Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack

En esta investigación se implementa un modelo predictivo para la asignación elástica de recursos sobre un entorno NFV/SDN basado en herramientas de código abierto como OpenStack. Usando como referencia una arquitectura que puede implementarse en entornos de bajo costo mediante herramientas de código...

Full description

Autores:
Caviedes Valencia, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79636
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79636
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales
Ingeniería de software
Autoescalamiento
SDN
HTM
Infraestructura Virtual
Arquitectura de Código Abierto
Alta Disponibilidad
Modelo Predictivo
NFV
Autoscaling
Virtual Infrastructure
Open Source Architecture
High availability
Predictive Model
Red informática
Computer networks
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_29575b135fb85d4e1405456683c177d2
oai_identifier_str oai:repositorio.unal.edu.co:unal/79636
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
dc.title.translated.eng.fl_str_mv Predictive Model for Elastic Resource Allocation on NFV/SDN Environments based on OpenStack
title Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
spellingShingle Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
000 - Ciencias de la computación, información y obras generales
Ingeniería de software
Autoescalamiento
SDN
HTM
Infraestructura Virtual
Arquitectura de Código Abierto
Alta Disponibilidad
Modelo Predictivo
NFV
Autoscaling
Virtual Infrastructure
Open Source Architecture
High availability
Predictive Model
Red informática
Computer networks
title_short Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
title_full Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
title_fullStr Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
title_full_unstemmed Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
title_sort Modelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStack
dc.creator.fl_str_mv Caviedes Valencia, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Niño Vásquez, Luis Fernando
Rueda Pepinosa, Diego Fernando
dc.contributor.author.none.fl_str_mv Caviedes Valencia, Juan Camilo
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales
topic 000 - Ciencias de la computación, información y obras generales
Ingeniería de software
Autoescalamiento
SDN
HTM
Infraestructura Virtual
Arquitectura de Código Abierto
Alta Disponibilidad
Modelo Predictivo
NFV
Autoscaling
Virtual Infrastructure
Open Source Architecture
High availability
Predictive Model
Red informática
Computer networks
dc.subject.lemb.none.fl_str_mv Ingeniería de software
dc.subject.proposal.spa.fl_str_mv Autoescalamiento
SDN
HTM
Infraestructura Virtual
Arquitectura de Código Abierto
Alta Disponibilidad
Modelo Predictivo
dc.subject.proposal.none.fl_str_mv NFV
dc.subject.proposal.eng.fl_str_mv Autoscaling
Virtual Infrastructure
Open Source Architecture
High availability
Predictive Model
dc.subject.unesco.none.fl_str_mv Red informática
Computer networks
description En esta investigación se implementa un modelo predictivo para la asignación elástica de recursos sobre un entorno NFV/SDN basado en herramientas de código abierto como OpenStack. Usando como referencia una arquitectura que puede implementarse en entornos de bajo costo mediante herramientas de código abierto, se adecúa una metodología de autoescalamiento basada en recomendaciones del 3GPP. Luego, utilizando el algoritmo HTM para predecir tendencias, se efectúan asignaciones proactivas de recursos según reglas de violación de umbral, definidas en un algoritmo de autoescalamiento que sintetiza la asignación elástica de recursos. Los datos que enriquecen el modelo predictivo se generan siguiendo la tendencia de la demanda de recursos de una red móvil real. Los resultados muestran que, a través del modelo propuesto, es posible reducir el tiempo entre identificar la necesidad de escalar y culminar el escalamiento, en comparación con soluciones conocidas de computación en la nube. Además, es posible mantener la disponibilidad del servicio mientras se mejora la latencia en el tiempo de conexión al mismo.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-15T17:35:27Z
dc.date.available.none.fl_str_mv 2021-06-15T17:35:27Z
dc.date.issued.none.fl_str_mv 2021-06-02
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79636
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79636
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv P. P. Marino, M. Garrich, and F. J. M. Muro, "The role of open-source network optimization software in the SDN/NFV World," in Optics InfoBase Conference Papers, vol. Part F84-O, (Washington, D.C.), p. Th1D.1, OSA, mar 2018.
T. Shuminoski and T. Janevski, "5G mobile terminals with advanced QoS-based usercentric aggregation (AQUA) for heterogeneous wireless and mobile networks," Wireless Networks, vol. 22, pp. 1553-1570, jul 2016.
Y. Wang, P. Li, L. Jiao, Z. Su, N. Cheng, X. S. Shen, and P. Zhang, "A Data-Driven Architecture for Personalized QoE Management in 5G Wireless Networks," IEEE Wi-reless Communications, vol. 24, pp. 102-110, feb 2017.
Ericcson, "Ericsson Mobility Report," Ericsson, no. June, p. 36, 2020.
"Open-Source Network Optimization Software in the Open SDN/NFV Transport Ecosystem," Journal of Lightwave Technology, vol. 37, pp. 75-88, jan 2019.
S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, "What happens when HTTP adaptive streaming players compete for bandwidth?," in Proceedings of the 22nd international workshop on Network and Operating System Support for Digital Audio and Video-NOSSDAV '12, (New York, New York, USA), p. 9, ACM Press, 2013.
P. Tantisarkhornkhet and W. Werapun, "QLB: QoS routing algorithm for Software-Defined Networking," in 2016 International Symposium on Intelligent Signal Proces-sing and Communication Systems, ISPACS 2016, pp. 1-6, IEEE, oct 2017.
T. F. Yu, K. Wang, and Y. H. Hsu, "Adaptive routing for video streaming with QoS support over SDN networks," in International Conference on Information Networking, vol. 2015-Janua, pp. 318-323, IEEE, jan 2015.
H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, "OpenQoS: An Open-Flow controller design for multimedia delivery with end-to-end Quality of Service over Software-Defined Networks," in 2012 Conference Handbook-Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012, (Hollywood, CA, USA), pp. 1-8, Asia-Pacific Signal and Information Processing 82 Association, 2012 Annual Summit and Conference International Organizing Committee, 2012.
C. Hu, Q. Wang, and X. Dai, "SDN over IP: Enabling Internet to Provide Better QoS Guarantee," in Proceedings-2015 9th International Conference on Frontier of Computer Science and Technology, FCST 2015, pp. 46-51, IEEE, aug 2015.
V. G. Vassilakis, I. D. Moscholios, and M. D. Logothetis, "Quality of service differentiation in heterogeneous CDMA networks: a mathematical modelling approach," Wireless Networks, vol. 24, pp. 1279-1295, may 2018.
R. Alvizu, G. Maier, S. Troia, V. M. Nguyen, and A. Pattavina, "SDN-based network orchestration for new dynamic Enterprise Networking services," in International Conference on Transparent Optical Networks, pp. 1-4, IEEE, jul 2017.
S. Jain, M. Khandelwal, A. Katkar, and J. Nygate, "Applying big data technologies to manage QoS in an SDN," in 2016 12th International Conference on Network and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on Management of SDN and NFV, ManSDN/NFV 2016, and International Workshop on Green ICT and Smart Networking, GISN 2016, pp. 302-306, IEEE, oct 2017.
