Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas
graficas, mapas, tablas
- Autores:
-
Ospina Aguirre, Carolina
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85736
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Dengue
Redes complejas
Medidas de control vectorial
Brotes Epidémicos de Dengue
Modelado matemático del dengue
Modelo matemático
Control vectorial
Effect human mobility in dengue
Dengue Epidemic Outbreaks
Modeling of Dengue
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_285926b1f0ff83efd8eb68a829394f8b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85736 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
dc.title.translated.eng.fl_str_mv |
Modeling of dengue epidemic outbreaks for public health decision-making : Effect of mobility in the department of Caldas |
title |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
spellingShingle |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Dengue Redes complejas Medidas de control vectorial Brotes Epidémicos de Dengue Modelado matemático del dengue Modelo matemático Control vectorial Effect human mobility in dengue Dengue Epidemic Outbreaks Modeling of Dengue |
title_short |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
title_full |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
title_fullStr |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
title_full_unstemmed |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
title_sort |
Modelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de Caldas |
dc.creator.fl_str_mv |
Ospina Aguirre, Carolina |
dc.contributor.advisor.none.fl_str_mv |
Olivar-Tost, Gerard Osorio Londoño, Gustavo Adolfo |
dc.contributor.author.none.fl_str_mv |
Ospina Aguirre, Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
AbcDynamics |
dc.contributor.orcid.spa.fl_str_mv |
Ospina Aguirre, Carolina [0000000339924289] |
dc.contributor.cvlac.spa.fl_str_mv |
Carolina Ospina Aguirre |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Carolina-Ospina |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=F3rcKnMAAAAJ&hl=en |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Dengue Redes complejas Medidas de control vectorial Brotes Epidémicos de Dengue Modelado matemático del dengue Modelo matemático Control vectorial Effect human mobility in dengue Dengue Epidemic Outbreaks Modeling of Dengue |
dc.subject.proposal.spa.fl_str_mv |
Dengue Redes complejas Medidas de control vectorial Brotes Epidémicos de Dengue Modelado matemático del dengue Modelo matemático Control vectorial |
dc.subject.proposal.eng.fl_str_mv |
Effect human mobility in dengue Dengue Epidemic Outbreaks Modeling of Dengue |
description |
graficas, mapas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2024-02-28T17:59:41Z |
dc.date.available.none.fl_str_mv |
2024-02-28T17:59:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85736 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85736 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Affandi, P ; Faisal: Optimal control mathemathical SIR model of malaria spread in South Kalimantan. En: Journal of Physics: Conference Series 116 (2018), Nr. 2, p.02200 Afrane, YA ; Githeko, AK ; Yan, G.: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. En: Annals of the New York Academy of Sciences 1249 (2012), p. 204–1 Albert, R ; Barab ́asi, A.L.: Statistical mechanics of complex networks. En: Rev.Mod. Phys 74 (2002), Nr. 1, p. 47–9 Aldila, D. ; Situngkir, N. ; Nareswari, K.: Understanding resistant effect of mosquito on fumigation strategy in dengue control program. En: Journal of Physics: Conference Series (2018), Nr. 1, p. 01206 Aleta Casas, A: Modelos metapoblacionales para la difusi ́on de epidemias, Universidad de Zaragoza, Tesis de Grado, 20 Allen, J.S. L.: An Introduction to Mathematical Biology. Pearson/Prentice Hall, 200 Anderson, R. M. ; May, R. M.: Infectious diseases in humans. Oxford University Press, Oxford, 1992 Apolloni, A. ; Poletto, C. ; Ramasco, J. ; Jensen, P. ; Colizza, V.: Metapopulation epidemic models with heterogeneous mixing and travel behaviour. En: Theoretical Biology and Medical Modelling 11 (2014), Nr. 1, p. Bailey, Norman T. J.: The role of Statistics in controlling and eradicating infectious diseases. En: Journal of the Royal Statistical Society 34 (1985), p. 3–1 Balcan, D. ; Hu, H. ; Goncalves, B. ; Bajardi, P. ; Poletto, C. ; Ramasco, J. J. ; Paolotti, D. ; Perra, N. ; Tizzoni, M. ; Van den Broeck, W. ; Colizza, V. ; Vespignani, A.: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. En: BMC Medicine 7 (2009), Nr. 45 Barmak, D. H. ; Dorso, C. O. ; Otero, M. ; Solari, H. G.: Dengue epidemics and human mobility. En: Physical Review E 84 (2011), Nr. Barrera, R ; Amador, M ; MacKay, A. J.: Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico. En: PLoS Negl Trop Dis 5 (2011), Nr. 12, p. e137 Barrera, Roberto ; Amador, Manuel ; Acevedo, Veronica ; Caban, Belkis ; Felix, Gilberto ; Mackay, Andrew J.: Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of ¡I¿Aedes aegypti¡/I¿(Diptera: Culicidae). En: Journal of Medical Entomology 51 (2014), Nr. 1, p. 145–15 Barrios, E. ; Lee, S. ; Vasilievaa, O.: Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia. En: Journal of Theoretical Biology 453 (2018), p. 14–3 Basáñez, M.G. ; Rodríguez, D. J.: Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. En: Entomotropica 19 (2004), Nr. 3, p.113–13 Benedum, C. M. ; Seidahmed, O. M. E. ; Eltahir, N.: Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. En: PLoS Negl Trop Dis (2018) Bernoulli, D.: Epidemiological model. En: Mem. Math. Phys. Acad. Roy. Sci (1760) Beserra, E ; Fernandes, J ; Freitas, E ; Santos, K.: Efeito da Qualidade da Água no Ciclo de Vida e na Atracao para Oviposicao de Aedes aegypti (L.) (Diptera: Culicidae). En: Neotrop Entomol 39 (2010), Nr. 6, p. 1016–102 Bhatt, S.r ; Gething, O. J.and Messina J. P. ; Farlow, A. W. ; Moyes, J. M. ; Brownstein, J. S. ; Hoen, A. G. ; Sankoh, O. ; Myers, D. B. ; Jaenisch, T. ; G. R. Wint, W. ; Simmons, C. P. ; Scott, J. J. Hay S. I.: The global distribution and burden of dengue. En: Nature 496 (2013), p. 504–50 Bistritz, I. ; Bambos, N. ; Kahana, D. ; Ben-Gal, I. ; Yamin, D.: Controlling Contact Network Topology to Prevent Measles Outbreaks. En: 2019 IEEE Global Communications Conference (GLOBECOM), 2019, p. 1–6 Biswas, K. ; Khaleque, A. ; Sen, P.: Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network. En: arXiv: Physics and Society (2020) Bogua, M. ; Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. En: Physical Review E 66 (2002), p. 047104 Bonyah, Ebenezer ; Khan, Muhammad A. ; Okosun, K. O. ; Islam, Saeed: A theoretical model for Zika virus transmission. En: PLOS ONE 12 (2017), 10, Nr. 10, p. 1–26 Brady, O. J. ; Gething, P.r W. ; Bhatt, Messina J. P. ; Brownstein, J. S. ; Hoen, A. G. ; Moyes, C. L. ; Farlow, A. W. ; Scott, T. W. ; Hay, S. I.: Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. En: PLoS Negl Trop Dis 6 (2012), Nr. 8 Brauer, C: MMathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics. Springer, 2012 Briere, Jean-Francois ; PRACROS, Pascale ; Le Roux, Alain-Yves ; Pierre, Jean Sebastien: A Novel Rate Model of Temperature-Dependent Development for Arthropods. En: Environ Entomol 28 (2008), Nr. 1, p. 22–2 Brunkard, J ; Cifuentes, E ; Rothenberg, S: Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. En: Salud P ́ublica Mex 50 (2008), p. 227–234 Camargo España, G. F.: Modelamiento de la dinámica del dengue en Colombia, Universidad Nacional de Colombia, Tesis de Grado, 2012 Castillo, M ; Torres, C. Caracterización de la ciudad, el hábitat y la vivienda. Informe, Colombia en los años 90. Bogotá. 2005 Chao, D. L. ; Halloran, M. E. ; Obenchain, V. J. ; Longini, I. M. ; Jr.: FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. En: PLoS Computational Biologi 6 (2010), Nr. e1000656 Chaparro, P. ; de la Hoz, F. ; Lozano Becerra, J. C. ; Repetto, S. ; Alba Soto, C. D.: Internal travel and risk of dengue transmission in Colombia. En: Rev Panam Salud Publica 36 (2014), Nr. 3, p. 197–200 Chiatchoua, C. ; Lozano, J.: Análisis de los efectos del COVID-19 en la economía mexicana. En: Revista Del Centro De Investigación De La Universidad La Salle 14 (2020), Nr. 53, p. 265–290 Chuang, T. W. ; Chaves, L.F. ; Chen, P. J.: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. En: PLoS Negl Trop Dis (2017) Colizza, . ; Barrat, A. ; Barthélemy, M. ; Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. En: Proceedings of the National Academy of Sciences of the United States of America 103 (2006), Nr. 7, p. 2015–2020 Colizza, V. ; Pastor-Satorras, R. ; Vespignani, A.: Reaction diffusion processes and metapopulation models in heterogeneous networks. En: Nature Phys 3 (2007), p. 276–282 Universidad Nacional de Colombia, CORPOCALDAS. (2015). CDIAC Centro de Datos e Indicadores Ambientales de C. Recuperado de cdiac.manizales.unal.edu.co/ el 30 de Septiembre. 2020 Conde, M ; Orjuela, LI ; Castellanos, CA ; Herrera-Varela, M ; Licastro, S ; ML., Quiñones: Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. 35 (2015), Nr. 1, p. 43–2 Conde Osorio, A. Estudio de la longevidad y el ciclo gonotrófico del Aedes (Stegomyia) aegypti (linnaeus, 1762), cepa Girardot (Cundinamarca) en condiciones de laboratorio. 2003 Costa, E.A.P de A. ; Santos, E. M. de M. ; Correia, J. C. ; Ribeiro de Albuquerque, C. M.: Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). En: Revista Brasileira de Entomologia 54 (2012), Nr. 3, p. 488–493 Cusick, M.E ; Klitgord, N ; Vidal, M ; Hill, D.E: Interactome: gateway into systems biology. En: Hum Mol Genet 14 (2005), Nr. 2, p. 171–181 DANE. Censo general de Colombia, 2005. Bogotá: Departamento Administrativo Nacional de Estadística;. 