185, pp. 886-902, 2016.
G.-A. Maya-Toro, R.-H. Castro-García, Z. d. P. Pachón-Contreras, and J.-F. Zapata-Arango, "Polymer gels for controlling water thief zones in injection wells," CT&F-Ciencia, Tecnología y Futuro, vol. 5, pp. 37-44, 2012.
B. Bailey, M. Crabtree, J. Tyrie, J. Elphick, F. Kuchuk, C. Romano, et al., "Water control," Oilfield Review, vol. 12, pp. 30-51, 2000.
L. Altunina, V. Kuvshinov, and L. Stasieva, "Thermoreversible polymer gels for enhanced oil recovery," Chem Sustainable Dev, vol. 19, p. 121e30, 2011
H. He, Y. Wang, M. Zhao, L. Cheng, and P. Liu, "Laboratory evaluation of thermoreversible gel for in-depth conformance control in steam-stimulated wells," in SPE Heavy Oil Conference Canada, 2012.
L. Altunina, "Improved Cyclic-Steam Well Treatment With Employing Thermoreversible Polymer Gels," in SPE Russian Oil and Gas Technical Conference and Exhibition, 2006
F. Crespo, B. Reddy, C. A. Lewis, and L. S. Eoff, "Recent advances in organically crosslinked conformance polymer systems," in SPE International Symposium on Oilfield Chemistry, 2013.
P. Albonico, M. Bartosek, A. Malandrino, S. Bryant, and T. Lockhart, "Studies on phenol-formaldehyde crosslinked polymer gels in bulk and in porous media," in SPE International Symposium on Oilfield Chemistry, 1995
A. Bera and H. Belhaj, "Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review," Journal of Natural Gas Science and Engineering, vol. 34, pp. 1284-1309, 2016
C. Negin, S. Ali, and Q. Xie, "Application of nanotechnology for enhancing oil recovery–A review," Petroleum, vol. 2, pp. 324-333, 2016
M. O. Onyekonwu and N. A. Ogolo, "Investigating the use of nanoparticles in enhancing oil recovery," in Nigeria Annual international conference and exhibition, 2010.
G. Xu, J. Zhang, and G. Song, "Effect of complexation on the zeta potential of silica powder," Powder technology, vol. 134, pp. 218-222, 2003
A. Sze, D. Erickson, L. Ren, and D. Li, "Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow," Journal of colloid and interface science, vol. 261, pp. 402-410, 2003
M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, "Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage," Energy Conversion and Management, vol. 88, pp. 206-213, 2014.
G. A. Al-Muntasheri, H. A. Nasr-El-Din, and P. L. Zitha, "Gelation kinetics and performance evaluation of an organically crosslinked gel at high temperature and pressure," SPE Journal, vol. 13, pp. 337-345, 2008.
H. Jia, W.-F. Pu, J.-Z. Zhao, and R. Liao, "Experimental investigation of the novel phenol− formaldehyde cross-linking HPAM gel system: based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media," Energy & Fuels, vol. 25, pp. 727-736, 2011.
S. L. Bryant, M. Rabaioli, and T. P. Lockhart, "Influence of syneresis on permeability reduction by polymer gels," SPE Production & Facilities, vol. 11, pp. 209-215, 1996.
T. Dang, Z. Chen, T. Nguyen, W. Bae, T. Chung, and T. Tu, "The development and optimization of a polymer conformance control technology in mature reservoirs: Laboratory experiments vs. Field scale simulation," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 36, pp. 1219-1233, 2014.
A. Rabiee, M. E. Zeynali, and H. Baharvand, "Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties," Iranian Polymer Journal, vol. 14, p. 603, 2005
L. J. Giraldo, M. A. Giraldo, S. Llanos, G. Maya, R. D. Zabala, N. N. Nassar, et al., "The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions," Journal of Petroleum Science and Engineering, vol. 159, pp. 841- 852, 2017
G. Craciun, D. Ighigeanu, E. Manaila, and M. D. Stelescu, "Synthesis and Characterization of Poly(Acrylamide-Co-Acrylic Acid) Flocculant Obtained by Electron Beam Irradiation," Materials Research, vol. 18, pp. 984-993, 2015
Y. J. Yoo and I. C. Um, "Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology," Korea-Australia Rheology Journal, vol. 25, pp. 67-75, 2013.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 111
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/75785/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/75785/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/75785/1/1067930638.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/75785/4/1067930638.2019.pdf.jpg
bitstream.checksum.fl_str_mv 217700a34da79ed616c2feb68d4c5e06
6f3f13b02594d02ad110b3ad534cd5df
74009db243ed7adb5d11c9a1c9f8001c
a110995443854ac417aaa3ba80e36b55
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169195353276416
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Ariza, Camilo Andrés87f601b6-020c-4371-841c-916ed0e2ccbd-1Cortés Correa, Farid Bernardo5e4f89db-3f69-4437-8508-59179eeeda9b-1Pérez Robles, Saray90f99eab-8cbc-4296-be89-b1d32f302c9eFenómenos de Superficie - Michael Polanyi2020-03-02T21:19:56Z2020-03-02T21:19:56Z2019-10-31https://repositorio.unal.edu.co/handle/unal/75785Durante los procesos de recuperación mejorada de petróleo (EOR, por sus siglas en inglés), se crean canales de flujo debido a las heterogeneidades del yacimiento y la distribución de fluidos. Los geles obturantes que consisten en un polímero reticulado se usan a menudo para bloquear los canales preferenciales debido a las diferentes combinaciones posibles según las condiciones del yacimiento. Sin embargo, los entornos hostiles deterioran las redes de gel y reabren los canales en poco tiempo, lo que conduce a una baja eficiencia de barrido. En este sentido, las nanopartículas se proponen como una alternativa para inhibir la degradación del gel y mejorar sus propiedades. Por lo tanto, el objetivo principal de este trabajo es evaluar la inclusión de nanopartículas en tres sistemas de gel diferentes: i) Poliacrilamida parcialmente hidrolizada (HPAM) / resorcinol / formaldehído, ii) Copolímero de acrilamida acrilato de sodio / Acetato de cromo (III) y, iii) hidroxipropilmetilcelulosa (HPMC). Para este efecto, se evaluaron las concentraciones de polímero, reticulante y diferentes aditivos para encontrar la mejor combinación de reactivos posible. Se probaron dosis de nanopartículas que varían de 20 a 2000 mg/L de SiO2, Al2O3, MgO, Cr2O3 y nanoesferas de carbono (CNS). Se evaluó el fenómeno de sinéresis durante varios días y se realizaron mediciones reológicas para evaluar la influencia de las nanopartículas en la resistencia del gel. Los resultados concluyeron que es posible modificar la microestructura de los geles utilizando la nanopartícula adecuada considerando los grupos funcionales presentes en el polímero y en la superficie de la partícula. Esta investigación debería proporcionar un enfoque para la comprensión de las interacciones nanopartículas-polímero en presencia de un catalizador o un agente reticulante que busca la mejora y la estabilidad del gel.During enhanced oil recovery (EOR) processes, flow channels create due to reservoir heterogeneities and fluids distributions. Plugging gels consisting of a crosslinked polymer are often used to block preferential channels due to the different possible combinations according to the reservoir conditions. However, harsh environments deteriorate the gel networks reopening the channels in short time and leading to a low swept efficiency. In this sense, nanoparticles are proposed as an alternative to inhibit gel degradation and improve its properties. Hence, the primary objective of this work is to evaluate the inclusion of nanoparticles in three different gel systems: i) Partially hydrolyzed polyacrylamide (HPAM)/resorcinol/formaldehyde, ii) Acrylamide/Sodium Acrylate Copolymer /Chromium (III) Acetate in-situ polymer-based gels and, iii) Hydroxypropyl methylcellulose (HPMC) thermoreversible gel. To this effect, polymer, crosslinker, and different additives concentrations were evaluated to find the best possible reagents combination. Nanoparticles dosages ranging from 20 to 2000 mg/L of SiO2, Al2O3, MgO, Cr2O3, and Carbon Nanospheres (CNS) were tested. Gels were prepared and subsequently heated to follow the syneresis phenomena for several days. Afterwards, rheological measurements were made to evaluate nanoparticles influence in gel strength. Results concluded that it is possible to modify gels microstructure by using the adequate nanoparticle considering the functional groups present in the polymer and onto the particle surface. This research should provide an approach to the understanding of the nanoparticles-polymer interactions in the presence of a catalyst or a crosslinker agent looking forward the gel upgrading and stability.Magister en Ingeniería - Ingeniería QuímicaMaestría111application/pdfengQuímica y ciencias afinesAcrylamide/Sodium Acrylate Copolymer /Chromium (III) AcetateHPAM/resorcinol/formaldehydeHydroxypropyl methylcellulose (HPMC)viscoelastic modulusWater Shut-OffCopolímero Acrilamida/Sodio Acrilato/Acetato de CromoHidroxipropilmetilcelulosaHPAM/resorcinol/formaldehídoMódulos ViscoelásticosWater Shut-Off.Nanoparticles’ effect on the stability of gel systems for water shut-off/conformance control applicationsEfecto de las Nanopartículas en la Estabilidad de Sistemas de Gel para Procesos de Conformance y Water Shut-offDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPDepartamento de Procesos y EnergíaUniversidad Nacional de Colombia - Sede MedellínE. J. Manrique, C. P. Thomas, R. Ravikiran, M. Izadi Kamouei, M. Lantz, J. L. Romero, et al., "EOR: current status and opportunities," in SPE improved oil recovery symposium, 2010.K. Guo, H. Li, and Z. Yu, "In-situ heavy and extra-heavy oil recovery: A review," Fuel, vol. 185, pp. 886-902, 2016.G.-A. Maya-Toro, R.-H. Castro-García, Z. d. P. Pachón-Contreras, and J.-F. Zapata-Arango, "Polymer gels for controlling water thief zones in injection wells," CT&F-Ciencia, Tecnología y Futuro, vol. 5, pp. 37-44, 2012.B. Bailey, M. Crabtree, J. Tyrie, J. Elphick, F. Kuchuk, C. Romano, et al., "Water control," Oilfield Review, vol. 12, pp. 30-51, 2000.L. Altunina, V. Kuvshinov, and L. Stasieva, "Thermoreversible polymer gels for enhanced oil recovery," Chem Sustainable Dev, vol. 19, p. 121e30, 2011H. He, Y. Wang, M. Zhao, L. Cheng, and P. Liu, "Laboratory evaluation of thermoreversible gel for in-depth conformance control in steam-stimulated wells," in SPE Heavy Oil Conference Canada, 2012.L. Altunina, "Improved Cyclic-Steam Well Treatment With Employing Thermoreversible Polymer Gels," in SPE Russian Oil and Gas Technical Conference and Exhibition, 2006F. Crespo, B. Reddy, C. A. Lewis, and L. S. Eoff, "Recent advances in organically crosslinked conformance polymer systems," in SPE International Symposium on Oilfield Chemistry, 2013.P. Albonico, M. Bartosek, A. Malandrino, S. Bryant, and T. Lockhart, "Studies on phenol-formaldehyde crosslinked polymer gels in bulk and in porous media," in SPE International Symposium on Oilfield Chemistry, 1995A. Bera and H. Belhaj, "Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review," Journal of Natural Gas Science and Engineering, vol. 34, pp. 1284-1309, 2016C. Negin, S. Ali, and Q. Xie, "Application of nanotechnology for enhancing oil recovery–A review," Petroleum, vol. 2, pp. 324-333, 2016M. O. Onyekonwu and N. A. Ogolo, "Investigating the use of nanoparticles in enhancing oil recovery," in Nigeria Annual international conference and exhibition, 2010.G. Xu, J. Zhang, and G. Song, "Effect of complexation on the zeta potential of silica powder," Powder technology, vol. 134, pp. 218-222, 2003A. Sze, D. Erickson, L. Ren, and D. Li, "Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow," Journal of colloid and interface science, vol. 261, pp. 402-410, 2003M. Mehrali, S. T. Latibari, M. Mehrali, T. M. I. Mahlia, and H. S. C. Metselaar, "Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage," Energy Conversion and Management, vol. 88, pp. 206-213, 2014.G. A. Al-Muntasheri, H. A. Nasr-El-Din, and P. L. Zitha, "Gelation kinetics and performance evaluation of an organically crosslinked gel at high temperature and pressure," SPE Journal, vol. 13, pp. 337-345, 2008.H. Jia, W.-F. Pu, J.-Z. Zhao, and R. Liao, "Experimental investigation of the novel phenol− formaldehyde cross-linking HPAM gel system: based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media," Energy & Fuels, vol. 25, pp. 727-736, 2011.S. L. Bryant, M. Rabaioli, and T. P. Lockhart, "Influence of syneresis on permeability reduction by polymer gels," SPE Production & Facilities, vol. 11, pp. 209-215, 1996.T. Dang, Z. Chen, T. Nguyen, W. Bae, T. Chung, and T. Tu, "The development and optimization of a polymer conformance control technology in mature reservoirs: Laboratory experiments vs. Field scale simulation," Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 36, pp. 1219-1233, 2014.A. Rabiee, M. E. Zeynali, and H. Baharvand, "Synthesis of high molecular weight partially hydrolyzed polyacrylamide and investigation on its properties," Iranian Polymer Journal, vol. 14, p. 603, 2005L. J. Giraldo, M. A. Giraldo, S. Llanos, G. Maya, R. D. Zabala, N. N. Nassar, et al., "The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions," Journal of Petroleum Science and Engineering, vol. 159, pp. 841- 852, 2017G. Craciun, D. Ighigeanu, E. Manaila, and M. D. Stelescu, "Synthesis and Characterization of Poly(Acrylamide-Co-Acrylic Acid) Flocculant Obtained by Electron Beam Irradiation," Materials Research, vol. 18, pp. 984-993, 2015Y. J. Yoo and I. C. Um, "Examination of thermo-gelation behavior of HPMC and HEMC aqueous solutions using rheology," Korea-Australia Rheology Journal, vol. 25, pp. 67-75, 2013.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/75785/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75785/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52ORIGINAL1067930638.2019.pdf1067930638.2019.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3454899https://repositorio.unal.edu.co/bitstream/unal/75785/1/1067930638.2019.pdf74009db243ed7adb5d11c9a1c9f8001cMD51THUMBNAIL1067930638.2019.pdf.jpg1067930638.2019.pdf.jpgGenerated Thumbnailimage/jpeg5619https://repositorio.unal.edu.co/bitstream/unal/75785/4/1067930638.2019.pdf.jpga110995443854ac417aaa3ba80e36b55MD54unal/75785oai:repositorio.unal.edu.co:unal/757852024-07-09 23:20:32.971Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==