M. Shamseddine, I. Elhajj, A. Chehab, and A. Kayssi, "A virtual QoS-Adaptive network connectivity service: An SDN approach," in 2016 IEEE International Multidis-ciplinary Conference on Engineering Technology, IMCET 2016, pp. 92-96, IEEE, nov 2016.
J. W. Kleinrouweler, S. Cabrero, and P. Cesar, "Delivering stable high-quality video," in Proceedings of the 7th International Conference on Multimedia Systems-MMSys '16, (New York, New York, USA), pp. 1-10, ACM Press, 2016.
A. A. Barakabitze, L. Sun, I. H. Mkwawa, and E. Ifeachor, "A Novel QoE-Centric SDN-Based Multipath Routing Approach for Multimedia Services over 5G Networks," in IEEE International Conference on Communications, vol. 2018-May, pp. 1-7, IEEE, may 2018.
H. Sinha, G. Raj, and T. Choudhury, "Computing an adaptive mVoIP Services through SDN networks," in Proceedings of the 5th International Conference on System Modeling and Advancement in Research Trends, SMART 2016, pp. 170-174, IEEE, 2017.
K. T. Bagci, K. E. Sahin, and A. M. Tekalp, "Queue-allocation optimization for adaptive video streaming over software defined networks with multiple service-levels," in 2016 IEEE International Conference on Image Processing (ICIP), pp. 1519-1523, IEEE, sep 2016. 83
Z. Xu, W. Liang, A. Galis, and Y. Ma, "Throughput maximization and resource optimization in NFV-enabled networks," in IEEE International Conference on Communi-cations, pp. 1-7, IEEE, may 2017.
3GPP, "Telecommunication management; Study on the Self-Organizing Networks (SON) for 5G networks," tech. rep., 3GPP, 2019.
Z. Zhou, T. Zhang, and A. Kwatra, "NFV Closed-loop Automation Experiments using Deep Reinforcement Learning," in INFOCOM 2019-IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2019, pp. 696-701, Institute of Electrical and Electronics Engineers Inc., apr 2019.
A. India, M. Sandilya, and N. Pd, "Zero Touch SDN NFV," tech. rep., 2018.
I. G. Ben Yahia, J. Bendriss, A. Samba, and P. Dooze, "CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations," in Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and Networks, ICIN 2017, pp. 252-259, IEEE, mar 2017.
A. Ben Letaifa, "Adaptive QoE monitoring architecture in SDN networks: Video streaming services case," in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1383-1388, IEEE, jun 2017.
. Marques, H. Marques, R. Dionisio, T. Alves, L. Pereira, and J. Ribeiro, "Data analytics for forecasting cell congestion on LTE networks," in 2017 Network Traffic Measurement and Analysis Conference (TMA), pp. 1-6, IEEE, jun 2017.
P. Torres, H. Marques, P. Marques, and J. Rodriguez, "Using Deep Neural Networks for Forecasting Cell Congestion on LTE Networks: A Simple Approach," pp. 276-286, Springer, Cham, 2018.
A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, "Instantaneous throughput prediction in cellular networks: Which information is needed?," in Proceedings of the IM 2017-2017 IFIP/IEEE International Symposium on Integrated Network and Service Management, pp. 624-627, IEEE, may 2017.
N. Bui, F. Michelinakis, and J. Widmer, "A model for throughput prediction for mobile users," in 20th European Wireless Conference, EW 2014, (Barcelona), pp. 1-6, VDe, 2014.
B. Li, W. Lu, S. Liu, and Z. Zhu, "Deep-learning-assisted network orchestration for ondemand and cost-effective VNF service chaining in inter-DC elastic optical networks," Journal of Optical Communications and Networking, vol. 10, pp. D29-D41, oct 2018.
A. Nadjaran Toosi and R. Buyya, "Acinonyx: Dynamic Flow Scheduling for Virtual Machine Migration in SDN-Enabled Clouds," in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Compu-ting & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 886-894, IEEE, dec 2018.
Google, "Ajuste de escala automático de grupos de instancias." https://cloud.google.com/compute/docs/autoscaler/, 2021.
OpenStack Project, "Open Source Cloud Computing Systems." https://www.openstack.org/, 2011.
H. Niu, C. Li, A. Papathanassiou, and G. Wu, "RAN architecture options and performance for 5G network evolution," in 2014 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2014, pp. 294-298, Institute of Electrical and Electronics Engineers Inc., oct 2014.
F. Marzouk, J. P. Barraca, and A. Radwan, "On Energy Efficient Resource Allocation in Shared RANs: Survey and Qualitative Analysis," IEEE Communications Surveys and Tutorials, vol. 22, pp. 1515-1538, jul 2020.
M. J. Scheepers, "Virtualization and Containerization of Application Infrastructure : A Comparison," 2014.
E. G. Radhika, G. S. Sadasivam, and J. F. Naomi, "An efficient predictive technique to autoscale the resources for web applications in private cloud," in Proceedings of the 4th IEEE International Conference on Advances in Electrical and Electronics, Infor-mation, Communication and Bio-Informatics, AEEICB 2018, Institute of Electrical and Electronics Engineers Inc., oct 2018.
Prometheus, "Prometheus-Monitoring system & time series database." https://prometheus.io/, 2017.
Grafana, "Grafana: The open observability plataform." https://grafana.com/, 2020.
HashiCorp, "Introduction-Terraform by HashiCorp." https://www.terraform.io/intro/index.html#execution-plans, 2020.
A. Levin, D. Lorenz, G. Merlino, A. Panarello, A. Puliafito, and G. Tricomi, "Hierarchical load balancing as a service for federated cloud networks," Computer Communications, vol. 129, pp. 125-137, sep 2018. 85
A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, "Providing Performance Guarantees for Cloud-Deployed Applications," IEEE Transactions on Cloud Computing, vol. 8, pp. 269-281, jan 2020.
V. Simic, B. Stojanovic, and M. Ivanovic, "Optimizing the performance of optimization in the cloud environment-An intelligent auto-scaling approach," Future Generation Computer Systems, vol. 101, pp. 909-920, dec 2019.
L. Phan and K. Liu, "OpenStack Network Acceleration Scheme for Datacenter Intelligent Applications," in IEEE International Conference on Cloud Computing, CLOUD, vol. 2018-July, pp. 962-965, IEEE Computer Society, sep 2018.
B. Sniezynski, P. Nawrocki, M. Wilk, M. Jarzab, and K. Zielinski, "VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing," Journal of Grid Com-puting, vol. 17, pp. 797-812, dec 2019.
L. Gavrilovska, V. Rakovic, and D. Denkovski, "Aspects of Resource Scaling in 5GMEC: Technologies and Opportunities," in 2018 IEEE Globecom Workshops, GC Wkshps 2018-Proceedings, Institute of Electrical and Electronics Engineers Inc., feb 2019.
J. Zhang, F. Ren, and C. Lin, "Survey on transport control in data center networks," IEEE Network, vol. 27, no. 4, pp. 22-26, 2013.
W. Hajji, T. A. Genez, F. P. Tso, L. Cui, and I. Phillips, "Dynamic Network Function Chain Composition for Mitigating Network Latency," in Proceedings-IEEE Sympo-sium on Computers and Communications, vol. 2018-June, pp. 316-321, Institute of Electrical and Electronics Engineers Inc., nov 2018.
S. Hykes, "Empowering App Development for Developers | Docker." https://www.docker.com/, 2013.
Kubernetes, "Kubernetes Documentation-Kubernetes." https://kubernetes.io/docs/home/, 2019.
S. Kho Lin, U. Altaf, G. Jayaputera, J. Li, D. Marques, D. Meggyesy, S. Sarwar, S. Sharma, W. Voorsluys, R. Sinnott, A. Novak, V. Nguyen, and K. Pash, "Auto-Scaling a Defence Application across the Cloud Using Docker and Kubernetes," in Proceedings-11th IEEE/ACM International Conference on Utility and Cloud Com-puting Companion, UCC Companion 2018, pp. 327-334, Institute of Electrical and Electronics Engineers Inc., jan 2019.
B. Zurkowski and K. Zielinski, "Towards Self-Organizing Cloud Polyglot Database Systems," in International Conference on Self-Adaptive and Self-Organizing Systems, SASO, vol. 2019-June, pp. 82-87, IEEE Computer Society, jun 2019.
C. Organisations and P. Date, "Network Functions Virtualisation ( NFV )," no. 1, pp. 1-20, 2015.
W. Nakimuli, J. Garcia-Reinoso, B. Nogales, I. Vidal, D. Gomes, and D. Lopez, "Reducing Service Creation Time Leveraging on Network Function Virtualization," IEEE Access, vol. 8, pp. 155679-155696, 2020.
Canonical, "MicroStack-OpenStack in a snap." https://microstack.run/, 2020.
Gnocchi Project, "Gnocchi-Metric as a Service." https://gnocchi.xyz/stable 4.2/index.html.
T. T. Hoang, M. T. Tao, and P. H. Au, "Research and implementation of monitoring systems Prometheus and Grafana," 2020.
Grafana Labs, "OpenStack Dashboard dashboard for Grafana." https://grafana.com/grafana/dashboards/9701, 2018.
Open Source MANO, "White papers, Scope, Functionality, Operation and Integration Guidelines," no. 1, pp. 1-44, 2019.
The Linux Foundation, "ONAP." https://www.onap.org/, 2021.
M. Gilbert, Artificial Intelligence for Autonomous Networks. 2018.
L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, and T. M. T. Nguyen, "Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization," Journal of Network and Computer Applications, vol. 121, pp. 59-69, 2018.
L. Jorguseski, A. Pais, F. Gunnarsson, A. Centonza, and C. Willcock, "Self-organizing networks in 3GPP: Standardization and future trends," IEEE Communications Ma-gazine, vol. 52, pp. 28-34, dec 2014.
S. Ahmad and A. H. Mir, "Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of Diverse SDN Controllers," Journal of Network and Systems Management, vol. 29, pp. 1-59, jan 2021.
Y. Cui, S. Ahmad, and J. Hawkins, "Continuous online sequence learning with an unsupervised neural network model," Neural Computation, vol. 28, pp. 2474-2504, nov 2016.
S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly detection for streaming data," Neurocomputing, vol. 262, pp. 134-147, nov 2017.
R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, "Bandwidth Estimation: Metrics, Measurement Techniques, and Tools," vol. 17, pp. 27-35, nov 2003.
S. S. Chaudhari and R. C. Biradar, "Survey of Bandwidth Estimation Techniques in Communication Networks," vol. 83, pp. 1425-1476, jul 2015.
J. Xu, L. Tang, Q. Chen, and L. Yi, "Study on based reinforcement Q-Learning for mobile load balancing techniques in LTE-A HetNets," in Proceedings-17th IEEE In-ternational Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communica-tions, IUCC 2014, 13th International Symposium on Pervasive Systems,, pp. 1766-1771, 2015.
S. S. Mwanje and A. Mitschele-Thiel, "A Q-learning strategy for LTE mobility Load Balancing," in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp. 2154-2158, 2013.
J. J. Montano Moreno, A. Palmer Pol, and P. Munoz Gracia, "Artificial neural networks applied to forecasting time series.," Psicothema, vol. 23, no. 2, pp. 322-9, 2011.
H. D. Trinh, L. Giupponi, and P. Dini, "Mobile Traffic Prediction from Raw Data Using LSTM Networks," in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2018-Septe, pp. 1827-1832, Institute of Electrical and Electronics Engineers Inc., dec 2018.
S. Cao and W. Liu, "LSTM Network Based Traffic Flow Prediction for Cellular Networks," in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp. 643-653, Springer, 2019.
M. Algorri álvarez, "Caracterización de tecnologías de procesamiento de datos en streaming sobre una arquitectura orientada al dato," Master's thesis, 10 2018.
R. Kempter, W. Gerstner, and J. L. van Hemmen, "Hebbian learning and spiking neurons," Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Inter-disciplinary Topics, vol. 59, pp. 4498-4514, apr 1999.
Y. Cui, C. Surpur, S. Ahmad, and J. Hawkins, "A comparative study of HTM and other neural network models for online sequence learning with streaming data," in Proceedings of the International Joint Conference on Neural Networks, vol. 2016-Octob, pp. 1530-1538, Institute of Electrical and Electronics Engineers Inc., oct 2016.
J. Struye and S. Latré, "Hierarchical temporal memory and recurrent neural networks for time series prediction: An empirical validation and reduction to multilayer perceptrons," Neurocomputing, vol. 396, pp. 291-301, jul 2020.
E. Nugamanov and A. I. Panov, "Hierarchical Temporal Memory with Reinforcement Learning," in Procedia Computer Science, vol. 169, pp. 123-131, Elsevier B.V., jan 2020.
M. Mdini, Anomaly detection and root cause diagnosis in cellular networks. PhD thesis, 2019.
C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, "A Distributed Anomaly Detection System for In-Vehicle Network Using HTM," IEEE Access, vol. 6, pp. 9091-9098, jan 2018.
A. Barua, D. Muthirayan, P. P. Khargonekar, and M. A. Al Faruque, "Hierarchical Temporal Memory Based Machine Learning for Real-Time, Unsupervised Anomaly Detection in Smart Grid: WiP Abstract," in Proceedings-2020 ACM/IEEE 11th In-ternational Conference on Cyber-Physical Systems, ICCPS 2020, pp. 188-189, Institute of Electrical and Electronics Engineers Inc., apr 2020.
K. Zhang, F. Zhao, S. Luo, Y. Xin, H. Zhu, and Y. Chen, "Online intrusion scenario discovery and prediction based on hierarchical temporal memory (HTM)," Applied Sciences (Switzerland), vol. 10, p. 2596, apr 2020.
Numenta, "HIERARCHICAL TEMPORAL MEMORY. HTM Cortical Learning Algorithms." http://www.numenta.com/faq.html#cla paper, 2011.
Numenta, "HTM School." https://numenta.org/htm-school/, 2020.
S. Purdy, "Encoding Data for HTM Systems," feb 2016.
J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, Biological and Machine Intelligence (BAMI). 2016.
G. K. Karagiannidis and A. S. Lioumpas, "An improved approximation for the Gaussian Q-function," IEEE Communications Letters, vol. 11, pp. 644-646, aug 2007.
Numenta, "Numenta, Where Neuroscience Meets Machine Intelligence." https://numenta.com/, 2020.
htm-community/htm.core: Actively developed Hierarchical Temporal Memory (HTM) community fork (continuation) of NuPIC. Implementation for C++ and Python." https://github.com/htm-community/htm.core.
D. F. Rueda, D. Vergara, and D. Reniz, "Big Data Streaming Analytics for QoE Monitoring in Mobile Networks: A Practical Approach," in Proceedings-2018 IEEE International Conference on Big Data, Big Data 2018, pp. 1992-1997, Institute of Electrical and Electronics Engineers Inc., jan 2019.
N. Salhab, S. E. Falou, R. Rahim, S. E. E. Ayoubi, and R. Langar, "Optimization of the implementation of network slicing in 5G RAN," in 2018 IEEE Middle East and North Africa Communications Conference, MENACOMM 2018, pp. 1-6, Institute of Electrical and Electronics Engineers Inc., jun 2018.
J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira, "Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges," IEEE Communications Magazine, vol. 55, pp. 80-87, may 2017.
S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, "Network function virtualization in 5G," IEEE Communications Magazine, vol. 54, no. 4, pp. 84-91, 2016.
D. Lee, J. H. Yoo, and J. W. K. Hong, "Deep Q-networks based auto-scaling for service function chaining," in 16th International Conference on Network and Service Management, CNSM 2020, 2nd International Workshop on Analytics for Service and Application Management, AnServApp 2020 and 1st International Workshop on the Future Evolution of Internet Protocols, IPFutu, 2020.
R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou, "Cloud Resource Orchestration Programming: Overview, Issues, and Directions," vol. 19, pp. 46-56, sep 2015.
S. Becker, G. Brataas, and S. Lehrig, Engineering Scalable, Elastic, and Cost-Efficient Cloud Computing Applications. Springer International Publishing, 2017.
Open Source MANO, "OSM Autoscaling." https://osm.etsi.org/wikipub/index.php/, 2019.
T. Choi, T. Kim, W. Tavernier, A. Korvala, and J. Pajunpää, "Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks:," ETRI Journal, vol. 40, pp. 72-88, feb 2018.
Y. Ren, T. Phung-Duc, J. C. Chen, and Z. W. Yu, "Dynamic auto scaling algorithm (DASA) for 5G mobile networks," in 2016 IEEE Global Communications Conference, GLOBECOM 2016-Proceedings, Institute of Electrical and Electronics Engineers Inc., 2016.
Y. Ren, T. Phung-Due, Y. K. Liu, J. C. Chen, and Y. H. Lin, "ASA: Adaptive VNF Scaling Algorithm for 5G Mobile Networks," in Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking, CloudNet 2018, Institute of Electrical and Electronics Engineers Inc., nov 2018.
P. C. Amogh, G. Veeramachaneni, A. K. Rangisetti, B. R. Tamma, and F. A. Antony, "A cloud native solution for dynamic auto scaling of MME in LTE," in IEEE Interna-tional Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2017-Octob, pp. 1-7, Institute of Electrical and Electronics Engineers Inc., feb 2018. 90
Y. T. Lee, H. L. Chao, and J. W. Tang, "Scalable and elastic cloud data center for self-organizing dense small cell networks," in 17th Asia-Pacific Network Operations and Management Symposium: Managing a Very Connected World, APNOMS 2015, pp. 420-423, Institute of Electrical and Electronics Engineers Inc., sep 2015.
S. Khairi, B. Raouyane, and M. Bellafkih, "Novel QoE monitoring and management architecture with eTOM for SDN-based 5G networks: SLA verification scenario," Cluster Computing, vol. 23, pp. 1-12, feb 2020.
I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb, and P. Ameigeiras, "Dynamic resource provisioning of a scalable E2E network slicing orchestration system," IEEE Transactions on Mobile Computing, vol. 19, pp. 2594-2608, nov 2020.
M. M. Rahman, C. Despins, and S. Affes, "Design Optimization of Wireless Access Virtualization Based on Cost & QoS Trade-Off Utility Maximization," IEEE Transactions on Wireless Communications, vol. 15, pp. 6146-6162, sep 2016.
L. Tang, X. He, X. Yang, Y. Wei, X. Wang, and Q. Chen, "ARMA-Prediction-Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Network," IEEE Access, vol. 7, pp. 130438-130450, 2019.
S. Rizou, P. Athanasoulis, P. Andriani, F. Iadanza, G. Carrozzo, D. Breitgand, A.Weit, D. Griffin, D. Jimenez, U. Acar, and O. P. Gordo, "A Service Platform Architecture Enabling Programmable Edge-To-Cloud Virtualization for the 5G Media Industry," in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, vol. 2018-June, IEEE Computer Society, aug 2018.
"Introducing AWS Lambda." https://aws.amazon.com/es/about-aws/whatsnew/ 2014/11/13/introducing-aws-lambda/, 2014.
"5G-PPP." https://5g-ppp.eu/, 2021.
A. H. Ghorab, A. Kusedghi, M. A. Nourian, and A. Akbari, "Joint VNF Load Balancing and Service Auto-Scaling in NFV with Multimedia Case Study," in 2020 25th International Computer Conference, Computer Society of Iran, CSICC 2020, Institute of Electrical and Electronics Engineers Inc., jan 2020.
A. Kusedghi, A. Ghorab, and A. Akbari, "XeniumNFV: A unified, dynamic, distributed and event-driven SDN/NFV testbed," in Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom, vol. 2018-Decem, pp. 320-326, IEEE Computer Society, dec 2018.
F. B. Anacona and K. T. Tobar, Scalability Analysis of LTE-EPC in an NFV Envi-ronment. PhD thesis, 2018.
T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, "A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments," Journal of Grid Compu-ting, vol. 12, pp. 559-592, nov 2014.
H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, "A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling," in Proceedings-2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CC-GRID 2017, pp. 64-73, Institute of Electrical and Electronics Engineers Inc., jul 2017.
A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Konstantinou, and S. Sioutas, "Dependable horizontal scaling based on probabilistic model checking," in Proceedings-2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, pp. 31-40, Institute of Electrical and Electronics Engineers Inc., jul 2015.
A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee, "Load Balancing Mechanisms in the Software Defined Networks: A Systematic and Comprehensive Review of the Literature," vol. 6, pp. 14159-14178, 2018.
S. Dutta, T. Taleb, and A. Ksentini, "QoE-aware elasticity support in cloud-native 5G systems," in 2016 IEEE International Conference on Communications, ICC 2016, Institute of Electrical and Electronics Engineers Inc., jul 2016.
Apache Software Foundation, "The Apache HTTP Server Project." https://httpd.apache.org/, 2021.
Apache Software Foundation, "ab [Apache HTTP server benchmarking tool]." https://httpd.apache.org/docs/2.4/programs/ab.html, 2014.
GitHub, "caprivm/thesis msc Wiki." https://github.com/caprivm/thesis msc/wiki, 2021.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (111 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79636/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79636/2/1094953263.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79636/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79636/4/1094953263.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
e13ef595cbec067566b09ecdd392af6f
0175ea4a2d4caec4bbcc37e300941108
d2aeb45a1b2f05c33756c64dcb90fe98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090033676681216
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Niño Vásquez, Luis Fernandobc784b82735e16fe53653c3f5c8f3bbeRueda Pepinosa, Diego Fernando4fa0efe2772477207f4358c8529b2786Caviedes Valencia, Juan Camiloe9a7242c5eceb44543cfd1dcd736fab72021-06-15T17:35:27Z2021-06-15T17:35:27Z2021-06-02https://repositorio.unal.edu.co/handle/unal/79636Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En esta investigación se implementa un modelo predictivo para la asignación elástica de recursos sobre un entorno NFV/SDN basado en herramientas de código abierto como OpenStack. Usando como referencia una arquitectura que puede implementarse en entornos de bajo costo mediante herramientas de código abierto, se adecúa una metodología de autoescalamiento basada en recomendaciones del 3GPP. Luego, utilizando el algoritmo HTM para predecir tendencias, se efectúan asignaciones proactivas de recursos según reglas de violación de umbral, definidas en un algoritmo de autoescalamiento que sintetiza la asignación elástica de recursos. Los datos que enriquecen el modelo predictivo se generan siguiendo la tendencia de la demanda de recursos de una red móvil real. Los resultados muestran que, a través del modelo propuesto, es posible reducir el tiempo entre identificar la necesidad de escalar y culminar el escalamiento, en comparación con soluciones conocidas de computación en la nube. Además, es posible mantener la disponibilidad del servicio mientras se mejora la latencia en el tiempo de conexión al mismo.diagramas, ilustraciones a color, tablasThis research implements a predictive model for the elastic allocation of resources on an NFV/SDN environment based on open source tools such as OpenStack. Using as a reference an architecture that can be implemented in low-cost environments using open source tools, an autoscaling methodology based on 3GPP recommendations is adapted. Then, using HTM algorithm to predict trends, proactive resource allocations are made based on threshold violation rules defined in an autoscaling algorithm that synthesizes elastic resource allocation. The data that enrich the predictive model is generated following the trend of the demand for resources of a real mobile network. The results show that, through the proposed model, it is possible to reduce the time between identifying the need to scale and completing the scaling compared to known cloud computing solutions. In addition, it is possible to maintain the availability of the service while improving the latency in connection time to it.MaestríaMagíster en Ingeniería - TelecomunicacionesMetodología cuantitativa con la implementación real de sistemas de cómputo.Redes y Sistemas de Telecomunicaciones1 recurso en línea (111 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - TelecomunicacionesDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generalesIngeniería de softwareAutoescalamientoSDNHTMInfraestructura VirtualArquitectura de Código AbiertoAlta DisponibilidadModelo PredictivoNFVAutoscalingVirtual InfrastructureOpen Source ArchitectureHigh availabilityPredictive ModelRed informáticaComputer networksModelo predictivo para la asignación elástica de recursos sobre entornos NFV/SDN basados en OpenStackPredictive Model for Elastic Resource Allocation on NFV/SDN Environments based on OpenStackTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMP. P. Marino, M. Garrich, and F. J. M. Muro, "The role of open-source network optimization software in the SDN/NFV World," in Optics InfoBase Conference Papers, vol. Part F84-O, (Washington, D.C.), p. Th1D.1, OSA, mar 2018.T. Shuminoski and T. Janevski, "5G mobile terminals with advanced QoS-based usercentric aggregation (AQUA) for heterogeneous wireless and mobile networks," Wireless Networks, vol. 22, pp. 1553-1570, jul 2016.Y. Wang, P. Li, L. Jiao, Z. Su, N. Cheng, X. S. Shen, and P. Zhang, "A Data-Driven Architecture for Personalized QoE Management in 5G Wireless Networks," IEEE Wi-reless Communications, vol. 24, pp. 102-110, feb 2017.Ericcson, "Ericsson Mobility Report," Ericsson, no. June, p. 36, 2020."Open-Source Network Optimization Software in the Open SDN/NFV Transport Ecosystem," Journal of Lightwave Technology, vol. 37, pp. 75-88, jan 2019.S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, "What happens when HTTP adaptive streaming players compete for bandwidth?," in Proceedings of the 22nd international workshop on Network and Operating System Support for Digital Audio and Video-NOSSDAV '12, (New York, New York, USA), p. 9, ACM Press, 2013.P. Tantisarkhornkhet and W. Werapun, "QLB: QoS routing algorithm for Software-Defined Networking," in 2016 International Symposium on Intelligent Signal Proces-sing and Communication Systems, ISPACS 2016, pp. 1-6, IEEE, oct 2017.T. F. Yu, K. Wang, and Y. H. Hsu, "Adaptive routing for video streaming with QoS support over SDN networks," in International Conference on Information Networking, vol. 2015-Janua, pp. 318-323, IEEE, jan 2015.H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, "OpenQoS: An Open-Flow controller design for multimedia delivery with end-to-end Quality of Service over Software-Defined Networks," in 2012 Conference Handbook-Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012, (Hollywood, CA, USA), pp. 1-8, Asia-Pacific Signal and Information Processing 82 Association, 2012 Annual Summit and Conference International Organizing Committee, 2012.C. Hu, Q. Wang, and X. Dai, "SDN over IP: Enabling Internet to Provide Better QoS Guarantee," in Proceedings-2015 9th International Conference on Frontier of Computer Science and Technology, FCST 2015, pp. 46-51, IEEE, aug 2015.V. G. Vassilakis, I. D. Moscholios, and M. D. Logothetis, "Quality of service differentiation in heterogeneous CDMA networks: a mathematical modelling approach," Wireless Networks, vol. 24, pp. 1279-1295, may 2018.R. Alvizu, G. Maier, S. Troia, V. M. Nguyen, and A. Pattavina, "SDN-based network orchestration for new dynamic Enterprise Networking services," in International Conference on Transparent Optical Networks, pp. 1-4, IEEE, jul 2017.S. Jain, M. Khandelwal, A. Katkar, and J. Nygate, "Applying big data technologies to manage QoS in an SDN," in 2016 12th International Conference on Network and Service Management, CNSM 2016 and Workshops, 3rd International Workshop on Management of SDN and NFV, ManSDN/NFV 2016, and International Workshop on Green ICT and Smart Networking, GISN 2016, pp. 302-306, IEEE, oct 2017.M. Shamseddine, I. Elhajj, A. Chehab, and A. Kayssi, "A virtual QoS-Adaptive network connectivity service: An SDN approach," in 2016 IEEE International Multidis-ciplinary Conference on Engineering Technology, IMCET 2016, pp. 92-96, IEEE, nov 2016.J. W. Kleinrouweler, S. Cabrero, and P. Cesar, "Delivering stable high-quality video," in Proceedings of the 7th International Conference on Multimedia Systems-MMSys '16, (New York, New York, USA), pp. 1-10, ACM Press, 2016.A. A. Barakabitze, L. Sun, I. H. Mkwawa, and E. Ifeachor, "A Novel QoE-Centric SDN-Based Multipath Routing Approach for Multimedia Services over 5G Networks," in IEEE International Conference on Communications, vol. 2018-May, pp. 1-7, IEEE, may 2018.H. Sinha, G. Raj, and T. Choudhury, "Computing an adaptive mVoIP Services through SDN networks," in Proceedings of the 5th International Conference on System Modeling and Advancement in Research Trends, SMART 2016, pp. 170-174, IEEE, 2017.K. T. Bagci, K. E. Sahin, and A. M. Tekalp, "Queue-allocation optimization for adaptive video streaming over software defined networks with multiple service-levels," in 2016 IEEE International Conference on Image Processing (ICIP), pp. 1519-1523, IEEE, sep 2016. 83Z. Xu, W. Liang, A. Galis, and Y. Ma, "Throughput maximization and resource optimization in NFV-enabled networks," in IEEE International Conference on Communi-cations, pp. 1-7, IEEE, may 2017.3GPP, "Telecommunication management; Study on the Self-Organizing Networks (SON) for 5G networks," tech. rep., 3GPP, 2019.Z. Zhou, T. Zhang, and A. Kwatra, "NFV Closed-loop Automation Experiments using Deep Reinforcement Learning," in INFOCOM 2019-IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2019, pp. 696-701, Institute of Electrical and Electronics Engineers Inc., apr 2019.A. India, M. Sandilya, and N. Pd, "Zero Touch SDN NFV," tech. rep., 2018.I. G. Ben Yahia, J. Bendriss, A. Samba, and P. Dooze, "CogNitive 5G networks: Comprehensive operator use cases with machine learning for management operations," in Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and Networks, ICIN 2017, pp. 252-259, IEEE, mar 2017.A. Ben Letaifa, "Adaptive QoE monitoring architecture in SDN networks: Video streaming services case," in 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1383-1388, IEEE, jun 2017.. Marques, H. Marques, R. Dionisio, T. Alves, L. Pereira, and J. Ribeiro, "Data analytics for forecasting cell congestion on LTE networks," in 2017 Network Traffic Measurement and Analysis Conference (TMA), pp. 1-6, IEEE, jun 2017.P. Torres, H. Marques, P. Marques, and J. Rodriguez, "Using Deep Neural Networks for Forecasting Cell Congestion on LTE Networks: A Simple Approach," pp. 276-286, Springer, Cham, 2018.A. Samba, Y. Busnel, A. Blanc, P. Dooze, and G. Simon, "Instantaneous throughput prediction in cellular networks: Which information is needed?," in Proceedings of the IM 2017-2017 IFIP/IEEE International Symposium on Integrated Network and Service Management, pp. 624-627, IEEE, may 2017.N. Bui, F. Michelinakis, and J. Widmer, "A model for throughput prediction for mobile users," in 20th European Wireless Conference, EW 2014, (Barcelona), pp. 1-6, VDe, 2014.B. Li, W. Lu, S. Liu, and Z. Zhu, "Deep-learning-assisted network orchestration for ondemand and cost-effective VNF service chaining in inter-DC elastic optical networks," Journal of Optical Communications and Networking, vol. 10, pp. D29-D41, oct 2018.A. Nadjaran Toosi and R. Buyya, "Acinonyx: Dynamic Flow Scheduling for Virtual Machine Migration in SDN-Enabled Clouds," in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Compu-ting & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 886-894, IEEE, dec 2018.Google, "Ajuste de escala automático de grupos de instancias." https://cloud.google.com/compute/docs/autoscaler/, 2021.OpenStack Project, "Open Source Cloud Computing Systems." https://www.openstack.org/, 2011.H. Niu, C. Li, A. Papathanassiou, and G. Wu, "RAN architecture options and performance for 5G network evolution," in 2014 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2014, pp. 294-298, Institute of Electrical and Electronics Engineers Inc., oct 2014.F. Marzouk, J. P. Barraca, and A. Radwan, "On Energy Efficient Resource Allocation in Shared RANs: Survey and Qualitative Analysis," IEEE Communications Surveys and Tutorials, vol. 22, pp. 1515-1538, jul 2020.M. J. Scheepers, "Virtualization and Containerization of Application Infrastructure : A Comparison," 2014.E. G. Radhika, G. S. Sadasivam, and J. F. Naomi, "An efficient predictive technique to autoscale the resources for web applications in private cloud," in Proceedings of the 4th IEEE International Conference on Advances in Electrical and Electronics, Infor-mation, Communication and Bio-Informatics, AEEICB 2018, Institute of Electrical and Electronics Engineers Inc., oct 2018.Prometheus, "Prometheus-Monitoring system & time series database." https://prometheus.io/, 2017.Grafana, "Grafana: The open observability plataform." https://grafana.com/, 2020.HashiCorp, "Introduction-Terraform by HashiCorp." https://www.terraform.io/intro/index.html#execution-plans, 2020.A. Levin, D. Lorenz, G. Merlino, A. Panarello, A. Puliafito, and G. Tricomi, "Hierarchical load balancing as a service for federated cloud networks," Computer Communications, vol. 129, pp. 125-137, sep 2018. 85A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang, "Providing Performance Guarantees for Cloud-Deployed Applications," IEEE Transactions on Cloud Computing, vol. 8, pp. 269-281, jan 2020.V. Simic, B. Stojanovic, and M. Ivanovic, "Optimizing the performance of optimization in the cloud environment-An intelligent auto-scaling approach," Future Generation Computer Systems, vol. 101, pp. 909-920, dec 2019.L. Phan and K. Liu, "OpenStack Network Acceleration Scheme for Datacenter Intelligent Applications," in IEEE International Conference on Cloud Computing, CLOUD, vol. 2018-July, pp. 962-965, IEEE Computer Society, sep 2018.B. Sniezynski, P. Nawrocki, M. Wilk, M. Jarzab, and K. Zielinski, "VM Reservation Plan Adaptation Using Machine Learning in Cloud Computing," Journal of Grid Com-puting, vol. 17, pp. 797-812, dec 2019.L. Gavrilovska, V. Rakovic, and D. Denkovski, "Aspects of Resource Scaling in 5GMEC: Technologies and Opportunities," in 2018 IEEE Globecom Workshops, GC Wkshps 2018-Proceedings, Institute of Electrical and Electronics Engineers Inc., feb 2019.J. Zhang, F. Ren, and C. Lin, "Survey on transport control in data center networks," IEEE Network, vol. 27, no. 4, pp. 22-26, 2013.W. Hajji, T. A. Genez, F. P. Tso, L. Cui, and I. Phillips, "Dynamic Network Function Chain Composition for Mitigating Network Latency," in Proceedings-IEEE Sympo-sium on Computers and Communications, vol. 2018-June, pp. 316-321, Institute of Electrical and Electronics Engineers Inc., nov 2018.S. Hykes, "Empowering App Development for Developers | Docker." https://www.docker.com/, 2013.Kubernetes, "Kubernetes Documentation-Kubernetes." https://kubernetes.io/docs/home/, 2019.S. Kho Lin, U. Altaf, G. Jayaputera, J. Li, D. Marques, D. Meggyesy, S. Sarwar, S. Sharma, W. Voorsluys, R. Sinnott, A. Novak, V. Nguyen, and K. Pash, "Auto-Scaling a Defence Application across the Cloud Using Docker and Kubernetes," in Proceedings-11th IEEE/ACM International Conference on Utility and Cloud Com-puting Companion, UCC Companion 2018, pp. 327-334, Institute of Electrical and Electronics Engineers Inc., jan 2019.B. Zurkowski and K. Zielinski, "Towards Self-Organizing Cloud Polyglot Database Systems," in International Conference on Self-Adaptive and Self-Organizing Systems, SASO, vol. 2019-June, pp. 82-87, IEEE Computer Society, jun 2019.C. Organisations and P. Date, "Network Functions Virtualisation ( NFV )," no. 1, pp. 1-20, 2015.W. Nakimuli, J. Garcia-Reinoso, B. Nogales, I. Vidal, D. Gomes, and D. Lopez, "Reducing Service Creation Time Leveraging on Network Function Virtualization," IEEE Access, vol. 8, pp. 155679-155696, 2020.Canonical, "MicroStack-OpenStack in a snap." https://microstack.run/, 2020.Gnocchi Project, "Gnocchi-Metric as a Service." https://gnocchi.xyz/stable 4.2/index.html.T. T. Hoang, M. T. Tao, and P. H. Au, "Research and implementation of monitoring systems Prometheus and Grafana," 2020.Grafana Labs, "OpenStack Dashboard dashboard for Grafana." https://grafana.com/grafana/dashboards/9701, 2018.Open Source MANO, "White papers, Scope, Functionality, Operation and Integration Guidelines," no. 1, pp. 1-44, 2019.The Linux Foundation, "ONAP." https://www.onap.org/, 2021.M. Gilbert, Artificial Intelligence for Autonomous Networks. 2018.L. Chen, D. Yang, D. Zhang, C. Wang, J. Li, and T. M. T. Nguyen, "Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization," Journal of Network and Computer Applications, vol. 121, pp. 59-69, 2018.L. Jorguseski, A. Pais, F. Gunnarsson, A. Centonza, and C. Willcock, "Self-organizing networks in 3GPP: Standardization and future trends," IEEE Communications Ma-gazine, vol. 52, pp. 28-34, dec 2014.S. Ahmad and A. H. Mir, "Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of Diverse SDN Controllers," Journal of Network and Systems Management, vol. 29, pp. 1-59, jan 2021.Y. Cui, S. Ahmad, and J. Hawkins, "Continuous online sequence learning with an unsupervised neural network model," Neural Computation, vol. 28, pp. 2474-2504, nov 2016.S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly detection for streaming data," Neurocomputing, vol. 262, pp. 134-147, nov 2017.R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, "Bandwidth Estimation: Metrics, Measurement Techniques, and Tools," vol. 17, pp. 27-35, nov 2003.S. S. Chaudhari and R. C. Biradar, "Survey of Bandwidth Estimation Techniques in Communication Networks," vol. 83, pp. 1425-1476, jul 2015.J. Xu, L. Tang, Q. Chen, and L. Yi, "Study on based reinforcement Q-Learning for mobile load balancing techniques in LTE-A HetNets," in Proceedings-17th IEEE In-ternational Conference on Computational Science and Engineering, CSE 2014, Jointly with 13th IEEE International Conference on Ubiquitous Computing and Communica-tions, IUCC 2014, 13th International Symposium on Pervasive Systems,, pp. 1766-1771, 2015.S. S. Mwanje and A. Mitschele-Thiel, "A Q-learning strategy for LTE mobility Load Balancing," in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, pp. 2154-2158, 2013.J. J. Montano Moreno, A. Palmer Pol, and P. Munoz Gracia, "Artificial neural networks applied to forecasting time series.," Psicothema, vol. 23, no. 2, pp. 322-9, 2011.H. D. Trinh, L. Giupponi, and P. Dini, "Mobile Traffic Prediction from Raw Data Using LSTM Networks," in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2018-Septe, pp. 1827-1832, Institute of Electrical and Electronics Engineers Inc., dec 2018.S. Cao and W. Liu, "LSTM Network Based Traffic Flow Prediction for Cellular Networks," in Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, pp. 643-653, Springer, 2019.M. Algorri álvarez, "Caracterización de tecnologías de procesamiento de datos en streaming sobre una arquitectura orientada al dato," Master's thesis, 10 2018.R. Kempter, W. Gerstner, and J. L. van Hemmen, "Hebbian learning and spiking neurons," Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Inter-disciplinary Topics, vol. 59, pp. 4498-4514, apr 1999.Y. Cui, C. Surpur, S. Ahmad, and J. Hawkins, "A comparative study of HTM and other neural network models for online sequence learning with streaming data," in Proceedings of the International Joint Conference on Neural Networks, vol. 2016-Octob, pp. 1530-1538, Institute of Electrical and Electronics Engineers Inc., oct 2016.J. Struye and S. Latré, "Hierarchical temporal memory and recurrent neural networks for time series prediction: An empirical validation and reduction to multilayer perceptrons," Neurocomputing, vol. 396, pp. 291-301, jul 2020.E. Nugamanov and A. I. Panov, "Hierarchical Temporal Memory with Reinforcement Learning," in Procedia Computer Science, vol. 169, pp. 123-131, Elsevier B.V., jan 2020.M. Mdini, Anomaly detection and root cause diagnosis in cellular networks. PhD thesis, 2019.C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, "A Distributed Anomaly Detection System for In-Vehicle Network Using HTM," IEEE Access, vol. 6, pp. 9091-9098, jan 2018.A. Barua, D. Muthirayan, P. P. Khargonekar, and M. A. Al Faruque, "Hierarchical Temporal Memory Based Machine Learning for Real-Time, Unsupervised Anomaly Detection in Smart Grid: WiP Abstract," in Proceedings-2020 ACM/IEEE 11th In-ternational Conference on Cyber-Physical Systems, ICCPS 2020, pp. 188-189, Institute of Electrical and Electronics Engineers Inc., apr 2020.K. Zhang, F. Zhao, S. Luo, Y. Xin, H. Zhu, and Y. Chen, "Online intrusion scenario discovery and prediction based on hierarchical temporal memory (HTM)," Applied Sciences (Switzerland), vol. 10, p. 2596, apr 2020.Numenta, "HIERARCHICAL TEMPORAL MEMORY. HTM Cortical Learning Algorithms." http://www.numenta.com/faq.html#cla paper, 2011.Numenta, "HTM School." https://numenta.org/htm-school/, 2020.S. Purdy, "Encoding Data for HTM Systems," feb 2016.J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin, Biological and Machine Intelligence (BAMI). 2016.G. K. Karagiannidis and A. S. Lioumpas, "An improved approximation for the Gaussian Q-function," IEEE Communications Letters, vol. 11, pp. 644-646, aug 2007.Numenta, "Numenta, Where Neuroscience Meets Machine Intelligence." https://numenta.com/, 2020.htm-community/htm.core: Actively developed Hierarchical Temporal Memory (HTM) community fork (continuation) of NuPIC. Implementation for C++ and Python." https://github.com/htm-community/htm.core.D. F. Rueda, D. Vergara, and D. Reniz, "Big Data Streaming Analytics for QoE Monitoring in Mobile Networks: A Practical Approach," in Proceedings-2018 IEEE International Conference on Big Data, Big Data 2018, pp. 1992-1997, Institute of Electrical and Electronics Engineers Inc., jan 2019.N. Salhab, S. E. Falou, R. Rahim, S. E. E. Ayoubi, and R. Langar, "Optimization of the implementation of network slicing in 5G RAN," in 2018 IEEE Middle East and North Africa Communications Conference, MENACOMM 2018, pp. 1-6, Institute of Electrical and Electronics Engineers Inc., jun 2018.J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira, "Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges," IEEE Communications Magazine, vol. 55, pp. 80-87, may 2017.S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati, "Network function virtualization in 5G," IEEE Communications Magazine, vol. 54, no. 4, pp. 84-91, 2016.D. Lee, J. H. Yoo, and J. W. K. Hong, "Deep Q-networks based auto-scaling for service function chaining," in 16th International Conference on Network and Service Management, CNSM 2020, 2nd International Workshop on Analytics for Service and Application Management, AnServApp 2020 and 1st International Workshop on the Future Evolution of Internet Protocols, IPFutu, 2020.R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou, "Cloud Resource Orchestration Programming: Overview, Issues, and Directions," vol. 19, pp. 46-56, sep 2015.S. Becker, G. Brataas, and S. Lehrig, Engineering Scalable, Elastic, and Cost-Efficient Cloud Computing Applications. Springer International Publishing, 2017.Open Source MANO, "OSM Autoscaling." https://osm.etsi.org/wikipub/index.php/, 2019.T. Choi, T. Kim, W. Tavernier, A. Korvala, and J. Pajunpää, "Agile Management and Interoperability Testing of SDN/NFV-Enriched 5G Core Networks:," ETRI Journal, vol. 40, pp. 72-88, feb 2018.Y. Ren, T. Phung-Duc, J. C. Chen, and Z. W. Yu, "Dynamic auto scaling algorithm (DASA) for 5G mobile networks," in 2016 IEEE Global Communications Conference, GLOBECOM 2016-Proceedings, Institute of Electrical and Electronics Engineers Inc., 2016.Y. Ren, T. Phung-Due, Y. K. Liu, J. C. Chen, and Y. H. Lin, "ASA: Adaptive VNF Scaling Algorithm for 5G Mobile Networks," in Proceedings of the 2018 IEEE 7th International Conference on Cloud Networking, CloudNet 2018, Institute of Electrical and Electronics Engineers Inc., nov 2018.P. C. Amogh, G. Veeramachaneni, A. K. Rangisetti, B. R. Tamma, and F. A. Antony, "A cloud native solution for dynamic auto scaling of MME in LTE," in IEEE Interna-tional Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, vol. 2017-Octob, pp. 1-7, Institute of Electrical and Electronics Engineers Inc., feb 2018. 90Y. T. Lee, H. L. Chao, and J. W. Tang, "Scalable and elastic cloud data center for self-organizing dense small cell networks," in 17th Asia-Pacific Network Operations and Management Symposium: Managing a Very Connected World, APNOMS 2015, pp. 420-423, Institute of Electrical and Electronics Engineers Inc., sep 2015.S. Khairi, B. Raouyane, and M. Bellafkih, "Novel QoE monitoring and management architecture with eTOM for SDN-based 5G networks: SLA verification scenario," Cluster Computing, vol. 23, pp. 1-12, feb 2020.I. Afolabi, J. Prados-Garzon, M. Bagaa, T. Taleb, and P. Ameigeiras, "Dynamic resource provisioning of a scalable E2E network slicing orchestration system," IEEE Transactions on Mobile Computing, vol. 19, pp. 2594-2608, nov 2020.M. M. Rahman, C. Despins, and S. Affes, "Design Optimization of Wireless Access Virtualization Based on Cost & QoS Trade-Off Utility Maximization," IEEE Transactions on Wireless Communications, vol. 15, pp. 6146-6162, sep 2016.L. Tang, X. He, X. Yang, Y. Wei, X. Wang, and Q. Chen, "ARMA-Prediction-Based Online Adaptive Dynamic Resource Allocation in Wireless Virtualized Network," IEEE Access, vol. 7, pp. 130438-130450, 2019.S. Rizou, P. Athanasoulis, P. Andriani, F. Iadanza, G. Carrozzo, D. Breitgand, A.Weit, D. Griffin, D. Jimenez, U. Acar, and O. P. Gordo, "A Service Platform Architecture Enabling Programmable Edge-To-Cloud Virtualization for the 5G Media Industry," in IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB, vol. 2018-June, IEEE Computer Society, aug 2018."Introducing AWS Lambda." https://aws.amazon.com/es/about-aws/whatsnew/ 2014/11/13/introducing-aws-lambda/, 2014."5G-PPP." https://5g-ppp.eu/, 2021.A. H. Ghorab, A. Kusedghi, M. A. Nourian, and A. Akbari, "Joint VNF Load Balancing and Service Auto-Scaling in NFV with Multimedia Case Study," in 2020 25th International Computer Conference, Computer Society of Iran, CSICC 2020, Institute of Electrical and Electronics Engineers Inc., jan 2020.A. Kusedghi, A. Ghorab, and A. Akbari, "XeniumNFV: A unified, dynamic, distributed and event-driven SDN/NFV testbed," in Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom, vol. 2018-Decem, pp. 320-326, IEEE Computer Society, dec 2018.F. B. Anacona and K. T. Tobar, Scalability Analysis of LTE-EPC in an NFV Envi-ronment. PhD thesis, 2018.T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, "A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments," Journal of Grid Compu-ting, vol. 12, pp. 559-592, nov 2014.H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, "A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling," in Proceedings-2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CC-GRID 2017, pp. 64-73, Institute of Electrical and Electronics Engineers Inc., jul 2017.A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos, I. Konstantinou, and S. Sioutas, "Dependable horizontal scaling based on probabilistic model checking," in Proceedings-2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2015, pp. 31-40, Institute of Electrical and Electronics Engineers Inc., jul 2015.A. A. Neghabi, N. J. Navimipour, M. Hosseinzadeh, and A. Rezaee, "Load Balancing Mechanisms in the Software Defined Networks: A Systematic and Comprehensive Review of the Literature," vol. 6, pp. 14159-14178, 2018.S. Dutta, T. Taleb, and A. Ksentini, "QoE-aware elasticity support in cloud-native 5G systems," in 2016 IEEE International Conference on Communications, ICC 2016, Institute of Electrical and Electronics Engineers Inc., jul 2016.Apache Software Foundation, "The Apache HTTP Server Project." https://httpd.apache.org/, 2021.Apache Software Foundation, "ab [Apache HTTP server benchmarking tool]." https://httpd.apache.org/docs/2.4/programs/ab.html, 2014.GitHub, "caprivm/thesis msc Wiki." https://github.com/caprivm/thesis msc/wiki, 2021.N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, 2008.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79636/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1094953263.2021.pdf1094953263.2021.pdfTesis de Maestría en Ingeniería - Telecomunicacionesapplication/pdf6322252https://repositorio.unal.edu.co/bitstream/unal/79636/2/1094953263.2021.pdfe13ef595cbec067566b09ecdd392af6fMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79636/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAIL1094953263.2021.pdf.jpg1094953263.2021.pdf.jpgGenerated Thumbnailimage/jpeg4468https://repositorio.unal.edu.co/bitstream/unal/79636/4/1094953263.2021.pdf.jpgd2aeb45a1b2f05c33756c64dcb90fe98MD54unal/79636oai:repositorio.unal.edu.co:unal/796362024-07-22 00:40:18.089Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==