2009 Darwish, N.T. ; Alias, Y. B. ; Khor, S.M: An introduction to dengue-disease diagnostics. En: Trends in Analytical Chemistry 67 (2015), p. 45–55 Derouich, M ; Boutayeb, A ; Twizell, EH: A model of dengue fever. En: Biomed Eng Online 2 (2003), p. 4 Diekmann, J. A. P. ; Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. En: Journal of Mathematical Biology 28 (1990), Nr. 4 orado Gracia, Mar ́ıa A. Análisis de tabla de vida de una población de Aedes aegypti (Diptera: Culicidae) bajo condiciones de laboratorio en Bogotá. 2018 Durán, Fabio Andrés C.: Dinámica de epidemias en metapoblaciones basada en redes complejas, Universidad Nacional de Colombia, Tesis de Grado, 2010 Escobar-Montoya, J. I.: Conocimientos sobre el dengue y las enfermedades cardiocerebro-vasculares en un municipio de Colombia. En: Rev. salud pública 15 (2013), Nr. 4, p. 625–636 Fenichel, C. ; Ceddia, M. G. ; Chowell, G. ; Gonzalez Parra, G. J.and Holloway G. ; Horan, R. ; Morin, B. ; Perrings, C. ; Springborn, M. ; Velazquez, L. ; Villalobos, C.: Addaptive human behavior in epidemiological models. En: Proceedings of the National Academy of Sciences 108 (2011), Nr. 15, p. 6306–6311 Ferreira, G. L.: Global dengue epidemiology trends. En: Revista do Instituto de Medicina Tropical de Sao Paulo 54 (2012), 10, p. 5 – 6 Funk, S. ; Gilad, E. ; Watkins, C. ; Jansen, V. A. A.: The spread of awareness and its impact on epidemic outbreaks. En: Proceedings of the National Academy of Sciences 106 (2009), p. 6872–7 Gagnon, A ; Bush, A. ; Smoyer-Tomic, K.: Dengue epidemics and the El Niño Southern Oscillation. En: Clim Res 19 (2001), p. 35–43 Giordano, F.and Bruno R.and Colaneri P.and Di Filippo A.and Di Matteo A.and Colaneri M.: Modelling the COVID-19 epidemic and implementation of population wide interventions in Italy. En: Nature Medicine. 26 (2020), p. 855–860 Giraldo, G ; Cuevas, H ; Pabón, JD ; Padilla, JC.: Comportamiento del dengue clásico asociado con la temperatura superficial del mar como indicador del ciclo ENOS en Colombia. En: Inf Quinc Epid Nac 4 (1998), p. 322–327 Gobernación, de C. Información del departamento. 4 octubre 2020 Gómez, D.: Dengue in the Americas. A problem of regional health. En: Salud Pública Mexico 33 (1991), 07, Nr. 4, p. 347–55 Gubler, D. J.: The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. En: Ann. Acad. Med. Singapore 27 (1998), p. 227–234 Gubler, D. J.: Dengue, urbanization and globalization: the unholy trinity of the 21st century. En: Trop Med Health 39 (2001), Nr. 4Suppl, p. 3–11 Gubler, D. J.: The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? En: Comp Immunol Microbiol Infect Dis 27 (2004), p. 319–330 Gubler, D J.: Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. En: Tropical Medicine and Health 39 (2011), Dezember, Nr. 4 Suppl, p. 3–11. – ISSN 1348–8945 Guzman, M. G. ; Halstead, S. B. ; Artsob, H. ; Buchy, P. ; Farrar, J. ; Gubler, D. J. ; Hunsperger, E. ; Kroeger, A. ; Margolis, H. S. ; Mart ̃Anez, E. ; Nathan, M. B. ; Pelegrino, J. L. ; Simmons, C. ; Yoksan, S. ; Peeling, R. W.: Dengue: a continuing global threat. En: Nature reviews. Microbiology 8 (2010), Nr. 12, p. S7–16 Gállego, J ; del Atlántico, Universidad (Ed.): Ecolog ́ıa del Aedes aegypti. 1990 Gállego, J ; de la Universidad de Barcelona. España., Editorial (Ed.): Ma- nual de parasitología: morfología y biología de los parásitos de interés sanitario. 2006 Gómez-Gardeñes, J ; Soriano-Paños, D ; Arenas, A.: Critical regimes driven by recurrent mobility patterns of reaction?diffusion processes in networks. 14 (2018), p. 391–395 Gómez Tejeda, J ; Besteiro Arjona, Eliana ; Hernández Pérez, Claudia ; Góngora Villares, Yudys: Impacto psicológico causado por la pandemia de COVID-19. En: Revista Científica Estudiantil de Cienfuegos Inmedsur 3 (2020), Nr. 2, p. 36–43 Gónima, L ; Meza, Ballesta A.: Influencia del clima y de la cobertura vegetal en la ocurrencia del dengue (2001-2010). En: Rev Salud Pública 16 (2014), Nr. 2 Halloran, M. E. ; Ferguson, N. M. ; Eubank, S. ; Longini, I. M. ; Jr ; Cum- mings, D. A. T. ; Lewis, B. ; Xu, S. ; Fraser, C. ; Vullikanti, A. ; Germann, T. C. ; Wagener, D. ; Beckman, R. ; Kadau, K. ; Barrett, C. ; Macken, C. A. ; Burke, D. S. ; Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. En: PNAS 105 (2008), Nr. 12 Hamdan, N. I. ; Kilicman, A: A fractional order SIR epidemic model for dengue transmission. En: Chaos, Solitons & Fractals 114 (2018), p. 52–62 Hidalgo, C.A ; Klinger, B ; Barábasi, A.L ; Hausmann, R: The product space conditions the development of nations. En: Science 317 (2007), Nr. 5837, p. 482–487 [69] Holme, P. ; Kim, B. J.: Growing scale-free networks with tunable clustering. En: Physical Review E 65 (2002), Nr. 2 Hongjing, Shi ; Zhisheng, Duan ; Guanrong, Chen: An SIS model with infective medium on complex networks. En: Physica A 387 (2008), p. 2133–2144 Huber, J. H. ; Childs, M. L. ; Caldwell, E. A.: Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. En: PLoS Negl Trop Dis 12 (2018), Nr. 5 Hurtado Díaz, M ; Riojas Rodríguez, H ; Rothenberg, SJ ; Gomez Dantes, H ; Cifuentes, E: Impact of Climate Variability on the Incidence of Dengue in Mexico. En: Trop Med Int Health 12 (2007), p. 1327–1337 Instituto Geográfico Agustín Codazzi, Ministerio de la Protección S. Distri- bución del mosquito Aedes aegypti, vector del virus del dengue en Colombia [mapa]. Bogotá Instituto Geográfico Agustín Codazzi. 2008 Instituto nacional, de S. Protocolo para la Vigilancia en Salud Publica del Dengue. junio 2014 Ivorra, B ; Ramos, á. M.: Application of the Be-CoDiS mathematical model to forecast the international spread of the 2019–20 Wuhan coronavirus outbreak / Uni- versidad Complutense de Madrid. 2020. – Informe de Investigación Ivorra, B. ; Ramos, á.l M.: Validation of the forecasts for the international spread of the coronavirus disease 2019 (COVID-19) done with the Be-CoDiS mathematical model / Universidad Complutense de Madrid. 2020. – Informe de Investigación Ivorraa, B. ; Ngomb, D. ; Ramos, á. M.: Be-CoDiS: A Mathematical Model to Predict the Risk of Human Diseases Spread Between Countries-Validation and Appli- cation to the 2014-2015 Ebola Virus Disease Epidemic. 77 (2015), Nr. 9, p. 1668–1704 Ivorraa, B. ; Ngomb, D. ; Ramos, á. M.: Stability and sensitivity analisys if the epidemiological model BE-CODIS predicting the spread of human diseases between countries. 62 (2020), p. 1–29 ackson, M.O ; Rogers, B.W: Meeting strangers and friends of friends: How random are social networks? En: Am. Econ. Rev 97 (2007), Nr. 3, p. 890–915 Karl, Stephan ; Halder, Nilimesh ; Kelso, Joel K. ; A Ritchie, Scott: A spa- tial simulation model for dengue virus infection in urban areas. En: BMC Infectious Diseases 14 (2014), Nr. 1 Keeling, M ; Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press,Princeton, 2007 Khan, M. A. ; Khan, A.and Elsadany A. A.: Modeling and simulation results of a fractional dengue model. En: The European Physical Journal Plus 134 (2019), Nr. 8, p. 379 Kivelä, M ; Pan, R. K. ; Kaski, K ; Kertész, J ; Saramäki, J ; Karsai, M.: Multiscale analysis of spreading in a large communication network. En: J. Stat. Mech (2012), p. P03005 Kossinets, G ; Watts, D. J.: Empirical analysis of an evolving social network. En: Science 311 (2006), Nr. 5757, p. 88–90 Kroeger, A. ; Lenhart, A. ; Ochoa, M. ; Villegas, E. ; Levy, M. ; Alexander, N. ; McCall, P J.: Effective control of dengue vectors with curtains and water ontainer covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. En: British Medical Journal 332 (2006), Nr. 1247 Kurahashi, S: An Agent-Based Infectious Disease Model of Rubella Outbreaks. En: Jezic, Gordan (Ed.) ; Chen-Burger, Yun-Heh J. (Ed.) ; Kusek, Mario (Ed.) ; ˇSperka, Roman (Ed.) ; Howlett, Robert J. (Ed.) ; Jain, Lakhmi C. (Ed.): Agents and Multi-agent Systems: Technologies and Applications 2019. Singapore : Springer Singapore, 2020, p. 237–247 Lai, Y: The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. En: BioMedical Engineering OnLine 17 (2018), Nr. S2 Lal, A ; Baker, MG ; Hales, S ; French, NP: Potential effects of global envi- ronmental changes on cryptosporidiosis and giardiasis transmission. En: Trends in parasitology 29 (2013), Nr. 2, p. 83–90 Lambrechts, L. ; Paaijmans, K. P. ; Fansiri, T. ; Carringtond, L. B. ; Krame- re, M. B. ; Scott, T. W.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. En: PNAS 108 (2011), Nr. 18, p. 7460–7465 Liao, W. ; Zhang, Z. ; Pan, Z. ; Mantini, D. ; Ding, J. ; Duan, X. ; Luo, C. ; Lu, G. ; Chen, H.: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. En: PLoS One 5 (2010), Nr. 1, p. e8525 Liu, J ; Tang, Y ; Yang, Z.R: The spread of disease with birth and death on networks. En: T. J. Stat. Mech (2004), p. P08008 Liu, J ; Wu, J ; Yang, Z.R: The spread of infectious disease on complex networks with household-structure. En: Physica A 341 (2004), p. 273–280 Liu-Helmersson, J ; Stenlund, H ; Wilder-Smith, A ; Rockl ̈ov, J: Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. En: PLoS ONE 9 (2014), Nr. 3, p. e89783 Lopez Montenegro, L. E.: Modelos y Control Optimo Poblacional del Aedes aegypti con Retardos de Tiempo, Universidad Nacional de Colombia sede Manizales, Tesis de Grado, 2012 Louch, H: Personal network integration: Transitivity and homophily in strong-tie relations. En: Soc.Netw 22 (2000), Nr. 1, p. 45–64 Lowe, R. ; Gasparrini, A. ; Van Meerbeeck, C. J. ; Lippi, C. A. ; Mahon, R. ; Trotman, L. ; Hinds, A. Q. J. ; Ryan, S. J. ; Stewart-Ibarra, A. M.: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. En: PLOS MEDICINE (2018) López, R. ; Molina, R.: Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. En: Revista Española Salud Pública 79 (2005), Julio-Diciembre, Nr. 1 Maidana, N. A. ; Yang, H. M.: Describing the geographic spread of dengue disease by traveling waves. En: Mathematical Biosciences 215 (2008), p. 64–77 Marcombe, S ; Corbel, V. ; Yébakima, A. ; Etienne, M. ; Yp-Tcha, M.-M. ; Darriet, F. ; Agnew, P.: Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies). En: Emerging Infectious Diseases 84 (2011), Nr. 1, p. 118–126 Marinho, R. A. ; Beserra, E. B. ; Bezerra-Gusm ̃ao, M. A. ; Porto, V de S. ; Olinda, R. A. ; Dos Santos, C. A.: Effects of temperature on the life cycle, expsan- cion and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. En: Journal of Vector Ecology 4 (2015), Nr. 1 Marquetti, M.: Aspectos bioecológicos de importancia para el control de Aedes aegy- pti y otros culícidos en el ecosistema urbano., Instituto de Medicina Tropical Pedro Kourí, Tesis de Grado, 2008 McGavin, G ; McGavin, G. (Ed.): Essential entomology. An order by order intro- duction. Oxford University Press, 2001 Mercado Reyes, M: Informe Final Dengue, Colombia, 2014 / Instituto Nacional de Salud. 2014 ( 2). – Informe de Investigación Merler, S. ; Ajelli, M. ; Pugliese, A. ; Ferguson, N. M.: Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling. En: PLoS Computational Biologi 7 (2011), Nr. 9, p. e1002205 Messina, J. P. ; Brady, O. J. ; Golding, N. ; Kraemer, M. U. G. ; Wint, G. R. W. ; Ray, S. E. ; Ray, and Shearer F. M. ; Johnson, K. ; Earl, L. ; Marczak, L. B. ; Shirude, S. ; Weaver, N. D. ; Gilbert, M. ; Velayudhan, R. ; Jones, P. ; Jaenisch, T. ; Scott, T. W. ; Reiner Jr, R. C. ; ; Hay, S. I.: The current and future global distribution and population at risk of dengue. En: Nature Microbioly 4 (2019), p. 1508–1515 Montesinos López, O. A. ; Hernández Suárez, C. M.: Modelos matemáticos para enfermedades infecciosas. En: Salud pública de méxico 49 (2007), Nr. 3 Moore, C. ; Newman, M. E. J.: Epidemics and percolation in small-world networks. En: Physical Review E 61 (2000), Nr. 5, p. 5678–5682 Mora, A ; Jiménez, F ; Treviño, S: Distribución geoespacial y detección del virus del dengue en mosquitos Aedes (Stegomyia) aegypti de Ciudad Juárez. En: Salud Pública Mex 52 (2009), p. 127–133 Moreno, Y. ; Pastor-Satorras, R. ; A., Vespignani: Epidemic outbreaks in com- plex heterogeneous networks. En: The European Physical Journal B 26 (2002), p. 521–529 Moreno Sotelo, G. N.: Análisis del umbral epidemiológico en enfermedades trans- mitidas por un vector, Universidad Nacional de Colombia sede Bogotá, Facultad de Ciencias, Departamento de Física, Tesis de Grado, 2013 Murray, N. E. A. ; Quam, M. B. ; Wilder-Smith, A.: Epidemiology of dengue: past, present and future prospects. En: Clinical Epidemiology 5 (2013), p. 299–309. – ISSN 1179–1349 Nawawi, D.: Mathematical assessment on the effect of hospitalization in dengue intervention. (2020) Newman, M.: Percolation and epidemics in a two dimensional small world. En: Physical Review E 65 (2002), Nr. 2, p. 021904 Newman, M.: Networks: An Introduction. Oxford University Press, 2010. – ISBN 01992066519780199206650 Nguyen, L. T. ; Le, H. X. ; Nguyen, D. T. ; Ho, H. Q. ; Chuang, T.-W.: Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam. En: International Journal of Environmental Research and Public Health 17 (2020), Nr. 7 Ocampo, N. J.and Carabalí M.and Alexander N.and Osorio L.: Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. En: Acta Tropica 132 (2014), p. 15–22 Onnela, J. P. ; Chakraborti, A ; Kaski, K ; Kertész, J ; Kanto, A: Dynamics of market correlations: Taxonomy and portfolio analysis. En: Physical Review E 68 (2003), Nr. 5 Ooi, EE ; Gubler, DJ: Dengue in Southeast Asia:epidemiological characteristics and strategic challenges in disease prevention. En: Cad Saude Publica 25 (2009), p. 115–124 Organization, World H. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. 2009 Padilla, J. C. ; Rojas, D. P. ; Sáenz Gómez, R.: Dengue en Colombia:Epidemiología de la reemergencia a la hiperendemia. Los Autores, 2012. – ISBN 9789584606617 (PAHO), Pan American Health O. Actualización Epidemiológica Dengue (PAHO), Pan American Health O. A timeline for Dengue in the americasto december 31, 2000 and noted first occurences, 2001 Pandey, Abhishek ; Mubayi, Anuj ; Medlock, Jan: Comparing vector host and SIR models for dengue transmission. En: Mathematical Biosciences 246 (2013), p. 252–259 Pastor, J. ; Sola, R. G. ; Vega-Zelaya, L. ; Garnés, O ; Ortega, G. J.: Conec- tividad funcional y redes complejas en el estudio de la epilepsia focal. Implicaciones fisiopatológicas y terapéuticas. En: Revista de Neurología 58 (2014), Nr. 9, p. 411–419 Pastor-Satorras, R: Epidemic dynamics in finite size scale-free networks. En: Physical Review E 65 (2002) Pastor-Satorras, R. ; Castellano, C. ; Mieghem, P. V. ; Vespignani, A.: Epidemic processes in complex networks. En: Reviews of Modern Physics 87 (2015), Nr. 925 Pham, HV ; Doan, HTM ; Phan, TTT ; Tran Minh, NN.: Ecological factors asso- ciated with dengue fever in a central highlandsProvince, Vietnam. En: BMC Infectious Diseases 11 (2011), Nr. 1 Phillips, M. L.: Phillips, M. L. Dengue reborn: widespread resurgence of a resilient vector. En: Environ. Health Perspect 116 (2008), Nr. A382-A388 Pinto, F. A. ; Martínez, S. ; Fuentes, M. ; Borrero, E: Análisis de las demoras en salud en personas que enfermaron de gravedad o fallecieron por dengue en cinco ciudades de Colombia. En: Physis: Revista de Saúde Coletiva 25 (2015), Nr. 2 Ministerio de la Protección Social, Organización Panamericana de la S.: Gestón para la vigilancia entomológica y control del dengue / Instituto Nacional de Salud. 2013. – Informe de Investigación Quintero, D ; Osorio, J ; M, Martínez: Competencia vectorial: consideraciones entomológicas y su influencia sobre la epidemiología del Dengue. En: Iatreia 23 (2010), Nr. 2 Quintero, J ; Ronderos Pulido, N ; Logan, J ; Ant, T ; Bruce, J ; G, Ca- rrasquilla: Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue. En: PLoS ONE 15 (2020), Nr. 4 Quintero-Herrera, L. L. ; Ramirez-Jaramillo, V. ; Bernal-Gutierrez, S. ; Cardenas-Giraldo, E. V. ; Guerrero-Matituy, E. A. ; Molina-Delgado, A. H. ; Montoya-Arias, C. P. ; Rico-Gallego, J. A. ; Herrera-Giraldo, A. C. ; Botero-Franco, S. ; Rodriguez-Morales, A. J.: Potential impact of clima- tic variability onthe epidemiology of dengue in Risaralda,Colombia, 2010-2011. En: Journal of Infection and Public Health 8 (2015), p. 291–297 for Research, Special P. ; in Tropical Diseases, Training ; World Health Or- ganization, Scientific Working Group on D. ; World Health Organization, Scientific Working Group. Meeting on D.: Report of the Scientific Working Group Meeting on Dengue: Geneva, 1-5 October, 2006. WHO, Special Programme for Re- search and Training in Tropical Diseases, 2007 De los Reyes V, A. A. ; Escaner, J. M. L.: Dengue in the Philippines: model and analysis of parameters affecting transmission. En: Journal of Biological Dynamics 12 (2018), Nr. 1, p. 894–912 Ribot Reyes, Victoria de la C. ; Chang Paredes, Niurka ; González Castillo, Antonio L.: Efectos de la COVID-19 en la salud mental de la población. En: Revista Habanera de Ciencias médicas 19 (2020) Rodríguez Cruz, R: Estrategias para el control del dengue y del Aedes aegypti en las Américas. En: Revista Cubana de Medicina Tropical 54 (2002), p. 189–201 Rodríguez, H ; De La Hoz, F: Dengue and dengue and vector behaviour in Cáqueza, Colombia, 2004. En: Rev. salud pública 7 (2005), Nr. 1 Rojas, C: Cuarentena, aislamiento forzado y uso de drogas. En: Panamerican journal of neuropsychology 14 (2020), Nr. 1 Romeo Aznar, Victoria ; Otero, Marcelo ; De Majo, María S. ; Fischer, Sylvia ; Solari, Hernán G.: Modeling the complex hatching and development of Aedes aegypti in temperate climates. En: Ecological Modelling 253 (2013), p. 44–55 Rossi G, Almirón W.: Clave ilustrada para la identificación de larvas de mosquitos de interés sanitario encontradas en criaderos artificiales en la Argentina. En: Fundación Mundo sano (2004) Rúa Uribe, G. L. ; Suárez Acosta, C. ; Chauca, J. ; Ventosilla, P. ; Almanza, R.: Modelado del efecto de la variabilidad climática local sobre la transmisión de dengue en Medellín (Colombia) mediante análisis de series temporales. En: Biomédica 33 (2013), Nr. 1, p. 142–152 Rubinov, M ; Sporns, O: Complex network measures of brain connectivity: Uses and interpretations. En: NeuroImage 52 (2010), p. 1059–1069 Ruiz-López, F. ; González-Mazo, A. ; Vélez-Mira, A. ; Gómez, L. ; Uribe, S. ; Vélez-Bernal, I. D.: Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. En: Biomédica. (2016) Russell, R. C. ; Currie, B. J. ; Lindsay, M. D. ; Mackenzie, J. S. ; Ritchie, S. A. ; Whelan, P. I.: Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. En: Medical Journal of Australia 190 (2009), p. 265–268 Ryan, C. J.and Mordecai E. A.and Johnson L. R.: Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. En: PLoS Negl Trop Dis 13 (2019), Nr. 265-2683 Salazar, Roberto ; Díaz, Yadira ; Pardo, Renata: índice de Pobreza Multidimen- sional para Colombia. En: Archivos de Economía 382 (2011), Noviembre San Martin, Jose L. ; Brathwaite, Olivia ; Zambrano, Betzana ; Solorzano, Jose O. ; Bouckenooghe, Alain ; Dayan, Gustavo H. ; Guzman, Maria G.: The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality. En: The American Society of Tropical Medicine and Hygiene 82 (2010), Nr. 1, p. 128–135 Sánchez Steiner, L.M: Migración forzada y urbanización en Colombia. Perspectivas históricas y aproximaciones teóricas. En: Seminario Internacional Procesos Urbanos Informales, 2007 Santos, C. A. G. ; Guerra-Gomes, I. C. ; Gois, R. F. ; Keesen, T. S. L. ; da Silva, R. M.: Correlation of dengue incidence and rainfall occurrence using wavelet transform for Jo ̃ao Pessoa city. En: Science of The Total Environment (2019) Sardar, T. ; Rana, J.: A mathematical model of dengue transmission with memory. En: Communications in Nonlinear Science and Numerical Simulation 22 (2015), Nr. 511–525 Sarfraz, M.S ; Tripathi, N. K. ; Tipdecho, T. ; Thongbu, T. ; Kerdthong, P. ; Souris, M: Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. En: BMC Public Health 12 (2012), Nr. 853 Scott, Thomas W. ; Amerasinghe, Priyanie H. ; Morrison, Amy C. ; Lorenz, Leslie H. ; Clark, Daniel ; Kittayapong, Pattamaporn ; Edman, John D.: Lon- gitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. En: Journal of Medical Entomology 37 (2000), Nr. 1 Sepúlveda, L. S.: Manejo óptimo y viable en modelos epidemiológicos del dengue, Universidad Autónoma de Occidente, Tesis de Grado, 2015 Sepulveda Salcedo, L. S. ; Vasilieva, H. J.and Arias Castro J. H.: Ross Macdo- nald: Un modelo para la dinámica del dengue en Cali, Colombia. En: Revista de Salud Pública 17 (2016), Nr. 5, p. 749–761 Sethia, A. ; Eargleb, J. ; Blacka, A. A. ; Schultena, Z. L.: Dynamical networks in tRNA: protein complexes. En: PNAS 106 (2009), Nr. 6620-6625 Seto, K. C. ; Guneralp, B ; Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. En: Proc. Natl Acad. Sci. USA 109 (2012), Nr. 40, p. 16083–8 Side, Syafruddin ; Noorani, Mohd. Salmi M.: A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), 2013 de Política Económica y Social, Consejo N. Políca para el suministro de agua potable y saneamiento básico en la zona rural. Julio 2014 Solé, R ; Valverde, S: Spontaneous emergency of modularity in cellular networks. En: J. R.Soc. Interface 5 (2008), p. 129–133 Soriano-Paños, D. ; Lotero, L. ; Arenas, A. ; Gómez-Gardeñes, J.: Spreading Processes in Multiplex Metapopulations Containing Different Mobility Networks. En: Phys. Rev. X 8 (2018), Aug, p. 031039 Sporns, O. ; Chialvo, D. R. ; Kaiser, M. ; Hilgetag, C. C.: Organization, deve- lopment and function of complex brain networks. En: TRENDS in Cognitive Sciences 8 (2004), Nr. 9 toddard, S. ; Forsheycde, B. M. ; Morrisona, A. C. ; az Soldanf, V. A. ; Vazquez-Prokopecb, H. ; Reiner, S. ; Elderh, E. S. ; Kochelc, U. ; Scotˇt, T W.: House-to-house human movement drives dengue virus transmission. En: Pro- ceedings of the National Academy of Sciences. 110 (2013), Nr. 3, p. 994–999 Stoddard, S.T ; Morrison, A. C. ; Vazquez Prokopec, G. M. ; Soldan, V. P. ; Kochel, T. J. ; Kitron, U. ; Elder, J. P. ; Scott, T. W.: The role of human movement in the transmission of vector-borne pathogens. En: PLoS Negl Trop Dis 3 (2009), Nr. 7, p. e481 Strogatz, S. H.: Exploring Complex Networks. En: Nature 410 (2001), p. 268–276 Suárez, M. F. ; Nelson, M. J.: Registro de altitud del Aedes aegypt. En: Biomédica. 1 (1981), Nr. 1:225 Sudria, M ; Andreatta, M ; Defagó, M: Los efectos de la cuarentena por corona- virus (Covid-19) en los hábitos alimentarios en Argentina. En: Asociación Argentina de Dietistas y Nutricionistas Dietistas; Diaeta 38 (2020), Nr. 171, p. 10–19 Sulistyawati, S. ; Dwi Astuti, F. ; Rahmah Umniyati, S. ; Tunggul Satoto, T. ; Lazuardi, L. ; Nilsson, M. ; Holmner, ̊A.: Dengue Vector Control through Community Empowerment: Lessons Learned from a Community-Based Study in Yog- yakarta, Indonesia. En: International Journal of Environmental Research and Public Health. 16 (2019), Nr. 6 Sun, X ; Liu, Y ; Li, B ; Han, J ; Liu, X: Mathematical model for spreading dynamics of social network worms. En: J. Stat. Mech P04009 (2012) abachnick, W. J.: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. En: The Journal of Experimental Biology 213 (2010), p. 946–954 Tao, H. ; Liu, Y. ; Wang, K. ; Zhuo, L.: Assessing Impacts of Traffic Flows on the Spatial Distribution of Early Dengue in Guangzhou Subdistricts. En: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, p. 3468–3470 Tapia Conyer, R ; Méndez Galván, J ; Burciaga Zúñiga, P: Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico. En: Paediatrics and International Child Health 32 (2002), Nr. S1, p. 10–13 Thirion, J: El mosquito Aedes aegypti y el dengue en México. En: Bayer Environ- mentalScience (2003) Thoméa, R. C. ; Yangb, H. M. ; Estevac, L.: Optimal control of Aedes aegypti mos- quitoes by the sterile insect technique and insecticide. En: Mathematical Biosciences 223 (2010) Tsai, Ching-Tsan ; Sung, Fung-Chang ; Chen, Patrick S. ; Lin, Shu-Chiung: Ex- ploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. En: Stoch Environ Res Risk Assess 26 (2012), p. 671–680 Valdez, L. D. ; Sibona, G. J. ; Condat, C. A.: RImpact of rainfall on Aedes aegypti populations. En: Ecological Modelling 385 (2018), p. 96–105 Velásquez, L. C. ; Quintero, J. ; García Betancourt, T. ; González Uribe, C. ; Fuentes Vallejo, M.: Funcionamiento de las políticas gubernamentales para la prevención y el control del dengue: el caso de Arauca y Armenia en Colombia. En: Biomédica 35 (2015), p. 186–195 Vincenti-Gonzalez, M. F. ; Tami, A ; Lizarazo, E. F. ; Grillet, M. E.: ENSO- driven climate variability promotes periodic major outbreaks of dengue in Venezuela. En: Scientific Reports 8 (2018), Nr. 1 Vivescas, F: Urbanización y ciudad en Colombia. Una cultura para construir en Colombia. En: Bogotá: Foro Nacional por Colombia, 1989, p. 283 Wang, Tang S. ; Cheke, R. A.: A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. En: Journal of Theoretical Biology 411 (2016), p. 27–36 Watts, D. J. ; Strogatz, S. H.: Collective dynamics of small-world networks. En: Nature 393 (1998), p. 440–442 WHO, Switzerland: Global Strategy for Dengue Prevention and Control 2012-2020 / WHO Press. 2012. – Informe de Investigación Wilder-Smith, A. ; Gubler, D. J.: Geographic Expansion of Dengue: The Impact of International Travel. En: Medical Clinics of North America 92 (2008), Nr. 6, p. 1377–1390 Xu, Hai-Yan ; Fu, Xiuju ; Lee, Lionel Kim H. ; Ma, Stefan ; Goh, Kee T. ; Wong, Jiancheng ; Habibullah, Mohamed S. ; Lee, Gary Kee K. ; Lim, Tian K. ; Tambyah, Paul A. ; Lim, Chin L. ; Ng, Lee C.: Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. En: PLoS Negl Trop Dis (2014) Yangh, M. L. G. ; Galvani, K. C. ; ANDRIGHETTI, D.M.V.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. En: Epidemiol Infect 137 (2009), p. 1188–1202 Zea, D. ; Osorio, L.: Situación del sistema de vigilancia de casos de Dengue en un municipio de Colombia. En: Rev. salud pública. 13 (2011), Nr. 5, p. 785–795 Zhou, L. ; Wang, Y. ; Xiao, Y. ; Li, M. Y.: Global dynamics of a discrete age- structured SIR epidemic model with applications to measles vaccination strategies. En: Mathematical Biosciences 308 (2019), p. 27–37 Zhu, Dongmei ; Ren, Jianwei ; Zhu, Huaiping: Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model. Mathematical Methods in the Applied Sciences. En: Science of the Total Environment 41 (2018), Nr. 14, p. 5388–5403 Zhu, G ; Liu, T ; Xiao, J ; Zhang, B ; Song, T ; Zhang, Y ; Lin, L ; Peng, Z ; Deng, A ; Ma, W ; Hao, Y: Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. En: Science of the Total Environment 651 (2019), p. 969–978 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 150 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85736/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85736/5/24339139.pdf https://repositorio.unal.edu.co/bitstream/unal/85736/6/24339139.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e6dc75febd1c47685a43ec1fc270c04d 58100c9712e83e1bd3b3bb0ece523e8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090146294792192 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Olivar-Tost, Gerard20fe29fdd990e623ac22c2f7f5059e39600Osorio Londoño, Gustavo Adolfoa8459e28e318014da878eb8be713aa83Ospina Aguirre, Carolina6c57cf4ab8a91124d24e972da0ac997d600AbcDynamicsOspina Aguirre, Carolina [0000000339924289]Carolina Ospina Aguirrehttps://www.researchgate.net/profile/Carolina-Ospinahttps://scholar.google.com/citations?user=F3rcKnMAAAAJ&hl=en2024-02-28T17:59:41Z2024-02-28T17:59:41Z2021https://repositorio.unal.edu.co/handle/unal/85736Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, mapas, tablasEn este trabajo se presenta la formulación de un modelo compartimental en el que se utilizan ecuaciones diferenciales y redes complejas para representar la dinámica de transmisión del dengue en el departamento de Caldas. La población está dividida en cuatro compartimentos: susceptibles, infectados, hospitalizados y recuperados; y los mosquitos que transmiten la enfermedad en dos: susceptibles e infectados. Se explora el efecto de las lluvias, de aplicar medidas de control, de la hospitalización y de la movilidad sobre la cantidad de personas infectadas. En el departamento de Caldas, hay dos temporadas de lluvias al a ̃no, las cuales fueron simuladas generando un aumento en la población de mosquitos. Se encuentra que el incremento de las precipitaciones incrementa los casos de dengue en 5, 45 %. Las medidas de control vectorial analizadas son fumigación y eliminación de criaderos. Se encontró que el uso conjunto de estas medidas tiene un efecto reductor mayor en la cantidad de infectados que si se aplican de manera individual. La hospitalización temprana del 20 % los contagiados de dengue redujo en un 17,83 % la cantidad total de casos en el departamento. La red compleja implementada para modelar el transporte vehicular define la probabilidad de movilidad en- tre un parche y otro mediante una matriz de tasa de transición. Esta matriz se calcula con base en un modelo gravitacional. La estimación de los parámetros del modelo, fue realizada con datos reales de cada uno de los municipios incluidos en este estudio, esto es, los 27 de Caldas y los 7 municipios vecinos que tienen conexión terrestre directa con algún municipio del departamento. Los casos de dengue obtenidos cuando los municipios están conectados, es decir, que hay movilidad de personas, incrementaron un 83,17 % respecto a los resultados obtenidos cuando no había movilidad. Se pudo observar que cada municipio es afectado de manera diferente por el movimiento de sus residentes. En aquellos donde la incidencia de dengue es alta y una proporción de sus habitantes se desplazan a zonas de menor incidencia se presenta una disminución en la cantidad de infectados. Los habitantes de municipios sin casos de dengue contraen la enfermedad al desplazarse a zonas con presencia de la enfermedad. Es por esto que se propone restringir el acceso a municipios endémicos durante un brote para disminuir la cantidad total de casos en el departamento (Texto tomado de la fuente)In this thesis, the formulation of a compartmental model is presented in which differential equations and complex networks are used to represent the transmission dynamics of dengue in the department of Caldas in Colombia. The population is divided into four compartments: susceptible, infected, hospitalized, and recovered; and mosquitoes that transmit the disease into two: susceptible and infected. The following effects are explored: (i) rain, (2) applying vector control measures, (iii) hospitalization, and (iv) mobility of infected people. In the department of Caldas, there are two rainy seasons a year, which were simulated, generating an increase in the mosquito population. The increase in rainfall is found to increase dengue cases by 5,45 %. The vector control measures analyzed are fumigation and elimination of breeding sites. It was identified that the joint use of these measures has a greater reducing effect on the number of infected than if these measures are applied individually. Moreover, the early hospitalization of the 20 % of those infected people with dengue produced a reduction of 17,83 % in the total number of cases in the department. The complex network implemented to model vehicular transport defines the mobility pro- bability between one patch and another through a transition rate matrix. This matrix is calculated based on a gravitational model. The estimation of the model parameters was carried out with real data from each of the municipalities included in this study, that is, the 27 municipalities of Caldas and the 7 neighboring municipalities that have direct border connection with a municipality in the department. Dengue cases acquired when municipalities are connected, it means, when there is mobility of people, increased by 83,17 % compared to the results obtained when there is no mobility. It is observed that each municipality is affected differently by the movement of its residents. In those municipalities where the incidence of dengue is high and a proportion of its residents moves to areas of lower incidence, there is a decrease in the number of infected people. Residents of municipalities without dengue cases contracted the disease by moving to areas where the disease is presented. For this reason, it is proposed to restrict access to endemic municipalities during an outbreak to reduce the total number of cases in the departmeDoctoradoDoctor en IngenieríaModelado matemático y simulaciónEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizalesxiii, 150 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaDengueRedes complejasMedidas de control vectorialBrotes Epidémicos de DengueModelado matemático del dengueModelo matemáticoControl vectorialEffect human mobility in dengueDengue Epidemic OutbreaksModeling of DengueModelado de brotes epidémicos de dengue para la toma de decisiones en salud pública : Efecto de la movilidad en el departamento de CaldasModeling of dengue epidemic outbreaks for public health decision-making : Effect of mobility in the department of CaldasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06TextAffandi, P ; Faisal: Optimal control mathemathical SIR model of malaria spread in South Kalimantan. En: Journal of Physics: Conference Series 116 (2018), Nr. 2, p.02200Afrane, YA ; Githeko, AK ; Yan, G.: The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands. En: Annals of the New York Academy of Sciences 1249 (2012), p. 204–1Albert, R ; Barab ́asi, A.L.: Statistical mechanics of complex networks. En: Rev.Mod. Phys 74 (2002), Nr. 1, p. 47–9Aldila, D. ; Situngkir, N. ; Nareswari, K.: Understanding resistant effect of mosquito on fumigation strategy in dengue control program. En: Journal of Physics: Conference Series (2018), Nr. 1, p. 01206Aleta Casas, A: Modelos metapoblacionales para la difusi ́on de epidemias, Universidad de Zaragoza, Tesis de Grado, 20Allen, J.S. L.: An Introduction to Mathematical Biology. Pearson/Prentice Hall, 200Anderson, R. M. ; May, R. M.: Infectious diseases in humans. Oxford University Press, Oxford, 1992Apolloni, A. ; Poletto, C. ; Ramasco, J. ; Jensen, P. ; Colizza, V.: Metapopulation epidemic models with heterogeneous mixing and travel behaviour. En: Theoretical Biology and Medical Modelling 11 (2014), Nr. 1, p.Bailey, Norman T. J.: The role of Statistics in controlling and eradicating infectious diseases. En: Journal of the Royal Statistical Society 34 (1985), p. 3–1Balcan, D. ; Hu, H. ; Goncalves, B. ; Bajardi, P. ; Poletto, C. ; Ramasco, J. J. ; Paolotti, D. ; Perra, N. ; Tizzoni, M. ; Van den Broeck, W. ; Colizza, V. ; Vespignani, A.: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. En: BMC Medicine 7 (2009), Nr. 45Barmak, D. H. ; Dorso, C. O. ; Otero, M. ; Solari, H. G.: Dengue epidemics and human mobility. En: Physical Review E 84 (2011), Nr.Barrera, R ; Amador, M ; MacKay, A. J.: Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico. En: PLoS Negl Trop Dis 5 (2011), Nr. 12, p. e137Barrera, Roberto ; Amador, Manuel ; Acevedo, Veronica ; Caban, Belkis ; Felix, Gilberto ; Mackay, Andrew J.: Use of the CDC Autocidal Gravid Ovitrap to Control and Prevent Outbreaks of ¡I¿Aedes aegypti¡/I¿(Diptera: Culicidae). En: Journal of Medical Entomology 51 (2014), Nr. 1, p. 145–15Barrios, E. ; Lee, S. ; Vasilievaa, O.: Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia. En: Journal of Theoretical Biology 453 (2018), p. 14–3Basáñez, M.G. ; Rodríguez, D. J.: Dinámica de transmisión y modelos matemáticos en enfermedades transmitidas por vectores. En: Entomotropica 19 (2004), Nr. 3, p.113–13Benedum, C. M. ; Seidahmed, O. M. E. ; Eltahir, N.: Statistical modeling of the effect of rainfall flushing on dengue transmission in Singapore. En: PLoS Negl Trop Dis (2018)Bernoulli, D.: Epidemiological model. En: Mem. Math. Phys. Acad. Roy. Sci (1760)Beserra, E ; Fernandes, J ; Freitas, E ; Santos, K.: Efeito da Qualidade da Água no Ciclo de Vida e na Atracao para Oviposicao de Aedes aegypti (L.) (Diptera: Culicidae). En: Neotrop Entomol 39 (2010), Nr. 6, p. 1016–102Bhatt, S.r ; Gething, O. J.and Messina J. P. ; Farlow, A. W. ; Moyes, J. M. ; Brownstein, J. S. ; Hoen, A. G. ; Sankoh, O. ; Myers, D. B. ; Jaenisch, T. ; G. R. Wint, W. ; Simmons, C. P. ; Scott, J. J. Hay S. I.: The global distribution and burden of dengue. En: Nature 496 (2013), p. 504–50Bistritz, I. ; Bambos, N. ; Kahana, D. ; Ben-Gal, I. ; Yamin, D.: Controlling Contact Network Topology to Prevent Measles Outbreaks. En: 2019 IEEE Global Communications Conference (GLOBECOM), 2019, p. 1–6Biswas, K. ; Khaleque, A. ; Sen, P.: Covid-19 spread: Reproduction of data and prediction using a SIR model on Euclidean network. En: arXiv: Physics and Society (2020)Bogua, M. ; Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. En: Physical Review E 66 (2002), p. 047104Bonyah, Ebenezer ; Khan, Muhammad A. ; Okosun, K. O. ; Islam, Saeed: A theoretical model for Zika virus transmission. En: PLOS ONE 12 (2017), 10, Nr. 10, p. 1–26Brady, O. J. ; Gething, P.r W. ; Bhatt, Messina J. P. ; Brownstein, J. S. ; Hoen, A. G. ; Moyes, C. L. ; Farlow, A. W. ; Scott, T. W. ; Hay, S. I.: Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. En: PLoS Negl Trop Dis 6 (2012), Nr. 8Brauer, C: MMathematical Models in Population Biology and Epidemiology.Texts in Applied Mathematics. Springer, 2012Briere, Jean-Francois ; PRACROS, Pascale ; Le Roux, Alain-Yves ; Pierre, Jean Sebastien: A Novel Rate Model of Temperature-Dependent Development for Arthropods. En: Environ Entomol 28 (2008), Nr. 1, p. 22–2Brunkard, J ; Cifuentes, E ; Rothenberg, S: Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. En: Salud P ́ublica Mex 50 (2008), p. 227–234Camargo España, G. F.: Modelamiento de la dinámica del dengue en Colombia, Universidad Nacional de Colombia, Tesis de Grado, 2012Castillo, M ; Torres, C. Caracterización de la ciudad, el hábitat y la vivienda. Informe, Colombia en los años 90. Bogotá. 2005Chao, D. L. ; Halloran, M. E. ; Obenchain, V. J. ; Longini, I. M. ; Jr.: FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model. En: PLoS Computational Biologi 6 (2010), Nr. e1000656Chaparro, P. ; de la Hoz, F. ; Lozano Becerra, J. C. ; Repetto, S. ; Alba Soto, C. D.: Internal travel and risk of dengue transmission in Colombia. En: Rev Panam Salud Publica 36 (2014), Nr. 3, p. 197–200Chiatchoua, C. ; Lozano, J.: Análisis de los efectos del COVID-19 en la economía mexicana. En: Revista Del Centro De Investigación De La Universidad La Salle 14 (2020), Nr. 53, p. 265–290Chuang, T. W. ; Chaves, L.F. ; Chen, P. J.: Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan. En: PLoS Negl Trop Dis (2017)Colizza, . ; Barrat, A. ; Barthélemy, M. ; Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. En: Proceedings of the National Academy of Sciences of the United States of America 103 (2006), Nr. 7, p. 2015–2020Colizza, V. ; Pastor-Satorras, R. ; Vespignani, A.: Reaction diffusion processes and metapopulation models in heterogeneous networks. En: Nature Phys 3 (2007), p. 276–282Universidad Nacional de Colombia, CORPOCALDAS. (2015). CDIAC Centro de Datos e Indicadores Ambientales de C. Recuperado de cdiac.manizales.unal.edu.co/ el 30 de Septiembre. 2020Conde, M ; Orjuela, LI ; Castellanos, CA ; Herrera-Varela, M ; Licastro, S ; ML., Quiñones: Evaluación de la sensibilidad a insecticidas en poblaciones de Aedes aegypti (Diptera: Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. 35 (2015), Nr. 1, p. 43–2Conde Osorio, A. Estudio de la longevidad y el ciclo gonotrófico del Aedes (Stegomyia) aegypti (linnaeus, 1762), cepa Girardot (Cundinamarca) en condiciones de laboratorio. 2003Costa, E.A.P de A. ; Santos, E. M. de M. ; Correia, J. C. ; Ribeiro de Albuquerque, C. M.: Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). En: Revista Brasileira de Entomologia 54 (2012), Nr. 3, p. 488–493Cusick, M.E ; Klitgord, N ; Vidal, M ; Hill, D.E: Interactome: gateway into systems biology. En: Hum Mol Genet 14 (2005), Nr. 2, p. 171–181DANE. Censo general de Colombia, 2005. Bogotá: Departamento Administrativo Nacional de Estadística;. 2009Darwish, N.T. ; Alias, Y. B. ; Khor, S.M: An introduction to dengue-disease diagnostics. En: Trends in Analytical Chemistry 67 (2015), p. 45–55Derouich, M ; Boutayeb, A ; Twizell, EH: A model of dengue fever. En: Biomed Eng Online 2 (2003), p. 4Diekmann, J. A. P. ; Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. En: Journal of Mathematical Biology 28 (1990), Nr. 4orado Gracia, Mar ́ıa A. Análisis de tabla de vida de una población de Aedes aegypti (Diptera: Culicidae) bajo condiciones de laboratorio en Bogotá. 2018Durán, Fabio Andrés C.: Dinámica de epidemias en metapoblaciones basada en redes complejas, Universidad Nacional de Colombia, Tesis de Grado, 2010Escobar-Montoya, J. I.: Conocimientos sobre el dengue y las enfermedades cardiocerebro-vasculares en un municipio de Colombia. En: Rev. salud pública 15 (2013), Nr. 4, p. 625–636Fenichel, C. ; Ceddia, M. G. ; Chowell, G. ; Gonzalez Parra, G. J.and Holloway G. ; Horan, R. ; Morin, B. ; Perrings, C. ; Springborn, M. ; Velazquez, L. ; Villalobos, C.: Addaptive human behavior in epidemiological models. En: Proceedings of the National Academy of Sciences 108 (2011), Nr. 15, p. 6306–6311Ferreira, G. L.: Global dengue epidemiology trends. En: Revista do Instituto de Medicina Tropical de Sao Paulo 54 (2012), 10, p. 5 – 6Funk, S. ; Gilad, E. ; Watkins, C. ; Jansen, V. A. A.: The spread of awareness and its impact on epidemic outbreaks. En: Proceedings of the National Academy of Sciences 106 (2009), p. 6872–7Gagnon, A ; Bush, A. ; Smoyer-Tomic, K.: Dengue epidemics and the El Niño Southern Oscillation. En: Clim Res 19 (2001), p. 35–43Giordano, F.and Bruno R.and Colaneri P.and Di Filippo A.and Di Matteo A.and Colaneri M.: Modelling the COVID-19 epidemic and implementation of population wide interventions in Italy. En: Nature Medicine. 26 (2020), p. 855–860Giraldo, G ; Cuevas, H ; Pabón, JD ; Padilla, JC.: Comportamiento del dengue clásico asociado con la temperatura superficial del mar como indicador del ciclo ENOS en Colombia. En: Inf Quinc Epid Nac 4 (1998), p. 322–327Gobernación, de C. Información del departamento. 4 octubre 2020Gómez, D.: Dengue in the Americas. A problem of regional health. En: Salud Pública Mexico 33 (1991), 07, Nr. 4, p. 347–55Gubler, D. J.: The global pandemic of dengue/dengue haemorrhagic fever: current status and prospects for the future. En: Ann. Acad. Med. Singapore 27 (1998), p. 227–234Gubler, D. J.: Dengue, urbanization and globalization: the unholy trinity of the 21st century. En: Trop Med Health 39 (2001), Nr. 4Suppl, p. 3–11Gubler, D. J.: The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? En: Comp Immunol Microbiol Infect Dis 27 (2004), p. 319–330Gubler, D J.: Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. En: Tropical Medicine and Health 39 (2011), Dezember, Nr. 4 Suppl, p. 3–11. – ISSN 1348–8945Guzman, M. G. ; Halstead, S. B. ; Artsob, H. ; Buchy, P. ; Farrar, J. ; Gubler, D. J. ; Hunsperger, E. ; Kroeger, A. ; Margolis, H. S. ; Mart ̃Anez, E. ; Nathan, M. B. ; Pelegrino, J. L. ; Simmons, C. ; Yoksan, S. ; Peeling, R. W.: Dengue: a continuing global threat. En: Nature reviews. Microbiology 8 (2010), Nr. 12, p. S7–16Gállego, J ; del Atlántico, Universidad (Ed.): Ecolog ́ıa del Aedes aegypti. 1990Gállego, J ; de la Universidad de Barcelona. España., Editorial (Ed.): Ma- nual de parasitología: morfología y biología de los parásitos de interés sanitario. 2006Gómez-Gardeñes, J ; Soriano-Paños, D ; Arenas, A.: Critical regimes driven by recurrent mobility patterns of reaction?diffusion processes in networks. 14 (2018), p. 391–395Gómez Tejeda, J ; Besteiro Arjona, Eliana ; Hernández Pérez, Claudia ; Góngora Villares, Yudys: Impacto psicológico causado por la pandemia de COVID-19. En: Revista Científica Estudiantil de Cienfuegos Inmedsur 3 (2020), Nr. 2, p. 36–43Gónima, L ; Meza, Ballesta A.: Influencia del clima y de la cobertura vegetal en la ocurrencia del dengue (2001-2010). En: Rev Salud Pública 16 (2014), Nr. 2Halloran, M. E. ; Ferguson, N. M. ; Eubank, S. ; Longini, I. M. ; Jr ; Cum- mings, D. A. T. ; Lewis, B. ; Xu, S. ; Fraser, C. ; Vullikanti, A. ; Germann, T. C. ; Wagener, D. ; Beckman, R. ; Kadau, K. ; Barrett, C. ; Macken, C. A. ; Burke, D. S. ; Cooley, P.: Modeling targeted layered containment of an influenza pandemic in the United States. En: PNAS 105 (2008), Nr. 12Hamdan, N. I. ; Kilicman, A: A fractional order SIR epidemic model for dengue transmission. En: Chaos, Solitons & Fractals 114 (2018), p. 52–62Hidalgo, C.A ; Klinger, B ; Barábasi, A.L ; Hausmann, R: The product space conditions the development of nations. En: Science 317 (2007), Nr. 5837, p. 482–487 [69] Holme, P. ; Kim, B. J.: Growing scale-free networks with tunable clustering. En: Physical Review E 65 (2002), Nr. 2Hongjing, Shi ; Zhisheng, Duan ; Guanrong, Chen: An SIS model with infectivemedium on complex networks. En: Physica A 387 (2008), p. 2133–2144Huber, J. H. ; Childs, M. L. ; Caldwell, E. A.: Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. En: PLoS Negl Trop Dis 12 (2018), Nr. 5Hurtado Díaz, M ; Riojas Rodríguez, H ; Rothenberg, SJ ; Gomez Dantes, H ; Cifuentes, E: Impact of Climate Variability on the Incidence of Dengue in Mexico. En: Trop Med Int Health 12 (2007), p. 1327–1337Instituto Geográfico Agustín Codazzi, Ministerio de la Protección S. Distri- bución del mosquito Aedes aegypti, vector del virus del dengue en Colombia [mapa]. Bogotá Instituto Geográfico Agustín Codazzi. 2008Instituto nacional, de S. Protocolo para la Vigilancia en Salud Publica del Dengue. junio 2014Ivorra, B ; Ramos, á. M.: Application of the Be-CoDiS mathematical model to forecast the international spread of the 2019–20 Wuhan coronavirus outbreak / Uni- versidad Complutense de Madrid. 2020. – Informe de InvestigaciónIvorra, B. ; Ramos, á.l M.: Validation of the forecasts for the international spread of the coronavirus disease 2019 (COVID-19) done with the Be-CoDiS mathematical model / Universidad Complutense de Madrid. 2020. – Informe de InvestigaciónIvorraa, B. ; Ngomb, D. ; Ramos, á. M.: Be-CoDiS: A Mathematical Model to Predict the Risk of Human Diseases Spread Between Countries-Validation and Appli- cation to the 2014-2015 Ebola Virus Disease Epidemic. 77 (2015), Nr. 9, p. 1668–1704Ivorraa, B. ; Ngomb, D. ; Ramos, á. M.: Stability and sensitivity analisys if the epidemiological model BE-CODIS predicting the spread of human diseases between countries. 62 (2020), p. 1–29ackson, M.O ; Rogers, B.W: Meeting strangers and friends of friends: How random are social networks? En: Am. Econ. Rev 97 (2007), Nr. 3, p. 890–915Karl, Stephan ; Halder, Nilimesh ; Kelso, Joel K. ; A Ritchie, Scott: A spa- tial simulation model for dengue virus infection in urban areas. En: BMC Infectious Diseases 14 (2014), Nr. 1Keeling, M ; Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press,Princeton, 2007Khan, M. A. ; Khan, A.and Elsadany A. A.: Modeling and simulation results of a fractional dengue model. En: The European Physical Journal Plus 134 (2019), Nr. 8, p. 379Kivelä, M ; Pan, R. K. ; Kaski, K ; Kertész, J ; Saramäki, J ; Karsai, M.: Multiscale analysis of spreading in a large communication network. En: J. Stat. Mech (2012), p. P03005Kossinets, G ; Watts, D. J.: Empirical analysis of an evolving social network. En: Science 311 (2006), Nr. 5757, p. 88–90Kroeger, A. ; Lenhart, A. ; Ochoa, M. ; Villegas, E. ; Levy, M. ; Alexander, N. ; McCall, P J.: Effective control of dengue vectors with curtains and water ontainer covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. En: British Medical Journal 332 (2006), Nr. 1247Kurahashi, S: An Agent-Based Infectious Disease Model of Rubella Outbreaks. En: Jezic, Gordan (Ed.) ; Chen-Burger, Yun-Heh J. (Ed.) ; Kusek, Mario (Ed.) ; ˇSperka, Roman (Ed.) ; Howlett, Robert J. (Ed.) ; Jain, Lakhmi C. (Ed.): Agents and Multi-agent Systems: Technologies and Applications 2019. Singapore : Springer Singapore, 2020, p. 237–247Lai, Y: The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. En: BioMedical Engineering OnLine 17 (2018), Nr. S2Lal, A ; Baker, MG ; Hales, S ; French, NP: Potential effects of global envi- ronmental changes on cryptosporidiosis and giardiasis transmission. En: Trends in parasitology 29 (2013), Nr. 2, p. 83–90Lambrechts, L. ; Paaijmans, K. P. ; Fansiri, T. ; Carringtond, L. B. ; Krame- re, M. B. ; Scott, T. W.: Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. En: PNAS 108 (2011), Nr. 18, p. 7460–7465Liao, W. ; Zhang, Z. ; Pan, Z. ; Mantini, D. ; Ding, J. ; Duan, X. ; Luo, C. ; Lu, G. ; Chen, H.: Altered functional connectivity and small-world in mesial temporal lobe epilepsy. En: PLoS One 5 (2010), Nr. 1, p. e8525Liu, J ; Tang, Y ; Yang, Z.R: The spread of disease with birth and death on networks. En: T. J. Stat. Mech (2004), p. P08008Liu, J ; Wu, J ; Yang, Z.R: The spread of infectious disease on complex networks with household-structure. En: Physica A 341 (2004), p. 273–280Liu-Helmersson, J ; Stenlund, H ; Wilder-Smith, A ; Rockl ̈ov, J: Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. En: PLoS ONE 9 (2014), Nr. 3, p. e89783Lopez Montenegro, L. E.: Modelos y Control Optimo Poblacional del Aedes aegypti con Retardos de Tiempo, Universidad Nacional de Colombia sede Manizales, Tesis de Grado, 2012Louch, H: Personal network integration: Transitivity and homophily in strong-tie relations. En: Soc.Netw 22 (2000), Nr. 1, p. 45–64Lowe, R. ; Gasparrini, A. ; Van Meerbeeck, C. J. ; Lippi, C. A. ; Mahon, R. ; Trotman, L. ; Hinds, A. Q. J. ; Ryan, S. J. ; Stewart-Ibarra, A. M.: Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. En: PLOS MEDICINE (2018)López, R. ; Molina, R.: Cambio climático en España y riesgo de enfermedades infecciosas y parasitarias transmitidas por artrópodos y roedores. En: Revista Española Salud Pública 79 (2005), Julio-Diciembre, Nr. 1Maidana, N. A. ; Yang, H. M.: Describing the geographic spread of dengue disease by traveling waves. En: Mathematical Biosciences 215 (2008), p. 64–77Marcombe, S ; Corbel, V. ; Yébakima, A. ; Etienne, M. ; Yp-Tcha, M.-M. ; Darriet, F. ; Agnew, P.: Field Efficacy of New Larvicide Products for Control of Multi-Resistant Aedes aegypti Populations in Martinique (French West Indies). En: Emerging Infectious Diseases 84 (2011), Nr. 1, p. 118–126Marinho, R. A. ; Beserra, E. B. ; Bezerra-Gusm ̃ao, M. A. ; Porto, V de S. ; Olinda, R. A. ; Dos Santos, C. A.: Effects of temperature on the life cycle, expsan- cion and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. En: Journal of Vector Ecology 4 (2015), Nr. 1Marquetti, M.: Aspectos bioecológicos de importancia para el control de Aedes aegy- pti y otros culícidos en el ecosistema urbano., Instituto de Medicina Tropical Pedro Kourí, Tesis de Grado, 2008McGavin, G ; McGavin, G. (Ed.): Essential entomology. An order by order intro- duction. Oxford University Press, 2001Mercado Reyes, M: Informe Final Dengue, Colombia, 2014 / Instituto Nacional de Salud. 2014 ( 2). – Informe de InvestigaciónMerler, S. ; Ajelli, M. ; Pugliese, A. ; Ferguson, N. M.: Determinants of the Spatiotemporal Dynamics of the 2009 H1N1 Pandemic in Europe: Implications for Real-Time Modelling. En: PLoS Computational Biologi 7 (2011), Nr. 9, p. e1002205Messina, J. P. ; Brady, O. J. ; Golding, N. ; Kraemer, M. U. G. ; Wint, G. R. W. ; Ray, S. E. ; Ray, and Shearer F. M. ; Johnson, K. ; Earl, L. ; Marczak, L. B. ; Shirude, S. ; Weaver, N. D. ; Gilbert, M. ; Velayudhan, R. ; Jones, P. ; Jaenisch, T. ; Scott, T. W. ; Reiner Jr, R. C. ; ; Hay, S. I.: The current and future global distribution and population at risk of dengue. En: Nature Microbioly 4 (2019), p. 1508–1515Montesinos López, O. A. ; Hernández Suárez, C. M.: Modelos matemáticos para enfermedades infecciosas. En: Salud pública de méxico 49 (2007), Nr. 3Moore, C. ; Newman, M. E. J.: Epidemics and percolation in small-world networks. En: Physical Review E 61 (2000), Nr. 5, p. 5678–5682Mora, A ; Jiménez, F ; Treviño, S: Distribución geoespacial y detección del virus del dengue en mosquitos Aedes (Stegomyia) aegypti de Ciudad Juárez. En: Salud Pública Mex 52 (2009), p. 127–133Moreno, Y. ; Pastor-Satorras, R. ; A., Vespignani: Epidemic outbreaks in com- plex heterogeneous networks. En: The European Physical Journal B 26 (2002), p. 521–529Moreno Sotelo, G. N.: Análisis del umbral epidemiológico en enfermedades trans- mitidas por un vector, Universidad Nacional de Colombia sede Bogotá, Facultad de Ciencias, Departamento de Física, Tesis de Grado, 2013Murray, N. E. A. ; Quam, M. B. ; Wilder-Smith, A.: Epidemiology of dengue: past, present and future prospects. En: Clinical Epidemiology 5 (2013), p. 299–309. – ISSN 1179–1349Nawawi, D.: Mathematical assessment on the effect of hospitalization in dengue intervention. (2020)Newman, M.: Percolation and epidemics in a two dimensional small world. En: Physical Review E 65 (2002), Nr. 2, p. 021904Newman, M.: Networks: An Introduction. Oxford University Press, 2010. – ISBN 01992066519780199206650Nguyen, L. T. ; Le, H. X. ; Nguyen, D. T. ; Ho, H. Q. ; Chuang, T.-W.: Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam. En: International Journal of Environmental Research and Public Health 17 (2020), Nr. 7Ocampo, N. J.and Carabalí M.and Alexander N.and Osorio L.: Reduction in dengue cases observed during mass control of Aedes (Stegomyia) in street catch basins in an endemic urban area in Colombia. En: Acta Tropica 132 (2014), p. 15–22Onnela, J. P. ; Chakraborti, A ; Kaski, K ; Kertész, J ; Kanto, A: Dynamics of market correlations: Taxonomy and portfolio analysis. En: Physical Review E 68 (2003), Nr. 5Ooi, EE ; Gubler, DJ: Dengue in Southeast Asia:epidemiological characteristics and strategic challenges in disease prevention. En: Cad Saude Publica 25 (2009), p. 115–124Organization, World H. Dengue guidelines for diagnosis, treatment, prevention and control : new edition. 2009Padilla, J. C. ; Rojas, D. P. ; Sáenz Gómez, R.: Dengue en Colombia:Epidemiología de la reemergencia a la hiperendemia. Los Autores, 2012. – ISBN 9789584606617(PAHO), Pan American Health O. Actualización Epidemiológica Dengue(PAHO), Pan American Health O. A timeline for Dengue in the americasto december 31, 2000 and noted first occurences, 2001Pandey, Abhishek ; Mubayi, Anuj ; Medlock, Jan: Comparing vector host and SIR models for dengue transmission. En: Mathematical Biosciences 246 (2013), p. 252–259Pastor, J. ; Sola, R. G. ; Vega-Zelaya, L. ; Garnés, O ; Ortega, G. J.: Conec- tividad funcional y redes complejas en el estudio de la epilepsia focal. Implicaciones fisiopatológicas y terapéuticas. En: Revista de Neurología 58 (2014), Nr. 9, p. 411–419Pastor-Satorras, R: Epidemic dynamics in finite size scale-free networks. En: Physical Review E 65 (2002)Pastor-Satorras, R. ; Castellano, C. ; Mieghem, P. V. ; Vespignani, A.: Epidemic processes in complex networks. En: Reviews of Modern Physics 87 (2015), Nr. 925Pham, HV ; Doan, HTM ; Phan, TTT ; Tran Minh, NN.: Ecological factors asso- ciated with dengue fever in a central highlandsProvince, Vietnam. En: BMC Infectious Diseases 11 (2011), Nr. 1Phillips, M. L.: Phillips, M. L. Dengue reborn: widespread resurgence of a resilient vector. En: Environ. Health Perspect 116 (2008), Nr. A382-A388Pinto, F. A. ; Martínez, S. ; Fuentes, M. ; Borrero, E: Análisis de las demoras en salud en personas que enfermaron de gravedad o fallecieron por dengue en cinco ciudades de Colombia. En: Physis: Revista de Saúde Coletiva 25 (2015), Nr. 2Ministerio de la Protección Social, Organización Panamericana de la S.: Gestón para la vigilancia entomológica y control del dengue / Instituto Nacional de Salud. 2013. – Informe de InvestigaciónQuintero, D ; Osorio, J ; M, Martínez: Competencia vectorial: consideraciones entomológicas y su influencia sobre la epidemiología del Dengue. En: Iatreia 23 (2010), Nr. 2Quintero, J ; Ronderos Pulido, N ; Logan, J ; Ant, T ; Bruce, J ; G, Ca- rrasquilla: Effectiveness of an intervention for Aedes aegypti control scaled-up under an inter-sectoral approach in a Colombian city hyper-endemic for dengue. En: PLoS ONE 15 (2020), Nr. 4Quintero-Herrera, L. L. ; Ramirez-Jaramillo, V. ; Bernal-Gutierrez, S. ; Cardenas-Giraldo, E. V. ; Guerrero-Matituy, E. A. ; Molina-Delgado, A. H. ; Montoya-Arias, C. P. ; Rico-Gallego, J. A. ; Herrera-Giraldo, A. C. ; Botero-Franco, S. ; Rodriguez-Morales, A. J.: Potential impact of clima- tic variability onthe epidemiology of dengue in Risaralda,Colombia, 2010-2011. En: Journal of Infection and Public Health 8 (2015), p. 291–297for Research, Special P. ; in Tropical Diseases, Training ; World Health Or- ganization, Scientific Working Group on D. ; World Health Organization, Scientific Working Group. Meeting on D.: Report of the Scientific Working Group Meeting on Dengue: Geneva, 1-5 October, 2006. WHO, Special Programme for Re- search and Training in Tropical Diseases, 2007De los Reyes V, A. A. ; Escaner, J. M. L.: Dengue in the Philippines: model and analysis of parameters affecting transmission. En: Journal of Biological Dynamics 12 (2018), Nr. 1, p. 894–912Ribot Reyes, Victoria de la C. ; Chang Paredes, Niurka ; González Castillo, Antonio L.: Efectos de la COVID-19 en la salud mental de la población. En: Revista Habanera de Ciencias médicas 19 (2020)Rodríguez Cruz, R: Estrategias para el control del dengue y del Aedes aegypti en las Américas. En: Revista Cubana de Medicina Tropical 54 (2002), p. 189–201Rodríguez, H ; De La Hoz, F: Dengue and dengue and vector behaviour in Cáqueza, Colombia, 2004. En: Rev. salud pública 7 (2005), Nr. 1Rojas, C: Cuarentena, aislamiento forzado y uso de drogas. En: Panamerican journal of neuropsychology 14 (2020), Nr. 1Romeo Aznar, Victoria ; Otero, Marcelo ; De Majo, María S. ; Fischer, Sylvia ; Solari, Hernán G.: Modeling the complex hatching and development of Aedes aegypti in temperate climates. En: Ecological Modelling 253 (2013), p. 44–55Rossi G, Almirón W.: Clave ilustrada para la identificación de larvas de mosquitos de interés sanitario encontradas en criaderos artificiales en la Argentina. En: Fundación Mundo sano (2004)Rúa Uribe, G. L. ; Suárez Acosta, C. ; Chauca, J. ; Ventosilla, P. ; Almanza, R.: Modelado del efecto de la variabilidad climática local sobre la transmisión de dengue en Medellín (Colombia) mediante análisis de series temporales. En: Biomédica 33 (2013), Nr. 1, p. 142–152Rubinov, M ; Sporns, O: Complex network measures of brain connectivity: Uses and interpretations. En: NeuroImage 52 (2010), p. 1059–1069Ruiz-López, F. ; González-Mazo, A. ; Vélez-Mira, A. ; Gómez, L. ; Uribe, S. ; Vélez-Bernal, I. D.: Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. En: Biomédica. (2016)Russell, R. C. ; Currie, B. J. ; Lindsay, M. D. ; Mackenzie, J. S. ; Ritchie, S. A. ; Whelan, P. I.: Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. En: Medical Journal of Australia 190 (2009), p. 265–268Ryan, C. J.and Mordecai E. A.and Johnson L. R.: Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. En: PLoS Negl Trop Dis 13 (2019), Nr. 265-2683Salazar, Roberto ; Díaz, Yadira ; Pardo, Renata: índice de Pobreza Multidimen- sional para Colombia. En: Archivos de Economía 382 (2011), NoviembreSan Martin, Jose L. ; Brathwaite, Olivia ; Zambrano, Betzana ; Solorzano, Jose O. ; Bouckenooghe, Alain ; Dayan, Gustavo H. ; Guzman, Maria G.: The Epidemiology of Dengue in the Americas Over the Last Three Decades: A Worrisome Reality. En: The American Society of Tropical Medicine and Hygiene 82 (2010), Nr. 1, p. 128–135Sánchez Steiner, L.M: Migración forzada y urbanización en Colombia. Perspectivas históricas y aproximaciones teóricas. En: Seminario Internacional Procesos Urbanos Informales, 2007Santos, C. A. G. ; Guerra-Gomes, I. C. ; Gois, R. F. ; Keesen, T. S. L. ; da Silva, R. M.: Correlation of dengue incidence and rainfall occurrence using wavelet transform for Jo ̃ao Pessoa city. En: Science of The Total Environment (2019)Sardar, T. ; Rana, J.: A mathematical model of dengue transmission with memory. En: Communications in Nonlinear Science and Numerical Simulation 22 (2015), Nr. 511–525Sarfraz, M.S ; Tripathi, N. K. ; Tipdecho, T. ; Thongbu, T. ; Kerdthong, P. ; Souris, M: Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. En: BMC Public Health 12 (2012), Nr. 853Scott, Thomas W. ; Amerasinghe, Priyanie H. ; Morrison, Amy C. ; Lorenz, Leslie H. ; Clark, Daniel ; Kittayapong, Pattamaporn ; Edman, John D.: Lon- gitudinal Studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: Blood Feeding Frequency. En: Journal of Medical Entomology 37 (2000), Nr. 1Sepúlveda, L. S.: Manejo óptimo y viable en modelos epidemiológicos del dengue, Universidad Autónoma de Occidente, Tesis de Grado, 2015Sepulveda Salcedo, L. S. ; Vasilieva, H. J.and Arias Castro J. H.: Ross Macdo- nald: Un modelo para la dinámica del dengue en Cali, Colombia. En: Revista de Salud Pública 17 (2016), Nr. 5, p. 749–761Sethia, A. ; Eargleb, J. ; Blacka, A. A. ; Schultena, Z. L.: Dynamical networks in tRNA: protein complexes. En: PNAS 106 (2009), Nr. 6620-6625Seto, K. C. ; Guneralp, B ; Hutyra, L. R.: Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. En: Proc. Natl Acad. Sci. USA 109 (2012), Nr. 40, p. 16083–8Side, Syafruddin ; Noorani, Mohd. Salmi M.: A SIR model for spread of dengue fever disease (simulation for South Sulawesi, Indonesia and Selangor, Malaysia), 2013de Política Económica y Social, Consejo N. Políca para el suministro de agua potable y saneamiento básico en la zona rural. Julio 2014Solé, R ; Valverde, S: Spontaneous emergency of modularity in cellular networks. En: J. R.Soc. Interface 5 (2008), p. 129–133Soriano-Paños, D. ; Lotero, L. ; Arenas, A. ; Gómez-Gardeñes, J.: Spreading Processes in Multiplex Metapopulations Containing Different Mobility Networks. En: Phys. Rev. X 8 (2018), Aug, p. 031039Sporns, O. ; Chialvo, D. R. ; Kaiser, M. ; Hilgetag, C. C.: Organization, deve- lopment and function of complex brain networks. En: TRENDS in Cognitive Sciences 8 (2004), Nr. 9toddard, S. ; Forsheycde, B. M. ; Morrisona, A. C. ; az Soldanf, V. A. ; Vazquez-Prokopecb, H. ; Reiner, S. ; Elderh, E. S. ; Kochelc, U. ; Scotˇt, T W.: House-to-house human movement drives dengue virus transmission. En: Pro- ceedings of the National Academy of Sciences. 110 (2013), Nr. 3, p. 994–999Stoddard, S.T ; Morrison, A. C. ; Vazquez Prokopec, G. M. ; Soldan, V. P. ; Kochel, T. J. ; Kitron, U. ; Elder, J. P. ; Scott, T. W.: The role of human movement in the transmission of vector-borne pathogens. En: PLoS Negl Trop Dis 3 (2009), Nr. 7, p. e481Strogatz, S. H.: Exploring Complex Networks. En: Nature 410 (2001), p. 268–276Suárez, M. F. ; Nelson, M. J.: Registro de altitud del Aedes aegypt. En: Biomédica. 1 (1981), Nr. 1:225Sudria, M ; Andreatta, M ; Defagó, M: Los efectos de la cuarentena por corona- virus (Covid-19) en los hábitos alimentarios en Argentina. En: Asociación Argentina de Dietistas y Nutricionistas Dietistas; Diaeta 38 (2020), Nr. 171, p. 10–19Sulistyawati, S. ; Dwi Astuti, F. ; Rahmah Umniyati, S. ; Tunggul Satoto, T. ; Lazuardi, L. ; Nilsson, M. ; Holmner, ̊A.: Dengue Vector Control through Community Empowerment: Lessons Learned from a Community-Based Study in Yog- yakarta, Indonesia. En: International Journal of Environmental Research and Public Health. 16 (2019), Nr. 6Sun, X ; Liu, Y ; Li, B ; Han, J ; Liu, X: Mathematical model for spreading dynamics of social network worms. En: J. Stat. Mech P04009 (2012)abachnick, W. J.: Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. En: The Journal of Experimental Biology 213 (2010), p. 946–954Tao, H. ; Liu, Y. ; Wang, K. ; Zhuo, L.: Assessing Impacts of Traffic Flows on the Spatial Distribution of Early Dengue in Guangzhou Subdistricts. En: IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 2019, p. 3468–3470Tapia Conyer, R ; Méndez Galván, J ; Burciaga Zúñiga, P: Community participation in the prevention and control of dengue: the patio limpio strategy in Mexico. En: Paediatrics and International Child Health 32 (2002), Nr. S1, p. 10–13Thirion, J: El mosquito Aedes aegypti y el dengue en México. En: Bayer Environ- mentalScience (2003)Thoméa, R. C. ; Yangb, H. M. ; Estevac, L.: Optimal control of Aedes aegypti mos- quitoes by the sterile insect technique and insecticide. En: Mathematical Biosciences 223 (2010)Tsai, Ching-Tsan ; Sung, Fung-Chang ; Chen, Patrick S. ; Lin, Shu-Chiung: Ex- ploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. En: Stoch Environ Res Risk Assess 26 (2012), p. 671–680Valdez, L. D. ; Sibona, G. J. ; Condat, C. A.: RImpact of rainfall on Aedes aegypti populations. En: Ecological Modelling 385 (2018), p. 96–105Velásquez, L. C. ; Quintero, J. ; García Betancourt, T. ; González Uribe, C. ; Fuentes Vallejo, M.: Funcionamiento de las políticas gubernamentales para la prevención y el control del dengue: el caso de Arauca y Armenia en Colombia. En: Biomédica 35 (2015), p. 186–195Vincenti-Gonzalez, M. F. ; Tami, A ; Lizarazo, E. F. ; Grillet, M. E.: ENSO- driven climate variability promotes periodic major outbreaks of dengue in Venezuela. En: Scientific Reports 8 (2018), Nr. 1Vivescas, F: Urbanización y ciudad en Colombia. Una cultura para construir en Colombia. En: Bogotá: Foro Nacional por Colombia, 1989, p. 283Wang, Tang S. ; Cheke, R. A.: A stage structured mosquito model incorporating effects of precipitation and daily temperature fluctuations. En: Journal of Theoretical Biology 411 (2016), p. 27–36Watts, D. J. ; Strogatz, S. H.: Collective dynamics of small-world networks. En: Nature 393 (1998), p. 440–442WHO, Switzerland: Global Strategy for Dengue Prevention and Control 2012-2020 / WHO Press. 2012. – Informe de InvestigaciónWilder-Smith, A. ; Gubler, D. J.: Geographic Expansion of Dengue: The Impact of International Travel. En: Medical Clinics of North America 92 (2008), Nr. 6, p. 1377–1390Xu, Hai-Yan ; Fu, Xiuju ; Lee, Lionel Kim H. ; Ma, Stefan ; Goh, Kee T. ; Wong, Jiancheng ; Habibullah, Mohamed S. ; Lee, Gary Kee K. ; Lim, Tian K. ; Tambyah, Paul A. ; Lim, Chin L. ; Ng, Lee C.: Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore. En: PLoS Negl Trop Dis (2014)Yangh, M. L. G. ; Galvani, K. C. ; ANDRIGHETTI, D.M.V.: Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. En: Epidemiol Infect 137 (2009), p. 1188–1202Zea, D. ; Osorio, L.: Situación del sistema de vigilancia de casos de Dengue en un municipio de Colombia. En: Rev. salud pública. 13 (2011), Nr. 5, p. 785–795Zhou, L. ; Wang, Y. ; Xiao, Y. ; Li, M. Y.: Global dynamics of a discrete age- structured SIR epidemic model with applications to measles vaccination strategies. En: Mathematical Biosciences 308 (2019), p. 27–37Zhu, Dongmei ; Ren, Jianwei ; Zhu, Huaiping: Spatial-temporal basic reproduction number and dynamics for a dengue disease diffusion model. Mathematical Methods in the Applied Sciences. En: Science of the Total Environment 41 (2018), Nr. 14, p. 5388–5403Zhu, G ; Liu, T ; Xiao, J ; Zhang, B ; Song, T ; Zhang, Y ; Lin, L ; Peng, Z ; Deng, A ; Ma, W ; Hao, Y: Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. En: Science of the Total Environment 651 (2019), p. 969–978BibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85736/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL24339139.pdf24339139.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf3669374https://repositorio.unal.edu.co/bitstream/unal/85736/5/24339139.pdfe6dc75febd1c47685a43ec1fc270c04dMD55THUMBNAIL24339139.pdf.jpg24339139.pdf.jpgGenerated Thumbnailimage/jpeg4314https://repositorio.unal.edu.co/bitstream/unal/85736/6/24339139.pdf.jpg58100c9712e83e1bd3b3bb0ece523e8dMD56unal/85736oai:repositorio.unal.edu.co:unal/857362024-02-28 23:05:16.653Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |