Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua
Una bentonita colombiana fue exitosamente pilarizada con precursores poliméricos de polihidroxocationes de Al, Al-Fe, Al-Cu y Al-Fe-Cu en estado sólido cuya síntesis es novedosa. Se estudió el efecto del contenido de Fe y Cu sobre las propiedades fisicoquímicas de la bentonita pilarizada con base en...
- Autores:
-
Bueno Corredor, Julieth Natalia
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84299
- Palabra clave:
- 540 - Química y ciencias afines::546 - Química inorgánica
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Arcilla pilarizada
Polihidroxicatión
Keggin Al-Fe-Cu
Oxidación catalítica de peróxido húmedo
Amoxicilina
Superficie de respuesta
Diseño Box Behnken
Pillared clay
Al-Fe-Cu Keggin
Polyhydroxycation
Wet peroxide catalytic oxidation
Amoxicillin
Response surface
Box Behnken design
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_2952917336422cf1e785a1127abd36ff |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84299 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
dc.title.translated.eng.fl_str_mv |
Bentonite pillared with iron and copper for the degradation of amoxicillin present in water |
title |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
spellingShingle |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua 540 - Química y ciencias afines::546 - Química inorgánica 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados Arcilla pilarizada Polihidroxicatión Keggin Al-Fe-Cu Oxidación catalítica de peróxido húmedo Amoxicilina Superficie de respuesta Diseño Box Behnken Pillared clay Al-Fe-Cu Keggin Polyhydroxycation Wet peroxide catalytic oxidation Amoxicillin Response surface Box Behnken design |
title_short |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
title_full |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
title_fullStr |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
title_full_unstemmed |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
title_sort |
Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua |
dc.creator.fl_str_mv |
Bueno Corredor, Julieth Natalia |
dc.contributor.advisor.none.fl_str_mv |
Moreno Guáqueta, Sonia |
dc.contributor.author.none.fl_str_mv |
Bueno Corredor, Julieth Natalia |
dc.contributor.researchgroup.spa.fl_str_mv |
Estado Sólido y Catálisis Ambiental |
dc.contributor.scopus.spa.fl_str_mv |
Bueno Corredor, Natalia [58169421400] |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::546 - Química inorgánica 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados |
topic |
540 - Química y ciencias afines::546 - Química inorgánica 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados Arcilla pilarizada Polihidroxicatión Keggin Al-Fe-Cu Oxidación catalítica de peróxido húmedo Amoxicilina Superficie de respuesta Diseño Box Behnken Pillared clay Al-Fe-Cu Keggin Polyhydroxycation Wet peroxide catalytic oxidation Amoxicillin Response surface Box Behnken design |
dc.subject.proposal.spa.fl_str_mv |
Arcilla pilarizada Polihidroxicatión Keggin Al-Fe-Cu Oxidación catalítica de peróxido húmedo Amoxicilina Superficie de respuesta Diseño Box Behnken |
dc.subject.proposal.eng.fl_str_mv |
Pillared clay Al-Fe-Cu Keggin Polyhydroxycation Wet peroxide catalytic oxidation Amoxicillin Response surface Box Behnken design |
description |
Una bentonita colombiana fue exitosamente pilarizada con precursores poliméricos de polihidroxocationes de Al, Al-Fe, Al-Cu y Al-Fe-Cu en estado sólido cuya síntesis es novedosa. Se estudió el efecto del contenido de Fe y Cu sobre las propiedades fisicoquímicas de la bentonita pilarizada con base en técnicas de caracterización como fluorescencia de rayos X (FRX), difracción de rayos X (DRX), microscopía electrónica de barrido (SEM), espectroscopia de fotoelectrones de rayos X (XPS), análisis térmicos y análisis textural (fisisorción de nitrógeno). Se utilizó el diseño de experimentos estadísticos de Box-Behnken para determinar los parámetros óptimos de las variables independientes: peróxido de hidrógeno (0.120-0.144 M), carga de catalizador (0.5-1.5 g/L) y tipo de catalizador (PILC FeCu1, FeCu5, FeCu10) en la oxidación catalítica de peróxido húmedo (CWPO) de amoxicilina. Las condiciones optimizadas de peróxido de hidrógeno (0.137 M) y carga del catalizador (0.7 g/L) se emplearon para comparar el desempeño catalítico de los catalizadores del 1, 5 y 10 % de metal (Fe, Cu), alcanzando una remoción entre el 91-100% de amoxicilina. Las constantes de velocidad obtenidas permitieron identificar el mejor sólido de cada serie para estudiar el grado de mineralización, resultando como el mejor catalizador la PILCAlFeCu10 con una remoción de TOC del 24.6% a las 2h de reacción. Después de tres ciclos de reúso el catalizador mantuvo su actividad catalítica en la eliminación de amoxicilina. Se estudió el sistema con doble agente oxidante (peróxido de hidrogeno- persulfato de potasio) en el que se verificaron mejoras en el desempeño catalítico de PILC-AlFeCu10 debido a un efecto cooperativo en la producción simultánea de radicales hidroxilo y anión sulfato. (Texto tomado de la fuente) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-27T13:46:07Z |
dc.date.available.none.fl_str_mv |
2023-07-27T13:46:07Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84299 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84299 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
UNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Unicef/Who 2019, 140. Ameta, S. C. Introduction. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-810499-6.00001-2. Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016. Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2 (1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011. Mohapatra, D. P.; Brar, S. K.; Tyagi, R. D.; Picard, P.; Surampalli, R. Y. Analysis and Advanced Oxidation Treatment of a Persistent Pharmaceutical Compound in Wastewater and Wastewater Sludge-Carbamazepine. Sci. Total Environ. 2014, 470–471, 58–75. https://doi.org/10.1016/j.scitotenv.2013.09.034. Yang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102. World Health Organization. Pharmaceuticals in drinking-water https://apps.who.int/iris/handle/10665/44630 (accessed Nov 21, 2021). Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299. Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F. Y.; Ahrens, L. Occurrence and Removal of Chemicals of Emerging Concern in Wastewater Treatment Plants and Their Impact on Receiving Water Systems. Sci. Total Environ. 2021, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122. Li, F.; Chen, L.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Feng, C.; Wen, D. Identification of the Priority Antibiotics Based on Their Detection Frequency, Concentration, and Ecological Risk in Urbanized Coastal Water. Sci. Total Environ. 2020, 747, 141275. https://doi.org/10.1016/j.scitotenv.2020.141275. Mijangos, L.; Ziarrusta, H.; Ros, O.; Kortazar, L.; Fernández, L. A.; Olivares, M.; Zuloaga, O.; Prieto, A.; Etxebarria, N. Occurrence of Emerging Pollutants in Estuaries of the Basque Country: Analysis of Sources and Distribution, and Assessment of the Environmental Risk. Water Res. 2018, 147, 152–163. https://doi.org/10.1016/j.watres.2018.09.033. Botero-Coy, A. M.; Martínez-Pachón, D.; Boix, C.; Rincón, R. J.; Castillo, N.; Arias-Marín, L. P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. ‘An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater.’ Sci. Total Environ. 2018, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088. Aus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339. Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045. Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.;Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399 (10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/B227DEB3-FF04-497F-82AC-637D8AB7F679/MMC1.PDF. Antimicrobial resistance https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed May 29, 2022). Jim O’Neill. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance https://apo.org.au/node/63983 (accessed May 29, 2022). Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10 (9), 354–355. https://doi.org/10.1128/microbe.10.354.1. Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland) 2020, 12 (1). https://doi.org/10.3390/w12010102. Macías-Quiroga, I. F.; Henao-Aguirre, P. A.; Marín-Flórez, A.; Arredondo-López, S. M.; Sanabria-González, N. R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2020 2819 2020, 28 (19), 23791–23811. https://doi.org/10.1007/S11356-020-11333-7. Ribeiro, A. R.; Nunes, O. C.; Pereira, M. F. R.; Silva, A. M. T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/J.ENVINT.2014.10.027. J. M. Thomas andW. J. Thomas. Principles and Practice of Heterogeneous Catalysis; 2015. Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Appl. Catal. B Environ. 2010, 99 (1–2), 1–26. https://doi.org/10.1016/j.apcatb.2010.07.006. Huang, C. P.; Dong, C.; Tang, Z. Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manag. 1993, 13 (5–7), 361–377. https://doi.org/10.1016/0956-053X(93)90070-D. Nidheesh, P. V. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5 (51), 40552–40577. https://doi.org/10.1039/c5ra02023a. World Health Organization. WHO Report on Surveillance of Antibiotic Consumption. Who 2018, 128. Elizalde-Velázquez, A.; Gómez-Oliván, L. M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. Environ. Heal. Risk - Hazard. Factors to Living Species 2016. https://doi.org/10.5772/62049. De Franco, M. A. E.; de Carvalho, C. B.; Bonetto, M. M.; Soares, R. de P.; Féris, L. A. Removal of Amoxicillin from Water by Adsorption onto Activated Carbon in Batch Process and Fixed Bed Column: Kinetics, Isotherms, Experimental Design and Breakthrough Curves Modelling. J. Clean. Prod. 2017, 161, 947–956. https://doi.org/10.1016/j.jclepro.2017.05.197. Roy, J. The Top Five Most Common or Long-Selling Drugs. An Introd. to Pharm. Sci. 2011, 231–296. https://doi.org/10.1533/9781908818041.231. Doi, Y.; Chambers, H. F. Penicillins and β-Lactamase Inhibitors. Mand. Douglas, Bennett’s Princ. Pract. Infect. Dis. 2015, 1, 263-277.e3. https://doi.org/10.1016/B978-1-4557-4801-3.00020-5. Pesqueira, J. F. J. R.; Pereira, M. F. R.; Silva, A. M. T. Environmental Impact Assessment of Advanced Urban Wastewater Treatment Technologies for the Removal of Priority Substances and Contaminants of Emerging Concern: A Review. J. Clean. Prod. 2020, 261. https://doi.org/10.1016/j.jclepro.2020.121078. Thomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. https://doi.org/10.1016/j.jhazmat.2020.124082. A. Ya. Sychev; V. G. Isak. Iron Compounds and the Mechanisms of the Homogeneous Catalysis of the Activation of O2 and H2O2 and of the Oxidation of Organic Substrates. Russ. Chem. Rev. 1995, 64 (12), 1105–1129. Guo, R.; Xie, X.; Chen, J. The Degradation of Antibiotic Amoxicillin in the Fenton-Activated Sludge Combined System. Environ. Technol. (United Kingdom) 2015, 36 (7), 844–851. https://doi.org/10.1080/09593330.2014.963696. Trovó, A. G.; Melo, S. A. S.; Nogueira, R. F. P. Photodegradation of the Pharmaceuticals Amoxicillin, Bezafibrate and Paracetamol by the Photo-Fenton Process—Application to Sewage Treatment Plant Effluent. J. Photochem. Photobiol. A Chem. 2008, 198 (2–3), 215–220. https://doi.org/10.1016/J.JPHOTOCHEM.2008.03.011. Trovó, A. G.; Pupo Nogueira, R. F.; Agüera, A.; Fernandez-Alba, A. R.; Malato, S. Degradation of the Antibiotic Amoxicillin by Photo-Fenton Process - Chemical and Toxicological Assessment. Water Res. 2011, 45 (3), 1394–1402. https://doi.org/10.1016/j.watres.2010.10.029. Ayodele, O. B.; Lim, J. K.; Hameed, B. H. Pillared Montmorillonite Supported Ferric Oxalate as Heterogeneous Photo-Fenton Catalyst for Degradation of Amoxicillin. Appl. Catal. A Gen. 2012, 413–414, 301–309. https://doi.org/10.1016/j.apcata.2011.11.023. Zha, S.; Cheng, Y.; Gao, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Nanoscale Zero-Valent Iron as a Catalyst for Heterogeneous Fenton Oxidation of Amoxicillin. Chem. Eng. J. 2014, 255, 141–148. https://doi.org/10.1016/j.cej.2014.06.057. Ayodele, O. B. Effect of Phosphoric Acid Treatment on Kaolinite Supported Ferrioxalate Catalyst for the Degradation of Amoxicillin in Batch Photo-Fenton Process. Appl. Clay Sci. 2013, 72, 74–83. https://doi.org/10.1016/j.clay.2013.01.004. Kalantary, R. R.; Farzadkia, M.; Kermani, M.; Rahmatinia, M. Heterogeneous Electro-Fenton Process by Nano-Fe3O4 for Catalytic Degradation of Amoxicillin: Process Optimization Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6 (4), 4644–4652. https://doi.org/10.1016/j.jece.2018.06.043. Liu, Y.; Zha, S.; Rajarathnam, D.; Chen, Z. Divalent Cations Impacting on Fenton-like Oxidation of Amoxicillin Using NZVI as a Heterogeneous Catalyst. Sep. Purif. Technol. 2017, 188 (July), 548–552. https://doi.org/10.1016/j.seppur.2017.07.061. Fenton, H. J. H. LXXIII. - Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. https://doi.org/10.1039/CT8946500899. Giwa, A.; Yusuf, A.; Balogun, H. A.; Sambudi, N. S.; Bilad, M. R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. https://doi.org/10.1016/j.psep.2020.08.015. liu, X. Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecol. Environ. Sci. 2018, 3 (1). https://doi.org/10.15406/mojes.2018.03.00060. Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Review. Appl. Catal. B Environ. 2019, 255 (May), 117739. https://doi.org/10.1016/j.apcatb.2019.05.041. Szultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In Vitro Metabolites of Amoxicillin in Human Liver Microsomes by LC-ESI/MS. Chromatographia 2014, 77 (15), 1027–1035. https://doi.org/10.1007/S10337-014-2648-2. He, J.; Yang, X.; Men, B.; Wang, D. Interfacial Mechanisms of Heterogeneous Fenton Reactions Catalyzed by Iron-Based Materials: A Review. J. Environ. Sci. (China) 2016, 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003. Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016. Nie, M.; Li, Y.; He, J.; Xie, C.; Wu, Z.; Sun, B.; Zhang, K.; Kong, L.; Liu, J. Degradation of Tetracycline in Water Using Fe3O4 Nanospheres as Fenton-like Catalysts: Kinetics, Mechanisms and Pathways. New J. Chem. 2020, 44 (7), 2847–2857. https://doi.org/10.1039/d0nj00125b. Hakimi, M.; Alikhani, M. Characterization of α-Fe2O3 Nanoparticles Prepared from a New [Fe(Ofloxacin)2Cl2] Precursor: A Heterogeneous Photocatalyst for Removal of Methylene Blue and Ciprofloxacin in Water. J. Inorg. Organomet. Polym. Mater. 2020, 30 (2), 504–512. https://doi.org/10.1007/s10904-019-01210-3. He, F.; Ma, W.; Zhong, D.; Yuan, Y. Degradation of Chloramphenicol by α-FeOOH-Activated Two Different Double-Oxidant Systems with Hydroxylamine Assistance. Chemosphere 2020, 250, 126150. https://doi.org/10.1016/j.chemosphere.2020.126150. Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3o4 Composite. Catalysts 2021, 11 (2), 1–17. https://doi.org/10.3390/catal11020177. Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts 2020, 10 (11), 1–19. https://doi.org/10.3390/catal10111241. Zheng, C. M.; Yang, C. W.; Cheng, X. Z.; Xu, S. C.; Fan, Z. P.; Wang, G. H.; Wang, S. B.; Guan, X. F.; Sun, X. H. Specifically Enhancement of Heterogeneous Fenton-like Degradation Activities for Ofloxacin with Synergetic Effects of Bimetallic Fe-Cu on Ordered Mesoporous Silicon. Sep. Purif. Technol. 2017, 189, 357–365. https://doi.org/10.1016/j.seppur.2017.08.015. Liu, J.; Wu, X.; Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin Degradation by Fe3O4-CeO2/AC Fenton-like System: Optimization, Kinetics, and Degradation Pathways. Mol. Catal. 2019, 465, 61–67. https://doi.org/10.1016/j.mcat.2018.12.020. Tang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52 (9), 5367–5377. https://doi.org/10.1021/acs.est.8b00092. De Melo Costa-Serge, N.; Gonçalves, R. G. L.; Rojas-Mantilla, H. D.; Santilli, C. V.; Hammer, P.; Nogueira, R. F. P. Fenton-like Degradation of Sulfathiazole Using Copper-Modified MgFe-CO3 Layered Double Hydroxide. J. Hazard. Mater. 2021, 413, 125388. https://doi.org/10.1016/j.jhazmat.2021.125388. Hernández, W.; Moreno, S.; Molina, R. Caracterización Estructural y Textural de Una Bentonita Colombiana. Rev. colomb. quím. 2007, 36 (1), 213–225. Carriazo, J. Saavedra, M. Molina, F. Estudio Por DRX de La Intercalación de Un Mineral de Arcilla Tipo 2:1 Con Especies Polioxocationicas de Aluminio. Rev. Mex. Ing. Química 2009, 8 (1), 299–305. Gonzalez-Olmos, R.; Martin, M. J.; Georgi, A.; Kopinke, F. D.; Oller, I.; Malato, S. Fe-Zeolites as Heterogeneous Catalysts in Solar Fenton-like Reactions at Neutral PH. Appl. Catal. B Environ. 2012, 125, 51–58. https://doi.org/10.1016/j.apcatb.2012.05.022. Liu, T. X.; Liu, Y.; Zhang, Z. J.; Li, F. B.; Li, X. Z. Comparison of Aqueous Photoreactions with TiO2 in Its Hydrosol Solution and Powdery Suspension for Light Utilization. Ind. Eng. Chem. Res. 2011, 50 (13), 7841–7848. https://doi.org/10.1021/ie102584j. Kay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe 2O3 Films. J. Am. Chem. Soc. 2006, 128 (49), 15714–15721. https://doi.org/10.1021/ja064380l. Xiang, Q.; Yu, J.; Wong, P. K. Quantitative Characterization of Hydroxyl Radicals Produced by Various Photocatalysts. J. Colloid Interface Sci. 2011, 357 (1), 163–167. https://doi.org/10.1016/j.jcis.2011.01.093. Tehrani-Bagha, A. R.; Balchi, T. Catalytic Wet Peroxide Oxidation. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 375–402. https://doi.org/10.1016/B978-0-12-810499-6.00012-7. Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F. J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019, 290. https://doi.org/10.1016/j.molliq.2019.111177. Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes – A Review. Chemosphere 2017, 174, 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019. Hamd, W. S.; Dutta, J. Heterogeneous Photo-Fenton Reaction and Its Enhancement upon Addition of Chelating Agents; Elsevier Inc., 2020. https://doi.org/10.1016/b978-0-12-818489-9.00011-6. Bergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of Clay Science; 2006; Vol. 1. https://doi.org/10.1016/S1572-4352(05)01039-1. Macías-Quiroga, I. F.; Rengifo-Herrera, J. A.; Arredondo-López, S. M.; Marín-Flórez, A.; Sanabria-González, N. R. Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis. Sci. World J. 2022, 2022. https://doi.org/10.1155/2022/5728678. Galeano, L. A.; Gil, A.; Vicente, M. A. Effect of the Atomic Active Metal Ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-Intercalating Solutions on the Physicochemical Properties and Catalytic Activity of Pillared Clays in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2010, 100 (1–2), 271–281. https://doi.org/10.1016/j.apcatb.2010.08.003. Sanabria, N.; Álvarez, A.; Molina, R.; Moreno, S. Synthesis of Pillared Bentonite Starting from the Al-Fe Polymeric Precursor in Solid State, and Its Catalytic Evaluation in the Phenol Oxidation Reaction. Catal. Today 2008, 133–135 (1–4), 530–533. https://doi.org/10.1016/j.cattod.2007.12.082. Sanabria, N. R.; Centeno, M. A.; Molina, R.; Moreno, S. Pillared Clays with Al-Fe and Al-Ce-Fe in Concentrated Medium: Synthesis and Catalytic Activity. Appl. Catal. A Gen. 2009, 356 (2), 243–249. https://doi.org/10.1016/j.apcata.2009.01.013. Martínez T, L. M.; Domínguez, M. I.; Sanabria, N.; Hernández, W. Y.; Moreno, S.; Molina, R.; Odriozola, J. A.; Centeno, M. A. Deposition of Al-Fe Pillared Bentonites and Gold Supported Al-Fe Pillared Bentonites on Metallic Monoliths for Catalytic Oxidation Reactions. Appl. Catal. A Gen. 2009, 364 (1–2), 166–173. https://doi.org/10.1016/j.apcata.2009.05.046. Olaya, A.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al13-Fe and Al13-Fe-Ce Polymers in Solid State Assisted by Microwave and Ultrasound: Characterization and Catalytic Activity. Appl. Catal. A Gen. 2009, 370 (1–2), 7–15. https://doi.org/10.1016/j.apcata.2009.08.018. Sanabria, N. R.; Molina, R.; Moreno, S. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater. Int. J. Photoenergy 2012, 2012 (1). https://doi.org/10.1155/2012/864104. Peralta, Y. M.; Sanabria, N. R.; Carriazo, J. G.; Moreno, S.; Molina, R. Catalytic Wet Hydrogen Peroxide Oxidation of Phenolic Compounds in Coffee Wastewater Using Al–Fe-Pillared Clay Extrudates. Desalin. Water Treat. 2015, 55 (3), 647–654. https://doi.org/10.1080/19443994.2014.920279. Sanabria, N.; Molina, R.; Moreno, S. Efecto Del Ultrssonido En La Síntesis de Arcilla Pilarizada Con Aluminio En Medio Concentrado. Rev. Colomb. Química 2008, 37 (3), 325–335. González, O. P.; Becerra, J. E.; Irreño, N. A. T.; Vargas, S. S.; Ávila, A. P.; Primelles, R. F. L.; González, R. G.; González, H.; Ortiz, F. J. Z.; Rincón, G. P.; Aponte, C. L. G.; Cárdenas, S. C. Recursos Minerales de Colombia. Libr. del Serv. Geológico Colomb. 2019, 1. https://doi.org/10.32685/9789585246973. Hussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, No. 0123456789. https://doi.org/10.1007/s10311-021-01185-z. Bokare, A. D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes; Elsevier B.V., 2014; Vol. 275. https://doi.org/10.1016/j.jhazmat.2014.04.054. Lin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environ. Sci. Technol. 1998, 32 (10), 1417–1423. https://doi.org/10.1021/es970648k. Wang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S. P.; Wu, W. D.; Wu, Z. Nanostructured Semiconductor Supported Iron Catalysts for Heterogeneous Photo-Fenton Oxidation: A Review. J. Mater. Chem. A 2020, 8 (31), 15513–15546. https://doi.org/10.1039/d0ta04541a. Lai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; An, N. Enhancing Iron Redox Cycling for Promoting Heterogeneous Fenton Performance: A Review. Sci. Total Environ. 2021, 775, 145850. https://doi.org/10.1016/j.scitotenv.2021.145850. Li, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J.; Xiao, S.; Zeng, G. Recent Advances in Waste Water Treatment through Transition Metal Sulfides-Based Advanced Oxidation Processes. Water Res. 2021, 192, 116850. https://doi.org/10.1016/j.watres.2021.116850. Nguyen, T. B.; Dong, C. Di; Huang, C. P.; Chen, C. W.; Hsieh, S. L.; Hsieh, S. Fe-Cu Bimetallic Catalyst for the Degradation of Hazardous Organic Chemicals Exemplified by Methylene Blue in Fenton-like Reaction. J. Environ. Chem. Eng. 2020, 8 (5), 104139. https://doi.org/10.1016/J.JECE.2020.104139. Qian, H.; Qianwen, S.; Qi, Z.; Yanhui, N.; Yongqiang, W. Development of Mesh-Type Fenton-like Cu/Fex/γ-Al2O3/Al Catalysts and Application for Catalytic Degradation of Dyes. Water Sci. Technol. 2020, 81 (10), 2057–2065. https://doi.org/10.2166/WST.2020.261. Hurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R. M.; Natividad, R. Paracetamol Mineralization by Photo Fenton Process Catalyzed by a Cu/Fe-PILC under Circumneutral PH Conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. https://doi.org/10.1016/J.JPHOTOCHEM.2019.01.012. Khankhasaeva, S. T.; Dashinamzhilova, E. T.; Dambueva, D. V. Oxidative Degradation of Sulfanilamide Catalyzed by Fe/Cu/Al-Pillared Clays. Appl. Clay Sci. 2017, 146, 92–99. https://doi.org/10.1016/J.CLAY.2017.05.018. Hadjltaief, H. B.; Zina, M. Ben; Galvez, M. E.; Da Costa, P. Photo-Fenton Oxidation of Phenol over a Cu-Doped Fe-Pillared Clay. Comptes Rendus Chim. 2015, 18 (10), 1161–1169. https://doi.org/10.1016/J.CRCI.2015.08.004. Zhou, S.; Zhang, C.; Hu, X.; Wang, Y.; Xu, R.; Xia, C.; Zhang, H.; Song, Z. Catalytic Wet Peroxide Oxidation of 4-Chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-Pillared Clays: Sensitivity, Kinetics and Mechanism. Appl. Clay Sci. 2014, 95, 275–283. https://doi.org/10.1016/J.CLAY.2014.04.024. Zhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-Based Catalysts for Persulfate-Based Advanced Oxidation Process: Microstructure, Property and Tailoring. Chem. Eng. J. 2021, 421, 127845. https://doi.org/10.1016/J.CEJ.2020.127845. Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059. Duan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D. D. Limitations and Prospects of Sulfate-Radical Based Advanced Oxidation Processes. J. Environ. Chem. Eng. 2020, 8 (4), 103849. https://doi.org/10.1016/J.JECE.2020.103849. Dulova, N.; Kattel, E.; Trapido, M. Degradation of Naproxen by Ferrous Ion-Activated Hydrogen Peroxide, Persulfate and Combined Hydrogen Peroxide/Persulfate Processes: The Effect of Citric Acid Addition. Chem. Eng. J. 2017, 318, 254–263. https://doi.org/10.1016/J.CEJ.2016.07.006. Kyzas, G. Z.; Mengelizadeh, N.; Saloot, M. khodadadi; Mohebi, S.; Balarak, D. Sonochemical Degradation of Ciprofloxacin by Hydrogen Peroxide and Persulfate Activated by Ultrasound and Ferrous Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128627. https://doi.org/10.1016/J.COLSURFA.2022.128627. Li, M.; Yang, X.; Wang, D. S.; Yuan, J. Enhanced Oxidation of Erythromycin by Persulfate Activated Iron Powder–H2O2 System: Role of the Surface Fe Species and Synergistic Effect of Hydroxyl and Sulfate Radicals. Chem. Eng. J. 2017, 317, 103–111. https://doi.org/10.1016/J.CEJ.2016.12.126. Karimifard, S.; Alavi Moghaddam, M. R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. https://doi.org/10.1016/J.SCITOTENV.2018.05.355. Peixoto, A. L. de C.; Costalonga, A. G. C.; Esperança, M. N.; Salazar, R. F. dos S. Design of Experiments Applied to Antibiotics Degradation by Fenton’s Reagent. Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process. 2018. https://doi.org/10.5772/68097. Pulido, H. G.; Salazar, R. de la V. Análisis y Diseño de Experimentos, Segunda ed.; Mc Graw Hill, 2008. Nair, A. T.; Makwana, A. R.; Ahammed, M. M. The Use of Response Surface Methodology for Modelling and Analysis of Water and Wastewater Treatment Processes: A Review. Water Sci. Technol. 2014, 69 (3), 464–478. https://doi.org/10.2166/WST.2013.733. Ay, F.; Kargi, F. Advanced Oxidation of Amoxicillin by Fenton’s Reagent Treatment. J. Hazard. Mater. 