Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas
ilustraciones, diagramas, tablas
- Autores:
-
Cuero Amu, Kelin Johana
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86767
- Palabra clave:
- 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
540 - Química y ciencias afines::547 - Química orgánica
610 - Medicina y salud::615 - Farmacología y terapéutica
Péptidos Antimicrobianos
Bacterias Grampositivas
Bacterias Gramnegativas
Infecciones por Escherichia coli
Klebsiella pneumoniae
Staphylococcus aureus
Productos con Acción Antimicrobiana
Inmunomodulación
Antimicrobial Peptides
Gram-Positive Bacteria
Gram-Negative Bacteria
Escherichia coli Infections
Products with Antimicrobial Action
Immunomodulation
Inducción de resistencia
Sinergismo
E. coli
S. aureus
Lactoferricina
Bactericida
Lactoferricin
Bactericide
Resistance induction
Synergism
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_29c4af73b290298730b104773a38ab8a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86767 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
dc.title.translated.eng.fl_str_mv |
Peptides derived from RRWQWRMKKLG sequence: Evaluation of antibacterial activity against Gram positive and Gram negative ATCC strains |
title |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
spellingShingle |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas 570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades 540 - Química y ciencias afines::547 - Química orgánica 610 - Medicina y salud::615 - Farmacología y terapéutica Péptidos Antimicrobianos Bacterias Grampositivas Bacterias Gramnegativas Infecciones por Escherichia coli Klebsiella pneumoniae Staphylococcus aureus Productos con Acción Antimicrobiana Inmunomodulación Antimicrobial Peptides Gram-Positive Bacteria Gram-Negative Bacteria Escherichia coli Infections Products with Antimicrobial Action Immunomodulation Inducción de resistencia Sinergismo E. coli S. aureus Lactoferricina Bactericida Lactoferricin Bactericide Resistance induction Synergism |
title_short |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
title_full |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
title_fullStr |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
title_full_unstemmed |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
title_sort |
Péptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativas |
dc.creator.fl_str_mv |
Cuero Amu, Kelin Johana |
dc.contributor.advisor.spa.fl_str_mv |
García Castañeda, Javier Eduardo Rivera Monroy, Zuly Jenny |
dc.contributor.author.spa.fl_str_mv |
Cuero Amu, Kelin Johana |
dc.contributor.researchgroup.spa.fl_str_mv |
Síntesis y Aplicación de Moléculas Peptídicas |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades 540 - Química y ciencias afines::547 - Química orgánica 610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades 540 - Química y ciencias afines::547 - Química orgánica 610 - Medicina y salud::615 - Farmacología y terapéutica Péptidos Antimicrobianos Bacterias Grampositivas Bacterias Gramnegativas Infecciones por Escherichia coli Klebsiella pneumoniae Staphylococcus aureus Productos con Acción Antimicrobiana Inmunomodulación Antimicrobial Peptides Gram-Positive Bacteria Gram-Negative Bacteria Escherichia coli Infections Products with Antimicrobial Action Immunomodulation Inducción de resistencia Sinergismo E. coli S. aureus Lactoferricina Bactericida Lactoferricin Bactericide Resistance induction Synergism |
dc.subject.decs.spa.fl_str_mv |
Péptidos Antimicrobianos Bacterias Grampositivas Bacterias Gramnegativas Infecciones por Escherichia coli Klebsiella pneumoniae Staphylococcus aureus Productos con Acción Antimicrobiana Inmunomodulación |
dc.subject.decs.eng.fl_str_mv |
Antimicrobial Peptides Gram-Positive Bacteria Gram-Negative Bacteria Escherichia coli Infections Products with Antimicrobial Action Immunomodulation |
dc.subject.proposal.spa.fl_str_mv |
Inducción de resistencia Sinergismo E. coli S. aureus Lactoferricina Bactericida |
dc.subject.proposal.eng.fl_str_mv |
Lactoferricin Bactericide Resistance induction Synergism |
description |
ilustraciones, diagramas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-02T14:38:59Z |
dc.date.available.none.fl_str_mv |
2024-09-02T14:38:59Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86767 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86767 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Assoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Frontiers in Microbiology, 11(October), 1–20. https://doi.org/10.3389/fmicb.2020.593215 ATCC. (2023a). Escherichia coli (Migula) Castellani and Chalmers - 25922 | ATCC. https://www.atcc.org/products/25922 ATCC. (2023b). Staphylococcus aureus subsp. aureus rosenbach 29213. https://www.atcc.org/products/29213 Bahar, A. A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals 2013, Vol. 6, Pages 1543-1575, 6(12), 1543–1575. https://doi.org/10.3390/PH6121543 Barragán-Cárdenas, A. C., Insuasty-Cepeda, D. S., Cárdenas-Martínez, K. J., López-Meza, J., Ochoa-Zarzosa, A., Umaña-Pérez, A., Rivera-Monroy, Z. J., & García-Castañeda, J. E. (2022). LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. Arabian Journal of Chemistry, 15(8), 103998. https://doi.org/10.1016/J.ARABJC.2022.103998 Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182(2), 97–105. https://doi.org/10.1007/BF00189377 Bonilla, L. D. (2021). ACTIVIDAD ANTIBACTERIANA DEL PÉPTIDO LfcinB (20-25)4 CONTRA AISLADOS CLÍNICOS. Universidad Nacional de Colombia. Brand, I., & Khairalla, B. (2021). Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discussions, 232(0), 68–85. https://doi.org/10.1039/D0FD00039F Castañeda Casimiro, J., Ortega Roque, J. A., Venegas Medina, A. M., Aquino Andrade, A., Serafín López, J., Estrada Parra, S., & Estrada, I. (2009). Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Alergia, Asma e Inmunologia Pediatrica, 18(1), 16–29. www.medigraphic.com Chan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006 Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., & Evans, R. W. (2004). Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. 48(6), 2190–2198. https://doi.org/10.1128/AAC.48.6.2190 Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688 Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10 Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3 Christmann, J., Cao, P., Becker, J., Desiderato, C. K., Goldbeck, O., Riedel, C. U., Kohlstedt, M., & Wittmann, C. (2023). High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 22(1), 1–18. https://doi.org/10.1186/s12934-023-02044-y CLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11(M07). www.clsi.org. De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEG Duperthuy, M. (2020). Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. Microorganisms, 8. https://doi.org/10.3390/microorganisms8020280 Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4 Fleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381 Gao, Y., Fang, H., Fang, L., Liu, D., Liu, J., Su, M., Fang, Z., Ren, W., & Jiao, H. (2018). The Modification and Design of Antimicrobial Peptide. Curr Pharm Des, 24(8), 904–910. https://doi.org/10.2174/1381612824666180213130318 Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences 2005 62:22, 62(22), 2588–2598. https://doi.org/10.1007/S00018-005-5373-Z Gruden, Š., & Ulrih, N. P. (2021). Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. International Journal of Molecular Sciences 2021, Vol. 22, Page 11264, 22(20), 11264. https://doi.org/10.3390/IJMS222011264 Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.00107 Gutman, I., Gutman, R., Sidney, J., Chihab, L., Mishto, M., Liepe, J., Chiem, A., Greenbaum, J., Yan, Z., Sette, A., Koşaloǧlu-Yalçln, Z., & Peters, B. (2022). Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 7(27), 23771–23781. https://doi.org/10.1021/ACSOMEGA.2C02425/SUPPL_FILE/AO2C02425_SI_002.XLSX Hao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: Major Physiological Functions and Applications. Current Protein & Peptide Science, 20(2), 139–144. https://doi.org/10.2174/1389203719666180514150921 Ho, Y. H., Shah, P., Chen, Y. W., & Chen, C. S. (2016). Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Molecular and Cellular Proteomics, 15(6), 1837–1847. https://doi.org/10.1074/mcp.M115.054999 Hoskin, D. . (2017). Lactoferricin Antiangiogenesis Inhibitor. Encyclopedia of Cancer, 2433–2436. https://doi.org/10.1007/978-3-662-46875-3_3261 Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEX Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034 Huertas Méndez, N. D. J., Vargas Casanova, Y., Gómez Chimbi, A. K., Hernández, E., Leal Castro, A. L., Melo Diaz, J. M., Rivera Monroy, Z. J., & García Castañeda, J. E. (2017). Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland), 22(3), 1–10. https://doi.org/10.3390/molecules22030452 IACG. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. In World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections INS. (2019). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD. Insuasty Cepeda, D. S., Barragán Cárdenas, A. C., Ochoa Zarzosa, A., López Meza, J. E., Fierro Medina, R., García Castañeda, J. E., & Rivera Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/IJMS21124550 Insuasty, D. (2022). Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama. Universidad Nacional de Colombia. Jaradat, D. M. M. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 50(1), 39–68. https://doi.org/10.1007/S00726-017-2516-0 Kang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide and Protein Research, 48(4), 357–363. https://doi.org/10.1111/J.1399-3011.1996.TB00852.X Kumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1). https://doi.org/10.3390/BIOM8010004 Lebreton, F., & Cattoir, V. (2019). Resistance to glycopeptide antibiotics. Bacterial Resistance to Antibiotics: From Molecules to Man, 51–80. https://doi.org/10.1002/9781119593522.ch3 Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., & Coy, D. H. (2019). The antimicrobial peptides and their potential clinical applications. 11(7), 3919–3931. León Calvijo, M. A., Leal Castro, A. L., Almanzar Reina, G. A., Rosas Pérez, J. E., García Castañeda, J. E., & Rivera Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015. https://doi.org/10.1155/2015/453826 Longhi, C., Conte, M. P., Bellamy, W., Seganti, L., & Valenti, P. (1994). Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Medical Microbiology and Immunology 1994 183:2, 183(2), 77–85. https://doi.org/10.1007/BF00277158 Lorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A., & Cilli, E. M. (2019). Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein & Peptide Letters, 26(2), 98–107. https://doi.org/10.2174/0929866526666190102125304 Martínez, J. L. (2019). Mechanisms of action and of resistance to quinolones. Antibiotic Drug Resistance, 39–55. https://doi.org/10.1002/9781119282549.ch2 McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017 Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14 Miranda García, M. C. (2013). Escherichia coli portador de betalactamasas de espectro extendido: resistencia. Sanidad Militar, 69(4), 244–248. https://doi.org/10.4321/s1887-85712013000400003 Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/J.GIEC.2020.06.004 Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00539 Nguyen, L. T., Schibli, D. J., & Vogel, H. J. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. Journal of Peptide Science, 11(7), 379–389. https://doi.org/10.1002/psc.629 OMS. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (Issue 8.5.2017). Paitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Current Topics in Microbiology and Immunology, 416, 181–211. https://doi.org/10.1007/82_2018_110 Pei, J., Xiong, L., Chu, M., Guo, X., & Yan, P. (2020). Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Veterinary Research, 16(1), 1–10. https://doi.org/10.1186/s12917-020-02620-z Raheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(December), 1–14. https://doi.org/10.3389/fmicb.2019.02866 Rainard, P. (1986). Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology, 11(4), 387–392. https://doi.org/10.1016/0378-1135(86)90068-4 Rodríguez, J. (2019). Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama [Universidad Nacional de Colombia]. In Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/76436 Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013. https://doi.org/10.1155/2013/390230 Sun, C., Li, Y., Cao, S., Wang, H., Jiang, C., Pang, S., Hussain, M. A., & Hou, J. (2018). Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. International Journal of Molecular Sciences 2018, Vol. 19, Page 2951, 19(10), 2951. https://doi.org/10.3390/IJMS19102951 Tu, Y. H., Ho, Y. H., Chuang, Y. C., Chen, P. C., & Chen, C. S. (2011). Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0028197 University of Nebraska Medical Center. (2023). Antimicrobial Peptide Database. https://aps.unmc.edu/ Vargas Casanova, Y. (2018). EVALUACIÓN DE LA ACTIVIDAD ANTIBACTERIANA DE PÉPTIDOS DIMÉRICOS Y TETRAMÉRICOS DERIVADOS DE LACTOFERRICINA BOVINA CONTRA BACTERIAS GRAM POSITIVAS Y GRAM NEGATIVAS. Universidad Nacional de Colombia. Vargas Casanova, Y., Rodríguez Mayor, A. V., Cardenas, K. J., Leal Castro, A. L., Muñoz Molina, L. C., Fierro Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. The Royal Society of Chemistry Advances, 9(13), 7239–7245. https://doi.org/10.1039/C9RA00708C Ventola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277. https://doi.org/Article Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583 Ying, J. P., Wu, G., Zhang, Y. M., & Zhang, Q. L. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204(February), 109258. https://doi.org/10.1016/j.meatsci.2023.109258 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 115 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86767/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86767/4/1023955785.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86767/5/1023955785.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 8dc98b85a87e3d8050c340eee23990df 33409881569f5b63964cc26f9610e88e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090255091892224 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Castañeda, Javier Eduardod233ac45968135ded4a8bcbe0460b111Rivera Monroy, Zuly Jennybcc909fcc85ff0efa659b7aaca42b3cbCuero Amu, Kelin Johana2c0b854569edcc641b02eb28fb2d8d84Síntesis y Aplicación de Moléculas Peptídicas2024-09-02T14:38:59Z2024-09-02T14:38:59Z2024https://repositorio.unal.edu.co/handle/unal/86767Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa alta incidencia de infecciones y el surgimiento de bacterias resistentes a los agentes antibacterianos es una amenaza a la salud pública global, la infección con bacterias como Escherichia coli, Klebsiella pneumoniae y Staphylococcus aureus meticilino-resistente (MRSA por sus siglas en inglés) ha llevado al aumento en la mortalidad, estadía intrahospitalaria de los pacientes y costos de atención en salud. Los péptidos antimicrobianos (PAMs) son potenciales fármacos antibacterianos debido a que han mostrado alta actividad antibacteriana, amplio espectro de acción y menor probabilidad de generar resistencia por parte de las bacterias. La lactoferrina bovina y su derivado, la lactoferricina bovina (LfcinB) han sido ampliamente estudiados debido a su acción antimicrobiana, anticancerígena e inmunomoduladora. El presente proyecto de investigación tuvo como objetivo sintetizar y evaluar el efecto antibacteriano de péptidos derivados de la secuencia LfcinB (20-30) RRWQWRMKKLG. Los péptidos fueron obtenidos por síntesis en fase sólida usando la estrategia Fmoc/tBu, caracterizados por RP-HPLC y ESI-Q-TOF y se evaluó la actividad antibacteriana (MIC, MBC, curvas de letalidad) con base en la guía del CLSI. Adicionalmente se evaluó la inducción de resistencia, el efecto sinérgico con antibióticos de uso común y el efecto hemolítico de los péptidos promisorios. Se evidenció que los péptidos 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20-30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) para E. coli ATCC 25922 y el péptido 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) para S. aureus ATCC 29213, presentaron la mejor actividad antibacteriana, la cual fue potenciada hasta 8 veces con respecto al péptido original (LfcinB (20-30)) y se mantuvo en aislados clínicos sensibles y multidrogoresistentes de E. coli y S. aureus; el efecto antibacteriano de estos péptidos se da por mecanismos bactericidas, evidenciado en la evaluación de curvas de letalidad. Se observó un efecto sinérgico en la combinación de los péptidos 26[F]-LfcinB (20-30)2 y 26[F]-LfcinB (20-27)2 con ciprofloxacina y ceftriaxona contra E.coli, mientras que el efecto del péptido 26[Nal]-LfcinB (20-30)2 con vancomicina contra S. aureus fue antagónico. El ensayo de inducción de resistencia demostró que todos los péptidos, a excepción del 26[F]-LfcinB (20-30)2, generaron resistencia ante las cepas evaluadas, sin embargo, se evidenció que en los antibióticos de uso común la adaptación se da a mayor velocidad. Finalmente, los péptidos promisorios tuvieron un efecto hemolítico menor al 5% y un índice terapéutico >1 indicando baja toxicidad de estos. Estos resultados indican que los péptidos 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 y 26[Nal]-LfcinB (20-30)2 son promisorios para el tratamiento de infecciones bacterianas por E. coli y S. aureus, sin embargo, se requiere de estudios adicionales (Texto tomado de la fuente).The high incidence of infections and the emergence of bacteria resistant to antibacterial agents is a threat to global public health, infection with bacteria such as Escherichia coli, Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) increase the mortality, hospital stay and health care costs. Antimicrobial peptides (AMPs) are potential antibacterial drugs because they have shown high antibacterial activity, a broad action spectrum and a lower probability of generating resistance by bacteria. Bovine lactoferrin and its derivate, bovine lactoferricin (LfcinB) have been widely studied due to their antimicrobial, anticancer and immunomodulatory action. The objective of this research was to synthesize and evaluate the antibacterial effect of peptides derived from the LfcinB sequence (20-30). The peptides were synthesized by the Fmoc/tBu strategy, characterized by RP-HPLC and ESI-Q-TOF and the antibacterial activity (MIC, MBC, lethality curves) was evaluated based on the CLSI guideline. In addition, the induction of resistance, the synergistic effect with commonly used antibiotics and the hemolytic effect of the promising peptides were evaluated. It was evidenced that the peptides 26[Nal]-LfcinB (20-30) (MIC=15.5 µM), 26[F]-LfcinB (20- 30)2 (MIC=15 µM), 26[F]-LfcinB (20-27)2 (MIC=9.1 µM) y LfcinB (20-25)2 (MIC=11.4 µM) for E. coli ATCC 25922 and peptide 26[Nal]-LfcinB (20-30)2 (MIC=14.5 µM) for S. aureus ATCC 29213, presented the best antibacterial activity, which was enhanced up to 8 times with respect to the original peptide and it was maintained in sensitive and multidrug-resistant clinical isolates of E. coli and S. aureus; The antibacterial effect of these peptides occurs through bactericidal mechanisms, evidenced in the evaluation of lethality curves. A synergistic effect was observed in the combination of peptides 26[F]-LfcinB (20-30)2 and 26[F]-LfcinB (20-27)2 with ciprofloxacin and ceftriaxone against E. coli, while the effect of peptide 26[Nal]-LfcinB (20-30)2 with vancomycin against S. aureus was antagonistic. The resistance induction test demonstrated that all peptides, except for 26[F]-LfcinB (20- 30)2, generated resistance to the strains evaluated; however, it was evident that in commonly used antibiotics adaptation occurs at a greater speed. Finally, the promising peptides had a hemolytic effect less than 5% and a therapeutic index >1 indicating low toxicity. These results indicate that peptides 26[Nal]-LfcinB (20-30), 26[F]-LfcinB (20-30)2, 26[F]- LfcinB (20-27)2, LfcinB (20-25)2 and 26[Nal]-LfcinB (20-30)2 are promising for the treatment of bacterial infections by E. coli and S. aureus, however, additional studies are required.MaestríaMagíster en Ciencias - MicrobiologíaEl presente estudio tuvo como objetivo sintetizar péptidos antimicrobianos derivados de la secuencia LfcinB (20-30): 20RRWQWRMKKLG30; en dichos péptidos el residuo en la posición 26 (metionina) fue reemplazado por diferentes aminoácidos y adicionalmente para la secuencia con fenilalanina en esta posición (26[F]), se obtuvieron péptidos análogos en los que se removieron, secuencialmente, los residuos del extremo C- terminal hasta alcanzar el motivo mínimo (RRWQWR); los péptidos fueron sintetizados como monómeros y dímeros. Para las moléculas obtenidas se evaluó (i) la actividad antibacteriana, (ii) cinética antibacteriana, (iii) sinergia con antibióticos de uso común, (iv) inducción de resistencia y (v) la toxicidad contra eritrocitos humanos.xvi, 115 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica610 - Medicina y salud::616 - Enfermedades540 - Química y ciencias afines::547 - Química orgánica610 - Medicina y salud::615 - Farmacología y terapéuticaPéptidos AntimicrobianosBacterias GrampositivasBacterias GramnegativasInfecciones por Escherichia coliKlebsiella pneumoniaeStaphylococcus aureusProductos con Acción AntimicrobianaInmunomodulaciónAntimicrobial PeptidesGram-Positive BacteriaGram-Negative BacteriaEscherichia coli InfectionsProducts with Antimicrobial ActionImmunomodulationInducción de resistenciaSinergismoE. coliS. aureusLactoferricinaBactericidaLactoferricinBactericideResistance inductionSynergismPéptidos derivados de la secuencia RRWQWRMKKLG: Evaluación de la actividad antibacteriana contra cepas ATCC Gram positivas y Gram negativasPeptides derived from RRWQWRMKKLG sequence: Evaluation of antibacterial activity against Gram positive and Gram negative ATCC strainsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAssoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Frontiers in Microbiology, 11(October), 1–20. https://doi.org/10.3389/fmicb.2020.593215ATCC. (2023a). Escherichia coli (Migula) Castellani and Chalmers - 25922 | ATCC. https://www.atcc.org/products/25922ATCC. (2023b). Staphylococcus aureus subsp. aureus rosenbach 29213. https://www.atcc.org/products/29213Bahar, A. A., & Ren, D. (2013). Antimicrobial Peptides. Pharmaceuticals 2013, Vol. 6, Pages 1543-1575, 6(12), 1543–1575. https://doi.org/10.3390/PH6121543Barragán-Cárdenas, A. C., Insuasty-Cepeda, D. S., Cárdenas-Martínez, K. J., López-Meza, J., Ochoa-Zarzosa, A., Umaña-Pérez, A., Rivera-Monroy, Z. J., & García-Castañeda, J. E. (2022). LfcinB-Derived Peptides: Specific and punctual change of an amino acid in monomeric and dimeric sequences increase selective cytotoxicity in colon cancer cell lines. Arabian Journal of Chemistry, 15(8), 103998. https://doi.org/10.1016/J.ARABJC.2022.103998Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., & Tomita, M. (1993). Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin. Medical Microbiology and Immunology, 182(2), 97–105. https://doi.org/10.1007/BF00189377Bonilla, L. D. (2021). ACTIVIDAD ANTIBACTERIANA DEL PÉPTIDO LfcinB (20-25)4 CONTRA AISLADOS CLÍNICOS. Universidad Nacional de Colombia.Brand, I., & Khairalla, B. (2021). Structural changes in the model of the outer cell membrane of Gram-negative bacteria interacting with melittin: an in situ spectroelectrochemical study. Faraday Discussions, 232(0), 68–85. https://doi.org/10.1039/D0FD00039FCastañeda Casimiro, J., Ortega Roque, J. A., Venegas Medina, A. M., Aquino Andrade, A., Serafín López, J., Estrada Parra, S., & Estrada, I. (2009). Péptidos antimicrobianos: péptidos con múltiples funciones Artemisa medigraphic en línea. Alergia, Asma e Inmunologia Pediatrica, 18(1), 16–29. www.medigraphic.comChan, D. I., Prenner, E. J., & Vogel, H. J. (2006). Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta - Biomembranes, 1758(9), 1184–1202. https://doi.org/10.1016/j.bbamem.2006.04.006Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., & Evans, R. W. (2004). Structure and Association of Human Lactoferrin Peptides with Escherichia coli Lipopolysaccharide. 48(6), 2190–2198. https://doi.org/10.1128/AAC.48.6.2190Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547–569. https://doi.org/10.1080/21505594.2021.1878688Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacological Reviews, 58(3), 621–681. https://doi.org/10.1124/pr.58.3.10Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, 88(1), 26–40. https://doi.org/10.1007/S00239-019-09914-3Christmann, J., Cao, P., Becker, J., Desiderato, C. K., Goldbeck, O., Riedel, C. U., Kohlstedt, M., & Wittmann, C. (2023). High-efficiency production of the antimicrobial peptide pediocin PA-1 in metabolically engineered Corynebacterium glutamicum using a microaerobic process at acidic pH and elevated levels of bivalent calcium ions. Microbial Cell Factories, 22(1), 1–18. https://doi.org/10.1186/s12934-023-02044-yCLSI. (2018). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clinical and Laboratory Standards Institute, 11(M07). www.clsi.org.De Oliveira, D. M. P., Forde, B. M., Kidd, T. J., Harris, P. N. A., Schembri, M. A., Beatson, S. A., Paterson, D. L., & Walker, M. J. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3). https://doi.org/10.1128/CMR.00181-19/ASSET/CBA1C1D1-CF90-43DE-A9DF-32D24A4334AC/ASSETS/GRAPHIC/CMR.00181-19-F0001.JPEGDuperthuy, M. (2020). Antimicrobial peptides: Virulence and resistance modulation in gram-negative bacteria. Microorganisms, 8. https://doi.org/10.3390/microorganisms8020280Farnaud, S., & Evans, R. W. (2003). Lactoferrin - A multifunctional protein with antimicrobial properties. Molecular Immunology, 40(7), 395–405. https://doi.org/10.1016/S0161-5890(03)00152-4Fleece, M. E., Pholwat, S., Mathers, A. J., & Houpt, E. R. (2018). Molecular diagnosis of antimicrobial resistance in Escherichia coli. Expert Review of Molecular Diagnostics, 18(3), 207–217. https://doi.org/10.1080/14737159.2018.1439381Gao, Y., Fang, H., Fang, L., Liu, D., Liu, J., Su, M., Fang, Z., Ren, W., & Jiao, H. (2018). The Modification and Design of Antimicrobial Peptide. Curr Pharm Des, 24(8), 904–910. https://doi.org/10.2174/1381612824666180213130318Gifford, J. L., Hunter, H. N., & Vogel, H. J. (2005). Lactoferricin. Cellular and Molecular Life Sciences 2005 62:22, 62(22), 2588–2598. https://doi.org/10.1007/S00018-005-5373-ZGruden, Š., & Ulrih, N. P. (2021). Diverse Mechanisms of Antimicrobial Activities of Lactoferrins, Lactoferricins, and Other Lactoferrin-Derived Peptides. International Journal of Molecular Sciences 2021, Vol. 22, Page 11264, 22(20), 11264. https://doi.org/10.3390/IJMS222011264Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/FCIMB.2020.00107Gutman, I., Gutman, R., Sidney, J., Chihab, L., Mishto, M., Liepe, J., Chiem, A., Greenbaum, J., Yan, Z., Sette, A., Koşaloǧlu-Yalçln, Z., & Peters, B. (2022). Predicting the Success of Fmoc-Based Peptide Synthesis. ACS Omega, 7(27), 23771–23781. https://doi.org/10.1021/ACSOMEGA.2C02425/SUPPL_FILE/AO2C02425_SI_002.XLSXHao, L., Shan, Q., Wei, J., Ma, F., & Sun, P. (2019). Lactoferrin: Major Physiological Functions and Applications. Current Protein & Peptide Science, 20(2), 139–144. https://doi.org/10.2174/1389203719666180514150921Ho, Y. H., Shah, P., Chen, Y. W., & Chen, C. S. (2016). Systematic analysis of intracellular-targeting antimicrobial peptides, bactenecin 7, hybrid of pleurocidin and dermaseptin, proline-arginine-rich peptide, and lactoferricin b, by using Escherichia coli proteome microarrays. Molecular and Cellular Proteomics, 15(6), 1837–1847. https://doi.org/10.1074/mcp.M115.054999Hoskin, D. . (2017). Lactoferricin Antiangiogenesis Inhibitor. Encyclopedia of Cancer, 2433–2436. https://doi.org/10.1007/978-3-662-46875-3_3261Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11, 2559. https://doi.org/10.3389/FMICB.2020.582779/BIBTEXHuemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/EMBR.202051034Huertas Méndez, N. D. J., Vargas Casanova, Y., Gómez Chimbi, A. K., Hernández, E., Leal Castro, A. L., Melo Diaz, J. M., Rivera Monroy, Z. J., & García Castañeda, J. E. (2017). Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules (Basel, Switzerland), 22(3), 1–10. https://doi.org/10.3390/molecules22030452IACG. (2019). No time to wait: Securing the future from drug-resistant infections. World Health Organization. In World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infectionsINS. (2019). INFORME DE RESULTADOS DE LA VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD.Insuasty Cepeda, D. S., Barragán Cárdenas, A. C., Ochoa Zarzosa, A., López Meza, J. E., Fierro Medina, R., García Castañeda, J. E., & Rivera Monroy, Z. J. (2020). Peptides Derived from (RRWQWRMKKLG)2-K-Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. International Journal of Molecular Sciences, 21(12), 4550. https://doi.org/10.3390/IJMS21124550Insuasty, D. (2022). Implementación y Optimización de la Síntesis de Péptidos Diméricos Derivados de la Secuencia LfcinB (20-30) con Potencial Actividad Anticancerígena Contra el Cáncer de Mama. Universidad Nacional de Colombia.Jaradat, D. M. M. (2018). Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino Acids, 50(1), 39–68. https://doi.org/10.1007/S00726-017-2516-0Kang, J. H., Lee, M. K., Kim, K. L., & Hahm, K. S. (1996). Structure–biological activity relationships of 11-residue highly basic peptide segment of bovine lactoferrin. International Journal of Peptide and Protein Research, 48(4), 357–363. https://doi.org/10.1111/J.1399-3011.1996.TB00852.XKumar, P., Kizhakkedathu, J. N., & Straus, S. K. (2018). Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules, 8(1). https://doi.org/10.3390/BIOM8010004Lebreton, F., & Cattoir, V. (2019). Resistance to glycopeptide antibiotics. Bacterial Resistance to Antibiotics: From Molecules to Man, 51–80. https://doi.org/10.1002/9781119593522.ch3Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., & Coy, D. H. (2019). The antimicrobial peptides and their potential clinical applications. 11(7), 3919–3931.León Calvijo, M. A., Leal Castro, A. L., Almanzar Reina, G. A., Rosas Pérez, J. E., García Castañeda, J. E., & Rivera Monroy, Z. J. (2015). Antibacterial activity of synthetic peptides derived from lactoferricin against Escherichia coli ATCC 25922 and Enterococcus Faecalis ATCC 29212. BioMed Research International, 2015. https://doi.org/10.1155/2015/453826Longhi, C., Conte, M. P., Bellamy, W., Seganti, L., & Valenti, P. (1994). Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Medical Microbiology and Immunology 1994 183:2, 183(2), 77–85. https://doi.org/10.1007/BF00277158Lorenzon, E. N., Piccoli, J. P., Santos-Filho, N. A., & Cilli, E. M. (2019). Dimerization of Antimicrobial Peptides: A Promising Strategy to Enhance Antimicrobial Peptide Activity. Protein & Peptide Letters, 26(2), 98–107. https://doi.org/10.2174/0929866526666190102125304Martínez, J. L. (2019). Mechanisms of action and of resistance to quinolones. Antibiotic Drug Resistance, 39–55. https://doi.org/10.1002/9781119282549.ch2McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial Resistance: a One Health Perspective. Microbiology Spectrum, 6(2). https://doi.org/10.1128/MICROBIOLSPEC.ARBA-0009-2017Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14Miranda García, M. C. (2013). Escherichia coli portador de betalactamasas de espectro extendido: resistencia. Sanidad Militar, 69(4), 244–248. https://doi.org/10.4321/s1887-85712013000400003Morrison, L., & Zembower, T. R. (2020). Antimicrobial Resistance. Gastrointestinal Endoscopy Clinics of North America, 30(4), 619–635. https://doi.org/10.1016/J.GIEC.2020.06.004Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/FMICB.2019.00539Nguyen, L. T., Schibli, D. J., & Vogel, H. J. (2005). Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. Journal of Peptide Science, 11(7), 379–389. https://doi.org/10.1002/psc.629OMS. (2022). Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022 (Issue 8.5.2017).Paitan, Y. (2018). Current Trends in Antimicrobial Resistance of Escherichia coli. Current Topics in Microbiology and Immunology, 416, 181–211. https://doi.org/10.1007/82_2018_110Pei, J., Xiong, L., Chu, M., Guo, X., & Yan, P. (2020). Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Veterinary Research, 16(1), 1–10. https://doi.org/10.1186/s12917-020-02620-zRaheem, N., & Straus, S. K. (2019). Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Frontiers in Microbiology, 10(December), 1–14. https://doi.org/10.3389/fmicb.2019.02866Rainard, P. (1986). Bacteriostatic activity of bovine milk lactoferrin against mastitic bacteria. Veterinary Microbiology, 11(4), 387–392. https://doi.org/10.1016/0378-1135(86)90068-4Rodríguez, J. (2019). Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama [Universidad Nacional de Colombia]. In Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/76436Sinha, M., Kaushik, S., Kaur, P., Sharma, S., & Singh, T. P. (2013). Antimicrobial lactoferrin peptides: The hidden players in the protective function of a multifunctional protein. International Journal of Peptides, 2013. https://doi.org/10.1155/2013/390230Sun, C., Li, Y., Cao, S., Wang, H., Jiang, C., Pang, S., Hussain, M. A., & Hou, J. (2018). Antibacterial Activity and Mechanism of Action of Bovine Lactoferricin Derivatives with Symmetrical Amino Acid Sequences. International Journal of Molecular Sciences 2018, Vol. 19, Page 2951, 19(10), 2951. https://doi.org/10.3390/IJMS19102951Tu, Y. H., Ho, Y. H., Chuang, Y. C., Chen, P. C., & Chen, C. S. (2011). Identification of lactoferricin B intracellular targets using an escherichia coli proteome chip. PLoS ONE, 6(12). https://doi.org/10.1371/journal.pone.0028197University of Nebraska Medical Center. (2023). Antimicrobial Peptide Database. https://aps.unmc.edu/Vargas Casanova, Y. (2018). EVALUACIÓN DE LA ACTIVIDAD ANTIBACTERIANA DE PÉPTIDOS DIMÉRICOS Y TETRAMÉRICOS DERIVADOS DE LACTOFERRICINA BOVINA CONTRA BACTERIAS GRAM POSITIVAS Y GRAM NEGATIVAS. Universidad Nacional de Colombia.Vargas Casanova, Y., Rodríguez Mayor, A. V., Cardenas, K. J., Leal Castro, A. L., Muñoz Molina, L. C., Fierro Medina, R., Rivera Monroy, Z. J., & García Castañeda, J. E. (2019). Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. The Royal Society of Chemistry Advances, 9(13), 7239–7245. https://doi.org/10.1039/C9RA00708CVentola, C. L. (2015). The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharmacy and Therapeutics, 40(4), 277. https://doi.org/ArticleWang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Critical Reviews in Food Science and Nutrition, 59(4), 580–596. https://doi.org/10.1080/10408398.2017.1381583Ying, J. P., Wu, G., Zhang, Y. M., & Zhang, Q. L. (2023). Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Science, 204(February), 109258. https://doi.org/10.1016/j.meatsci.2023.109258BibliotecariosEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86767/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1023955785.2024.pdf1023955785.2024.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3437884https://repositorio.unal.edu.co/bitstream/unal/86767/4/1023955785.2024.pdf8dc98b85a87e3d8050c340eee23990dfMD54THUMBNAIL1023955785.2024.pdf.jpg1023955785.2024.pdf.jpgGenerated Thumbnailimage/jpeg5408https://repositorio.unal.edu.co/bitstream/unal/86767/5/1023955785.2024.pdf.jpg33409881569f5b63964cc26f9610e88eMD55unal/86767oai:repositorio.unal.edu.co:unal/867672024-09-02 23:10:56.124Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |