A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions
Ilustraciones a color, diagramas
- Autores:
-
Bula Oyuela, Carlos Mauricio
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86539
- Palabra clave:
- 530 - Física::537 - Electricidad y electrónica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Aprendizaje por refuerzo
Control automático de frecuencia
Reinforcement learning (Machine learning)
Automatic frequency control
load frequency control
reinforcement learning
proximal policy optimization
renewable energies
aprendizaje por refuerzo
control de frecuencia
energías renovables
Energías renovables
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_296660e860e7e737d74103b9a5261dbc |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86539 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
dc.title.translated.spa.fl_str_mv |
Control de la frecuencia de carga basado en el aprendizaje por refuerzo para sistemas de potencia teniendo en cuenta las no linealidades y otras interacciones de control |
title |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
spellingShingle |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions 530 - Física::537 - Electricidad y electrónica 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Aprendizaje por refuerzo Control automático de frecuencia Reinforcement learning (Machine learning) Automatic frequency control load frequency control reinforcement learning proximal policy optimization renewable energies aprendizaje por refuerzo control de frecuencia energías renovables Energías renovables |
title_short |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
title_full |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
title_fullStr |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
title_full_unstemmed |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
title_sort |
A reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactions |
dc.creator.fl_str_mv |
Bula Oyuela, Carlos Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Rivera Rodríguez, Sergio Raúl |
dc.contributor.author.none.fl_str_mv |
Bula Oyuela, Carlos Mauricio |
dc.contributor.researchgroup.spa.fl_str_mv |
Inteligencia Computacional Aplicada a Sistemas de Potencia |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::537 - Electricidad y electrónica 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
530 - Física::537 - Electricidad y electrónica 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Aprendizaje por refuerzo Control automático de frecuencia Reinforcement learning (Machine learning) Automatic frequency control load frequency control reinforcement learning proximal policy optimization renewable energies aprendizaje por refuerzo control de frecuencia energías renovables Energías renovables |
dc.subject.lemb.spa.fl_str_mv |
Aprendizaje por refuerzo Control automático de frecuencia |
dc.subject.lemb.eng.fl_str_mv |
Reinforcement learning (Machine learning) Automatic frequency control |
dc.subject.proposal.eng.fl_str_mv |
load frequency control reinforcement learning proximal policy optimization renewable energies |
dc.subject.proposal.spa.fl_str_mv |
aprendizaje por refuerzo control de frecuencia energías renovables |
dc.subject.bne.spa.fl_str_mv |
Energías renovables |
description |
Ilustraciones a color, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T18:50:48Z |
dc.date.available.none.fl_str_mv |
2024-07-17T18:50:48Z |
dc.date.issued.none.fl_str_mv |
2024-01-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86539 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86539 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Grammarly, ‘‘Grammarly handbook,’’ 2024. Accessed on July 09, 2024. G. A. United Nations, ‘‘Transforming our world: the 2030 Agenda for Sustainable Development,’’ 2015. BP, ‘‘Statistical Review of World Energy,’’ BP Energy Outlook 2021, vol. 70, pp. 8--20, 2021. Melillo et al., ‘‘Climate Change Impacts in the United States: The Third National Climate Assessment,’’ tech. rep., 2014. S. Curtis, A. Fair, J. Wistow, D. V. Val, and K. Oven, ‘‘Impact of extreme weather events and climate change for health and social care systems,’’ Environmental Health, vol. 16, p. 128, Dec 2017. IEA, ‘‘World Energy Outlook 2021,’’ 2021. F. Milano, Frequency Variations in Power Systems. John Wiley and Sons, Ltd, 2020. H. Wang and M. Redfern, ‘‘The advantages and disadvantages of using hvdc to interconnect ac networks,’’ in 45th International Universities Power Engineering Conference UPEC2010, pp. 1--5, 2010. M. Shahidehpour and Y. Wang, Communication and Control in Electric Power Systems: Applications of Parallel and Distributed Processing. Wiley-IEEE Press, 2003. H. Bevrani, Robust Power System Frequency Control Second. 2 ed., 2014. F. Report, ‘‘First Report of Power System Stability,’’ Transactions of the American Institute of Electrical Engineers, vol. 56, no. 2, pp. 261--282, 1937. Y. Liu, S. You, J. Tan, Y. Zhang, and Y. Liu, ‘‘Frequency response assessment and enhancement of the u.s. power grids toward extra-high photovoltaic generation penetrations—an industry perspective,’’ IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3438--3449, 2018. P. Kundur, Power System Stability and Control. 2009. J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control. John Wiley and Sons, Ltd, 2 ed., 2008. E. Benham, ‘‘Si measurement system chart,’’ 2017-08-24 2017. National Fire Protection Association, NFPA 70: National Electrical Code. Quincy, MA, USA: NFPA, 2023 ed., 2023. British Standards Institution, Requirements for Electrical Installations: IET Wiring Regulations - 18th Edition. London, UK: IET, 2018. U. Governmen, ‘‘The electricity safety, quality and continuity regulations 2002 part vii regulation 27,’’ 2002. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, E. T. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. Vessot, and G. M. Winkler, ‘‘Characterization of Frequency Stability,’’ IEEE Transactions on Instrumentation and Measurement, vol. IM-20, no. 2, pp. 105--120, 1971. Eto et al., ‘‘Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation,’’ no. December 2010, pp. LBNL--4142E, 2010. S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019. N. Cohn, ‘‘Some aspects of tie-line bias control on interconnected power systems [includes discussion],’’ Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 75, no. 3, pp. 1415--1436, 1956. N. Cohn, ‘‘Methods of controlling generation on interconnected power systems,’’ Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 80, no. 3, pp. 270--279, 1961. N. Cohn, ‘‘Decomposition of time deviation and inadvertent interchange on interconnected systems, part i: Identification, separation and measurement of components,’’ IEEE Power Engineering Review, vol. PER-2, no. 5, pp. 37--37, 1982. IEEE, ‘‘Ieee standard definitions of terms for automatic generation control on electric power systems,’’ IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, no. 6, pp. 1356--1364, 1970. P. Anderson, A. Fouad, I. of Electrical, E. Engineers, and I. P. E. Society, Power System Control and Stability. IEEE Press power engineering series Power system control and stability, Iowa State University Press, 1977. F. Milano, Power System Modelling and Scripting. Power Systems, Springer Berlin Heidelberg, 2010. A. Pappachen and A. Peer Fathima, ‘‘Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review,’’ 2017. M. V. RAO, ‘‘Load frequency control,’’ 2024. Dept. of EEE, JNTUA College of Engineering, Kalikiri, Chittoor District, A P, India. R. Asghar, F. Riganti Fulginei, H. Wadood, and S. Saeed, ‘‘A review of load frequency control schemes deployed for wind-integrated power systems,’’ Sustainability, vol. 15, no. 10, 2023. J. C. Basilio and S. R. Matos, ‘‘Design of PI and PID controllers with transient performance specification,’’ IEEE Transactions on Education, vol. 45, no. 4, pp. 364--370, 2002. S. Saxena and Y. V. Hote, ‘‘Stabilization of perturbed system via IMC: An application to load frequency control,’’ Control Engineering Practice, vol. 64, no. January, pp. 61--73, 2017. W. Tan, ‘‘Unified tuning of PID load frequency controller for power systems via IMC,’’ IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 341--350, 2010. P. Bhanu, C. Bhushan, K. Sujatha, M. Venmathi, and A. Nalini, ‘‘Load frequency controller with PI controller considering non-linearities and boiler dynamics,’’ IET Conference Publications, vol. 2011, no. 583 CP, pp. 290--294, 2011. N. C. Patel, D. Manoj Kumar, S. Binod Kumar, and D. Pranati, ‘‘Solution of LFC Problem using PD+PI Double Loop Controller Tuned by SCA,’’ pp. 337--342, 2018. B. H. Bakken and O. S. Grande, ‘‘Automatic Generation Control in a Deregulated Power System,’’ vol. 62, no. 4, pp. 294--298, 1998. N. Kumari and A. N. Jha, ‘‘Particle swarm optimization and gradient descent methods for optimization of PI Controller for AGC of multi-area thermal-wind-hydro power plants,’’ Proceedings - UKSim 15th International Conference on Computer Modelling and Simulation, UKSim 2013, pp. 536--541, 2013. S. Kumar and M. N. Anwar, ‘‘Fractional order PID Controller design for Load Frequency Control in Parallel Control Structure,’’ 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings, pp. 17--22, 2019. M. N. Anwar and S. Pan, ‘‘A new PID load frequency controller design method in frequency domain through direct synthesis approach,’’ International Journal of Electrical Power and Energy Systems, vol. 67, pp. 560--569, 2015. I. K. Otchere, K. A. Kyeremeh, and E. A. Frimpong, ‘‘Adaptive pi-ga based technique for automatic generation control with renewable energy integration,’’ in 2020 IEEE PES/IAS PowerAfrica, pp. 1--4, 2020. H. Bevrani, Y. Mitani, and K. Tsuji, ‘‘Robust decentralized LFC design in a deregulated environment,’’ Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT2004), vol. 1, pp. 326--331, 2004. K. Niimi, K. Yukita, T. Matsumura, and Y. Goto, ‘‘Verification of Load Frequency Control Using H-infinity Control,’’ 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, vol. 5, pp. 1174--1178, 2018. H. Shayeghi, H. A. Shayanfar, and O. P. Malik, ‘‘Robust decentralized neural networks based LFC in a deregulated power system,’’ Electric Power Systems Research, vol. 77, no. 3-4, pp. 241--251, 2007. K. V. Kumar, T. A. Kumar, and V. Ganesh, ‘‘Chattering free sliding mode controller for load frequency control of multi area power system in deregulated environment,’’ in 2016 IEEE 7th Power India International Conference (PIICON), pp. 1--6, 2016. X. Z. Yu and F. Y. Hai, ‘‘A new fuzzy PI control algorithm for marine electric governor system,’’ ISCID 2009 - 2009 International Symposium on Computational Intelligence and Design, vol. 1, pp. 276--279, 2009. V. K. Singh and R. Dahiya, ‘‘Automatic generation control system using pi and fis controller.,’’ in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1--4, 2018. M. Chandrashekar and R. Jayapal, ‘‘Design and comparison of i, pi, pid and fuzzy logic controller on agc deregulated power system with hvdc link,’’ in 2013 International conference on Circuits, Controls and Communications (CCUBE), pp. 1--6, 2013. N. El Yakine Kouba, M. Menaa, M. Hasni, K. Tehrani, and M. Boudour, ‘‘A novel optimized fuzzy-pid controller in two-area power system with hvdc link connection,’’ in 2016 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 204--209, 2016. A. Demiroren, H. Zeynelgil, and N. Sengor, ‘‘The application of ann technique to load-frequency control for three-area power system,’’ in 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), vol. 2, pp. 5 pp. vol.2--, 2001. R. Chaudhary and A. P. Singh, ‘‘Intelligent load frequency control approach for multi area interconnected hybrid power system,’’ in 2017 International Conference on Technological Advancements in Power and Energy ( TAP Energy), pp. 1--4, 2017. S. Baghya Shree and N. Kamaraj, ‘‘Hybrid Neuro Fuzzy approach for automatic generation control in restructured power system,’’ International Journal of Electrical Power and Energy Systems, vol. 74, pp. 274--285, 2016. A. Prakash and S. K. Parida, ‘‘LQR based PI controller for load frequency control with distributed generations,’’ 2020 21st National Power Systems Conference, NPSC 2020, pp. 2--6, 2020. S. K. Pandey, P. Gupta, and S. S. Dwivedi, ‘‘Full order observer based load frequency control of Single Area Power System,’’ Proceedings - 2020 12th International Conference on Computational Intelligence and Communication Networks, CICN 2020, no. 3, pp. 239--242, 2020. A. Panwar, V. Agarwal, and G. Sharma, ‘‘Studies on Frequency Regulation of Hydro System via New JAYA Optimized LQR Design,’’ icABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings, pp. 2--5, 2021. A. Ali, B. Khan, C. A. Mehmood, Z. Ullah, S. M. Ali, and R. Ullah, ‘‘Decentralized mpc based frequency control for smart grid,’’ in 2017 International Conference on Energy Conservation and Efficiency (ICECE), pp. 1--6, 2017. I. E. Uyioghosa, ‘‘A Comparative Analysis of Different MPC Controllers for Load Frequency Control for Interconnected Power System,’’ no. 5, pp. 1--6, 2020. V. Kumtepeli, Y. Wang, and A. Tripathi, ‘‘Multi-Area Model Predictive Load Frequency Control : A Decentralized Approach,’’ no. October, pp. 25--27, 2016. F. Liu, Y. Li, S. Member, Y. Cao, and S. Member, ‘‘A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System,’’ vol. 31, no. 4, pp. 3320--3321, 2016. M. Yang, C. Wang, Z. Liu, and S. He, ‘‘An EID Load Frequency Control Method for Two-Area Interconnected Power System with Photovoltaic Generation,’’ pp. 5662--5666, 2021. C. Wang and J. Li, ‘‘Frequency Control of Isolated Wind-Diesel Microgrid Power System by Double Equivalent-Input-Disturbance Controllers,’’ 2019. F. Liu, Z. Xu, L. Liu, F. Yang, and D. Sidorov, ‘‘A Robust Active Disturbance Rejection Controller Design for LFC in Two-area Power System,’’ Chinese Control Conference, CCC, vol. 2018-July, pp. 8858--8863, 2018. Y. Du, W. Cao, J. She, and M. Fang, ‘‘A comparison study of three active disturbance rejection methods,’’ in 2020 39th Chinese Control Conference (CCC), pp. 135--139, 2020. R. L. Rekhasree and J. A. Jaleel, ‘‘A comparison of agc of power systems using reinforcement learning and genetic algorithm with a case study,’’ in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pp. 34--38, 2014. S. Eftekharnejad and A. Feliachi, ‘‘Stability enhancement through reinforcement learning: Load frequency control case study,’’ in 2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability, pp. 1--8, 2007. Z. Yan and Y. Xu, ‘‘A multi-agent deep reinforcement learning method for cooperative load frequency control of a multi-area power system,’’ IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4599--4608, 2020. V. A. K. Pappu, B. Chowdhury, and R. Bhatt, ‘‘Implementing frequency regulation capability in a solar photovoltaic power plant,’’ in North American Power Symposium 2010, pp. 1--6, 2010. Y.-z. Sun, Z.-s. Zhang, G.-j. Li, and J. Lin, ‘‘Review on frequency control of power systems with wind power penetration,’’ in 2010 International Conference on Power System Technology, pp. 1--8, 2010. S. A. Dorado-rojas, ‘‘Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation,’’ 2020. Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recurrent neural networks for sequence learning,’’ arXiv preprint arXiv:1506.00019, 2015. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representations by back-propagating errors,’’ Nature, vol. 323, no. 6088, pp. 533--536, 1986. D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv preprint arXiv:1412.6980, 2014. P. Werbos, ‘‘Backpropagation through time: what it does and how to do it,’’ Proceedings of the IEEE, vol. 78, no. 10, pp. 1550--1560, 1990. S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural computation, vol. 9, no. 8, pp. 1735--1780, 1997. X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, ‘‘Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,’’ ACM Trans. Graph., vol. 37, pp. 143:1--143:14, July 2018. R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proximal policy optimization algorithms,’’ 2017. WECC Modeling and Validation Work Group, WECC Wind Power Plant Dynamic Modeling Guide. Western Electricity Coordinating Council, November 2010. https://transmission.bpa.gov/Business/Operations/GridModeling/WECCWindPlantDynamicModelingGuide.pdf. WECC Modeling and Validation Work Group, WECC PV Power Plant Dynamic Modeling Guide. Western Electricity Coordinating Council, April 2014. https://www.wecc.org/Reliability/WECC%20Solar%20Plant%20Dynamic%20Modeling%20Guidelines.pdf. WECC, WECC Generator Unit Model Validation Guideline. Western Electricity Coordinating Council, April 23 2020. https://www.wecc.org/Reliability/WECC%20Generator%20Unit%20Model%20Validation%20Guideline.pdf. A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, ‘‘Stable-baselines3: Reliable reinforcement learning implementations,’’ Journal of Machine Learning Research, vol. 22, no. 268, pp. 1--8, 2021. O. Dogru, K. Velswamy, F. Ibrahim, Y. Wu, A. S. Sundaramoorthy, B. Huang, S. Xu, M. Nixon, and N. Bell, ‘‘Reinforcement learning approach to autonomous pid tuning,’’ Computers Chemical Engineering, vol. 161, p. 107760, 2022. W. Cui, Y. Jiang, and B. Zhang, ‘‘Reinforcement learning for optimal primary frequency control: A lyapunov approach,’’ 2021. C. of United States of America, ‘‘Energy Policy Act of 2005,’’ 2005. A. Demiroren and E. Yesil, ‘‘Automatic generation control with fuzzy logic controllers in the power system including smes units,’’ International Journal of Electrical Power and Energy Systems, vol. 26, no. 4, pp. 291--305, 2004. 2002 Conference on Probabilistic Methods Applied to Power Systems. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proximal policy optimization algorithms,’’ arXiv preprint arXiv:1707.06347, 2017. Power World Corporation, Transient Models in PowerWorld Simulator. Power World Corporation, year. Accessed: January 30, 2024. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xi, 66 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86539/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86539/2/1018497046.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86539/3/1018497046.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a dfb842b5493e2e535dd96f8100302150 8eecca23491ff467dc4b3684c3f00022 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090125720682496 |
spelling |
Reconocimiento 4.0 Internacionalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rivera Rodríguez, Sergio Raúlebc09c48c256e8bad61b48321e3a32c5Bula Oyuela, Carlos Mauricio1788f9d0060ffc946f5ae5471a539652Inteligencia Computacional Aplicada a Sistemas de Potencia2024-07-17T18:50:48Z2024-07-17T18:50:48Z2024-01-31https://repositorio.unal.edu.co/handle/unal/86539Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones a color, diagramasConsidering the advances of civilizations and the limited existence of resources, concerns about the sustainability of that progress are increasing. There is a rising need for affordable, reliable, and sustainable energy sources. Different international organisms recognize the crucial role of energy in achieving global sustainability, highlighting the need for a transition to modern and green energy alternatives. This transition to renewable energy introduces complexities in control systems, requiring reliable load-frequency controllers. This document discusses the limitations of traditional PI control strategies and studies the use of a reinforcement learning-based algorithm, Proximal Policy Optimization (PPO), in power system control. Results demonstrate the efficacy of PPO in effectively reducing area control error, handling nonlinearities, and adapting to disturbances in the system. The adaptability of PPO to different situations and system changes, with its system-agnostic nature, makes it a promising candidate for improving power system control. Finally, practical considerations such as computational requirements, communication delays, measurement noise, and hardware constraints are acknowledged as challenges that need further exploration for the real-world deployment of PPO in power grid environments. The paper concludes by calling for additional research to address these challenges and optimize the algorithm for real-time applications, emphasizing its advantages in the transition to renewable energies.Dada la evolución de las civilizaciones y la existencia limitada de recursos, hay crecientes preocupaciones sobre la sostenibilidad de ese progreso. Existe una creciente necesidad de fuentes de energía asequibles, confiables y sostenibles. Diferentes organismos internacionales reconocen el papel crucial de la energía en conseguir la sostenibilidad global, destacando la necesidad de una transición hacia alternativas energéticas modernas y ecológicas. Esta transición a la energía renovable añade complejidades en los sistemas de control, requiriendo controladores de frecuencia confiables. Este documento discute las limitaciones de las estrategias tradicionales de control proporcional-integral (PI) y estudia el uso de un algoritmo basado en aprendizaje por refuerzo, específicamente el algoritmo de Optimización de Política Próxima (PPO), en el control del sistema de potencia. Los resultados demuestran la eficacia de PPO al reducir eficazmente el error de control de área, manejar no linealidades y adaptarse a las perturbaciones en el sistema. La capacidad de adaptación de PPO a diferentes situaciones y cambios en el sistema, junto con su naturaleza agnóstica del sistema, lo convierte en una opción prometedora para mejorar el control del sistema de potencia. Finalmente, se reconocen consideraciones prácticas como requisitos computacionales, retrasos en la comunicación, ruido de medición y limitaciones de hardware, como desafíos que necesitan una exploración adicional para la implementación del mundo real de PPO en entornos de redes eléctricas. El artículo concluye instando a investigaciones adicionales para abordar estos desafíos y optimizar el algoritmo para aplicaciones en el mundo real, haciendo énfasis en sus ventajas para la transición hacia las energías renovables. (Texto tomado de la fuente)MaestríaMágister en Ingeniería - Automatización IndustrialReinforcement Learningxi, 66 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónica620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresAprendizaje por refuerzoControl automático de frecuenciaReinforcement learning (Machine learning)Automatic frequency controlload frequency controlreinforcement learningproximal policy optimizationrenewable energiesaprendizaje por refuerzocontrol de frecuenciaenergías renovablesEnergías renovablesA reinforcement learning based load frequency control for power systems considering nonlinearities and other control interactionsControl de la frecuencia de carga basado en el aprendizaje por refuerzo para sistemas de potencia teniendo en cuenta las no linealidades y otras interacciones de controlTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMGrammarly, ‘‘Grammarly handbook,’’ 2024. Accessed on July 09, 2024.G. A. United Nations, ‘‘Transforming our world: the 2030 Agenda for Sustainable Development,’’ 2015.BP, ‘‘Statistical Review of World Energy,’’ BP Energy Outlook 2021, vol. 70, pp. 8--20, 2021.Melillo et al., ‘‘Climate Change Impacts in the United States: The Third National Climate Assessment,’’ tech. rep., 2014.S. Curtis, A. Fair, J. Wistow, D. V. Val, and K. Oven, ‘‘Impact of extreme weather events and climate change for health and social care systems,’’ Environmental Health, vol. 16, p. 128, Dec 2017.IEA, ‘‘World Energy Outlook 2021,’’ 2021.F. Milano, Frequency Variations in Power Systems. John Wiley and Sons, Ltd, 2020.H. Wang and M. Redfern, ‘‘The advantages and disadvantages of using hvdc to interconnect ac networks,’’ in 45th International Universities Power Engineering Conference UPEC2010, pp. 1--5, 2010.M. Shahidehpour and Y. Wang, Communication and Control in Electric Power Systems: Applications of Parallel and Distributed Processing. Wiley-IEEE Press, 2003.H. Bevrani, Robust Power System Frequency Control Second. 2 ed., 2014.F. Report, ‘‘First Report of Power System Stability,’’ Transactions of the American Institute of Electrical Engineers, vol. 56, no. 2, pp. 261--282, 1937.Y. Liu, S. You, J. Tan, Y. Zhang, and Y. Liu, ‘‘Frequency response assessment and enhancement of the u.s. power grids toward extra-high photovoltaic generation penetrations—an industry perspective,’’ IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3438--3449, 2018.P. Kundur, Power System Stability and Control. 2009.J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control. John Wiley and Sons, Ltd, 2 ed., 2008.E. Benham, ‘‘Si measurement system chart,’’ 2017-08-24 2017.National Fire Protection Association, NFPA 70: National Electrical Code. Quincy, MA, USA: NFPA, 2023 ed., 2023.British Standards Institution, Requirements for Electrical Installations: IET Wiring Regulations - 18th Edition. London, UK: IET, 2018.U. Governmen, ‘‘The electricity safety, quality and continuity regulations 2002 part vii regulation 27,’’ 2002.J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, E. T. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. Vessot, and G. M. Winkler, ‘‘Characterization of Frequency Stability,’’ IEEE Transactions on Instrumentation and Measurement, vol. IM-20, no. 2, pp. 105--120, 1971.Eto et al., ‘‘Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation,’’ no. December 2010, pp. LBNL--4142E, 2010.S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.N. Cohn, ‘‘Some aspects of tie-line bias control on interconnected power systems [includes discussion],’’ Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 75, no. 3, pp. 1415--1436, 1956.N. Cohn, ‘‘Methods of controlling generation on interconnected power systems,’’ Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems, vol. 80, no. 3, pp. 270--279, 1961.N. Cohn, ‘‘Decomposition of time deviation and inadvertent interchange on interconnected systems, part i: Identification, separation and measurement of components,’’ IEEE Power Engineering Review, vol. PER-2, no. 5, pp. 37--37, 1982.IEEE, ‘‘Ieee standard definitions of terms for automatic generation control on electric power systems,’’ IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, no. 6, pp. 1356--1364, 1970.P. Anderson, A. Fouad, I. of Electrical, E. Engineers, and I. P. E. Society, Power System Control and Stability. IEEE Press power engineering series Power system control and stability, Iowa State University Press, 1977.F. Milano, Power System Modelling and Scripting. Power Systems, Springer Berlin Heidelberg, 2010.A. Pappachen and A. Peer Fathima, ‘‘Critical research areas on load frequency control issues in a deregulated power system: A state-of-the-art-of-review,’’ 2017.M. V. RAO, ‘‘Load frequency control,’’ 2024. Dept. of EEE, JNTUA College of Engineering, Kalikiri, Chittoor District, A P, India.R. Asghar, F. Riganti Fulginei, H. Wadood, and S. Saeed, ‘‘A review of load frequency control schemes deployed for wind-integrated power systems,’’ Sustainability, vol. 15, no. 10, 2023.J. C. Basilio and S. R. Matos, ‘‘Design of PI and PID controllers with transient performance specification,’’ IEEE Transactions on Education, vol. 45, no. 4, pp. 364--370, 2002.S. Saxena and Y. V. Hote, ‘‘Stabilization of perturbed system via IMC: An application to load frequency control,’’ Control Engineering Practice, vol. 64, no. January, pp. 61--73, 2017.W. Tan, ‘‘Unified tuning of PID load frequency controller for power systems via IMC,’’ IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 341--350, 2010.P. Bhanu, C. Bhushan, K. Sujatha, M. Venmathi, and A. Nalini, ‘‘Load frequency controller with PI controller considering non-linearities and boiler dynamics,’’ IET Conference Publications, vol. 2011, no. 583 CP, pp. 290--294, 2011.N. C. Patel, D. Manoj Kumar, S. Binod Kumar, and D. Pranati, ‘‘Solution of LFC Problem using PD+PI Double Loop Controller Tuned by SCA,’’ pp. 337--342, 2018.B. H. Bakken and O. S. Grande, ‘‘Automatic Generation Control in a Deregulated Power System,’’ vol. 62, no. 4, pp. 294--298, 1998.N. Kumari and A. N. Jha, ‘‘Particle swarm optimization and gradient descent methods for optimization of PI Controller for AGC of multi-area thermal-wind-hydro power plants,’’ Proceedings - UKSim 15th International Conference on Computer Modelling and Simulation, UKSim 2013, pp. 536--541, 2013.S. Kumar and M. N. Anwar, ‘‘Fractional order PID Controller design for Load Frequency Control in Parallel Control Structure,’’ 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings, pp. 17--22, 2019.M. N. Anwar and S. Pan, ‘‘A new PID load frequency controller design method in frequency domain through direct synthesis approach,’’ International Journal of Electrical Power and Energy Systems, vol. 67, pp. 560--569, 2015.I. K. Otchere, K. A. Kyeremeh, and E. A. Frimpong, ‘‘Adaptive pi-ga based technique for automatic generation control with renewable energy integration,’’ in 2020 IEEE PES/IAS PowerAfrica, pp. 1--4, 2020.H. Bevrani, Y. Mitani, and K. Tsuji, ‘‘Robust decentralized LFC design in a deregulated environment,’’ Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT2004), vol. 1, pp. 326--331, 2004.K. Niimi, K. Yukita, T. Matsumura, and Y. Goto, ‘‘Verification of Load Frequency Control Using H-infinity Control,’’ 7th International IEEE Conference on Renewable Energy Research and Applications, ICRERA 2018, vol. 5, pp. 1174--1178, 2018.H. Shayeghi, H. A. Shayanfar, and O. P. Malik, ‘‘Robust decentralized neural networks based LFC in a deregulated power system,’’ Electric Power Systems Research, vol. 77, no. 3-4, pp. 241--251, 2007.K. V. Kumar, T. A. Kumar, and V. Ganesh, ‘‘Chattering free sliding mode controller for load frequency control of multi area power system in deregulated environment,’’ in 2016 IEEE 7th Power India International Conference (PIICON), pp. 1--6, 2016.X. Z. Yu and F. Y. Hai, ‘‘A new fuzzy PI control algorithm for marine electric governor system,’’ ISCID 2009 - 2009 International Symposium on Computational Intelligence and Design, vol. 1, pp. 276--279, 2009.V. K. Singh and R. Dahiya, ‘‘Automatic generation control system using pi and fis controller.,’’ in 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1--4, 2018.M. Chandrashekar and R. Jayapal, ‘‘Design and comparison of i, pi, pid and fuzzy logic controller on agc deregulated power system with hvdc link,’’ in 2013 International conference on Circuits, Controls and Communications (CCUBE), pp. 1--6, 2013.N. El Yakine Kouba, M. Menaa, M. Hasni, K. Tehrani, and M. Boudour, ‘‘A novel optimized fuzzy-pid controller in two-area power system with hvdc link connection,’’ in 2016 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 204--209, 2016.A. Demiroren, H. Zeynelgil, and N. Sengor, ‘‘The application of ann technique to load-frequency control for three-area power system,’’ in 2001 IEEE Porto Power Tech Proceedings (Cat. No.01EX502), vol. 2, pp. 5 pp. vol.2--, 2001.R. Chaudhary and A. P. Singh, ‘‘Intelligent load frequency control approach for multi area interconnected hybrid power system,’’ in 2017 International Conference on Technological Advancements in Power and Energy ( TAP Energy), pp. 1--4, 2017.S. Baghya Shree and N. Kamaraj, ‘‘Hybrid Neuro Fuzzy approach for automatic generation control in restructured power system,’’ International Journal of Electrical Power and Energy Systems, vol. 74, pp. 274--285, 2016.A. Prakash and S. K. Parida, ‘‘LQR based PI controller for load frequency control with distributed generations,’’ 2020 21st National Power Systems Conference, NPSC 2020, pp. 2--6, 2020.S. K. Pandey, P. Gupta, and S. S. Dwivedi, ‘‘Full order observer based load frequency control of Single Area Power System,’’ Proceedings - 2020 12th International Conference on Computational Intelligence and Communication Networks, CICN 2020, no. 3, pp. 239--242, 2020.A. Panwar, V. Agarwal, and G. Sharma, ‘‘Studies on Frequency Regulation of Hydro System via New JAYA Optimized LQR Design,’’ icABCD 2021 - 4th International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems, Proceedings, pp. 2--5, 2021.A. Ali, B. Khan, C. A. Mehmood, Z. Ullah, S. M. Ali, and R. Ullah, ‘‘Decentralized mpc based frequency control for smart grid,’’ in 2017 International Conference on Energy Conservation and Efficiency (ICECE), pp. 1--6, 2017.I. E. Uyioghosa, ‘‘A Comparative Analysis of Different MPC Controllers for Load Frequency Control for Interconnected Power System,’’ no. 5, pp. 1--6, 2020.V. Kumtepeli, Y. Wang, and A. Tripathi, ‘‘Multi-Area Model Predictive Load Frequency Control : A Decentralized Approach,’’ no. October, pp. 25--27, 2016.F. Liu, Y. Li, S. Member, Y. Cao, and S. Member, ‘‘A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System,’’ vol. 31, no. 4, pp. 3320--3321, 2016.M. Yang, C. Wang, Z. Liu, and S. He, ‘‘An EID Load Frequency Control Method for Two-Area Interconnected Power System with Photovoltaic Generation,’’ pp. 5662--5666, 2021.C. Wang and J. Li, ‘‘Frequency Control of Isolated Wind-Diesel Microgrid Power System by Double Equivalent-Input-Disturbance Controllers,’’ 2019.F. Liu, Z. Xu, L. Liu, F. Yang, and D. Sidorov, ‘‘A Robust Active Disturbance Rejection Controller Design for LFC in Two-area Power System,’’ Chinese Control Conference, CCC, vol. 2018-July, pp. 8858--8863, 2018.Y. Du, W. Cao, J. She, and M. Fang, ‘‘A comparison study of three active disturbance rejection methods,’’ in 2020 39th Chinese Control Conference (CCC), pp. 135--139, 2020.R. L. Rekhasree and J. A. Jaleel, ‘‘A comparison of agc of power systems using reinforcement learning and genetic algorithm with a case study,’’ in 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], pp. 34--38, 2014.S. Eftekharnejad and A. Feliachi, ‘‘Stability enhancement through reinforcement learning: Load frequency control case study,’’ in 2007 iREP Symposium - Bulk Power System Dynamics and Control - VII. Revitalizing Operational Reliability, pp. 1--8, 2007.Z. Yan and Y. Xu, ‘‘A multi-agent deep reinforcement learning method for cooperative load frequency control of a multi-area power system,’’ IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4599--4608, 2020.V. A. K. Pappu, B. Chowdhury, and R. Bhatt, ‘‘Implementing frequency regulation capability in a solar photovoltaic power plant,’’ in North American Power Symposium 2010, pp. 1--6, 2010.Y.-z. Sun, Z.-s. Zhang, G.-j. Li, and J. Lin, ‘‘Review on frequency control of power systems with wind power penetration,’’ in 2010 International Conference on Power System Technology, pp. 1--8, 2010.S. A. Dorado-rojas, ‘‘Decentralized Load Frequency Control for a Power System with High Penetration of Wind and Solar Photovoltaic Generation,’’ 2020.Z. C. Lipton, J. Berkowitz, and C. Elkan, ‘‘A critical review of recurrent neural networks for sequence learning,’’ arXiv preprint arXiv:1506.00019, 2015.D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representations by back-propagating errors,’’ Nature, vol. 323, no. 6088, pp. 533--536, 1986.D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ arXiv preprint arXiv:1412.6980, 2014.P. Werbos, ‘‘Backpropagation through time: what it does and how to do it,’’ Proceedings of the IEEE, vol. 78, no. 10, pp. 1550--1560, 1990.S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural computation, vol. 9, no. 8, pp. 1735--1780, 1997.X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, ‘‘Deepmimic: Example-guided deep reinforcement learning of physics-based character skills,’’ ACM Trans. Graph., vol. 37, pp. 143:1--143:14, July 2018.R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proximal policy optimization algorithms,’’ 2017.WECC Modeling and Validation Work Group, WECC Wind Power Plant Dynamic Modeling Guide. Western Electricity Coordinating Council, November 2010. https://transmission.bpa.gov/Business/Operations/GridModeling/WECCWindPlantDynamicModelingGuide.pdf.WECC Modeling and Validation Work Group, WECC PV Power Plant Dynamic Modeling Guide. Western Electricity Coordinating Council, April 2014. https://www.wecc.org/Reliability/WECC%20Solar%20Plant%20Dynamic%20Modeling%20Guidelines.pdf.WECC, WECC Generator Unit Model Validation Guideline. Western Electricity Coordinating Council, April 23 2020. https://www.wecc.org/Reliability/WECC%20Generator%20Unit%20Model%20Validation%20Guideline.pdf.A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, ‘‘Stable-baselines3: Reliable reinforcement learning implementations,’’ Journal of Machine Learning Research, vol. 22, no. 268, pp. 1--8, 2021.O. Dogru, K. Velswamy, F. Ibrahim, Y. Wu, A. S. Sundaramoorthy, B. Huang, S. Xu, M. Nixon, and N. Bell, ‘‘Reinforcement learning approach to autonomous pid tuning,’’ Computers Chemical Engineering, vol. 161, p. 107760, 2022.W. Cui, Y. Jiang, and B. Zhang, ‘‘Reinforcement learning for optimal primary frequency control: A lyapunov approach,’’ 2021.C. of United States of America, ‘‘Energy Policy Act of 2005,’’ 2005.A. Demiroren and E. Yesil, ‘‘Automatic generation control with fuzzy logic controllers in the power system including smes units,’’ International Journal of Electrical Power and Energy Systems, vol. 26, no. 4, pp. 291--305, 2004. 2002 Conference on Probabilistic Methods Applied to Power Systems.J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘‘Proximal policy optimization algorithms,’’ arXiv preprint arXiv:1707.06347, 2017.Power World Corporation, Transient Models in PowerWorld Simulator. Power World Corporation, year. Accessed: January 30, 2024.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86539/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018497046.2024.pdf1018497046.2024.pdfTesis en Magíster en Automatización Industrial - Investigaciónapplication/pdf3417658https://repositorio.unal.edu.co/bitstream/unal/86539/2/1018497046.2024.pdfdfb842b5493e2e535dd96f8100302150MD52THUMBNAIL1018497046.2024.pdf.jpg1018497046.2024.pdf.jpgGenerated Thumbnailimage/jpeg5002https://repositorio.unal.edu.co/bitstream/unal/86539/3/1018497046.2024.pdf.jpg8eecca23491ff467dc4b3684c3f00022MD53unal/86539oai:repositorio.unal.edu.co:unal/865392024-07-17 23:05:48.839Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |