On the orthogonality measure of the q-pollaczek polynomials

The q-Pollaczek polynomials F ,(x) depend on four parameters u,v, ∆, q and are given by the recurrence relation (1-qn+1)Fn+1(x) = 2[(1-u∆qn)x+vqn]Fn(x)- (1-∆2qn-1)Fn-1 (x), n ≥ 1, and the initial cond i t i ons Fo(x)=1 F1(x) = 2 [(1-u∆)x+v]/1-q. The measure with respect to which the Fn(x)'s are...

Full description

Autores:
Charris Castañeda, Jairo Antonio
Gómez, Luis A.
Tipo de recurso:
Article of journal
Fecha de publicación:
1987
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43171
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43171
http://bdigital.unal.edu.co/33269/
Palabra clave:
q-Pollaczek polynomials
orthogonal
Lebesgue's measure
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The q-Pollaczek polynomials F ,(x) depend on four parameters u,v, ∆, q and are given by the recurrence relation (1-qn+1)Fn+1(x) = 2[(1-u∆qn)x+vqn]Fn(x)- (1-∆2qn-1)Fn-1 (x), n ≥ 1, and the initial cond i t i ons Fo(x)=1 F1(x) = 2 [(1-u∆)x+v]/1-q. The measure with respect to which the Fn(x)'s are orthogonal is determined when the parameters are subject to the constraints O and lt;u and lt;∆ and lt; 1, ∆(1-u) and gt;±v, 0 and lt; q and lt; 1. This measure turns out to be absolutelv continuous with respect to Lebesgue's measure.