Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis

ilustraciones, diagramas, tablas

Autores:
Gutiérrez León, Jesús Esteban
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86807
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86807
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
VIROSIS
ESTREPTOCOCOS
REACCION EN CADENA DE LA POLIMERASA
Virus diseases
Streptococcus
Polimerase chain reaction
CRISPR-Cas9
Leishmania braziliensis
Anticuerpos policlonales IgY
T7 RNA Polimerasa
NMNAT
Estrés oxidativo
CRISPR-Cas9
Leishmania braziliensis
Polyclonal IgY antibodies
T7 RNA Polymerase
NMNAT
Oxidative stress
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_27d525284f96d1e826abcc418b9b3697
oai_identifier_str oai:repositorio.unal.edu.co:unal/86807
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
dc.title.translated.eng.fl_str_mv Development of molecular tools for the implementation of the CRISPR-Cas9 system in Leishmania braziliensis
title Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
spellingShingle Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
VIROSIS
ESTREPTOCOCOS
REACCION EN CADENA DE LA POLIMERASA
Virus diseases
Streptococcus
Polimerase chain reaction
CRISPR-Cas9
Leishmania braziliensis
Anticuerpos policlonales IgY
T7 RNA Polimerasa
NMNAT
Estrés oxidativo
CRISPR-Cas9
Leishmania braziliensis
Polyclonal IgY antibodies
T7 RNA Polymerase
NMNAT
Oxidative stress
title_short Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
title_full Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
title_fullStr Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
title_full_unstemmed Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
title_sort Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
dc.creator.fl_str_mv Gutiérrez León, Jesús Esteban
dc.contributor.advisor.spa.fl_str_mv Contreras Rodríguez, Luis Ernesto
Téllez Meneses, Jair Alexander
dc.contributor.author.spa.fl_str_mv Gutiérrez León, Jesús Esteban
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
topic 570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
VIROSIS
ESTREPTOCOCOS
REACCION EN CADENA DE LA POLIMERASA
Virus diseases
Streptococcus
Polimerase chain reaction
CRISPR-Cas9
Leishmania braziliensis
Anticuerpos policlonales IgY
T7 RNA Polimerasa
NMNAT
Estrés oxidativo
CRISPR-Cas9
Leishmania braziliensis
Polyclonal IgY antibodies
T7 RNA Polymerase
NMNAT
Oxidative stress
dc.subject.lemb.spa.fl_str_mv VIROSIS
ESTREPTOCOCOS
REACCION EN CADENA DE LA POLIMERASA
dc.subject.lemb.eng.fl_str_mv Virus diseases
Streptococcus
Polimerase chain reaction
dc.subject.proposal.spa.fl_str_mv CRISPR-Cas9
Leishmania braziliensis
Anticuerpos policlonales IgY
T7 RNA Polimerasa
NMNAT
Estrés oxidativo
dc.subject.proposal.eng.fl_str_mv CRISPR-Cas9
Leishmania braziliensis
Polyclonal IgY antibodies
T7 RNA Polymerase
NMNAT
Oxidative stress
description ilustraciones, diagramas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-09T16:26:35Z
dc.date.available.none.fl_str_mv 2024-09-09T16:26:35Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86807
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86807
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adaui, V., Kröber-Boncardo, C., Brinker, C., Zirpel, H., Sellau, J., Arévalo, J., Dujardin, J. C., & Clos, J. (2020). Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes 2020, Vol. 11, Page 1159, 11(10), 1159. https://doi.org/10.3390/genes11101159
Allen, A. G., Chung, C. H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940
An, W., & Chin, J. W. (2011). Orthogonal gene expression in Escherichia coli. Methods in Enzymology, 497, 115–134. https://doi.org/10.1016/B978-0-12-385075-1.00005-6
Anders, C., & Jinek, M. (2014). In vitro enzymology of Cas9. Methods in Enzymology, 546(C), 1–20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5
Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM- dependent target DNA recognition by the Cas9 endonuclease. Nature 2014 513:7519, 513(7519), 569–573. https://doi.org/10.1038/nature13579
Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., & Karikó, K. (2010). Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 38(17), 5884. https://doi.org/10.1093/NAR/GKQ347
Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019 576:7785, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4
Aronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256
Asencio, C., Hervé, P., Morand, P., Oliveres, Q., Morel, C. A., Prouzet ‐ Mauleon, V., Biran, M., Monic, S., Bonhivers, M., Robinson, D. R., Ouellette, M., Rivière, L., Bringaud, F., & Tetaud, E. (2024). Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15256
Azevedo, A., Toledo, J. S., Defina, T., Pedrosa, A. L., & Cruz, A. K. (2015). Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Experimental Parasitology, 159, 222–226. https://doi.org/10.1016/J.EXPPARA.2015.09.008
Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England), 30(10), 1473–1475. https://doi.org/10.1093/BIOINFORMATICS/BTU048
Baron, N., Tupperwar, N., Dahan, I., Hadad, U., Davidov, G., Zarivach, R., & Shapira, M. (2021). Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLOS Neglected Tropical Diseases, 15(3), e0008352. https://doi.org/10.1371/JOURNAL.PNTD.0008352
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140
Bell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/S13321-019-0362-7
Beneke, T., Dobramysl, U., Catta-Preta, C. M. C., Mottram, J. C., Gluenz, E., & Wheeler, R. J. (2023). Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Research, 7, 294. https://doi.org/10.12688/WELLCOMEOPENRES.18575.2
Beneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. Methods in Molecular Biology (Clifton, N.J.), 1971, 189–210. https://doi.org/10.1007/978-1-4939-9210-2_9
Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/RSOS.170095
Berger, F., Lau, C., Dahlmann, M., & Ziegler, M. (2005). Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. The Journal of Biological Chemistry, 280(43), 36334– 36341. https://doi.org/10.1074/JBC.M508660200
Bhattacharya, A., Leprohon, P., Bigot, S., Padmanabhan, P. K., Mukherjee, A., Roy, G., Gingras, H., Mestdagh, A., Papadopoulou, B., & Ouellette, M. (2019). Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nature Communications 2019 10:1, 10(1), 1–14. https://doi.org/10.1038/s41467-019-13344-6
Bolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0
Borkotoky, S., & Murali, A. (2018). The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49–56. https://doi.org/10.1016/J.IJBIOMAC.2018.05.198
Braidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxidants & Redox Signaling, 30(2), 251–294. https://doi.org/10.1089/ARS.2017.7269
Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (New York, N.Y.), 321(5891), 960. https://doi.org/10.1126/SCIENCE.1159689
Carmignotto, G. P., & Azzoni, A. R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70. https://doi.org/10.1016/J.JBIOTEC.2019.09.012
Castro, H., Rocha, M. I., Duarte, M., Vilurbina, J., Gomes-Alves, A. G., Leao, T., Dias, F., Morgan, B., Deponte, M., & Tomás, A. M. (2024). The cytosolic hyperoxidation- sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biology, 71. https://doi.org/10.1016/J.REDOX.2024.103122
Cheetham, G. M. T., Jeruzalmi, D., & Steltz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature 1999 399:6731, 399(6731), 80–83. https://doi.org/10.1038/19999
Chen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 2017 1:10, 1(10), 1–15. https://doi.org/10.1038/s41570- 017-0078
Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J., & Ji, Q. (2019). Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 17(10). https://doi.org/10.1371/JOURNAL.PBIO.3000496
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143
Contreras, L. E., Neme, R., & Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expression and Purification, 115, 26–33. https://doi.org/10.1016/J.PEP.2015.08.022
Contreras Rodríguez, L. E., Ziegler, M., & Ramírez Hernández, M. H. (2020). Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 6(4), e03733. https://doi.org/10.1016/J.HELIYON.2020.E03733
Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology, 22(2), 119–141. https://doi.org/10.1038/S41580-020-00313-X
Das, S., Banerjee, A., Kamran, M., Ejazi, S. A., Asad, M., Ali, N., & Chakrabarti, S. (2020). A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. Journal of Biological Chemistry, 295(29), 9934–9947. https://doi.org/10.1074/jbc.ra120.014587
De Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C., & Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031/78270
Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 2011 471:7340, 471(7340), 602–607. https://doi.org/10.1038/nature09886
Dharmasena, W. G. B. P., & Munasinghe, D. H. H. (2021). Identification of potential TALEN and CRISPR/Cas9 targets of selected genes of some human pathogens which cause persistent infections. Journal of the National Science Foundation of Sri Lanka, 49(3), 451–465. https://doi.org/10.4038/jnsfsr.v49i3.10074
Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F., & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl_2), W13–W17. https://doi.org/10.1093/NAR/GKR245
Dias da Silva, W., & Tambourgi, D. V. (2010). IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 135(3–4), 173–180. https://doi.org/10.1016/J.VETIMM.2009.12.011
Donzé, O., & Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Research, 30(10). https://doi.org/10.1093/NAR/30.10.E46
Du, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/J.AJPS.2023.100854
Dueñas, E., Nakamoto, J. A., Cabrera-Sosa, L., Huaihua, P., Cruz, M., Arévalo, J., Milón, P., & Adaui, V. (2022). Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 13, 2828. https://doi.org/10.3389/fmicb.2022.958693
Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203
Ebrahimi, S., Kalantari, M., Alipour, H., Azizi, K., Asgari, Q., & Bahreini, M. S. (2021). In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis. Microbial Pathogenesis, 161, 105281. https://doi.org/10.1016/j.micpath.2021.105281
Eid, A., & Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine 2016 48:10, 48(10), e265–e265. https://doi.org/10.1038/emm.2016.111
Engstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 12. https://doi.org/10.7554/ELIFE.85605
Espada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849–858. https://doi.org/10.1021/acsinfecdis.0c00857
Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311
Fernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., & Ouellette, M. (2018). High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 165–173. https://doi.org/10.1016/J.IJPDDR.2018.03.004
Foss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide- mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/S41551-023-01032-2
Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004
Garavaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., & Rizzi, M. (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of Biological Chemistry, 277(10), 8524–8530. https://doi.org/10.1074/JBC.M111589200
Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71. https://doi.org/10.1038/NATURE09523
Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39). https://doi.org/10.1073/pnas.1208507109
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551:7681, 551(7681), 464–471. https://doi.org/10.1038/nature24644
Gazanion, E., Garcia, D., Silvestre, R., Gérard, C., Guichou, J. F., Labesse, G., Seveno, M., Cordeiro-Da-Silva, A., Ouaissi, A., Sereno, D., & Vergnes, B. (2011). The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Molecular Microbiology, 82(1), 21–38. https://doi.org/10.1111/J.1365- 2958.2011.07799.X
Goes, W. M., Brasil, C. R. F., Reis-Cunha, J. L., Coqueiro-dos-Santos, A., Grazielle-Silva, V., de Souza Reis, J., Souto, T. C., Laranjeira-Silva, M. F., Bartholomeu, D. C., Fernandes, A. P., & Teixeira, S. M. R. (2023). Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics, 110661. https://doi.org/10.1016/J.YGENO.2023.110661
Goldman-Pinkovich, A., Kannan, S., Nitzan-Koren, R., Puri, M., Pawar, H., Bar-Avraham, Y., McDonald, J., Sur, A., Zhang, W. W., Matlashewski, G., Madhubala, R., Michaeli, S., Myler, P. J., & Zilberstein, D. (2020). Sensing host arginine is essential for leishmania parasites’ intracellular development. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02023-20
Gonçalves, S. V. C. B., & Costa, C. H. N. (2018). Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. Anais Brasileiros de Dermatologia, 93(3), 347. https://doi.org/10.1590/ABD1806-4841.20186415
Green, M. R., & Sambrook, J. (2021). Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. Cold Spring Harbor Protocols, 2021(1), pdb.prot101766. https://doi.org/10.1101/PDB.PROT101766
Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR- associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474–0483. https://doi.org/10.1371/JOURNAL.PCBI.0010060
Herrera, G., Barragán, N., Luna, N., Martínez, D., De Martino, F., Medina, J., Niño, S., Páez, L., Ramírez, A., Vega, L., Velandia, V., Vera, M., Zúñiga, M. F., Bottin, M. J., & Ramírez, J. D. (2020). An interactive database of Leishmania species distribution in the Americas. Scientific Data, 7(1). https://doi.org/10.1038/S41597-020-0451-5
Herrera T., E. A., Contreras, L. E., Suárez, A. G., Diaz, G. J., & Ramírez, M. H. (2019). GlSir2.1 of Giardia lamblia is a NAD + -dependent cytoplasmic deacetylase. Heliyon, 5(4), e01520. https://doi.org/10.1016/j.heliyon.2019.e01520
Hornbeck, P. V. (2015). Enzyme-Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1), 2.1.1-2.1.23. https://doi.org/10.1002/0471142735.IM0201S110
Huang, C., & Yu, Y. T. (2013). Synthesis and Labeling of RNA In Vitro. Current Protocols in Molecular Biology, 102(1), 4.15.1-4.15.14. https://doi.org/10.1002/0471142727.MB0415S102
Ishemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987
Jesus-Santos, F. H., Lobo-Silva, J., Ramos, P. I. P., Descoteaux, A., Lima, J. B., Borges, V. M., & Farias, L. P. (2020). LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 10, 408. https://doi.org/10.3389/fcimb.2020.00408
Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys- 062215-010822
Jiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 69(1), 209–228. https://doi.org/10.1146/ANNUREV-MICRO-091014-104441
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829
Joung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/NRM3486
Júnior, Á. F., Ge, S., Wu, R., & Zhang, X. (2021). Immunization of hens. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 117–134. https://doi.org/10.1007/978-3-030-72688-1_10
Júnior, Á. F., Morgan, P. M., Zhang, X., & Schade, R. (2021). Biology and molecular structure of Avian IgY Antibody. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 59–70. https://doi.org/10.1007/978-3-030-72688-1_5
Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657
Kar, S., & Ellington, A. D. (2018). Construction of synthetic T7 RNA polymerase expression systems. Methods (San Diego, Calif.), 143, 110–120. https://doi.org/10.1016/J.YMETH.2018.02.022
Karachaliou, C.-E., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243
Karimian, A., Azizian, K., Parsian, H., Rafieian, S., Shafiei-Irannejad, V., Kheyrollah, M., Yousefi, M., Majidinia, M., & Yousefi, B. (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology, 234(8), 12267–12277. https://doi.org/10.1002/JCP.27972
Kawe, M., Horn, U., & Plückthun, A. (2009). Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microbial Cell Factories, 8(1), 1–8. https://doi.org/10.1186/1475- 2859-8-8
Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 2019 14:10, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2
Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections: A Practical Review. Dermatologic Clinics, 33(3), 579–593. https://doi.org/10.1016/J.DET.2015.03.018
Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/J.MIB.2017.05.008
Korencić, D., Söll, D., & Ambrogelly, A. (2002). A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Research, 30(20). https://doi.org/10.1093/NAR/GNF104
Kumar, K., Basak, R., Rai, A., & Mukhopadhyay, A. (2024). GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15255
Ledford, H. (2020). CRISPR treatment inserted directly into the body for first time. Nature, 579(7798), 185. https://doi.org/10.1038/D41586-020-00655-8
Lee, C. H., Lee, Y. C., Lee, Y. L., Leu, S. J., Lin, L. T., Chen, C. C., Chiang, J. R., Fellow, P., Tsai, B. Y., Hung, C. S., & Yang, Y. Y. (2017). Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins, 9(11). https://doi.org/10.3390/TOXINS9110347
Lee, L., Samardzic, K., Wallach, M., Frumkin, L. R., & Mochly-Rosen, D. (2021). Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Frontiers in Immunology, 12, 2257. https://doi.org/10.3389/fimmu.2021.696003
León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273
Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–23. https://doi.org/10.1038/s41392-023- 01309-7
Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181– 211. https://doi.org/10.1146/ANNUREV.BIOCHEM.052308.093131
Liu, L., Siuda, I., Richards, M. R., Renaud, J., Kitova, E. N., Mayer, P. M., Tieleman, D. P., Lowary, T. L., & Klassen, J. S. (2016). Structure and Stability of Carbohydrate– Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 17(16), 1571–1578. https://doi.org/10.1002/CBIC.201600123
López-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/S12879-016-1663-3
Lorenzon, L., Quilles, J. C., Campagnaro, G. D., Azevedo Orsine, L., Almeida, L., Veras, F., Miserani Magalhães, R. D., Alcoforado Diniz, J., Rodrigues Ferreira, T., & Kaysel Cruz, A. (2022). Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infectious Diseases, 8(3), 516–532. https://doi.org/10.1021/acsinfecdis.1c00509
Louradour, I., Ghosh, K., Inbar, E., & Sacks, D. L. (2019). CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 10(4). https://doi.org/10.1128/MBIO.01941-19
Madusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1–14. https://doi.org/10.1017/S0031182023001129
Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., Van Der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology, 13(11), 722– 736. https://doi.org/10.1038/NRMICRO3569
Mallapaty, S. (2022). How to protect the first “CRISPR babies” prompts ethical debate. Nature, 603(7900), 213–214. https://doi.org/10.1038/D41586-022-00512-W
Mao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle (Georgetown, Tex.), 7(18), 2902. https://doi.org/10.4161/CC.7.18.6679
Martel, D., Beneke, T., Gluenz, E., Späth, G. F., & Rachidi, N. (2017). Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit. BioMed Research International, 2017. https://doi.org/10.1155/2017/4635605
McCoy, C. J., Paupelin-Vaucelle, H., Gorilak, P., Beneke, T., Varga, V., & Gluenz, E. (2023). ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell, 34(7), ar66. https://doi.org/10.1091/MBC.E22-06-0222
Medeiros, L. C. S., South, L., Peng, D., Bustamante, J. M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., & Tarleton, R. L. (2017). Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 8(6). https://doi.org/10.1128/MBIO.01788-17
Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/PRO.4792
Michels, P. A. M., & Avilán, L. (2011). The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy. Molecular Microbiology, 82(1), 4–8. https://doi.org/10.1111/J.1365-2958.2011.07810.X
Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/S41592-022-01488-1
Mojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246. https://doi.org/10.1046/J.1365-2958.2000.01838.X
Morgan, P. M., Freire, M. G., Tavares, A. P. M., Michael, A., & Zhang, X. (2021). Extraction and purification of IgY. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 135–160. https://doi.org/10.1007/978-3-030-72688-1_11
Nilsen, T. W., Rio, D. C., & Ares, M. (2013). High-Yield Synthesis of RNA Using T7 RNA Polymerase and Plasmid DNA or Oligonucleotide Templates. Cold Spring Harbor Protocols, 2013(11), pdb.prot078535. https://doi.org/10.1101/PDB.PROT078535
Nussenzweig, P. M., & Marraffini, L. A. (2020). Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 54, 93–120. https://doi.org/10.1146/ANNUREV-GENET-022120-112523
Peng, D., & Tarleton, R. (2015). EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4). https://doi.org/10.1099/MGEN.0.000033
Pereira, E. P. V., van Tilburg, M. F., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303. https://doi.org/10.1016/J.INTIMP.2019.05.015
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), E45. https://doi.org/10.1093/NAR/29.9.E45
Polson, A., von Wechmar, M. B., & van Regenmortel, M. H. V. (1980). Isolation of viral IgY antibodies from yolks of immunized hens. Immunological Communications, 9(5), 475–493. https://doi.org/10.3109/08820138009066010
Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-514
Potvin, J. E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2021). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases, 72(10), e526–e532. https://doi.org/10.1093/CID/CIAA1236
Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. https://doi.org/10.1111/CED.14919
Rajagopalan, N., Kagale, S., Bhowmik, P., & Song, H. (2018). A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols 2018, Vol. 1, Page 17, 1(2), 17. https://doi.org/10.3390/MPS1020017
Ramírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6. https://doi.org/10.1038/srep28266
Ribeiro, J. M., Silva, P. A., Costa-Silva, H. M., Santi, A. M. M., & Murta, S. M. F. (2024). Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/JOURNAL.PNTD.0011880
Rio, D. C. (2013). Expression and Purification of Active Recombinant T7 RNA Polymerase from E. coli. Cold Spring Harbor Protocols, 2013(11), pdb.prot078527. https://doi.org/10.1101/PDB.PROT078527
Roberts, A. J., Ong, H. B., Clare, S., Brandt, C., Harcourt, K., Franssen, S. U., Cotton, J. A., Müller-Sienerth, N., & Wright, G. J. (2022). Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLOS Pathogens, 18(2), e1010364. https://doi.org/10.1371/JOURNAL.PPAT.1010364
Rojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11). https://doi.org/10.1098/RSOB.200302
Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14
Salgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312
Samnuan, K., Blakney, A. K., McKay, P. F., & Shattock, R. J. (2022). Design-of- experiments in vitro transcription yield optimization of self-amplifying RNA. F1000Research 2022 11:333, 11, 333. https://doi.org/10.12688/f1000research.75677.1
Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 2015 15:7, 15(7), 387–393. https://doi.org/10.1038/nrc3950
Shaddel, M., Sharifi, I., Karvar, M., Keyhani, A., & Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42. https://doi.org/10.4103/0972-9062.234625
Sharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9- Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.790418
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 2001 19:8, 19(8), 751–755. https://doi.org/10.1038/90802
Shis, D. L., & Bennett, M. R. (2014). Synthetic biology: the many facets of T7 RNA polymerase. Molecular Systems Biology, 10(7), 745. https://doi.org/10.15252/MSB.20145492
Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology, 15(3), 169–182. https://doi.org/10.1038/NRMICRO.2016.184
Shrivastava, R., Tupperwar, N., Drory-Retwitzer, M., & Shapira, M. (2019). Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania . MSphere, 4(5). https://doi.org/10.1128/mSphere.00450-19
Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342. https://doi.org/10.1038/EMBOJ.2011.41
Sollelis, L., Ghorbal, M., Macpherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J. J., & Sterkers, Y. (2015). First efficient CRISPR- Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405–1412. https://doi.org/10.1111/cmi.12456
Sousa, R. (2013). T7 RNA Polymerase. Encyclopedia of Biological Chemistry: Second Edition, 355–359. https://doi.org/10.1016/B978-0-12-378630-2.00267-X
Staak, C., Schwarzkopf, C., Behn, I., Hommel, U., Hlinak, A., Schade, R., & Erhard, M. (2001). Isolation of IgY from Yolk. Chicken Egg Yolk Antibodies, Production and Application, 65–107. https://doi.org/10.1007/978-3-662-04488-9_4
Steitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001
Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01
Tamulaitis, G., Venclovas, Č., & Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends in Microbiology, 25(1), 49–61. https://doi.org/10.1016/J.TIM.2016.09.012
Tan, S. H., Mohamedali, A., Kapur, A., Lukjanenko, L., & Baker, M. S. (2012). A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 380(1–2), 73–76. https://doi.org/10.1016/J.JIM.2012.03.003
Tan, S. I., & Ng, I. S. (2020). New Insight into Plasmid-Driven T7 RNA Polymerase in Escherichia coli and Use as a Genetic Amplifier for a Biosensor. ACS Synthetic Biology, 9(3), 613–622. https://doi.org/10.1021/acssynbio.9b00466
Teixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS Pathogens, 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003594
Tetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., & Fairlamb, A. H. (2002). A new expression vector for Crithidia fasciculata and Leishmania. Molecular and Biochemical Parasitology, 120(2), 195–204. https://doi.org/10.1016/S0166-6851(02)00002-6
Thuring, R. W. J., Sanders, J. P. M., & Borst, P. (1975). A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry, 66(1), 213–220. https://doi.org/10.1016/0003-2697(75)90739-3
Tong, C., Geng, F., He, Z., Cai, Z., & Ma, M. (2015). A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 94(1), 104–110. https://doi.org/10.3382/PS/PEU005
Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334
Tsai, K. C., Chang, C. Di, Cheng, M. H., Lin, T. Y., Lo, Y. N., Yang, T. W., Chang, F. L., Chiang, C. W., Lee, Y. C., & Yen, Y. (2019). Chicken-Derived Humanized Antibody Targeting a Novel Epitope F2pep of Fibroblast Growth Factor Receptor 2: Potential Cancer Therapeutic Agent. ACS Omega, 4(1), 2387–2397. https://doi.org/10.1021/acsomega.8b03072
Turra, G. L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J., Koncarevic, S., Schroda, M., Mühlhaus, T., & Deponte, M. (2021). In Vivo Structure-Function Analysis and Redox Interactomes of Leishmania tarentolae Erv. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00809-21
Turra, G. L., Schneider, L., Liedgens, L., & Deponte, M. (2021). Testing the CRISPR- Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical Parasitology, 241, 111336. https://doi.org/10.1016/J.MOLBIOPARA.2020.111336
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9, 11(9), 636–646. https://doi.org/10.1038/nrg2842
Vergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J. J., Sterkers, Y., & Bañuls, A. L. (2019). A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 74(11), 3231–3239. https://doi.org/10.1093/JAC/DKZ334
Walker, S. E., & Lorsch, J. (2013). RNA purification--precipitation methods. Methods in Enzymology, 530, 337–343. https://doi.org/10.1016/B978-0-12-420037-1.00019-1
Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014607
Wang, J. Y., & Doudna, J. A. (2023). CRISPR technology: A decade of genome editing is only the beginning. Science, 379(6629). https://doi.org/10.1126/science.add8643
Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/SCIENCE.1246981
Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9- Mediated Genome Editing. Trends in Genetics, 37(7), 639–656. https://doi.org/10.1016/J.TIG.2021.02.008
Yagoubat, A., Crobu, L., Berry, L., Kuk, N., Lefebvre, M., Sarrazin, A., Bastien, P., & Sterkers, Y. (2020). Universal highly efficient conditional knockout system in Leishmania, with a focus on untranscribed region preservation. Cellular Microbiology, 22(5), e13159. https://doi.org/10.1111/CMI.13159
Zarei, Z., Mohebali, M., Dehghani, H., Khamesipour, A., Tavakkol-Afshari, J., Akhoundi, B., Abbaszadeh-Afshar, M. J., Alizadeh, Z., Skandari, S. E., Asl, A. D., & Razmi, G. R. (2023). Live attenuated Leishmania infantum centrin deleted mutant (LiCen-/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 97. https://doi.org/10.1016/J.CIMID.2023.101984
Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648. https://doi.org/10.7150/THNO.47007
Zhang, W. W., Karmakar, S., Gannavaram, S., Dey, R., Lypaczewski, P., Ismail, N., Siddiqui, A., Simonyan, V., Oliveira, F., Coutinho-Abreu, I. V., DeSouza-Vieira, T., Meneses, C., Oristian, J., Serafim, T. D., Musa, A., Nakamura, R., Saljoughian, N., Volpedo, G., Satoskar, M., … Nakhasi, H. L. (2020). A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications 2020 11:1, 11(1), 1–14. https://doi.org/10.1038/s41467-020-17154-z
Zhang, W. W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), 861–876. https://doi.org/10.1128/mBio.00861-15
Zhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms . MSphere, 2(1). https://doi.org/https://doi.org/10.1128/mSphere.00340-16
Zhang, W.-W., & Matlashewski, G. (2019). Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. MSphere, 4(4). https://doi.org/10.1128/mSphere.00408-19
Zhang, X., Li, T., Ou, J., Huang, J., & Liang, P. (2021). Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein & Cell 2021 13:5, 13(5), 316–335. https://doi.org/10.1007/S13238-021-00838-7
Zhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/NAR/GKI524
Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/ABIO.1996.0171
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86807/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86807/4/1024588797.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86807/5/1024588797.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fb1ff686b186c678897c0dbbe86bd7a9
60b17eb6ad3a76cfe9e342b0f1373975
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169646407680000
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Contreras Rodríguez, Luis Ernesto5d81511ea0a525c0165694621678d9c4Téllez Meneses, Jair Alexanderd50ed986507359558c5372c33a4d1190Gutiérrez León, Jesús Esteban264107d9eaaf3e9fe0e9e21cdd205f462024-09-09T16:26:35Z2024-09-09T16:26:35Z2024https://repositorio.unal.edu.co/handle/unal/86807Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLas Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas (CRISPR) junto con sus proteínas asociadas (Cas), constituyen un sistema de defensa adaptativo procariota para contrarrestar infecciones virales. El sistema se ha aprovechado como una herramienta de edición génica programable, posibilitando diversos estudios y aplicaciones biotecnológicas, incluyendo la edición génica de organismos patogénicos como Leishmania y Trypanosoma. En Leishmania, el sistema CRISPR-Cas9 ha permitido caracterizar diversos genes de virulencia, así como la obtención de parásitos atenuados con potencial vacunal. Sin embargo, su implementación aún no ha sido reportada para este parásito en Colombia. El presente trabajó abordó el desarrollo de herramientas relacionadas con la implementación del sistema CRISPR-Cas9 en L. braziliensis, una de las especies circulantes en nuestro país. Específicamente, se emprendió la producción de anticuerpos policlonales aviares (IgY) anti-SpCas9, utilizando como antígeno la proteína Cas9 recombinante de Streptococcus pyogenes (SpCas9-6xHis). Estos anticuerpos resultaron ser sensibles, específicos y útiles para inmunodetectar la proteína SpCas9 en promastigotes de L. braziliensis transfectados con el plásmido pTB007 Viannia, el cual codifica para esta proteína. Adicionalmente, se abordó la expresión y purificación de la enzima T7 RNA Polimerasa (6xHis-T7RNAP) desde Escherichia coli, resultando útil para sintetizar ARN guías (sgRNA) y preparar complejos ribonucleoproteicos (SpCas9-sgRNA) funcionales, capaces de efectuar cortes de ADN in vitro. Por último, se implementó el sistema CRISPR-Cas9 para realizar edición génica sobre la nicotinamida mononucleótido adenililtransferasa de L. braziliensis (LbNMNAT), que participa en la síntesis del NAD, insertando la secuencia CfPGKB5’-mCherry en el extremo 5’ del gen de interés en parásitos que expresan SpCas9 y T7RNAP. Los análisis funcionales del gen revelaron un aumento de sus niveles de expresión, mientras que los ensayos de susceptibilidad ante estrés oxidativo mostraron mayores valores IC50 en los parásitos editados en comparación con muestras control, lo que sugiere que la síntesis del NAD puede estar relacionada con fenotipos fármaco-resistentes. De esta manera, se obtuvieron herramientas que facilitan la implementación del sistema CRISPR-Cas9 en L. braziliensis, un patógeno de interés para la salud pública del país. Así mismo, se demostró la posibilidad de aprovechar sistemas avanzados de biología molecular para estudiar genes relacionados con la síntesis del NAD en el contexto de enfermedades tropicales desatendidas como la Leishmaniasis (Texto tomado de la fuente).Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas), constitute a prokaryotic adaptive defense system to counter viral infections. The system has been harnessed as a programmable gene-editing tool, enabling diverse biotechnological studies and applications, including gene editing of pathogenic organisms such as Leishmania and Trypanosoma. In Leishmania, the CRISPR-Cas9 system has made it possible to characterize several virulence genes and obtain attenuated parasites with vaccine potential. However, its implementation has not yet been reported for this parasite in Colombia. In this sense, the present work addressed the development of tools related to implementing the CRISPR-Cas9 system in L. braziliensis, one of the species circulating in our country. Specifically, the production of anti-SpCas9 avian polyclonal antibodies (IgY) was undertaken, using the recombinant Cas9 protein from Streptococcus pyogenes (SpCas9-6xHis) as antigen. The antibodies were sensitive, specific, and useful to immunodetect SpCas9 protein in L. braziliensis promastigotes transfected with plasmid pTB007 Viannia, which encodes for this protein. Additionally, the expression and purification of the enzyme T7 RNA Polymerase (6xHis-T7RNAP) from Escherichia coli were addressed, proving useful for synthesizing guide RNA (sgRNA) and preparing functional ribonucleoprotein complexes (SpCas9-sgRNA), capable of performing in vitro DNA cleavage. Finally, the gene coding for the L. braziliensis nicotinamide mononucleotide adenylyltransferase (LbNMNAT), which is involved in NAD synthesis, was targeted for editing. Using parasites expressing SpCas9 and T7RNAP proteins, the sequence CfPGKB5'-mCherry was inserted at the 5' end of the gene of interest, favoring the increase of LbNMNAT expression levels. Phenotypic assays of susceptibility to oxidative stress revealed higher IC50 values in the edited parasites compared to control samples, suggesting that NAD synthesis is related to drug tolerance. In this way, several tools were obtained that facilitate the implementation of the CRISPR-Cas9 system in L. braziliensis, a pathogen of public health interest in Colombia, demonstrating the possibility of taking advantage of advanced molecular biology systems to study genes related to NAD synthesis in the context of neglected tropical diseases such as Leishmaniasis.MaestríaMagíster en Ciencias - BioquímicaLa Figura 5.1 presenta la metodología general abordada en este trabajo. Inicialmente, se realizó la producción de anticuerpos policlonales tipo IgY dirigidos contra SpCas9 en modelos aviares, los cuales fueron caracterizados mediante ensayos de Western blot y ELISA, así como su uso sobre muestras biológicas de L. braziliensis (cepa de referencia MHOM/BR/75/M2903, denominada LbWT, y cepa que expresa de manera constitutiva SpCas9 y T7RNAP, denominada LbCas9T7). Seguidamente, se evaluó el ensamblaje de complejos ribonucleoproteicos, utilizando la proteína SpCas9-6xHis y el sgRNA sintetizado in vitro con la enzima 6xHis-T7RNAP. Luego, se ensayó la actividad nucleasa de los complejos ensamblados sobre ADN plasmídico y un producto de PCR, contra el gen Lbnmnat. Finalmente, se implementó el sistema CRISPR-Cas9 para editar mediante etiquetado (o tagging) el gen Lbnmnat en promastigotes de la cepa LbCas9T7, lo que permitió obtener una cepa editada, denominada LbNTag. Se estandarizaron los protocolos de transfección mediante electroporación para una eficiente entrega de casetes de reparación y plantillas de sgRNA. Mediante ensayos de PCR diagnósticos, se evaluó el éxito de la edición génica en los sitios genómicos de interés. Mediante ensayo de secuenciamiento Sanger, se comprobó la inserción de la plantilla de reparación en el sitio de interés. Finalmente, se caracterizó el efecto a nivel fenotípico de la edición realizada sobre la cepa editada, evaluando su respuesta a agentes causantes de estrés oxidativo como H2O2 y Sb3+.Bioquímica y Biología Molecular de Parásitosxix, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica570 - Biología::579 - Historia natural microorganismos, hongos, algasVIROSISESTREPTOCOCOSREACCION EN CADENA DE LA POLIMERASAVirus diseasesStreptococcusPolimerase chain reactionCRISPR-Cas9Leishmania braziliensisAnticuerpos policlonales IgYT7 RNA PolimerasaNMNATEstrés oxidativoCRISPR-Cas9Leishmania braziliensisPolyclonal IgY antibodiesT7 RNA PolymeraseNMNATOxidative stressDesarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensisDevelopment of molecular tools for the implementation of the CRISPR-Cas9 system in Leishmania braziliensisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdaui, V., Kröber-Boncardo, C., Brinker, C., Zirpel, H., Sellau, J., Arévalo, J., Dujardin, J. C., & Clos, J. (2020). Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes 2020, Vol. 11, Page 1159, 11(10), 1159. https://doi.org/10.3390/genes11101159Allen, A. G., Chung, C. H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940An, W., & Chin, J. W. (2011). Orthogonal gene expression in Escherichia coli. Methods in Enzymology, 497, 115–134. https://doi.org/10.1016/B978-0-12-385075-1.00005-6Anders, C., & Jinek, M. (2014). In vitro enzymology of Cas9. Methods in Enzymology, 546(C), 1–20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM- dependent target DNA recognition by the Cas9 endonuclease. Nature 2014 513:7519, 513(7519), 569–573. https://doi.org/10.1038/nature13579Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., & Karikó, K. (2010). Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 38(17), 5884. https://doi.org/10.1093/NAR/GKQ347Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019 576:7785, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4Aronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256Asencio, C., Hervé, P., Morand, P., Oliveres, Q., Morel, C. A., Prouzet ‐ Mauleon, V., Biran, M., Monic, S., Bonhivers, M., Robinson, D. R., Ouellette, M., Rivière, L., Bringaud, F., & Tetaud, E. (2024). Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15256Azevedo, A., Toledo, J. S., Defina, T., Pedrosa, A. L., & Cruz, A. K. (2015). Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Experimental Parasitology, 159, 222–226. https://doi.org/10.1016/J.EXPPARA.2015.09.008Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England), 30(10), 1473–1475. https://doi.org/10.1093/BIOINFORMATICS/BTU048Baron, N., Tupperwar, N., Dahan, I., Hadad, U., Davidov, G., Zarivach, R., & Shapira, M. (2021). Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLOS Neglected Tropical Diseases, 15(3), e0008352. https://doi.org/10.1371/JOURNAL.PNTD.0008352Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140Bell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/S13321-019-0362-7Beneke, T., Dobramysl, U., Catta-Preta, C. M. C., Mottram, J. C., Gluenz, E., & Wheeler, R. J. (2023). Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Research, 7, 294. https://doi.org/10.12688/WELLCOMEOPENRES.18575.2Beneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. Methods in Molecular Biology (Clifton, N.J.), 1971, 189–210. https://doi.org/10.1007/978-1-4939-9210-2_9Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/RSOS.170095Berger, F., Lau, C., Dahlmann, M., & Ziegler, M. (2005). Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. The Journal of Biological Chemistry, 280(43), 36334– 36341. https://doi.org/10.1074/JBC.M508660200Bhattacharya, A., Leprohon, P., Bigot, S., Padmanabhan, P. K., Mukherjee, A., Roy, G., Gingras, H., Mestdagh, A., Papadopoulou, B., & Ouellette, M. (2019). Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nature Communications 2019 10:1, 10(1), 1–14. https://doi.org/10.1038/s41467-019-13344-6Bolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0Borkotoky, S., & Murali, A. (2018). The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49–56. https://doi.org/10.1016/J.IJBIOMAC.2018.05.198Braidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxidants & Redox Signaling, 30(2), 251–294. https://doi.org/10.1089/ARS.2017.7269Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (New York, N.Y.), 321(5891), 960. https://doi.org/10.1126/SCIENCE.1159689Carmignotto, G. P., & Azzoni, A. R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70. https://doi.org/10.1016/J.JBIOTEC.2019.09.012Castro, H., Rocha, M. I., Duarte, M., Vilurbina, J., Gomes-Alves, A. G., Leao, T., Dias, F., Morgan, B., Deponte, M., & Tomás, A. M. (2024). The cytosolic hyperoxidation- sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biology, 71. https://doi.org/10.1016/J.REDOX.2024.103122Cheetham, G. M. T., Jeruzalmi, D., & Steltz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature 1999 399:6731, 399(6731), 80–83. https://doi.org/10.1038/19999Chen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 2017 1:10, 1(10), 1–15. https://doi.org/10.1038/s41570- 017-0078Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J., & Ji, Q. (2019). Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 17(10). https://doi.org/10.1371/JOURNAL.PBIO.3000496Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143Contreras, L. E., Neme, R., & Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expression and Purification, 115, 26–33. https://doi.org/10.1016/J.PEP.2015.08.022Contreras Rodríguez, L. E., Ziegler, M., & Ramírez Hernández, M. H. (2020). Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 6(4), e03733. https://doi.org/10.1016/J.HELIYON.2020.E03733Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology, 22(2), 119–141. https://doi.org/10.1038/S41580-020-00313-XDas, S., Banerjee, A., Kamran, M., Ejazi, S. A., Asad, M., Ali, N., & Chakrabarti, S. (2020). A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. Journal of Biological Chemistry, 295(29), 9934–9947. https://doi.org/10.1074/jbc.ra120.014587De Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C., & Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031/78270Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 2011 471:7340, 471(7340), 602–607. https://doi.org/10.1038/nature09886Dharmasena, W. G. B. P., & Munasinghe, D. H. H. (2021). Identification of potential TALEN and CRISPR/Cas9 targets of selected genes of some human pathogens which cause persistent infections. Journal of the National Science Foundation of Sri Lanka, 49(3), 451–465. https://doi.org/10.4038/jnsfsr.v49i3.10074Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F., & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl_2), W13–W17. https://doi.org/10.1093/NAR/GKR245Dias da Silva, W., & Tambourgi, D. V. (2010). IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 135(3–4), 173–180. https://doi.org/10.1016/J.VETIMM.2009.12.011Donzé, O., & Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Research, 30(10). https://doi.org/10.1093/NAR/30.10.E46Du, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/J.AJPS.2023.100854Dueñas, E., Nakamoto, J. A., Cabrera-Sosa, L., Huaihua, P., Cruz, M., Arévalo, J., Milón, P., & Adaui, V. (2022). Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 13, 2828. https://doi.org/10.3389/fmicb.2022.958693Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203Ebrahimi, S., Kalantari, M., Alipour, H., Azizi, K., Asgari, Q., & Bahreini, M. S. (2021). In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis. Microbial Pathogenesis, 161, 105281. https://doi.org/10.1016/j.micpath.2021.105281Eid, A., & Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine 2016 48:10, 48(10), e265–e265. https://doi.org/10.1038/emm.2016.111Engstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 12. https://doi.org/10.7554/ELIFE.85605Espada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849–858. https://doi.org/10.1021/acsinfecdis.0c00857Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311Fernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., & Ouellette, M. (2018). High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 165–173. https://doi.org/10.1016/J.IJPDDR.2018.03.004Foss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide- mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/S41551-023-01032-2Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004Garavaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., & Rizzi, M. (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of Biological Chemistry, 277(10), 8524–8530. https://doi.org/10.1074/JBC.M111589200Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71. https://doi.org/10.1038/NATURE09523Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39). https://doi.org/10.1073/pnas.1208507109Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551:7681, 551(7681), 464–471. https://doi.org/10.1038/nature24644Gazanion, E., Garcia, D., Silvestre, R., Gérard, C., Guichou, J. F., Labesse, G., Seveno, M., Cordeiro-Da-Silva, A., Ouaissi, A., Sereno, D., & Vergnes, B. (2011). The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Molecular Microbiology, 82(1), 21–38. https://doi.org/10.1111/J.1365- 2958.2011.07799.XGoes, W. M., Brasil, C. R. F., Reis-Cunha, J. L., Coqueiro-dos-Santos, A., Grazielle-Silva, V., de Souza Reis, J., Souto, T. C., Laranjeira-Silva, M. F., Bartholomeu, D. C., Fernandes, A. P., & Teixeira, S. M. R. (2023). Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics, 110661. https://doi.org/10.1016/J.YGENO.2023.110661Goldman-Pinkovich, A., Kannan, S., Nitzan-Koren, R., Puri, M., Pawar, H., Bar-Avraham, Y., McDonald, J., Sur, A., Zhang, W. W., Matlashewski, G., Madhubala, R., Michaeli, S., Myler, P. J., & Zilberstein, D. (2020). Sensing host arginine is essential for leishmania parasites’ intracellular development. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02023-20Gonçalves, S. V. C. B., & Costa, C. H. N. (2018). Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. Anais Brasileiros de Dermatologia, 93(3), 347. https://doi.org/10.1590/ABD1806-4841.20186415Green, M. R., & Sambrook, J. (2021). Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. Cold Spring Harbor Protocols, 2021(1), pdb.prot101766. https://doi.org/10.1101/PDB.PROT101766Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR- associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474–0483. https://doi.org/10.1371/JOURNAL.PCBI.0010060Herrera, G., Barragán, N., Luna, N., Martínez, D., De Martino, F., Medina, J., Niño, S., Páez, L., Ramírez, A., Vega, L., Velandia, V., Vera, M., Zúñiga, M. F., Bottin, M. J., & Ramírez, J. D. (2020). An interactive database of Leishmania species distribution in the Americas. Scientific Data, 7(1). https://doi.org/10.1038/S41597-020-0451-5Herrera T., E. A., Contreras, L. E., Suárez, A. G., Diaz, G. J., & Ramírez, M. H. (2019). GlSir2.1 of Giardia lamblia is a NAD + -dependent cytoplasmic deacetylase. Heliyon, 5(4), e01520. https://doi.org/10.1016/j.heliyon.2019.e01520Hornbeck, P. V. (2015). Enzyme-Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1), 2.1.1-2.1.23. https://doi.org/10.1002/0471142735.IM0201S110Huang, C., & Yu, Y. T. (2013). Synthesis and Labeling of RNA In Vitro. Current Protocols in Molecular Biology, 102(1), 4.15.1-4.15.14. https://doi.org/10.1002/0471142727.MB0415S102Ishemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987Jesus-Santos, F. H., Lobo-Silva, J., Ramos, P. I. P., Descoteaux, A., Lima, J. B., Borges, V. M., & Farias, L. P. (2020). LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 10, 408. https://doi.org/10.3389/fcimb.2020.00408Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys- 062215-010822Jiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 69(1), 209–228. https://doi.org/10.1146/ANNUREV-MICRO-091014-104441Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829Joung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/NRM3486Júnior, Á. F., Ge, S., Wu, R., & Zhang, X. (2021). Immunization of hens. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 117–134. https://doi.org/10.1007/978-3-030-72688-1_10Júnior, Á. F., Morgan, P. M., Zhang, X., & Schade, R. (2021). Biology and molecular structure of Avian IgY Antibody. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 59–70. https://doi.org/10.1007/978-3-030-72688-1_5Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657Kar, S., & Ellington, A. D. (2018). Construction of synthetic T7 RNA polymerase expression systems. Methods (San Diego, Calif.), 143, 110–120. https://doi.org/10.1016/J.YMETH.2018.02.022Karachaliou, C.-E., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243Karimian, A., Azizian, K., Parsian, H., Rafieian, S., Shafiei-Irannejad, V., Kheyrollah, M., Yousefi, M., Majidinia, M., & Yousefi, B. (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology, 234(8), 12267–12277. https://doi.org/10.1002/JCP.27972Kawe, M., Horn, U., & Plückthun, A. (2009). Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microbial Cell Factories, 8(1), 1–8. https://doi.org/10.1186/1475- 2859-8-8Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 2019 14:10, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections: A Practical Review. Dermatologic Clinics, 33(3), 579–593. https://doi.org/10.1016/J.DET.2015.03.018Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/J.MIB.2017.05.008Korencić, D., Söll, D., & Ambrogelly, A. (2002). A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Research, 30(20). https://doi.org/10.1093/NAR/GNF104Kumar, K., Basak, R., Rai, A., & Mukhopadhyay, A. (2024). GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15255Ledford, H. (2020). CRISPR treatment inserted directly into the body for first time. Nature, 579(7798), 185. https://doi.org/10.1038/D41586-020-00655-8Lee, C. H., Lee, Y. C., Lee, Y. L., Leu, S. J., Lin, L. T., Chen, C. C., Chiang, J. R., Fellow, P., Tsai, B. Y., Hung, C. S., & Yang, Y. Y. (2017). Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins, 9(11). https://doi.org/10.3390/TOXINS9110347Lee, L., Samardzic, K., Wallach, M., Frumkin, L. R., & Mochly-Rosen, D. (2021). Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Frontiers in Immunology, 12, 2257. https://doi.org/10.3389/fimmu.2021.696003León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–23. https://doi.org/10.1038/s41392-023- 01309-7Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181– 211. https://doi.org/10.1146/ANNUREV.BIOCHEM.052308.093131Liu, L., Siuda, I., Richards, M. R., Renaud, J., Kitova, E. N., Mayer, P. M., Tieleman, D. P., Lowary, T. L., & Klassen, J. S. (2016). Structure and Stability of Carbohydrate– Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 17(16), 1571–1578. https://doi.org/10.1002/CBIC.201600123López-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/S12879-016-1663-3Lorenzon, L., Quilles, J. C., Campagnaro, G. D., Azevedo Orsine, L., Almeida, L., Veras, F., Miserani Magalhães, R. D., Alcoforado Diniz, J., Rodrigues Ferreira, T., & Kaysel Cruz, A. (2022). Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infectious Diseases, 8(3), 516–532. https://doi.org/10.1021/acsinfecdis.1c00509Louradour, I., Ghosh, K., Inbar, E., & Sacks, D. L. (2019). CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 10(4). https://doi.org/10.1128/MBIO.01941-19Madusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1–14. https://doi.org/10.1017/S0031182023001129Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., Van Der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology, 13(11), 722– 736. https://doi.org/10.1038/NRMICRO3569Mallapaty, S. (2022). How to protect the first “CRISPR babies” prompts ethical debate. Nature, 603(7900), 213–214. https://doi.org/10.1038/D41586-022-00512-WMao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle (Georgetown, Tex.), 7(18), 2902. https://doi.org/10.4161/CC.7.18.6679Martel, D., Beneke, T., Gluenz, E., Späth, G. F., & Rachidi, N. (2017). Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit. BioMed Research International, 2017. https://doi.org/10.1155/2017/4635605McCoy, C. J., Paupelin-Vaucelle, H., Gorilak, P., Beneke, T., Varga, V., & Gluenz, E. (2023). ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell, 34(7), ar66. https://doi.org/10.1091/MBC.E22-06-0222Medeiros, L. C. S., South, L., Peng, D., Bustamante, J. M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., & Tarleton, R. L. (2017). Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 8(6). https://doi.org/10.1128/MBIO.01788-17Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/PRO.4792Michels, P. A. M., & Avilán, L. (2011). The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy. Molecular Microbiology, 82(1), 4–8. https://doi.org/10.1111/J.1365-2958.2011.07810.XMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/S41592-022-01488-1Mojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246. https://doi.org/10.1046/J.1365-2958.2000.01838.XMorgan, P. M., Freire, M. G., Tavares, A. P. M., Michael, A., & Zhang, X. (2021). Extraction and purification of IgY. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 135–160. https://doi.org/10.1007/978-3-030-72688-1_11Nilsen, T. W., Rio, D. C., & Ares, M. (2013). High-Yield Synthesis of RNA Using T7 RNA Polymerase and Plasmid DNA or Oligonucleotide Templates. Cold Spring Harbor Protocols, 2013(11), pdb.prot078535. https://doi.org/10.1101/PDB.PROT078535Nussenzweig, P. M., & Marraffini, L. A. (2020). Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 54, 93–120. https://doi.org/10.1146/ANNUREV-GENET-022120-112523Peng, D., & Tarleton, R. (2015). EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4). https://doi.org/10.1099/MGEN.0.000033Pereira, E. P. V., van Tilburg, M. F., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303. https://doi.org/10.1016/J.INTIMP.2019.05.015Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), E45. https://doi.org/10.1093/NAR/29.9.E45Polson, A., von Wechmar, M. B., & van Regenmortel, M. H. V. (1980). Isolation of viral IgY antibodies from yolks of immunized hens. Immunological Communications, 9(5), 475–493. https://doi.org/10.3109/08820138009066010Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-514Potvin, J. E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2021). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases, 72(10), e526–e532. https://doi.org/10.1093/CID/CIAA1236Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. https://doi.org/10.1111/CED.14919Rajagopalan, N., Kagale, S., Bhowmik, P., & Song, H. (2018). A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols 2018, Vol. 1, Page 17, 1(2), 17. https://doi.org/10.3390/MPS1020017Ramírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6. https://doi.org/10.1038/srep28266Ribeiro, J. M., Silva, P. A., Costa-Silva, H. M., Santi, A. M. M., & Murta, S. M. F. (2024). Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/JOURNAL.PNTD.0011880Rio, D. C. (2013). Expression and Purification of Active Recombinant T7 RNA Polymerase from E. coli. Cold Spring Harbor Protocols, 2013(11), pdb.prot078527. https://doi.org/10.1101/PDB.PROT078527Roberts, A. J., Ong, H. B., Clare, S., Brandt, C., Harcourt, K., Franssen, S. U., Cotton, J. A., Müller-Sienerth, N., & Wright, G. J. (2022). Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLOS Pathogens, 18(2), e1010364. https://doi.org/10.1371/JOURNAL.PPAT.1010364Rojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11). https://doi.org/10.1098/RSOB.200302Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14Salgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312Samnuan, K., Blakney, A. K., McKay, P. F., & Shattock, R. J. (2022). Design-of- experiments in vitro transcription yield optimization of self-amplifying RNA. F1000Research 2022 11:333, 11, 333. https://doi.org/10.12688/f1000research.75677.1Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 2015 15:7, 15(7), 387–393. https://doi.org/10.1038/nrc3950Shaddel, M., Sharifi, I., Karvar, M., Keyhani, A., & Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42. https://doi.org/10.4103/0972-9062.234625Sharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9- Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.790418Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 2001 19:8, 19(8), 751–755. https://doi.org/10.1038/90802Shis, D. L., & Bennett, M. R. (2014). Synthetic biology: the many facets of T7 RNA polymerase. Molecular Systems Biology, 10(7), 745. https://doi.org/10.15252/MSB.20145492Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology, 15(3), 169–182. https://doi.org/10.1038/NRMICRO.2016.184Shrivastava, R., Tupperwar, N., Drory-Retwitzer, M., & Shapira, M. (2019). Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania . MSphere, 4(5). https://doi.org/10.1128/mSphere.00450-19Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342. https://doi.org/10.1038/EMBOJ.2011.41Sollelis, L., Ghorbal, M., Macpherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J. J., & Sterkers, Y. (2015). First efficient CRISPR- Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405–1412. https://doi.org/10.1111/cmi.12456Sousa, R. (2013). T7 RNA Polymerase. Encyclopedia of Biological Chemistry: Second Edition, 355–359. https://doi.org/10.1016/B978-0-12-378630-2.00267-XStaak, C., Schwarzkopf, C., Behn, I., Hommel, U., Hlinak, A., Schade, R., & Erhard, M. (2001). Isolation of IgY from Yolk. Chicken Egg Yolk Antibodies, Production and Application, 65–107. https://doi.org/10.1007/978-3-662-04488-9_4Steitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01Tamulaitis, G., Venclovas, Č., & Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends in Microbiology, 25(1), 49–61. https://doi.org/10.1016/J.TIM.2016.09.012Tan, S. H., Mohamedali, A., Kapur, A., Lukjanenko, L., & Baker, M. S. (2012). A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 380(1–2), 73–76. https://doi.org/10.1016/J.JIM.2012.03.003Tan, S. I., & Ng, I. S. (2020). New Insight into Plasmid-Driven T7 RNA Polymerase in Escherichia coli and Use as a Genetic Amplifier for a Biosensor. ACS Synthetic Biology, 9(3), 613–622. https://doi.org/10.1021/acssynbio.9b00466Teixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS Pathogens, 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003594Tetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., & Fairlamb, A. H. (2002). A new expression vector for Crithidia fasciculata and Leishmania. Molecular and Biochemical Parasitology, 120(2), 195–204. https://doi.org/10.1016/S0166-6851(02)00002-6Thuring, R. W. J., Sanders, J. P. M., & Borst, P. (1975). A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry, 66(1), 213–220. https://doi.org/10.1016/0003-2697(75)90739-3Tong, C., Geng, F., He, Z., Cai, Z., & Ma, M. (2015). A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 94(1), 104–110. https://doi.org/10.3382/PS/PEU005Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334Tsai, K. C., Chang, C. Di, Cheng, M. H., Lin, T. Y., Lo, Y. N., Yang, T. W., Chang, F. L., Chiang, C. W., Lee, Y. C., & Yen, Y. (2019). Chicken-Derived Humanized Antibody Targeting a Novel Epitope F2pep of Fibroblast Growth Factor Receptor 2: Potential Cancer Therapeutic Agent. ACS Omega, 4(1), 2387–2397. https://doi.org/10.1021/acsomega.8b03072Turra, G. L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J., Koncarevic, S., Schroda, M., Mühlhaus, T., & Deponte, M. (2021). In Vivo Structure-Function Analysis and Redox Interactomes of Leishmania tarentolae Erv. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00809-21Turra, G. L., Schneider, L., Liedgens, L., & Deponte, M. (2021). Testing the CRISPR- Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical Parasitology, 241, 111336. https://doi.org/10.1016/J.MOLBIOPARA.2020.111336Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9, 11(9), 636–646. https://doi.org/10.1038/nrg2842Vergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J. J., Sterkers, Y., & Bañuls, A. L. (2019). A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 74(11), 3231–3239. https://doi.org/10.1093/JAC/DKZ334Walker, S. E., & Lorsch, J. (2013). RNA purification--precipitation methods. Methods in Enzymology, 530, 337–343. https://doi.org/10.1016/B978-0-12-420037-1.00019-1Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014607Wang, J. Y., & Doudna, J. A. (2023). CRISPR technology: A decade of genome editing is only the beginning. Science, 379(6629). https://doi.org/10.1126/science.add8643Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/SCIENCE.1246981Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9- Mediated Genome Editing. Trends in Genetics, 37(7), 639–656. https://doi.org/10.1016/J.TIG.2021.02.008Yagoubat, A., Crobu, L., Berry, L., Kuk, N., Lefebvre, M., Sarrazin, A., Bastien, P., & Sterkers, Y. (2020). Universal highly efficient conditional knockout system in Leishmania, with a focus on untranscribed region preservation. Cellular Microbiology, 22(5), e13159. https://doi.org/10.1111/CMI.13159Zarei, Z., Mohebali, M., Dehghani, H., Khamesipour, A., Tavakkol-Afshari, J., Akhoundi, B., Abbaszadeh-Afshar, M. J., Alizadeh, Z., Skandari, S. E., Asl, A. D., & Razmi, G. R. (2023). Live attenuated Leishmania infantum centrin deleted mutant (LiCen-/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 97. https://doi.org/10.1016/J.CIMID.2023.101984Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648. https://doi.org/10.7150/THNO.47007Zhang, W. W., Karmakar, S., Gannavaram, S., Dey, R., Lypaczewski, P., Ismail, N., Siddiqui, A., Simonyan, V., Oliveira, F., Coutinho-Abreu, I. V., DeSouza-Vieira, T., Meneses, C., Oristian, J., Serafim, T. D., Musa, A., Nakamura, R., Saljoughian, N., Volpedo, G., Satoskar, M., … Nakhasi, H. L. (2020). A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications 2020 11:1, 11(1), 1–14. https://doi.org/10.1038/s41467-020-17154-zZhang, W. W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), 861–876. https://doi.org/10.1128/mBio.00861-15Zhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms . MSphere, 2(1). https://doi.org/https://doi.org/10.1128/mSphere.00340-16Zhang, W.-W., & Matlashewski, G. (2019). Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. MSphere, 4(4). https://doi.org/10.1128/mSphere.00408-19Zhang, X., Li, T., Ou, J., Huang, J., & Liang, P. (2021). Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein & Cell 2021 13:5, 13(5), 316–335. https://doi.org/10.1007/S13238-021-00838-7Zhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/NAR/GKI524Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/ABIO.1996.0171EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86807/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1024588797.2024.pdf1024588797.2024.pdfTesis de Maestría en Ciencias Bioquímicaapplication/pdf9736754https://repositorio.unal.edu.co/bitstream/unal/86807/4/1024588797.2024.pdffb1ff686b186c678897c0dbbe86bd7a9MD54THUMBNAIL1024588797.2024.pdf.jpg1024588797.2024.pdf.jpgGenerated Thumbnailimage/jpeg5226https://repositorio.unal.edu.co/bitstream/unal/86807/5/1024588797.2024.pdf.jpg60b17eb6ad3a76cfe9e342b0f1373975MD55unal/86807oai:repositorio.unal.edu.co:unal/868072024-09-09 23:05:08.463Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=