2010, 179 (1–3), 622–627. https://doi.org/10.1016/J.JHAZMAT.2010.03.048. Yazdanbakhsh, A. R.; Daraei, H.; Rafiee, M.; Kamali, H. Performance of Iron Nano Particles and Bimetallic Ni/Fe Nanoparticles in Removal of Amoxicillin Trihydrate from Synthetic Wastewater. Water Sci. Technol. 2016, 73 (12), 2998–3007. https://doi.org/10.2166/WST.2016.157. Verma, M.; Haritash, A. K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020, 20, 101072. https://doi.org/10.1016/J.ETI.2020.101072. Casey, W. H. Large Aqueous Aluminum Hydroxide Molecules. Chem. Rev. 2006, 106 (1), 1–16. https://doi.org/10.1021/CR040095D/ASSET/CR040095D.FP.PNG_V03. Wen, K.; Wei, J.; He, H.; Zhu, J.; Xi, Y. Keggin-Al30: An Intercalant for Keggin-Al30 Pillared Montmorillonite. Appl. Clay Sci. 2019, 180, 105203. https://doi.org/10.1016/J.CLAY.2019.105203. Cardona, Y.; Korili, S. A.; Gil, A. Understanding the Formation of Al13 and Al30 Polycations to the Development of Microporous Materials Based on Al13-and Al30-PILC Montmorillonites: A Review. Appl. Clay Sci. 2021, 203, 105996. https://doi.org/10.1016/J.CLAY.2021.105996. Sarpola, A. The Hydrolysis of Aluminium, A Mass Spectrometric Study; 2007. Furrer, G.; Ludwig, C.; Schindler, P. W. On the Chemistry of the Keggin Al13 Polymer. J. Colloid Interface Sci. 1992, 149 (1), 56–67. https://doi.org/10.1016/0021-9797(92)90391-x. Corona., O. C.; Pastrana., L. El Método de La Intensidad Absoluta Por Fluorescencia de Rayos X Para El Análisis Cuantitativo de Elementos Pesados. Rev. Mex. Física 1962, 11 (2), 79–128. Jenkins, R.; Snyder, R. L. Introduction to X-Ray Powder Diffractometry. Introd. to X-ray Powder Diffractometry 1996. https://doi.org/10.1002/9781118520994. Reimschussel, A. M.; Fredericks, R. J. Application of Scanning Electron Microscopy to the Study of the Morphology of Multicomponent Catalyst Systems. J. Mater. Sci. 1969 410 1969, 4 (10), 885–889. https://doi.org/10.1007/BF00549779. Ipohorski, M.; Bozzano, P. B. Microscopía Electrónica de Barrido En La Caracterización de Materiales. Cienc. Invest. 2013, 63 (3), 43–53. Hemminger, W.; Sarge, S. M. Definitions, Nomenclature, Terms and Literature. Handb. Therm. Anal. Calorim. 1998, 1, 1–73. https://doi.org/10.1016/S1573-4374(98)80004-6. Kloprogge, J. T.; Geus, J. W.; Jansen, J. B. H.; Seykens, D. Thermal Stability of Basic Aluminum Sulfate. Thermochim. Acta 1992, 209 (C), 265–276. https://doi.org/10.1016/0040-6031(92)80204-A. Galeano, L. A.; Vicente, M. Á.; Gil, A. Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catal. Rev. - Sci. Eng. 2014, 56 (3), 239–287. https://doi.org/10.1080/01614940.2014.904182. Aouad, A.; Pineau, A.; Tchoubar, D.; Bergaya, F. Al-Pillared Montmorillonite Obtained in Concentrated Media. Effect of the Anions (Nitrate, Sulfate and Chloride) Associated with the Al Species. Clays Clay Miner. 2006, 54 (5), 626–637. https://doi.org/10.1346/CCMN.2006.0540509. Baloyi, J.; Ntho, T.; Moma, J. Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8 (10), 5197–5211. https://doi.org/10.1039/c7ra12924f. Banwart, W. .; Stucki, J. . Advanced Chemical Methods for Soil and Clay Minerals Research; 1979. https://doi.org/10.1007/978-94-009-9094-4. Olaya, A.; Blanco, G.; Bernal, S.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al–Fe and Al–Fe–Ce Starting from Concentrated Suspensions of Clay Using Microwaves or Ultrasound, and Their Catalytic Activity in the Phenol Oxidation Reaction. Appl. Catal. B Environ. 2009, 93 (1–2), 56–65. https://doi.org/10.1016/J.APCATB.2009.09.012. Daza, C. E.; Gallego, R. M. Estudio Morfológico y Estructural de Una Arcilla Colombiana Pilarizada En Presencia de Ultrasonido y Microondas. Sci. Tech. 2011, 3 (49), 292–297. https://doi.org/10.22517/23447214.1547. Gil, A.; Korili, S. A.; Trujillano, R.; Vicente, M. A. A Review on Characterization of Pillared Clays by Specific Techniques. Appl. Clay Sci. 2011, 53 (2), 97–105. https://doi.org/10.1016/J.CLAY.2010.09.018. Marinkovic-Neducin, R. P.; Kiss, E. E.; Cukic, T. Z.; Obadovic, D. Z. Thermal Behavior of Al-, AlFe- And AlCu-Pillared Interlayered Clays. J. Therm. Anal. Calorim. 2004, 78 (1), 307–321. https://doi.org/10.1023/B:JTAN.0000042177.82033.d0. Galeano, L. A.; Gil, A.; Vicente, M. A. Strategies for Immobilization of Manganese on Expanded Natural Clays: Catalytic Activity in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2011, 104 (3–4), 252–260. https://doi.org/10.1016/j.apcatb.2011.03.023. Gregg, S. J.; Sing, K. S. W.; Salzberg, H. W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114 (11), 279Ca. https://doi.org/10.1149/1.2426447. Rouquerol, F.; Rouquerol, J. (Jean); Sing, K. S. W. Adsorption by Powders and Porous Solids : Principles, Methodology, and Applications. 1999, 467. Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3 (5), 211–225. https://doi.org/10.1002/SIA.740030506. Wagner, C. D. Sensitivity Factors for XPS Analysis of Surface Atoms. J. Electron Spectros. Relat. Phenomena 1983, 32 (2), 99–102. https://doi.org/10.1016/0368-2048(83)85087-7. Degaga, G. D.; Trought, M.; Nemsak, S.; Crumlin, E. J.; Seel, M.; Pandey, R.; Perrine, K. A. Investigation of N2 Adsorption on Fe3O4(001) Using Ambient Pressure X-Ray Photoelectron Spectroscopy and Density Functional Theory. J. Chem. Phys. 2020, 152 (5), 054717. https://doi.org/10.1063/1.5138941. Poulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. Confirmation of X-Ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. J. Phys. Chem. C 2010, 114 (24), 10711–10718. https://doi.org/10.1021/JP100964X/ASSET/IMAGES/MEDIUM/JP-2010-00964X_0009.GIF. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36 (12), 1564–1574. https://doi.org/10.1002/SIA.1984. Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sensors Actuators B Chem. 2017, 239, 243–252. https://doi.org/10.1016/J.SNB.2016.08.010. Weng, X.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Clay Supported Bimetallic Fe/Ni Nanoparticles Used for Reductive Degradation of Amoxicillin in Aqueous Solution: Characterization and Kinetics. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 443, 404–409. https://doi.org/10.1016/j.colsurfa.2013.11.047. Sostenible, M. de A. y D. Resolución 631 de 2015 https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/ (accessed Nov 26, 2022). Carriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J. M.; Molina, R.; Moreno, S. Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al-Ce-Fe. Water Res. 2005, 39 (16), 3891–3899. https://doi.org/10.1016/j.watres.2005.06.034. Franck, S.; Fuhrmann-Selter, T.; Joseph, J. F.; Michelet, R.; Casilag, F.; Sirard, J. C.; Wicha, S. G.; Kloft, C. A Rapid, Simple and Sensitive Liquid Chromatography Tandem Mass Spectrometry Assay to Determine Amoxicillin Concentrations in Biological Matrix of Little Volume. Talanta 2019, 201, 253–258. https://doi.org/10.1016/J.TALANTA.2019.03.098. Weng, X.; Cai, W.; Lin, S.; Chen, Z. Degradation Mechanism of Amoxicillin Using Clay Supported Nanoscale Zero-Valent Iron. Appl. Clay Sci. 2017, 147 (July), 137–142. https://doi.org/10.1016/j.clay.2017.07.023. Weng, X.; Sun, Q.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Enhancement of Catalytic Degradation of Amoxicillin in Aqueous Solution Using Clay Supported Bimetallic Fe/Ni Nanoparticles. Chemosphere 2014, 103, 80–85. https://doi.org/10.1016/j.chemosphere.2013.11.033. Hirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New Hydrolysis Products of the Beta-Lactam Antibiotic Amoxicillin, Their PH-Dependent Formation and Search in Municipal Wastewater. Water Res. 2016, 88, 880–888. https://doi.org/10.1016/j.watres.2015.11.028. Cha, J. M.; Yang, S.; Carlson, K. H. Trace Determination of β-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1115 (1–2), 46–57. https://doi.org/10.1016/j.chroma.2006.02.086. Timm, A.; Borowska, E.; Majewsky, M.; Merel, S.; Zwiener, C.; Bräse, S.; Horn, H. Photolysis of Four Β‑lactam Antibiotics under Simulated Environmental Conditions: Degradation, Transformation Products and Antibacterial Activity. Sci. Total Environ. 2019, 651, 1605–1612. https://doi.org/10.1016/j.scitotenv.2018.09.248. Nägele, E.; Moritz, R. Structure Elucidation of Degradation Products of the Antibiotic Amoxicillin with Ion Trap MSn and Accurate Mass Determination by ESI TOF. J. Am. Soc. Mass Spectrom. 2005, 16 (10), 1670–1676. https://doi.org/10.1016/j.jasms.2005.06.002. Längin, A.; Alexy, R.; König, A.; Kümmerer, K. Deactivation and Transformation Products in Biodegradability Testing of SS-Lactams Amoxicillin and Piperacillin. Chemosphere 2009, 75 (3), 347–354. https://doi.org/10.1016/j.chemosphere.2008.12.032. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 111 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84299/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84299/2/1023915695.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84299/3/1023915695.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e2002b290d98e924c68b541496f4c4c5 83d543f0ca8f0ec26a310ec6df73ec67 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089796937580544 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Guáqueta, Sonia814037126929e00896906b96a95a3604Bueno Corredor, Julieth Natalia3e16895f05da19ba4cb6b30013ca0ddbEstado Sólido y Catálisis AmbientalBueno Corredor, Natalia [58169421400]2023-07-27T13:46:07Z2023-07-27T13:46:07Z2023https://repositorio.unal.edu.co/handle/unal/84299Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Una bentonita colombiana fue exitosamente pilarizada con precursores poliméricos de polihidroxocationes de Al, Al-Fe, Al-Cu y Al-Fe-Cu en estado sólido cuya síntesis es novedosa. Se estudió el efecto del contenido de Fe y Cu sobre las propiedades fisicoquímicas de la bentonita pilarizada con base en técnicas de caracterización como fluorescencia de rayos X (FRX), difracción de rayos X (DRX), microscopía electrónica de barrido (SEM), espectroscopia de fotoelectrones de rayos X (XPS), análisis térmicos y análisis textural (fisisorción de nitrógeno). Se utilizó el diseño de experimentos estadísticos de Box-Behnken para determinar los parámetros óptimos de las variables independientes: peróxido de hidrógeno (0.120-0.144 M), carga de catalizador (0.5-1.5 g/L) y tipo de catalizador (PILC FeCu1, FeCu5, FeCu10) en la oxidación catalítica de peróxido húmedo (CWPO) de amoxicilina. Las condiciones optimizadas de peróxido de hidrógeno (0.137 M) y carga del catalizador (0.7 g/L) se emplearon para comparar el desempeño catalítico de los catalizadores del 1, 5 y 10 % de metal (Fe, Cu), alcanzando una remoción entre el 91-100% de amoxicilina. Las constantes de velocidad obtenidas permitieron identificar el mejor sólido de cada serie para estudiar el grado de mineralización, resultando como el mejor catalizador la PILCAlFeCu10 con una remoción de TOC del 24.6% a las 2h de reacción. Después de tres ciclos de reúso el catalizador mantuvo su actividad catalítica en la eliminación de amoxicilina. Se estudió el sistema con doble agente oxidante (peróxido de hidrogeno- persulfato de potasio) en el que se verificaron mejoras en el desempeño catalítico de PILC-AlFeCu10 debido a un efecto cooperativo en la producción simultánea de radicales hidroxilo y anión sulfato. (Texto tomado de la fuente)A Colombian bentonite is successfully pillared with Al, Al-Fe, Al-Cu and Al-Fe-Cu polyhydroxications in solid state. The effect of the Fe and Cu content on the physicochemical properties of the pillared bentonite was evaluated using characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermal analysis and textural analysis (nitrogen physisorption). The Box-Behnken statistical experiment design was used to determine the optimal parameters of the independent variables hydrogen peroxide (0.120-0.144 M), catalyst load (0.5-1.5 g/L) and type of catalyst (PILC FeCu1, FeCu5, FeCu10) in the catalytic oxidation (CWPO) of amoxicillin. The optimized conditions of hydrogen peroxide (0.137 M) and catalyst loading (0.7 g/L) were used to compare the catalytic performance of the catalysts with 1, 5 and 10 % AlFe, AlCu and AlFeCu reaching a removal between 91-100% of amoxicillin at T and ambient pressure. The rate constants determined allowed the identification of the best catalyst of each series to study the degree of mineralization and choose the best catalyst: the pillared clay with AlFeCu10, with a TOC removal of 24.6% after 2 hours of reaction. After three cycles of reuse, the catalyst maintained its catalytic activity in removing amoxicillin without leaching any metal. The system with double oxidizing agent (hydrogen peroxide-potassium persulfate) was studied, in which improvements in the catalytic performance of PILC-AlFeCu10 were identified due to a cooperative effect in the simultaneous production of hydroxyl and sulfate anion radicals.MaestríaMagíster en Ciencias - QuímicaCatálisis heterogéneaxv, 111 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánica500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosArcilla pilarizadaPolihidroxicatiónKeggin Al-Fe-CuOxidación catalítica de peróxido húmedoAmoxicilinaSuperficie de respuestaDiseño Box BehnkenPillared clayAl-Fe-Cu KegginPolyhydroxycationWet peroxide catalytic oxidationAmoxicillinResponse surfaceBox Behnken designBentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en aguaBentonite pillared with iron and copper for the degradation of amoxicillin present in waterTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMUNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Unicef/Who 2019, 140.Ameta, S. C. Introduction. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-810499-6.00001-2.Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016.Babuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2 (1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011.Mohapatra, D. P.; Brar, S. K.; Tyagi, R. D.; Picard, P.; Surampalli, R. Y. Analysis and Advanced Oxidation Treatment of a Persistent Pharmaceutical Compound in Wastewater and Wastewater Sludge-Carbamazepine. Sci. Total Environ. 2014, 470–471, 58–75. https://doi.org/10.1016/j.scitotenv.2013.09.034.Yang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102.World Health Organization. Pharmaceuticals in drinking-water https://apps.who.int/iris/handle/10665/44630 (accessed Nov 21, 2021).Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299.Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F. Y.; Ahrens, L. Occurrence and Removal of Chemicals of Emerging Concern in Wastewater Treatment Plants and Their Impact on Receiving Water Systems. Sci. Total Environ. 2021, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122.Li, F.; Chen, L.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Feng, C.; Wen, D. Identification of the Priority Antibiotics Based on Their Detection Frequency, Concentration, and Ecological Risk in Urbanized Coastal Water. Sci. Total Environ. 2020, 747, 141275. https://doi.org/10.1016/j.scitotenv.2020.141275.Mijangos, L.; Ziarrusta, H.; Ros, O.; Kortazar, L.; Fernández, L. A.; Olivares, M.; Zuloaga, O.; Prieto, A.; Etxebarria, N. Occurrence of Emerging Pollutants in Estuaries of the Basque Country: Analysis of Sources and Distribution, and Assessment of the Environmental Risk. Water Res. 2018, 147, 152–163. https://doi.org/10.1016/j.watres.2018.09.033.Botero-Coy, A. M.; Martínez-Pachón, D.; Boix, C.; Rincón, R. J.; Castillo, N.; Arias-Marín, L. P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. ‘An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater.’ Sci. Total Environ. 2018, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088.Aus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339.Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045.Murray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.;Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399 (10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/B227DEB3-FF04-497F-82AC-637D8AB7F679/MMC1.PDF.Antimicrobial resistance https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed May 29, 2022).Jim O’Neill. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance https://apo.org.au/node/63983 (accessed May 29, 2022).Global Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10 (9), 354–355. https://doi.org/10.1128/microbe.10.354.1.Cuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland) 2020, 12 (1). https://doi.org/10.3390/w12010102.Macías-Quiroga, I. F.; Henao-Aguirre, P. A.; Marín-Flórez, A.; Arredondo-López, S. M.; Sanabria-González, N. R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2020 2819 2020, 28 (19), 23791–23811. https://doi.org/10.1007/S11356-020-11333-7.Ribeiro, A. R.; Nunes, O. C.; Pereira, M. F. R.; Silva, A. M. T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/J.ENVINT.2014.10.027.J. M. Thomas andW. J. Thomas. Principles and Practice of Heterogeneous Catalysis; 2015.Navalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Appl. Catal. B Environ. 2010, 99 (1–2), 1–26. https://doi.org/10.1016/j.apcatb.2010.07.006.Huang, C. P.; Dong, C.; Tang, Z. Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manag. 1993, 13 (5–7), 361–377. https://doi.org/10.1016/0956-053X(93)90070-D.Nidheesh, P. V. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5 (51), 40552–40577. https://doi.org/10.1039/c5ra02023a.World Health Organization. WHO Report on Surveillance of Antibiotic Consumption. Who 2018, 128.Elizalde-Velázquez, A.; Gómez-Oliván, L. M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. Environ. Heal. Risk - Hazard. Factors to Living Species 2016. https://doi.org/10.5772/62049.De Franco, M. A. E.; de Carvalho, C. B.; Bonetto, M. M.; Soares, R. de P.; Féris, L. A. Removal of Amoxicillin from Water by Adsorption onto Activated Carbon in Batch Process and Fixed Bed Column: Kinetics, Isotherms, Experimental Design and Breakthrough Curves Modelling. J. Clean. Prod. 2017, 161, 947–956. https://doi.org/10.1016/j.jclepro.2017.05.197.Roy, J. The Top Five Most Common or Long-Selling Drugs. An Introd. to Pharm. Sci. 2011, 231–296. https://doi.org/10.1533/9781908818041.231.Doi, Y.; Chambers, H. F. Penicillins and β-Lactamase Inhibitors. Mand. Douglas, Bennett’s Princ. Pract. Infect. Dis. 2015, 1, 263-277.e3. https://doi.org/10.1016/B978-1-4557-4801-3.00020-5.Pesqueira, J. F. J. R.; Pereira, M. F. R.; Silva, A. M. T. Environmental Impact Assessment of Advanced Urban Wastewater Treatment Technologies for the Removal of Priority Substances and Contaminants of Emerging Concern: A Review. J. Clean. Prod. 2020, 261. https://doi.org/10.1016/j.jclepro.2020.121078.Thomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. https://doi.org/10.1016/j.jhazmat.2020.124082.A. Ya. Sychev; V. G. Isak. Iron Compounds and the Mechanisms of the Homogeneous Catalysis of the Activation of O2 and H2O2 and of the Oxidation of Organic Substrates. Russ. Chem. Rev. 1995, 64 (12), 1105–1129.Guo, R.; Xie, X.; Chen, J. The Degradation of Antibiotic Amoxicillin in the Fenton-Activated Sludge Combined System. Environ. Technol. (United Kingdom) 2015, 36 (7), 844–851. https://doi.org/10.1080/09593330.2014.963696.Trovó, A. G.; Melo, S. A. S.; Nogueira, R. F. P. Photodegradation of the Pharmaceuticals Amoxicillin, Bezafibrate and Paracetamol by the Photo-Fenton Process—Application to Sewage Treatment Plant Effluent. J. Photochem. Photobiol. A Chem. 2008, 198 (2–3), 215–220. https://doi.org/10.1016/J.JPHOTOCHEM.2008.03.011.Trovó, A. G.; Pupo Nogueira, R. F.; Agüera, A.; Fernandez-Alba, A. R.; Malato, S. Degradation of the Antibiotic Amoxicillin by Photo-Fenton Process - Chemical and Toxicological Assessment. Water Res. 2011, 45 (3), 1394–1402. https://doi.org/10.1016/j.watres.2010.10.029.Ayodele, O. B.; Lim, J. K.; Hameed, B. H. Pillared Montmorillonite Supported Ferric Oxalate as Heterogeneous Photo-Fenton Catalyst for Degradation of Amoxicillin. Appl. Catal. A Gen. 2012, 413–414, 301–309. https://doi.org/10.1016/j.apcata.2011.11.023.Zha, S.; Cheng, Y.; Gao, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Nanoscale Zero-Valent Iron as a Catalyst for Heterogeneous Fenton Oxidation of Amoxicillin. Chem. Eng. J. 2014, 255, 141–148. https://doi.org/10.1016/j.cej.2014.06.057.Ayodele, O. B. Effect of Phosphoric Acid Treatment on Kaolinite Supported Ferrioxalate Catalyst for the Degradation of Amoxicillin in Batch Photo-Fenton Process. Appl. Clay Sci. 2013, 72, 74–83. https://doi.org/10.1016/j.clay.2013.01.004.Kalantary, R. R.; Farzadkia, M.; Kermani, M.; Rahmatinia, M. Heterogeneous Electro-Fenton Process by Nano-Fe3O4 for Catalytic Degradation of Amoxicillin: Process Optimization Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6 (4), 4644–4652. https://doi.org/10.1016/j.jece.2018.06.043.Liu, Y.; Zha, S.; Rajarathnam, D.; Chen, Z. Divalent Cations Impacting on Fenton-like Oxidation of Amoxicillin Using NZVI as a Heterogeneous Catalyst. Sep. Purif. Technol. 2017, 188 (July), 548–552. https://doi.org/10.1016/j.seppur.2017.07.061.Fenton, H. J. H. LXXIII. - Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. https://doi.org/10.1039/CT8946500899.Giwa, A.; Yusuf, A.; Balogun, H. A.; Sambudi, N. S.; Bilad, M. R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. https://doi.org/10.1016/j.psep.2020.08.015.liu, X. Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecol. Environ. Sci. 2018, 3 (1). https://doi.org/10.15406/mojes.2018.03.00060.Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Review. Appl. Catal. B Environ. 2019, 255 (May), 117739. https://doi.org/10.1016/j.apcatb.2019.05.041.Szultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In Vitro Metabolites of Amoxicillin in Human Liver Microsomes by LC-ESI/MS. Chromatographia 2014, 77 (15), 1027–1035. https://doi.org/10.1007/S10337-014-2648-2.He, J.; Yang, X.; Men, B.; Wang, D. Interfacial Mechanisms of Heterogeneous Fenton Reactions Catalyzed by Iron-Based Materials: A Review. J. Environ. Sci. (China) 2016, 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003.Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016.Nie, M.; Li, Y.; He, J.; Xie, C.; Wu, Z.; Sun, B.; Zhang, K.; Kong, L.; Liu, J. Degradation of Tetracycline in Water Using Fe3O4 Nanospheres as Fenton-like Catalysts: Kinetics, Mechanisms and Pathways. New J. Chem. 2020, 44 (7), 2847–2857. https://doi.org/10.1039/d0nj00125b.Hakimi, M.; Alikhani, M. Characterization of α-Fe2O3 Nanoparticles Prepared from a New [Fe(Ofloxacin)2Cl2] Precursor: A Heterogeneous Photocatalyst for Removal of Methylene Blue and Ciprofloxacin in Water. J. Inorg. Organomet. Polym. Mater. 2020, 30 (2), 504–512. https://doi.org/10.1007/s10904-019-01210-3.He, F.; Ma, W.; Zhong, D.; Yuan, Y. Degradation of Chloramphenicol by α-FeOOH-Activated Two Different Double-Oxidant Systems with Hydroxylamine Assistance. Chemosphere 2020, 250, 126150. https://doi.org/10.1016/j.chemosphere.2020.126150.Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3o4 Composite. Catalysts 2021, 11 (2), 1–17. https://doi.org/10.3390/catal11020177.Ahmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts 2020, 10 (11), 1–19. https://doi.org/10.3390/catal10111241.Zheng, C. M.; Yang, C. W.; Cheng, X. Z.; Xu, S. C.; Fan, Z. P.; Wang, G. H.; Wang, S. B.; Guan, X. F.; Sun, X. H. Specifically Enhancement of Heterogeneous Fenton-like Degradation Activities for Ofloxacin with Synergetic Effects of Bimetallic Fe-Cu on Ordered Mesoporous Silicon. Sep. Purif. Technol. 2017, 189, 357–365. https://doi.org/10.1016/j.seppur.2017.08.015.Liu, J.; Wu, X.; Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin Degradation by Fe3O4-CeO2/AC Fenton-like System: Optimization, Kinetics, and Degradation Pathways. Mol. Catal. 2019, 465, 61–67. https://doi.org/10.1016/j.mcat.2018.12.020.Tang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52 (9), 5367–5377. https://doi.org/10.1021/acs.est.8b00092.De Melo Costa-Serge, N.; Gonçalves, R. G. L.; Rojas-Mantilla, H. D.; Santilli, C. V.; Hammer, P.; Nogueira, R. F. P. Fenton-like Degradation of Sulfathiazole Using Copper-Modified MgFe-CO3 Layered Double Hydroxide. J. Hazard. Mater. 2021, 413, 125388. https://doi.org/10.1016/j.jhazmat.2021.125388.Hernández, W.; Moreno, S.; Molina, R. Caracterización Estructural y Textural de Una Bentonita Colombiana. Rev. colomb. quím. 2007, 36 (1), 213–225.Carriazo, J. Saavedra, M. Molina, F. Estudio Por DRX de La Intercalación de Un Mineral de Arcilla Tipo 2:1 Con Especies Polioxocationicas de Aluminio. Rev. Mex. Ing. Química 2009, 8 (1), 299–305.Gonzalez-Olmos, R.; Martin, M. J.; Georgi, A.; Kopinke, F. D.; Oller, I.; Malato, S. Fe-Zeolites as Heterogeneous Catalysts in Solar Fenton-like Reactions at Neutral PH. Appl. Catal. B Environ. 2012, 125, 51–58. https://doi.org/10.1016/j.apcatb.2012.05.022.Liu, T. X.; Liu, Y.; Zhang, Z. J.; Li, F. B.; Li, X. Z. Comparison of Aqueous Photoreactions with TiO2 in Its Hydrosol Solution and Powdery Suspension for Light Utilization. Ind. Eng. Chem. Res. 2011, 50 (13), 7841–7848. https://doi.org/10.1021/ie102584j.Kay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe 2O3 Films. J. Am. Chem. Soc. 2006, 128 (49), 15714–15721. https://doi.org/10.1021/ja064380l.Xiang, Q.; Yu, J.; Wong, P. K. Quantitative Characterization of Hydroxyl Radicals Produced by Various Photocatalysts. J. Colloid Interface Sci. 2011, 357 (1), 163–167. https://doi.org/10.1016/j.jcis.2011.01.093.Tehrani-Bagha, A. R.; Balchi, T. Catalytic Wet Peroxide Oxidation. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 375–402. https://doi.org/10.1016/B978-0-12-810499-6.00012-7.Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F. J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019, 290. https://doi.org/10.1016/j.molliq.2019.111177.Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes – A Review. Chemosphere 2017, 174, 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019.Hamd, W. S.; Dutta, J. Heterogeneous Photo-Fenton Reaction and Its Enhancement upon Addition of Chelating Agents; Elsevier Inc., 2020. https://doi.org/10.1016/b978-0-12-818489-9.00011-6.Bergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of Clay Science; 2006; Vol. 1. https://doi.org/10.1016/S1572-4352(05)01039-1.Macías-Quiroga, I. F.; Rengifo-Herrera, J. A.; Arredondo-López, S. M.; Marín-Flórez, A.; Sanabria-González, N. R. Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis. Sci. World J. 2022, 2022. https://doi.org/10.1155/2022/5728678.Galeano, L. A.; Gil, A.; Vicente, M. A. Effect of the Atomic Active Metal Ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-Intercalating Solutions on the Physicochemical Properties and Catalytic Activity of Pillared Clays in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2010, 100 (1–2), 271–281. https://doi.org/10.1016/j.apcatb.2010.08.003.Sanabria, N.; Álvarez, A.; Molina, R.; Moreno, S. Synthesis of Pillared Bentonite Starting from the Al-Fe Polymeric Precursor in Solid State, and Its Catalytic Evaluation in the Phenol Oxidation Reaction. Catal. Today 2008, 133–135 (1–4), 530–533. https://doi.org/10.1016/j.cattod.2007.12.082.Sanabria, N. R.; Centeno, M. A.; Molina, R.; Moreno, S. Pillared Clays with Al-Fe and Al-Ce-Fe in Concentrated Medium: Synthesis and Catalytic Activity. Appl. Catal. A Gen. 2009, 356 (2), 243–249. https://doi.org/10.1016/j.apcata.2009.01.013.Martínez T, L. M.; Domínguez, M. I.; Sanabria, N.; Hernández, W. Y.; Moreno, S.; Molina, R.; Odriozola, J. A.; Centeno, M. A. Deposition of Al-Fe Pillared Bentonites and Gold Supported Al-Fe Pillared Bentonites on Metallic Monoliths for Catalytic Oxidation Reactions. Appl. Catal. A Gen. 2009, 364 (1–2), 166–173. https://doi.org/10.1016/j.apcata.2009.05.046.Olaya, A.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al13-Fe and Al13-Fe-Ce Polymers in Solid State Assisted by Microwave and Ultrasound: Characterization and Catalytic Activity. Appl. Catal. A Gen. 2009, 370 (1–2), 7–15. https://doi.org/10.1016/j.apcata.2009.08.018.Sanabria, N. R.; Molina, R.; Moreno, S. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater. Int. J. Photoenergy 2012, 2012 (1). https://doi.org/10.1155/2012/864104.Peralta, Y. M.; Sanabria, N. R.; Carriazo, J. G.; Moreno, S.; Molina, R. Catalytic Wet Hydrogen Peroxide Oxidation of Phenolic Compounds in Coffee Wastewater Using Al–Fe-Pillared Clay Extrudates. Desalin. Water Treat. 2015, 55 (3), 647–654. https://doi.org/10.1080/19443994.2014.920279.Sanabria, N.; Molina, R.; Moreno, S. Efecto Del Ultrssonido En La Síntesis de Arcilla Pilarizada Con Aluminio En Medio Concentrado. Rev. Colomb. Química 2008, 37 (3), 325–335.González, O. P.; Becerra, J. E.; Irreño, N. A. T.; Vargas, S. S.; Ávila, A. P.; Primelles, R. F. L.; González, R. G.; González, H.; Ortiz, F. J. Z.; Rincón, G. P.; Aponte, C. L. G.; Cárdenas, S. C. Recursos Minerales de Colombia. Libr. del Serv. Geológico Colomb. 2019, 1. https://doi.org/10.32685/9789585246973.Hussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, No. 0123456789. https://doi.org/10.1007/s10311-021-01185-z.Bokare, A. D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes; Elsevier B.V., 2014; Vol. 275. https://doi.org/10.1016/j.jhazmat.2014.04.054.Lin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environ. Sci. Technol. 1998, 32 (10), 1417–1423. https://doi.org/10.1021/es970648k.Wang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S. P.; Wu, W. D.; Wu, Z. Nanostructured Semiconductor Supported Iron Catalysts for Heterogeneous Photo-Fenton Oxidation: A Review. J. Mater. Chem. A 2020, 8 (31), 15513–15546. https://doi.org/10.1039/d0ta04541a.Lai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; An, N. Enhancing Iron Redox Cycling for Promoting Heterogeneous Fenton Performance: A Review. Sci. Total Environ. 2021, 775, 145850. https://doi.org/10.1016/j.scitotenv.2021.145850.Li, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J.; Xiao, S.; Zeng, G. Recent Advances in Waste Water Treatment through Transition Metal Sulfides-Based Advanced Oxidation Processes. Water Res. 2021, 192, 116850. https://doi.org/10.1016/j.watres.2021.116850.Nguyen, T. B.; Dong, C. Di; Huang, C. P.; Chen, C. W.; Hsieh, S. L.; Hsieh, S. Fe-Cu Bimetallic Catalyst for the Degradation of Hazardous Organic Chemicals Exemplified by Methylene Blue in Fenton-like Reaction. J. Environ. Chem. Eng. 2020, 8 (5), 104139. https://doi.org/10.1016/J.JECE.2020.104139.Qian, H.; Qianwen, S.; Qi, Z.; Yanhui, N.; Yongqiang, W. Development of Mesh-Type Fenton-like Cu/Fex/γ-Al2O3/Al Catalysts and Application for Catalytic Degradation of Dyes. Water Sci. Technol. 2020, 81 (10), 2057–2065. https://doi.org/10.2166/WST.2020.261.Hurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R. M.; Natividad, R. Paracetamol Mineralization by Photo Fenton Process Catalyzed by a Cu/Fe-PILC under Circumneutral PH Conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. https://doi.org/10.1016/J.JPHOTOCHEM.2019.01.012.Khankhasaeva, S. T.; Dashinamzhilova, E. T.; Dambueva, D. V. Oxidative Degradation of Sulfanilamide Catalyzed by Fe/Cu/Al-Pillared Clays. Appl. Clay Sci. 2017, 146, 92–99. https://doi.org/10.1016/J.CLAY.2017.05.018.Hadjltaief, H. B.; Zina, M. Ben; Galvez, M. E.; Da Costa, P. Photo-Fenton Oxidation of Phenol over a Cu-Doped Fe-Pillared Clay. Comptes Rendus Chim. 2015, 18 (10), 1161–1169. https://doi.org/10.1016/J.CRCI.2015.08.004.Zhou, S.; Zhang, C.; Hu, X.; Wang, Y.; Xu, R.; Xia, C.; Zhang, H.; Song, Z. Catalytic Wet Peroxide Oxidation of 4-Chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-Pillared Clays: Sensitivity, Kinetics and Mechanism. Appl. Clay Sci. 2014, 95, 275–283. https://doi.org/10.1016/J.CLAY.2014.04.024.Zhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-Based Catalysts for Persulfate-Based Advanced Oxidation Process: Microstructure, Property and Tailoring. Chem. Eng. J. 2021, 421, 127845. https://doi.org/10.1016/J.CEJ.2020.127845.Wang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059.Duan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D. D. Limitations and Prospects of Sulfate-Radical Based Advanced Oxidation Processes. J. Environ. Chem. Eng. 2020, 8 (4), 103849. https://doi.org/10.1016/J.JECE.2020.103849.Dulova, N.; Kattel, E.; Trapido, M. Degradation of Naproxen by Ferrous Ion-Activated Hydrogen Peroxide, Persulfate and Combined Hydrogen Peroxide/Persulfate Processes: The Effect of Citric Acid Addition. Chem. Eng. J. 2017, 318, 254–263. https://doi.org/10.1016/J.CEJ.2016.07.006.Kyzas, G. Z.; Mengelizadeh, N.; Saloot, M. khodadadi; Mohebi, S.; Balarak, D. Sonochemical Degradation of Ciprofloxacin by Hydrogen Peroxide and Persulfate Activated by Ultrasound and Ferrous Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128627. https://doi.org/10.1016/J.COLSURFA.2022.128627.Li, M.; Yang, X.; Wang, D. S.; Yuan, J. Enhanced Oxidation of Erythromycin by Persulfate Activated Iron Powder–H2O2 System: Role of the Surface Fe Species and Synergistic Effect of Hydroxyl and Sulfate Radicals. Chem. Eng. J. 2017, 317, 103–111. https://doi.org/10.1016/J.CEJ.2016.12.126.Karimifard, S.; Alavi Moghaddam, M. R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. https://doi.org/10.1016/J.SCITOTENV.2018.05.355.Peixoto, A. L. de C.; Costalonga, A. G. C.; Esperança, M. N.; Salazar, R. F. dos S. Design of Experiments Applied to Antibiotics Degradation by Fenton’s Reagent. Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process. 2018. https://doi.org/10.5772/68097.Pulido, H. G.; Salazar, R. de la V. Análisis y Diseño de Experimentos, Segunda ed.; Mc Graw Hill, 2008.Nair, A. T.; Makwana, A. R.; Ahammed, M. M. The Use of Response Surface Methodology for Modelling and Analysis of Water and Wastewater Treatment Processes: A Review. Water Sci. Technol. 2014, 69 (3), 464–478. https://doi.org/10.2166/WST.2013.733.Ay, F.; Kargi, F. Advanced Oxidation of Amoxicillin by Fenton’s Reagent Treatment. J. Hazard. Mater. 2010, 179 (1–3), 622–627. https://doi.org/10.1016/J.JHAZMAT.2010.03.048.Yazdanbakhsh, A. R.; Daraei, H.; Rafiee, M.; Kamali, H. Performance of Iron Nano Particles and Bimetallic Ni/Fe Nanoparticles in Removal of Amoxicillin Trihydrate from Synthetic Wastewater. Water Sci. Technol. 2016, 73 (12), 2998–3007. https://doi.org/10.2166/WST.2016.157.Verma, M.; Haritash, A. K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020, 20, 101072. https://doi.org/10.1016/J.ETI.2020.101072.Casey, W. H. Large Aqueous Aluminum Hydroxide Molecules. Chem. Rev. 2006, 106 (1), 1–16. https://doi.org/10.1021/CR040095D/ASSET/CR040095D.FP.PNG_V03.Wen, K.; Wei, J.; He, H.; Zhu, J.; Xi, Y. Keggin-Al30: An Intercalant for Keggin-Al30 Pillared Montmorillonite. Appl. Clay Sci. 2019, 180, 105203. https://doi.org/10.1016/J.CLAY.2019.105203.Cardona, Y.; Korili, S. A.; Gil, A. Understanding the Formation of Al13 and Al30 Polycations to the Development of Microporous Materials Based on Al13-and Al30-PILC Montmorillonites: A Review. Appl. Clay Sci. 2021, 203, 105996. https://doi.org/10.1016/J.CLAY.2021.105996.Sarpola, A. The Hydrolysis of Aluminium, A Mass Spectrometric Study; 2007.Furrer, G.; Ludwig, C.; Schindler, P. W. On the Chemistry of the Keggin Al13 Polymer. J. Colloid Interface Sci. 1992, 149 (1), 56–67. https://doi.org/10.1016/0021-9797(92)90391-x.Corona., O. C.; Pastrana., L. El Método de La Intensidad Absoluta Por Fluorescencia de Rayos X Para El Análisis Cuantitativo de Elementos Pesados. Rev. Mex. Física 1962, 11 (2), 79–128.Jenkins, R.; Snyder, R. L. Introduction to X-Ray Powder Diffractometry. Introd. to X-ray Powder Diffractometry 1996. https://doi.org/10.1002/9781118520994.Reimschussel, A. M.; Fredericks, R. J. Application of Scanning Electron Microscopy to the Study of the Morphology of Multicomponent Catalyst Systems. J. Mater. Sci. 1969 410 1969, 4 (10), 885–889. https://doi.org/10.1007/BF00549779.Ipohorski, M.; Bozzano, P. B. Microscopía Electrónica de Barrido En La Caracterización de Materiales. Cienc. Invest. 2013, 63 (3), 43–53.Hemminger, W.; Sarge, S. M. Definitions, Nomenclature, Terms and Literature. Handb. Therm. Anal. Calorim. 1998, 1, 1–73. https://doi.org/10.1016/S1573-4374(98)80004-6.Kloprogge, J. T.; Geus, J. W.; Jansen, J. B. H.; Seykens, D. Thermal Stability of Basic Aluminum Sulfate. Thermochim. Acta 1992, 209 (C), 265–276. https://doi.org/10.1016/0040-6031(92)80204-A.Galeano, L. A.; Vicente, M. Á.; Gil, A. Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catal. Rev. - Sci. Eng. 2014, 56 (3), 239–287. https://doi.org/10.1080/01614940.2014.904182.Aouad, A.; Pineau, A.; Tchoubar, D.; Bergaya, F. Al-Pillared Montmorillonite Obtained in Concentrated Media. Effect of the Anions (Nitrate, Sulfate and Chloride) Associated with the Al Species. Clays Clay Miner. 2006, 54 (5), 626–637. https://doi.org/10.1346/CCMN.2006.0540509.Baloyi, J.; Ntho, T.; Moma, J. Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8 (10), 5197–5211. https://doi.org/10.1039/c7ra12924f.Banwart, W. .; Stucki, J. . Advanced Chemical Methods for Soil and Clay Minerals Research; 1979. https://doi.org/10.1007/978-94-009-9094-4.Olaya, A.; Blanco, G.; Bernal, S.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al–Fe and Al–Fe–Ce Starting from Concentrated Suspensions of Clay Using Microwaves or Ultrasound, and Their Catalytic Activity in the Phenol Oxidation Reaction. Appl. Catal. B Environ. 2009, 93 (1–2), 56–65. https://doi.org/10.1016/J.APCATB.2009.09.012.Daza, C. E.; Gallego, R. M. Estudio Morfológico y Estructural de Una Arcilla Colombiana Pilarizada En Presencia de Ultrasonido y Microondas. Sci. Tech. 2011, 3 (49), 292–297. https://doi.org/10.22517/23447214.1547.Gil, A.; Korili, S. A.; Trujillano, R.; Vicente, M. A. A Review on Characterization of Pillared Clays by Specific Techniques. Appl. Clay Sci. 2011, 53 (2), 97–105. https://doi.org/10.1016/J.CLAY.2010.09.018.Marinkovic-Neducin, R. P.; Kiss, E. E.; Cukic, T. Z.; Obadovic, D. Z. Thermal Behavior of Al-, AlFe- And AlCu-Pillared Interlayered Clays. J. Therm. Anal. Calorim. 2004, 78 (1), 307–321. https://doi.org/10.1023/B:JTAN.0000042177.82033.d0.Galeano, L. A.; Gil, A.; Vicente, M. A. Strategies for Immobilization of Manganese on Expanded Natural Clays: Catalytic Activity in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2011, 104 (3–4), 252–260. https://doi.org/10.1016/j.apcatb.2011.03.023.Gregg, S. J.; Sing, K. S. W.; Salzberg, H. W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114 (11), 279Ca. https://doi.org/10.1149/1.2426447.Rouquerol, F.; Rouquerol, J. (Jean); Sing, K. S. W. Adsorption by Powders and Porous Solids : Principles, Methodology, and Applications. 1999, 467.Wagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3 (5), 211–225. https://doi.org/10.1002/SIA.740030506.Wagner, C. D. Sensitivity Factors for XPS Analysis of Surface Atoms. J. Electron Spectros. Relat. Phenomena 1983, 32 (2), 99–102. https://doi.org/10.1016/0368-2048(83)85087-7.Degaga, G. D.; Trought, M.; Nemsak, S.; Crumlin, E. J.; Seel, M.; Pandey, R.; Perrine, K. A. Investigation of N2 Adsorption on Fe3O4(001) Using Ambient Pressure X-Ray Photoelectron Spectroscopy and Density Functional Theory. J. Chem. Phys. 2020, 152 (5), 054717. https://doi.org/10.1063/1.5138941.Poulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. Confirmation of X-Ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. J. Phys. Chem. C 2010, 114 (24), 10711–10718. https://doi.org/10.1021/JP100964X/ASSET/IMAGES/MEDIUM/JP-2010-00964X_0009.GIF.Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36 (12), 1564–1574. https://doi.org/10.1002/SIA.1984.Asif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sensors Actuators B Chem. 2017, 239, 243–252. https://doi.org/10.1016/J.SNB.2016.08.010.Weng, X.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Clay Supported Bimetallic Fe/Ni Nanoparticles Used for Reductive Degradation of Amoxicillin in Aqueous Solution: Characterization and Kinetics. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 443, 404–409. https://doi.org/10.1016/j.colsurfa.2013.11.047.Sostenible, M. de A. y D. Resolución 631 de 2015 https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/ (accessed Nov 26, 2022).Carriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J. M.; Molina, R.; Moreno, S. Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al-Ce-Fe. Water Res. 2005, 39 (16), 3891–3899. https://doi.org/10.1016/j.watres.2005.06.034.Franck, S.; Fuhrmann-Selter, T.; Joseph, J. F.; Michelet, R.; Casilag, F.; Sirard, J. C.; Wicha, S. G.; Kloft, C. A Rapid, Simple and Sensitive Liquid Chromatography Tandem Mass Spectrometry Assay to Determine Amoxicillin Concentrations in Biological Matrix of Little Volume. Talanta 2019, 201, 253–258. https://doi.org/10.1016/J.TALANTA.2019.03.098.Weng, X.; Cai, W.; Lin, S.; Chen, Z. Degradation Mechanism of Amoxicillin Using Clay Supported Nanoscale Zero-Valent Iron. Appl. Clay Sci. 2017, 147 (July), 137–142. https://doi.org/10.1016/j.clay.2017.07.023.Weng, X.; Sun, Q.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Enhancement of Catalytic Degradation of Amoxicillin in Aqueous Solution Using Clay Supported Bimetallic Fe/Ni Nanoparticles. Chemosphere 2014, 103, 80–85. https://doi.org/10.1016/j.chemosphere.2013.11.033.Hirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New Hydrolysis Products of the Beta-Lactam Antibiotic Amoxicillin, Their PH-Dependent Formation and Search in Municipal Wastewater. Water Res. 2016, 88, 880–888. https://doi.org/10.1016/j.watres.2015.11.028.Cha, J. M.; Yang, S.; Carlson, K. H. Trace Determination of β-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1115 (1–2), 46–57. https://doi.org/10.1016/j.chroma.2006.02.086.Timm, A.; Borowska, E.; Majewsky, M.; Merel, S.; Zwiener, C.; Bräse, S.; Horn, H. Photolysis of Four Β‑lactam Antibiotics under Simulated Environmental Conditions: Degradation, Transformation Products and Antibacterial Activity. Sci. Total Environ. 2019, 651, 1605–1612. https://doi.org/10.1016/j.scitotenv.2018.09.248.Nägele, E.; Moritz, R. Structure Elucidation of Degradation Products of the Antibiotic Amoxicillin with Ion Trap MSn and Accurate Mass Determination by ESI TOF. J. Am. Soc. Mass Spectrom. 2005, 16 (10), 1670–1676. https://doi.org/10.1016/j.jasms.2005.06.002.Längin, A.; Alexy, R.; König, A.; Kümmerer, K. Deactivation and Transformation Products in Biodegradability Testing of SS-Lactams Amoxicillin and Piperacillin. Chemosphere 2009, 75 (3), 347–354. https://doi.org/10.1016/j.chemosphere.2008.12.032.Estado Sólido y Catálisis Ambiental (ESCA)Universidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84299/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1023915695.2023.pdf1023915695.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf7227778https://repositorio.unal.edu.co/bitstream/unal/84299/2/1023915695.2023.pdfe2002b290d98e924c68b541496f4c4c5MD52THUMBNAIL1023915695.2023.pdf.jpg1023915695.2023.pdf.jpgGenerated Thumbnailimage/jpeg4748https://repositorio.unal.edu.co/bitstream/unal/84299/3/1023915695.2023.pdf.jpg83d543f0ca8f0ec26a310ec6df73ec67MD53unal/84299oai:repositorio.unal.edu.co:unal/842992024-08-17 00:00:05.865Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |