Método de compresión de archivos de imagen usando técnicas de deep learning

Ilustraciones

Autores:
Varas González, Mario
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82524
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82524
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Procesamiento de imágenes
Deep Learning
file compression
Compresión de archivos
Procesamiento de imágenes
Image processing
File compression
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_27ea075a73103ff18f9f683b9c094996
oai_identifier_str oai:repositorio.unal.edu.co:unal/82524
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Método de compresión de archivos de imagen usando técnicas de deep learning
dc.title.translated.eng.fl_str_mv Image files compression method using deep learning techniques
title Método de compresión de archivos de imagen usando técnicas de deep learning
spellingShingle Método de compresión de archivos de imagen usando técnicas de deep learning
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Procesamiento de imágenes
Deep Learning
file compression
Compresión de archivos
Procesamiento de imágenes
Image processing
File compression
title_short Método de compresión de archivos de imagen usando técnicas de deep learning
title_full Método de compresión de archivos de imagen usando técnicas de deep learning
title_fullStr Método de compresión de archivos de imagen usando técnicas de deep learning
title_full_unstemmed Método de compresión de archivos de imagen usando técnicas de deep learning
title_sort Método de compresión de archivos de imagen usando técnicas de deep learning
dc.creator.fl_str_mv Varas González, Mario
dc.contributor.advisor.none.fl_str_mv Branch Bedoya, John Willian
dc.contributor.author.none.fl_str_mv Varas González, Mario
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Procesamiento de imágenes
Deep Learning
file compression
Compresión de archivos
Procesamiento de imágenes
Image processing
File compression
dc.subject.lemb.none.fl_str_mv Procesamiento de imágenes
dc.subject.proposal.none.fl_str_mv Deep Learning
file compression
dc.subject.proposal.spa.fl_str_mv Compresión de archivos
Procesamiento de imágenes
dc.subject.proposal.eng.fl_str_mv Image processing
File compression
description Ilustraciones
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-27T20:08:54Z
dc.date.available.none.fl_str_mv 2022-10-27T20:08:54Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82524
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82524
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, H. (n.d.). Neural model for Karhunen-Loéve transform with application to adaptive image compression.
Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016). YouTube-8M: A Large-Scale Video Classification Benchmark. http://arxiv.org/abs/1609.08675
Ahlswede, R., Ahlswede, A., Althöfer, I., Deppe, C., & Tamm, U. (2014). LZW Data compression. Foundations in Signal Processing, Communications and Networking, 10(02), 9–38. https://doi.org/10.1007/978-3-319-05479-7_2
Akyazi, P., & Ebrahimi, T. (2019). Learning-Based Image Compression using Convolutional Autoencoder and Wavelet Decomposition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June, 1–5.
Antoine, J.-P. (2003). Wavelet Transforms and Their ApplicationsWavelet Transforms and Their Applications , Lokenath Debnath , Birkhäuser, Boston, 2002. $79.95 (565 pp.). ISBN 0-8176-4204- 8 . Physics Today, 56(4), 68–68. https://doi.org/10.1063/1.1580056
AVIF for Next-Generation Image Coding | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/avif-for-next-generation-image-coding- b1d75675fe4
Ballé, J., Laparra, V., & Simoncelli, E. P. (2017). End-to-end optimized image compression. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings.
Cai, C., Lu, G., Hu, Q., Chen, L., & Gao, Z. (2019). Efficient learning based sub-pixel image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June.
Cheng, Z., Sun, H., Takeuchi, M., & Katto, J. (2018). Deep Convolutional AutoEncoder-based Lossy Image Compression. 2018 Picture Coding Symposium, PCS 2018 - Proceedings, 253–257. https://doi.org/10.1109/PCS.2018.8456308
Chest X-Ray Images (Pneumonia) | Kaggle. (n.d.). Retrieved June 19, 2022, from https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?resource=download
Chua, L., & Lin, T. (1988). A neural network approach to transform image coding.
Cramer, C., Gelenbe, E., & Bakircioglu, H. (1996). Video compression with random neural networks. Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, NICROSP, 476–484. https://doi.org/10.1109/nicrsp.1996.542792
Daugman, J. G. (1988). Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7), 1169–1179. https://doi.org/10.1109/29.1644
Dhawale, N. (2015). Implementation of Huffman algorithm and study for optimization. Proceedings - 2014 IEEE International Conference on Advances in Communication and Computing Technologies, ICACACT 2014. https://doi.org/10.1109/EIC.2015.7230711
Du, B., Yuang, D., & Zhang, H. (2022). Collaborative image compression and classification with multi- task learning for visual Internet of Things.
Electronics, A. K., & Paper, W. (n.d.). 8k: the next level in imaging. 1–15.
Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
Gelenbe, E. (1989). Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Computation, 1(4), 502–510. https://doi.org/10.1162/neco.1989.1.4.502
Gelenbe, E., & Sungur, M. (1994). Random network learning and image compression. IEEE International Conference on Neural Networks - Conference Proceedings, 6, 3996–3999. https://doi.org/10.1109/icnn.1994.374852
GitHub - Netflix/vmaf: Perceptual video quality assessment based on multi-method fusion. (n.d.). Retrieved June 18, 2022, from https://github.com/Netflix/vmaf
Hai, F., Hussain, K. F., & Gelenbe, E. (2001). Video compression with wavelets and random neural network approximations.
Horé, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. Proceedings - International Conference on Pattern Recognition, August, 2366–2369. https://doi.org/10.1109/ICPR.2010.579
LeCun, Y., & Bengio, Y. (2015). Deep Learning, Nature, vol. 521, no. 7553, p. 436.
Melegati, J., Wang, X., & Abrahams, P. (2019). Hypotheses Engineering: First Essential Steps of Experiment-Driven Software Development.
Rippel, O., & Bourdev, L. (2017). Real-time adaptive image compression,.
S. Golomb. (1966). Run-length encodings (Corresp.),. 6–8.
Sambasivan, N., Kapania, S., & Highfll, H. (2021). Everyone wants to do the model work, not the data work: Data cascades in high-stakes ai. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3411764.3445518
Si, Z., & Shen, K. (2016). Research on the WebP image format. Lecture Notes in Electrical Engineering, 369, 271–277. https://doi.org/10.1007/978-981-10-0072-0_35
Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 18(5), 36–58. https://doi.org/10.1109/79.952804
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings, 1–14.
Theis, L., Shi, W., Cunningham, A., & Huszár, F. (2017). Lossy image compression with compressive autoencoders. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 1–19.
VMAF: The Journey Continues. by Zhi Li, Christos Bampis, Julie... | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/vmaf-the-journey- continues-44b51ee9ed12
Wallace, G. K. (1992). The JPEG still Picture Compression Standard. Architecture, 38(1).
Wang, Y., Wang, L., Yang, J., An, W., & Guo, Y. (2019). Flickr1024: A large-scale dataset for stereo image super-resolution. Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 3852–3857. https://doi.org/10.1109/ICCVW.2019.00478
Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified Activations in Convolutional Network. http://arxiv.org/abs/1505.00853
Yamanaka, J., Kuwashima, S., & Kurita, T. (2017). Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10635 LNCS, 217–225. https://doi.org/10.1007/978-3-319-70096-0_23
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009
Zhou, L., Cai, C., Gao, Y., Su, S., & Wu, J. (2018). Variational autoencoder for low bit-rate image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-Janua, 2617–2620.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 170 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.publisher.department.spa.fl_str_mv Departamento de la Computación y la Decisión
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82524/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82524/2/712484.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82524/3/712484.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
bddae033e360d43dffcc2124d1eb6847
342fb44135a51ce689c963d3dc801cf8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090117963317248
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Branch Bedoya, John Willian112eaa0bbeeaeb0d3d14dfe15d672a15600Varas González, Mario63ab3847f57c408fd6aafb66f7775f6d2022-10-27T20:08:54Z2022-10-27T20:08:54Z2022https://repositorio.unal.edu.co/handle/unal/82524Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEn los últimos años, el tráfico en internet ha estado mayormente dominado por aplicaciones relacionadas con archivos de imagen y vídeo, especialmente servicios de streaming de contenido y aplicaciones de distribución de video bajo demanda. Más de tres cuartas partes del tráfico total de internet corresponden a archivos de imagen y vídeo. Que estas tareas sean lo más eficientes posible repercute directamente en la experiencia de uso que tengan los usuarios y en la calidad del servicio prestado. Preservar la calidad de esta experiencia de usuario es el principal objetivo en el desarrollo de estos sistemas de compresión, así como el punto donde estos sistemas más pueden flaquear. Es por ello que minimizar la distorsión o pérdida de información generada en el proceso de compresión de un archivo es algo prioritario y un asunto que ha tratado de abordarse desde diversas perspectivas y métodos a lo largo de la historia. El presente trabajo se centra en aquellas propuestas de reciente publicación donde el aprendizaje profundo o Deep Learning juega un papel principal en este proceso, proponiendo un método basado en redes neuronales para enfrentar el problema de compresión de archivos de imagen, mostrando la investigación llevada a cabo, el desarrollo del método y su puesta a prueba. (texto tomado de la fuente)In recent years, Internet traffic has been largely dominated by applications related to image and video files, especially content streaming services and video-on-demand distribution applications. Today, more than three quarters of all Internet traffic is image and video files. Making these tasks as efficient as possible has a direct impact on the user experience and the quality of the service provided. Preserving the quality of this user experience is the main objective in the development of these compression systems, as well as the point where these systems can falter the most. That is why minimizing the distortion or loss of information generated in the file compression process is a priority and an issue that has been addressed from various perspectives and methods throughout history. This project focuses on those recently published proposals where Deep Learning plays a major role in this process, proposing a method based on neural networks to address the problem of image files compression, showing the research carried out, the development of the method and its testingMaestríaMagíster en Ingeniería - Ingeniería de SistemasÁrea Curricular de Ingeniería de Sistemas e Informáticaxv, 170 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresProcesamiento de imágenesDeep Learningfile compressionCompresión de archivosProcesamiento de imágenesImage processingFile compressionMétodo de compresión de archivos de imagen usando técnicas de deep learningImage files compression method using deep learning techniquesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbas, H. (n.d.). Neural model for Karhunen-Loéve transform with application to adaptive image compression.Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., & Vijayanarasimhan, S. (2016). YouTube-8M: A Large-Scale Video Classification Benchmark. http://arxiv.org/abs/1609.08675Ahlswede, R., Ahlswede, A., Althöfer, I., Deppe, C., & Tamm, U. (2014). LZW Data compression. Foundations in Signal Processing, Communications and Networking, 10(02), 9–38. https://doi.org/10.1007/978-3-319-05479-7_2Akyazi, P., & Ebrahimi, T. (2019). Learning-Based Image Compression using Convolutional Autoencoder and Wavelet Decomposition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June, 1–5.Antoine, J.-P. (2003). Wavelet Transforms and Their ApplicationsWavelet Transforms and Their Applications , Lokenath Debnath , Birkhäuser, Boston, 2002. $79.95 (565 pp.). ISBN 0-8176-4204- 8 . Physics Today, 56(4), 68–68. https://doi.org/10.1063/1.1580056AVIF for Next-Generation Image Coding | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/avif-for-next-generation-image-coding- b1d75675fe4Ballé, J., Laparra, V., & Simoncelli, E. P. (2017). End-to-end optimized image compression. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings.Cai, C., Lu, G., Hu, Q., Chen, L., & Gao, Z. (2019). Efficient learning based sub-pixel image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019-June.Cheng, Z., Sun, H., Takeuchi, M., & Katto, J. (2018). Deep Convolutional AutoEncoder-based Lossy Image Compression. 2018 Picture Coding Symposium, PCS 2018 - Proceedings, 253–257. https://doi.org/10.1109/PCS.2018.8456308Chest X-Ray Images (Pneumonia) | Kaggle. (n.d.). Retrieved June 19, 2022, from https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia?resource=downloadChua, L., & Lin, T. (1988). A neural network approach to transform image coding.Cramer, C., Gelenbe, E., & Bakircioglu, H. (1996). Video compression with random neural networks. Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing, NICROSP, 476–484. https://doi.org/10.1109/nicrsp.1996.542792Daugman, J. G. (1988). Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(7), 1169–1179. https://doi.org/10.1109/29.1644Dhawale, N. (2015). Implementation of Huffman algorithm and study for optimization. Proceedings - 2014 IEEE International Conference on Advances in Communication and Computing Technologies, ICACACT 2014. https://doi.org/10.1109/EIC.2015.7230711Du, B., Yuang, D., & Zhang, H. (2022). Collaborative image compression and classification with multi- task learning for visual Internet of Things.Electronics, A. K., & Paper, W. (n.d.). 8k: the next level in imaging. 1–15.Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14–15), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0Gelenbe, E. (1989). Random Neural Networks with Negative and Positive Signals and Product Form Solution. Neural Computation, 1(4), 502–510. https://doi.org/10.1162/neco.1989.1.4.502Gelenbe, E., & Sungur, M. (1994). Random network learning and image compression. IEEE International Conference on Neural Networks - Conference Proceedings, 6, 3996–3999. https://doi.org/10.1109/icnn.1994.374852GitHub - Netflix/vmaf: Perceptual video quality assessment based on multi-method fusion. (n.d.). Retrieved June 18, 2022, from https://github.com/Netflix/vmafHai, F., Hussain, K. F., & Gelenbe, E. (2001). Video compression with wavelets and random neural network approximations.Horé, A., & Ziou, D. (2010). Image quality metrics: PSNR vs. SSIM. Proceedings - International Conference on Pattern Recognition, August, 2366–2369. https://doi.org/10.1109/ICPR.2010.579LeCun, Y., & Bengio, Y. (2015). Deep Learning, Nature, vol. 521, no. 7553, p. 436.Melegati, J., Wang, X., & Abrahams, P. (2019). Hypotheses Engineering: First Essential Steps of Experiment-Driven Software Development.Rippel, O., & Bourdev, L. (2017). Real-time adaptive image compression,.S. Golomb. (1966). Run-length encodings (Corresp.),. 6–8.Sambasivan, N., Kapania, S., & Highfll, H. (2021). Everyone wants to do the model work, not the data work: Data cascades in high-stakes ai. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3411764.3445518Si, Z., & Shen, K. (2016). Research on the WebP image format. Lecture Notes in Electrical Engineering, 369, 271–277. https://doi.org/10.1007/978-981-10-0072-0_35Skodras, A., Christopoulos, C., & Ebrahimi, T. (2001). The JPEG 2000 still image compression standard. IEEE Signal Processing Magazine, 18(5), 36–58. https://doi.org/10.1109/79.952804Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings, 1–14.Theis, L., Shi, W., Cunningham, A., & Huszár, F. (2017). Lossy image compression with compressive autoencoders. 5th International Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings, 1–19.VMAF: The Journey Continues. by Zhi Li, Christos Bampis, Julie... | by Netflix Technology Blog | Netflix TechBlog. (n.d.). Retrieved June 18, 2022, from https://netflixtechblog.com/vmaf-the-journey- continues-44b51ee9ed12Wallace, G. K. (1992). The JPEG still Picture Compression Standard. Architecture, 38(1).Wang, Y., Wang, L., Yang, J., An, W., & Guo, Y. (2019). Flickr1024: A large-scale dataset for stereo image super-resolution. Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019, 3852–3857. https://doi.org/10.1109/ICCVW.2019.00478Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical Evaluation of Rectified Activations in Convolutional Network. http://arxiv.org/abs/1505.00853Yamanaka, J., Kuwashima, S., & Kurita, T. (2017). Fast and Accurate Image Super Resolution by Deep CNN with Skip Connection and Network in Network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10635 LNCS, 217–225. https://doi.org/10.1007/978-3-319-70096-0_23Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2018). Places: A 10 Million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(6), 1452–1464. https://doi.org/10.1109/TPAMI.2017.2723009Zhou, L., Cai, C., Gao, Y., Su, S., & Wu, J. (2018). Variational autoencoder for low bit-rate image compression. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2018-Janua, 2617–2620.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82524/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL712484.2022.pdf712484.2022.pdfTesis Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf76078723https://repositorio.unal.edu.co/bitstream/unal/82524/2/712484.2022.pdfbddae033e360d43dffcc2124d1eb6847MD52THUMBNAIL712484.2022.pdf.jpg712484.2022.pdf.jpgGenerated Thumbnailimage/jpeg4322https://repositorio.unal.edu.co/bitstream/unal/82524/3/712484.2022.pdf.jpg342fb44135a51ce689c963d3dc801cf8MD53unal/82524oai:repositorio.unal.edu.co:unal/825242024-08-12 02:00:28.155Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=