Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis
ilustraciones, diagramas, tablas
- Autores:
-
Gutiérrez León, Jesús Esteban
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86807
- Palabra clave:
- 570 - Biología::572 - Bioquímica
570 - Biología::579 - Historia natural microorganismos, hongos, algas
VIROSIS
ESTREPTOCOCOS
REACCION EN CADENA DE LA POLIMERASA
Virus diseases
Streptococcus
Polimerase chain reaction
CRISPR-Cas9
Leishmania braziliensis
Anticuerpos policlonales IgY
T7 RNA Polimerasa
NMNAT
Estrés oxidativo
CRISPR-Cas9
Leishmania braziliensis
Polyclonal IgY antibodies
T7 RNA Polymerase
NMNAT
Oxidative stress
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_27d525284f96d1e826abcc418b9b3697 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86807 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
dc.title.translated.eng.fl_str_mv |
Development of molecular tools for the implementation of the CRISPR-Cas9 system in Leishmania braziliensis |
title |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
spellingShingle |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis 570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas VIROSIS ESTREPTOCOCOS REACCION EN CADENA DE LA POLIMERASA Virus diseases Streptococcus Polimerase chain reaction CRISPR-Cas9 Leishmania braziliensis Anticuerpos policlonales IgY T7 RNA Polimerasa NMNAT Estrés oxidativo CRISPR-Cas9 Leishmania braziliensis Polyclonal IgY antibodies T7 RNA Polymerase NMNAT Oxidative stress |
title_short |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
title_full |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
title_fullStr |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
title_full_unstemmed |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
title_sort |
Desarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensis |
dc.creator.fl_str_mv |
Gutiérrez León, Jesús Esteban |
dc.contributor.advisor.spa.fl_str_mv |
Contreras Rodríguez, Luis Ernesto Téllez Meneses, Jair Alexander |
dc.contributor.author.spa.fl_str_mv |
Gutiérrez León, Jesús Esteban |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas |
topic |
570 - Biología::572 - Bioquímica 570 - Biología::579 - Historia natural microorganismos, hongos, algas VIROSIS ESTREPTOCOCOS REACCION EN CADENA DE LA POLIMERASA Virus diseases Streptococcus Polimerase chain reaction CRISPR-Cas9 Leishmania braziliensis Anticuerpos policlonales IgY T7 RNA Polimerasa NMNAT Estrés oxidativo CRISPR-Cas9 Leishmania braziliensis Polyclonal IgY antibodies T7 RNA Polymerase NMNAT Oxidative stress |
dc.subject.lemb.spa.fl_str_mv |
VIROSIS ESTREPTOCOCOS REACCION EN CADENA DE LA POLIMERASA |
dc.subject.lemb.eng.fl_str_mv |
Virus diseases Streptococcus Polimerase chain reaction |
dc.subject.proposal.spa.fl_str_mv |
CRISPR-Cas9 Leishmania braziliensis Anticuerpos policlonales IgY T7 RNA Polimerasa NMNAT Estrés oxidativo |
dc.subject.proposal.eng.fl_str_mv |
CRISPR-Cas9 Leishmania braziliensis Polyclonal IgY antibodies T7 RNA Polymerase NMNAT Oxidative stress |
description |
ilustraciones, diagramas, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-09T16:26:35Z |
dc.date.available.none.fl_str_mv |
2024-09-09T16:26:35Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86807 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86807 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adaui, V., Kröber-Boncardo, C., Brinker, C., Zirpel, H., Sellau, J., Arévalo, J., Dujardin, J. C., & Clos, J. (2020). Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes 2020, Vol. 11, Page 1159, 11(10), 1159. https://doi.org/10.3390/genes11101159 Allen, A. G., Chung, C. H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940 An, W., & Chin, J. W. (2011). Orthogonal gene expression in Escherichia coli. Methods in Enzymology, 497, 115–134. https://doi.org/10.1016/B978-0-12-385075-1.00005-6 Anders, C., & Jinek, M. (2014). In vitro enzymology of Cas9. Methods in Enzymology, 546(C), 1–20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5 Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM- dependent target DNA recognition by the Cas9 endonuclease. Nature 2014 513:7519, 513(7519), 569–573. https://doi.org/10.1038/nature13579 Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., & Karikó, K. (2010). Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 38(17), 5884. https://doi.org/10.1093/NAR/GKQ347 Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019 576:7785, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4 Aronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256 Asencio, C., Hervé, P., Morand, P., Oliveres, Q., Morel, C. A., Prouzet ‐ Mauleon, V., Biran, M., Monic, S., Bonhivers, M., Robinson, D. R., Ouellette, M., Rivière, L., Bringaud, F., & Tetaud, E. (2024). Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15256 Azevedo, A., Toledo, J. S., Defina, T., Pedrosa, A. L., & Cruz, A. K. (2015). Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Experimental Parasitology, 159, 222–226. https://doi.org/10.1016/J.EXPPARA.2015.09.008 Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England), 30(10), 1473–1475. https://doi.org/10.1093/BIOINFORMATICS/BTU048 Baron, N., Tupperwar, N., Dahan, I., Hadad, U., Davidov, G., Zarivach, R., & Shapira, M. (2021). Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLOS Neglected Tropical Diseases, 15(3), e0008352. https://doi.org/10.1371/JOURNAL.PNTD.0008352 Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140 Bell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/S13321-019-0362-7 Beneke, T., Dobramysl, U., Catta-Preta, C. M. C., Mottram, J. C., Gluenz, E., & Wheeler, R. J. (2023). Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Research, 7, 294. https://doi.org/10.12688/WELLCOMEOPENRES.18575.2 Beneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. Methods in Molecular Biology (Clifton, N.J.), 1971, 189–210. https://doi.org/10.1007/978-1-4939-9210-2_9 Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/RSOS.170095 Berger, F., Lau, C., Dahlmann, M., & Ziegler, M. (2005). Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. The Journal of Biological Chemistry, 280(43), 36334– 36341. https://doi.org/10.1074/JBC.M508660200 Bhattacharya, A., Leprohon, P., Bigot, S., Padmanabhan, P. K., Mukherjee, A., Roy, G., Gingras, H., Mestdagh, A., Papadopoulou, B., & Ouellette, M. (2019). Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nature Communications 2019 10:1, 10(1), 1–14. https://doi.org/10.1038/s41467-019-13344-6 Bolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0 Borkotoky, S., & Murali, A. (2018). The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49–56. https://doi.org/10.1016/J.IJBIOMAC.2018.05.198 Braidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxidants & Redox Signaling, 30(2), 251–294. https://doi.org/10.1089/ARS.2017.7269 Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (New York, N.Y.), 321(5891), 960. https://doi.org/10.1126/SCIENCE.1159689 Carmignotto, G. P., & Azzoni, A. R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70. https://doi.org/10.1016/J.JBIOTEC.2019.09.012 Castro, H., Rocha, M. I., Duarte, M., Vilurbina, J., Gomes-Alves, A. G., Leao, T., Dias, F., Morgan, B., Deponte, M., & Tomás, A. M. (2024). The cytosolic hyperoxidation- sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biology, 71. https://doi.org/10.1016/J.REDOX.2024.103122 Cheetham, G. M. T., Jeruzalmi, D., & Steltz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature 1999 399:6731, 399(6731), 80–83. https://doi.org/10.1038/19999 Chen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 2017 1:10, 1(10), 1–15. https://doi.org/10.1038/s41570- 017-0078 Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J., & Ji, Q. (2019). Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 17(10). https://doi.org/10.1371/JOURNAL.PBIO.3000496 Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143 Contreras, L. E., Neme, R., & Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expression and Purification, 115, 26–33. https://doi.org/10.1016/J.PEP.2015.08.022 Contreras Rodríguez, L. E., Ziegler, M., & Ramírez Hernández, M. H. (2020). Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 6(4), e03733. https://doi.org/10.1016/J.HELIYON.2020.E03733 Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology, 22(2), 119–141. https://doi.org/10.1038/S41580-020-00313-X Das, S., Banerjee, A., Kamran, M., Ejazi, S. A., Asad, M., Ali, N., & Chakrabarti, S. (2020). A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. Journal of Biological Chemistry, 295(29), 9934–9947. https://doi.org/10.1074/jbc.ra120.014587 De Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C., & Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031/78270 Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 2011 471:7340, 471(7340), 602–607. https://doi.org/10.1038/nature09886 Dharmasena, W. G. B. P., & Munasinghe, D. H. H. (2021). Identification of potential TALEN and CRISPR/Cas9 targets of selected genes of some human pathogens which cause persistent infections. Journal of the National Science Foundation of Sri Lanka, 49(3), 451–465. https://doi.org/10.4038/jnsfsr.v49i3.10074 Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F., & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl_2), W13–W17. https://doi.org/10.1093/NAR/GKR245 Dias da Silva, W., & Tambourgi, D. V. (2010). IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 135(3–4), 173–180. https://doi.org/10.1016/J.VETIMM.2009.12.011 Donzé, O., & Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Research, 30(10). https://doi.org/10.1093/NAR/30.10.E46 Du, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/J.AJPS.2023.100854 Dueñas, E., Nakamoto, J. A., Cabrera-Sosa, L., Huaihua, P., Cruz, M., Arévalo, J., Milón, P., & Adaui, V. (2022). Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 13, 2828. https://doi.org/10.3389/fmicb.2022.958693 Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203 Ebrahimi, S., Kalantari, M., Alipour, H., Azizi, K., Asgari, Q., & Bahreini, M. S. (2021). In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis. Microbial Pathogenesis, 161, 105281. https://doi.org/10.1016/j.micpath.2021.105281 Eid, A., & Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine 2016 48:10, 48(10), e265–e265. https://doi.org/10.1038/emm.2016.111 Engstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 12. https://doi.org/10.7554/ELIFE.85605 Espada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849–858. https://doi.org/10.1021/acsinfecdis.0c00857 Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311 Fernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., & Ouellette, M. (2018). High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 165–173. https://doi.org/10.1016/J.IJPDDR.2018.03.004 Foss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide- mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/S41551-023-01032-2 Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004 Garavaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., & Rizzi, M. (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of Biological Chemistry, 277(10), 8524–8530. https://doi.org/10.1074/JBC.M111589200 Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71. https://doi.org/10.1038/NATURE09523 Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39). https://doi.org/10.1073/pnas.1208507109 Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551:7681, 551(7681), 464–471. https://doi.org/10.1038/nature24644 Gazanion, E., Garcia, D., Silvestre, R., Gérard, C., Guichou, J. F., Labesse, G., Seveno, M., Cordeiro-Da-Silva, A., Ouaissi, A., Sereno, D., & Vergnes, B. (2011). The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Molecular Microbiology, 82(1), 21–38. https://doi.org/10.1111/J.1365- 2958.2011.07799.X Goes, W. M., Brasil, C. R. F., Reis-Cunha, J. L., Coqueiro-dos-Santos, A., Grazielle-Silva, V., de Souza Reis, J., Souto, T. C., Laranjeira-Silva, M. F., Bartholomeu, D. C., Fernandes, A. P., & Teixeira, S. M. R. (2023). Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics, 110661. https://doi.org/10.1016/J.YGENO.2023.110661 Goldman-Pinkovich, A., Kannan, S., Nitzan-Koren, R., Puri, M., Pawar, H., Bar-Avraham, Y., McDonald, J., Sur, A., Zhang, W. W., Matlashewski, G., Madhubala, R., Michaeli, S., Myler, P. J., & Zilberstein, D. (2020). Sensing host arginine is essential for leishmania parasites’ intracellular development. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02023-20 Gonçalves, S. V. C. B., & Costa, C. H. N. (2018). Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. Anais Brasileiros de Dermatologia, 93(3), 347. https://doi.org/10.1590/ABD1806-4841.20186415 Green, M. R., & Sambrook, J. (2021). Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. Cold Spring Harbor Protocols, 2021(1), pdb.prot101766. https://doi.org/10.1101/PDB.PROT101766 Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR- associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474–0483. https://doi.org/10.1371/JOURNAL.PCBI.0010060 Herrera, G., Barragán, N., Luna, N., Martínez, D., De Martino, F., Medina, J., Niño, S., Páez, L., Ramírez, A., Vega, L., Velandia, V., Vera, M., Zúñiga, M. F., Bottin, M. J., & Ramírez, J. D. (2020). An interactive database of Leishmania species distribution in the Americas. Scientific Data, 7(1). https://doi.org/10.1038/S41597-020-0451-5 Herrera T., E. A., Contreras, L. E., Suárez, A. G., Diaz, G. J., & Ramírez, M. H. (2019). GlSir2.1 of Giardia lamblia is a NAD + -dependent cytoplasmic deacetylase. Heliyon, 5(4), e01520. https://doi.org/10.1016/j.heliyon.2019.e01520 Hornbeck, P. V. (2015). Enzyme-Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1), 2.1.1-2.1.23. https://doi.org/10.1002/0471142735.IM0201S110 Huang, C., & Yu, Y. T. (2013). Synthesis and Labeling of RNA In Vitro. Current Protocols in Molecular Biology, 102(1), 4.15.1-4.15.14. https://doi.org/10.1002/0471142727.MB0415S102 Ishemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723 Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987 Jesus-Santos, F. H., Lobo-Silva, J., Ramos, P. I. P., Descoteaux, A., Lima, J. B., Borges, V. M., & Farias, L. P. (2020). LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 10, 408. https://doi.org/10.3389/fcimb.2020.00408 Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys- 062215-010822 Jiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 69(1), 209–228. https://doi.org/10.1146/ANNUREV-MICRO-091014-104441 Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829 Joung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/NRM3486 Júnior, Á. F., Ge, S., Wu, R., & Zhang, X. (2021). Immunization of hens. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 117–134. https://doi.org/10.1007/978-3-030-72688-1_10 Júnior, Á. F., Morgan, P. M., Zhang, X., & Schade, R. (2021). Biology and molecular structure of Avian IgY Antibody. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 59–70. https://doi.org/10.1007/978-3-030-72688-1_5 Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657 Kar, S., & Ellington, A. D. (2018). Construction of synthetic T7 RNA polymerase expression systems. Methods (San Diego, Calif.), 143, 110–120. https://doi.org/10.1016/J.YMETH.2018.02.022 Karachaliou, C.-E., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243 Karimian, A., Azizian, K., Parsian, H., Rafieian, S., Shafiei-Irannejad, V., Kheyrollah, M., Yousefi, M., Majidinia, M., & Yousefi, B. (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology, 234(8), 12267–12277. https://doi.org/10.1002/JCP.27972 Kawe, M., Horn, U., & Plückthun, A. (2009). Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microbial Cell Factories, 8(1), 1–8. https://doi.org/10.1186/1475- 2859-8-8 Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 2019 14:10, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2 Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections: A Practical Review. Dermatologic Clinics, 33(3), 579–593. https://doi.org/10.1016/J.DET.2015.03.018 Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/J.MIB.2017.05.008 Korencić, D., Söll, D., & Ambrogelly, A. (2002). A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Research, 30(20). https://doi.org/10.1093/NAR/GNF104 Kumar, K., Basak, R., Rai, A., & Mukhopadhyay, A. (2024). GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15255 Ledford, H. (2020). CRISPR treatment inserted directly into the body for first time. Nature, 579(7798), 185. https://doi.org/10.1038/D41586-020-00655-8 Lee, C. H., Lee, Y. C., Lee, Y. L., Leu, S. J., Lin, L. T., Chen, C. C., Chiang, J. R., Fellow, P., Tsai, B. Y., Hung, C. S., & Yang, Y. Y. (2017). Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins, 9(11). https://doi.org/10.3390/TOXINS9110347 Lee, L., Samardzic, K., Wallach, M., Frumkin, L. R., & Mochly-Rosen, D. (2021). Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Frontiers in Immunology, 12, 2257. https://doi.org/10.3389/fimmu.2021.696003 León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273 Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–23. https://doi.org/10.1038/s41392-023- 01309-7 Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181– 211. https://doi.org/10.1146/ANNUREV.BIOCHEM.052308.093131 Liu, L., Siuda, I., Richards, M. R., Renaud, J., Kitova, E. N., Mayer, P. M., Tieleman, D. P., Lowary, T. L., & Klassen, J. S. (2016). Structure and Stability of Carbohydrate– Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 17(16), 1571–1578. https://doi.org/10.1002/CBIC.201600123 López-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/S12879-016-1663-3 Lorenzon, L., Quilles, J. C., Campagnaro, G. D., Azevedo Orsine, L., Almeida, L., Veras, F., Miserani Magalhães, R. D., Alcoforado Diniz, J., Rodrigues Ferreira, T., & Kaysel Cruz, A. (2022). Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infectious Diseases, 8(3), 516–532. https://doi.org/10.1021/acsinfecdis.1c00509 Louradour, I., Ghosh, K., Inbar, E., & Sacks, D. L. (2019). CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 10(4). https://doi.org/10.1128/MBIO.01941-19 Madusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1–14. https://doi.org/10.1017/S0031182023001129 Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., Van Der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology, 13(11), 722– 736. https://doi.org/10.1038/NRMICRO3569 Mallapaty, S. (2022). How to protect the first “CRISPR babies” prompts ethical debate. Nature, 603(7900), 213–214. https://doi.org/10.1038/D41586-022-00512-W Mao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle (Georgetown, Tex.), 7(18), 2902. https://doi.org/10.4161/CC.7.18.6679 Martel, D., Beneke, T., Gluenz, E., Späth, G. F., & Rachidi, N. (2017). Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit. BioMed Research International, 2017. https://doi.org/10.1155/2017/4635605 McCoy, C. J., Paupelin-Vaucelle, H., Gorilak, P., Beneke, T., Varga, V., & Gluenz, E. (2023). ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell, 34(7), ar66. https://doi.org/10.1091/MBC.E22-06-0222 Medeiros, L. C. S., South, L., Peng, D., Bustamante, J. M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., & Tarleton, R. L. (2017). Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 8(6). https://doi.org/10.1128/MBIO.01788-17 Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/PRO.4792 Michels, P. A. M., & Avilán, L. (2011). The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy. Molecular Microbiology, 82(1), 4–8. https://doi.org/10.1111/J.1365-2958.2011.07810.X Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/S41592-022-01488-1 Mojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246. https://doi.org/10.1046/J.1365-2958.2000.01838.X Morgan, P. M., Freire, M. G., Tavares, A. P. M., Michael, A., & Zhang, X. (2021). Extraction and purification of IgY. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 135–160. https://doi.org/10.1007/978-3-030-72688-1_11 Nilsen, T. W., Rio, D. C., & Ares, M. (2013). High-Yield Synthesis of RNA Using T7 RNA Polymerase and Plasmid DNA or Oligonucleotide Templates. Cold Spring Harbor Protocols, 2013(11), pdb.prot078535. https://doi.org/10.1101/PDB.PROT078535 Nussenzweig, P. M., & Marraffini, L. A. (2020). Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 54, 93–120. https://doi.org/10.1146/ANNUREV-GENET-022120-112523 Peng, D., & Tarleton, R. (2015). EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4). https://doi.org/10.1099/MGEN.0.000033 Pereira, E. P. V., van Tilburg, M. F., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303. https://doi.org/10.1016/J.INTIMP.2019.05.015 Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), E45. https://doi.org/10.1093/NAR/29.9.E45 Polson, A., von Wechmar, M. B., & van Regenmortel, M. H. V. (1980). Isolation of viral IgY antibodies from yolks of immunized hens. Immunological Communications, 9(5), 475–493. https://doi.org/10.3109/08820138009066010 Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-514 Potvin, J. E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2021). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases, 72(10), e526–e532. https://doi.org/10.1093/CID/CIAA1236 Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. https://doi.org/10.1111/CED.14919 Rajagopalan, N., Kagale, S., Bhowmik, P., & Song, H. (2018). A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols 2018, Vol. 1, Page 17, 1(2), 17. https://doi.org/10.3390/MPS1020017 Ramírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6. https://doi.org/10.1038/srep28266 Ribeiro, J. M., Silva, P. A., Costa-Silva, H. M., Santi, A. M. M., & Murta, S. M. F. (2024). Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/JOURNAL.PNTD.0011880 Rio, D. C. (2013). Expression and Purification of Active Recombinant T7 RNA Polymerase from E. coli. Cold Spring Harbor Protocols, 2013(11), pdb.prot078527. https://doi.org/10.1101/PDB.PROT078527 Roberts, A. J., Ong, H. B., Clare, S., Brandt, C., Harcourt, K., Franssen, S. U., Cotton, J. A., Müller-Sienerth, N., & Wright, G. J. (2022). Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLOS Pathogens, 18(2), e1010364. https://doi.org/10.1371/JOURNAL.PPAT.1010364 Rojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11). https://doi.org/10.1098/RSOB.200302 Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14 Salgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312 Samnuan, K., Blakney, A. K., McKay, P. F., & Shattock, R. J. (2022). Design-of- experiments in vitro transcription yield optimization of self-amplifying RNA. F1000Research 2022 11:333, 11, 333. https://doi.org/10.12688/f1000research.75677.1 Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 2015 15:7, 15(7), 387–393. https://doi.org/10.1038/nrc3950 Shaddel, M., Sharifi, I., Karvar, M., Keyhani, A., & Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42. https://doi.org/10.4103/0972-9062.234625 Sharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9- Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.790418 Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 2001 19:8, 19(8), 751–755. https://doi.org/10.1038/90802 Shis, D. L., & Bennett, M. R. (2014). Synthetic biology: the many facets of T7 RNA polymerase. Molecular Systems Biology, 10(7), 745. https://doi.org/10.15252/MSB.20145492 Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology, 15(3), 169–182. https://doi.org/10.1038/NRMICRO.2016.184 Shrivastava, R., Tupperwar, N., Drory-Retwitzer, M., & Shapira, M. (2019). Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania . MSphere, 4(5). https://doi.org/10.1128/mSphere.00450-19 Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342. https://doi.org/10.1038/EMBOJ.2011.41 Sollelis, L., Ghorbal, M., Macpherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J. J., & Sterkers, Y. (2015). First efficient CRISPR- Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405–1412. https://doi.org/10.1111/cmi.12456 Sousa, R. (2013). T7 RNA Polymerase. Encyclopedia of Biological Chemistry: Second Edition, 355–359. https://doi.org/10.1016/B978-0-12-378630-2.00267-X Staak, C., Schwarzkopf, C., Behn, I., Hommel, U., Hlinak, A., Schade, R., & Erhard, M. (2001). Isolation of IgY from Yolk. Chicken Egg Yolk Antibodies, Production and Application, 65–107. https://doi.org/10.1007/978-3-662-04488-9_4 Steitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001 Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01 Tamulaitis, G., Venclovas, Č., & Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends in Microbiology, 25(1), 49–61. https://doi.org/10.1016/J.TIM.2016.09.012 Tan, S. H., Mohamedali, A., Kapur, A., Lukjanenko, L., & Baker, M. S. (2012). A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 380(1–2), 73–76. https://doi.org/10.1016/J.JIM.2012.03.003 Tan, S. I., & Ng, I. S. (2020). New Insight into Plasmid-Driven T7 RNA Polymerase in Escherichia coli and Use as a Genetic Amplifier for a Biosensor. ACS Synthetic Biology, 9(3), 613–622. https://doi.org/10.1021/acssynbio.9b00466 Teixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS Pathogens, 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003594 Tetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., & Fairlamb, A. H. (2002). A new expression vector for Crithidia fasciculata and Leishmania. Molecular and Biochemical Parasitology, 120(2), 195–204. https://doi.org/10.1016/S0166-6851(02)00002-6 Thuring, R. W. J., Sanders, J. P. M., & Borst, P. (1975). A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry, 66(1), 213–220. https://doi.org/10.1016/0003-2697(75)90739-3 Tong, C., Geng, F., He, Z., Cai, Z., & Ma, M. (2015). A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 94(1), 104–110. https://doi.org/10.3382/PS/PEU005 Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334 Tsai, K. C., Chang, C. Di, Cheng, M. H., Lin, T. Y., Lo, Y. N., Yang, T. W., Chang, F. L., Chiang, C. W., Lee, Y. C., & Yen, Y. (2019). Chicken-Derived Humanized Antibody Targeting a Novel Epitope F2pep of Fibroblast Growth Factor Receptor 2: Potential Cancer Therapeutic Agent. ACS Omega, 4(1), 2387–2397. https://doi.org/10.1021/acsomega.8b03072 Turra, G. L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J., Koncarevic, S., Schroda, M., Mühlhaus, T., & Deponte, M. (2021). In Vivo Structure-Function Analysis and Redox Interactomes of Leishmania tarentolae Erv. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00809-21 Turra, G. L., Schneider, L., Liedgens, L., & Deponte, M. (2021). Testing the CRISPR- Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical Parasitology, 241, 111336. https://doi.org/10.1016/J.MOLBIOPARA.2020.111336 Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9, 11(9), 636–646. https://doi.org/10.1038/nrg2842 Vergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J. J., Sterkers, Y., & Bañuls, A. L. (2019). A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 74(11), 3231–3239. https://doi.org/10.1093/JAC/DKZ334 Walker, S. E., & Lorsch, J. (2013). RNA purification--precipitation methods. Methods in Enzymology, 530, 337–343. https://doi.org/10.1016/B978-0-12-420037-1.00019-1 Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014607 Wang, J. Y., & Doudna, J. A. (2023). CRISPR technology: A decade of genome editing is only the beginning. Science, 379(6629). https://doi.org/10.1126/science.add8643 Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/SCIENCE.1246981 Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9- Mediated Genome Editing. Trends in Genetics, 37(7), 639–656. https://doi.org/10.1016/J.TIG.2021.02.008 Yagoubat, A., Crobu, L., Berry, L., Kuk, N., Lefebvre, M., Sarrazin, A., Bastien, P., & Sterkers, Y. (2020). Universal highly efficient conditional knockout system in Leishmania, with a focus on untranscribed region preservation. Cellular Microbiology, 22(5), e13159. https://doi.org/10.1111/CMI.13159 Zarei, Z., Mohebali, M., Dehghani, H., Khamesipour, A., Tavakkol-Afshari, J., Akhoundi, B., Abbaszadeh-Afshar, M. J., Alizadeh, Z., Skandari, S. E., Asl, A. D., & Razmi, G. R. (2023). Live attenuated Leishmania infantum centrin deleted mutant (LiCen-/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 97. https://doi.org/10.1016/J.CIMID.2023.101984 Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648. https://doi.org/10.7150/THNO.47007 Zhang, W. W., Karmakar, S., Gannavaram, S., Dey, R., Lypaczewski, P., Ismail, N., Siddiqui, A., Simonyan, V., Oliveira, F., Coutinho-Abreu, I. V., DeSouza-Vieira, T., Meneses, C., Oristian, J., Serafim, T. D., Musa, A., Nakamura, R., Saljoughian, N., Volpedo, G., Satoskar, M., … Nakhasi, H. L. (2020). A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications 2020 11:1, 11(1), 1–14. https://doi.org/10.1038/s41467-020-17154-z Zhang, W. W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), 861–876. https://doi.org/10.1128/mBio.00861-15 Zhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms . MSphere, 2(1). https://doi.org/https://doi.org/10.1128/mSphere.00340-16 Zhang, W.-W., & Matlashewski, G. (2019). Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. MSphere, 4(4). https://doi.org/10.1128/mSphere.00408-19 Zhang, X., Li, T., Ou, J., Huang, J., & Liang, P. (2021). Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein & Cell 2021 13:5, 13(5), 316–335. https://doi.org/10.1007/S13238-021-00838-7 Zhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/NAR/GKI524 Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/ABIO.1996.0171 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86807/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86807/4/1024588797.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86807/5/1024588797.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a fb1ff686b186c678897c0dbbe86bd7a9 60b17eb6ad3a76cfe9e342b0f1373975 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089993868541952 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Contreras Rodríguez, Luis Ernesto5d81511ea0a525c0165694621678d9c4Téllez Meneses, Jair Alexanderd50ed986507359558c5372c33a4d1190Gutiérrez León, Jesús Esteban264107d9eaaf3e9fe0e9e21cdd205f462024-09-09T16:26:35Z2024-09-09T16:26:35Z2024https://repositorio.unal.edu.co/handle/unal/86807Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLas Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Interespaciadas (CRISPR) junto con sus proteínas asociadas (Cas), constituyen un sistema de defensa adaptativo procariota para contrarrestar infecciones virales. El sistema se ha aprovechado como una herramienta de edición génica programable, posibilitando diversos estudios y aplicaciones biotecnológicas, incluyendo la edición génica de organismos patogénicos como Leishmania y Trypanosoma. En Leishmania, el sistema CRISPR-Cas9 ha permitido caracterizar diversos genes de virulencia, así como la obtención de parásitos atenuados con potencial vacunal. Sin embargo, su implementación aún no ha sido reportada para este parásito en Colombia. El presente trabajó abordó el desarrollo de herramientas relacionadas con la implementación del sistema CRISPR-Cas9 en L. braziliensis, una de las especies circulantes en nuestro país. Específicamente, se emprendió la producción de anticuerpos policlonales aviares (IgY) anti-SpCas9, utilizando como antígeno la proteína Cas9 recombinante de Streptococcus pyogenes (SpCas9-6xHis). Estos anticuerpos resultaron ser sensibles, específicos y útiles para inmunodetectar la proteína SpCas9 en promastigotes de L. braziliensis transfectados con el plásmido pTB007 Viannia, el cual codifica para esta proteína. Adicionalmente, se abordó la expresión y purificación de la enzima T7 RNA Polimerasa (6xHis-T7RNAP) desde Escherichia coli, resultando útil para sintetizar ARN guías (sgRNA) y preparar complejos ribonucleoproteicos (SpCas9-sgRNA) funcionales, capaces de efectuar cortes de ADN in vitro. Por último, se implementó el sistema CRISPR-Cas9 para realizar edición génica sobre la nicotinamida mononucleótido adenililtransferasa de L. braziliensis (LbNMNAT), que participa en la síntesis del NAD, insertando la secuencia CfPGKB5’-mCherry en el extremo 5’ del gen de interés en parásitos que expresan SpCas9 y T7RNAP. Los análisis funcionales del gen revelaron un aumento de sus niveles de expresión, mientras que los ensayos de susceptibilidad ante estrés oxidativo mostraron mayores valores IC50 en los parásitos editados en comparación con muestras control, lo que sugiere que la síntesis del NAD puede estar relacionada con fenotipos fármaco-resistentes. De esta manera, se obtuvieron herramientas que facilitan la implementación del sistema CRISPR-Cas9 en L. braziliensis, un patógeno de interés para la salud pública del país. Así mismo, se demostró la posibilidad de aprovechar sistemas avanzados de biología molecular para estudiar genes relacionados con la síntesis del NAD en el contexto de enfermedades tropicales desatendidas como la Leishmaniasis (Texto tomado de la fuente).Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and their associated proteins (Cas), constitute a prokaryotic adaptive defense system to counter viral infections. The system has been harnessed as a programmable gene-editing tool, enabling diverse biotechnological studies and applications, including gene editing of pathogenic organisms such as Leishmania and Trypanosoma. In Leishmania, the CRISPR-Cas9 system has made it possible to characterize several virulence genes and obtain attenuated parasites with vaccine potential. However, its implementation has not yet been reported for this parasite in Colombia. In this sense, the present work addressed the development of tools related to implementing the CRISPR-Cas9 system in L. braziliensis, one of the species circulating in our country. Specifically, the production of anti-SpCas9 avian polyclonal antibodies (IgY) was undertaken, using the recombinant Cas9 protein from Streptococcus pyogenes (SpCas9-6xHis) as antigen. The antibodies were sensitive, specific, and useful to immunodetect SpCas9 protein in L. braziliensis promastigotes transfected with plasmid pTB007 Viannia, which encodes for this protein. Additionally, the expression and purification of the enzyme T7 RNA Polymerase (6xHis-T7RNAP) from Escherichia coli were addressed, proving useful for synthesizing guide RNA (sgRNA) and preparing functional ribonucleoprotein complexes (SpCas9-sgRNA), capable of performing in vitro DNA cleavage. Finally, the gene coding for the L. braziliensis nicotinamide mononucleotide adenylyltransferase (LbNMNAT), which is involved in NAD synthesis, was targeted for editing. Using parasites expressing SpCas9 and T7RNAP proteins, the sequence CfPGKB5'-mCherry was inserted at the 5' end of the gene of interest, favoring the increase of LbNMNAT expression levels. Phenotypic assays of susceptibility to oxidative stress revealed higher IC50 values in the edited parasites compared to control samples, suggesting that NAD synthesis is related to drug tolerance. In this way, several tools were obtained that facilitate the implementation of the CRISPR-Cas9 system in L. braziliensis, a pathogen of public health interest in Colombia, demonstrating the possibility of taking advantage of advanced molecular biology systems to study genes related to NAD synthesis in the context of neglected tropical diseases such as Leishmaniasis.MaestríaMagíster en Ciencias - BioquímicaLa Figura 5.1 presenta la metodología general abordada en este trabajo. Inicialmente, se realizó la producción de anticuerpos policlonales tipo IgY dirigidos contra SpCas9 en modelos aviares, los cuales fueron caracterizados mediante ensayos de Western blot y ELISA, así como su uso sobre muestras biológicas de L. braziliensis (cepa de referencia MHOM/BR/75/M2903, denominada LbWT, y cepa que expresa de manera constitutiva SpCas9 y T7RNAP, denominada LbCas9T7). Seguidamente, se evaluó el ensamblaje de complejos ribonucleoproteicos, utilizando la proteína SpCas9-6xHis y el sgRNA sintetizado in vitro con la enzima 6xHis-T7RNAP. Luego, se ensayó la actividad nucleasa de los complejos ensamblados sobre ADN plasmídico y un producto de PCR, contra el gen Lbnmnat. Finalmente, se implementó el sistema CRISPR-Cas9 para editar mediante etiquetado (o tagging) el gen Lbnmnat en promastigotes de la cepa LbCas9T7, lo que permitió obtener una cepa editada, denominada LbNTag. Se estandarizaron los protocolos de transfección mediante electroporación para una eficiente entrega de casetes de reparación y plantillas de sgRNA. Mediante ensayos de PCR diagnósticos, se evaluó el éxito de la edición génica en los sitios genómicos de interés. Mediante ensayo de secuenciamiento Sanger, se comprobó la inserción de la plantilla de reparación en el sitio de interés. Finalmente, se caracterizó el efecto a nivel fenotípico de la edición realizada sobre la cepa editada, evaluando su respuesta a agentes causantes de estrés oxidativo como H2O2 y Sb3+.Bioquímica y Biología Molecular de Parásitosxix, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica570 - Biología::579 - Historia natural microorganismos, hongos, algasVIROSISESTREPTOCOCOSREACCION EN CADENA DE LA POLIMERASAVirus diseasesStreptococcusPolimerase chain reactionCRISPR-Cas9Leishmania braziliensisAnticuerpos policlonales IgYT7 RNA PolimerasaNMNATEstrés oxidativoCRISPR-Cas9Leishmania braziliensisPolyclonal IgY antibodiesT7 RNA PolymeraseNMNATOxidative stressDesarrollo de herramientas moleculares para la implementación del sistema CRISPR-Cas9 en Leishmania braziliensisDevelopment of molecular tools for the implementation of the CRISPR-Cas9 system in Leishmania braziliensisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdaui, V., Kröber-Boncardo, C., Brinker, C., Zirpel, H., Sellau, J., Arévalo, J., Dujardin, J. C., & Clos, J. (2020). Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes 2020, Vol. 11, Page 1159, 11(10), 1159. https://doi.org/10.3390/genes11101159Allen, A. G., Chung, C. H., Atkins, A., Dampier, W., Khalili, K., Nonnemacher, M. R., & Wigdahl, B. (2018). Gene Editing of HIV-1 Co-receptors to Prevent and/or Cure Virus Infection. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02940An, W., & Chin, J. W. (2011). Orthogonal gene expression in Escherichia coli. Methods in Enzymology, 497, 115–134. https://doi.org/10.1016/B978-0-12-385075-1.00005-6Anders, C., & Jinek, M. (2014). In vitro enzymology of Cas9. Methods in Enzymology, 546(C), 1–20. https://doi.org/10.1016/B978-0-12-801185-0.00001-5Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM- dependent target DNA recognition by the Cas9 endonuclease. Nature 2014 513:7519, 513(7519), 569–573. https://doi.org/10.1038/nature13579Anderson, B. R., Muramatsu, H., Nallagatla, S. R., Bevilacqua, P. C., Sansing, L. H., Weissman, D., & Karikó, K. (2010). Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Research, 38(17), 5884. https://doi.org/10.1093/NAR/GKQ347Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and- replace genome editing without double-strand breaks or donor DNA. Nature 2019 576:7785, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4Aronson, N., Herwaldt, B. L., Libman, M., Pearson, R., Lopez-Velez, R., Weina, P., Carvalho, E., Ephros, M., Jeronimo, S., & Magill, A. (2017). Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). The American Journal of Tropical Medicine and Hygiene, 96(1), 24. https://doi.org/10.4269/AJTMH.16-84256Asencio, C., Hervé, P., Morand, P., Oliveres, Q., Morel, C. A., Prouzet ‐ Mauleon, V., Biran, M., Monic, S., Bonhivers, M., Robinson, D. R., Ouellette, M., Rivière, L., Bringaud, F., & Tetaud, E. (2024). Streptococcus pyogenes Cas9 ribonucleoprotein delivery for efficient, rapid and marker-free gene editing in Trypanosoma and Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15256Azevedo, A., Toledo, J. S., Defina, T., Pedrosa, A. L., & Cruz, A. K. (2015). Leishmania major phosphoglycerate kinase transcript and protein stability contributes to differences in isoform expression levels. Experimental Parasitology, 159, 222–226. https://doi.org/10.1016/J.EXPPARA.2015.09.008Bae, S., Park, J., & Kim, J. S. (2014). Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England), 30(10), 1473–1475. https://doi.org/10.1093/BIOINFORMATICS/BTU048Baron, N., Tupperwar, N., Dahan, I., Hadad, U., Davidov, G., Zarivach, R., & Shapira, M. (2021). Distinct features of the Leishmania cap-binding protein LeishIF4E2 revealed by CRISPR-Cas9 mediated hemizygous deletion. PLOS Neglected Tropical Diseases, 15(3), e0008352. https://doi.org/10.1371/JOURNAL.PNTD.0008352Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, N.Y.), 315(5819), 1709–1712. https://doi.org/10.1126/SCIENCE.1138140Bell, E. W., & Zhang, Y. (2019). DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism. Journal of Cheminformatics, 11(1). https://doi.org/10.1186/S13321-019-0362-7Beneke, T., Dobramysl, U., Catta-Preta, C. M. C., Mottram, J. C., Gluenz, E., & Wheeler, R. J. (2023). Genome sequence of Leishmania mexicana MNYC/BZ/62/M379 expressing Cas9 and T7 RNA polymerase. Wellcome Open Research, 7, 294. https://doi.org/10.12688/WELLCOMEOPENRES.18575.2Beneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. Methods in Molecular Biology (Clifton, N.J.), 1971, 189–210. https://doi.org/10.1007/978-1-4939-9210-2_9Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 1–16. https://doi.org/10.1098/RSOS.170095Berger, F., Lau, C., Dahlmann, M., & Ziegler, M. (2005). Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms. The Journal of Biological Chemistry, 280(43), 36334– 36341. https://doi.org/10.1074/JBC.M508660200Bhattacharya, A., Leprohon, P., Bigot, S., Padmanabhan, P. K., Mukherjee, A., Roy, G., Gingras, H., Mestdagh, A., Papadopoulou, B., & Ouellette, M. (2019). Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania. Nature Communications 2019 10:1, 10(1), 1–14. https://doi.org/10.1038/s41467-019-13344-6Bolotin, A., Quinquis, B., Sorokin, A., & Dusko Ehrlich, S. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (Reading, England), 151(Pt 8), 2551–2561. https://doi.org/10.1099/MIC.0.28048-0Borkotoky, S., & Murali, A. (2018). The highly efficient T7 RNA polymerase: A wonder macromolecule in biological realm. International Journal of Biological Macromolecules, 118, 49–56. https://doi.org/10.1016/J.IJBIOMAC.2018.05.198Braidy, N., Berg, J., Clement, J., Khorshidi, F., Poljak, A., Jayasena, T., Grant, R., & Sachdev, P. (2019). Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxidants & Redox Signaling, 30(2), 251–294. https://doi.org/10.1089/ARS.2017.7269Brouns, S. J. J., Jore, M. M., Lundgren, M., Westra, E. R., Slijkhuis, R. J. H., Snijders, A. P. L., Dickman, M. J., Makarova, K. S., Koonin, E. V., & Van Der Oost, J. (2008). Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes. Science (New York, N.Y.), 321(5891), 960. https://doi.org/10.1126/SCIENCE.1159689Carmignotto, G. P., & Azzoni, A. R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. Journal of Biotechnology, 306, 62–70. https://doi.org/10.1016/J.JBIOTEC.2019.09.012Castro, H., Rocha, M. I., Duarte, M., Vilurbina, J., Gomes-Alves, A. G., Leao, T., Dias, F., Morgan, B., Deponte, M., & Tomás, A. M. (2024). The cytosolic hyperoxidation- sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biology, 71. https://doi.org/10.1016/J.REDOX.2024.103122Cheetham, G. M. T., Jeruzalmi, D., & Steltz, T. A. (1999). Structural basis for initiation of transcription from an RNA polymerase–promoter complex. Nature 1999 399:6731, 399(6731), 80–83. https://doi.org/10.1038/19999Chen, J. S., & Doudna, J. A. (2017). The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 2017 1:10, 1(10), 1–15. https://doi.org/10.1038/s41570- 017-0078Chen, W., Zhang, H., Zhang, Y., Wang, Y., Gan, J., & Ji, Q. (2019). Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 17(10). https://doi.org/10.1371/JOURNAL.PBIO.3000496Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/SCIENCE.1231143Contreras, L. E., Neme, R., & Ramírez, M. H. (2015). Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase. Protein Expression and Purification, 115, 26–33. https://doi.org/10.1016/J.PEP.2015.08.022Contreras Rodríguez, L. E., Ziegler, M., & Ramírez Hernández, M. H. (2020). Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase. Heliyon, 6(4), e03733. https://doi.org/10.1016/J.HELIYON.2020.E03733Covarrubias, A. J., Perrone, R., Grozio, A., & Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews. Molecular Cell Biology, 22(2), 119–141. https://doi.org/10.1038/S41580-020-00313-XDas, S., Banerjee, A., Kamran, M., Ejazi, S. A., Asad, M., Ali, N., & Chakrabarti, S. (2020). A chemical inhibitor of heat shock protein 78 (HSP78) from Leishmania donovani represents a potential antileishmanial drug candidate. Journal of Biological Chemistry, 295(29), 9934–9947. https://doi.org/10.1074/jbc.ra120.014587De Gaudenzi, J. G., Noé, G., Campo, V. A., Frasch, A. C., & Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031/78270Deltcheva, E., Chylinski, K., Sharma, C. M., Gonzales, K., Chao, Y., Pirzada, Z. A., Eckert, M. R., Vogel, J., & Charpentier, E. (2011). CRISPR RNA maturation by trans- encoded small RNA and host factor RNase III. Nature 2011 471:7340, 471(7340), 602–607. https://doi.org/10.1038/nature09886Dharmasena, W. G. B. P., & Munasinghe, D. H. H. (2021). Identification of potential TALEN and CRISPR/Cas9 targets of selected genes of some human pathogens which cause persistent infections. Journal of the National Science Foundation of Sri Lanka, 49(3), 451–465. https://doi.org/10.4038/jnsfsr.v49i3.10074Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J. M., Taly, J. F., & Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39(suppl_2), W13–W17. https://doi.org/10.1093/NAR/GKR245Dias da Silva, W., & Tambourgi, D. V. (2010). IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Veterinary Immunology and Immunopathology, 135(3–4), 173–180. https://doi.org/10.1016/J.VETIMM.2009.12.011Donzé, O., & Picard, D. (2002). RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Research, 30(10). https://doi.org/10.1093/NAR/30.10.E46Du, Y., Liu, Y., Hu, J., Peng, X., & Liu, Z. (2023). CRISPR/Cas9 systems: Delivery technologies and biomedical applications. Asian Journal of Pharmaceutical Sciences, 18(6), 100854. https://doi.org/10.1016/J.AJPS.2023.100854Dueñas, E., Nakamoto, J. A., Cabrera-Sosa, L., Huaihua, P., Cruz, M., Arévalo, J., Milón, P., & Adaui, V. (2022). Novel CRISPR-based detection of Leishmania species. Frontiers in Microbiology, 13, 2828. https://doi.org/10.3389/fmicb.2022.958693Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203Ebrahimi, S., Kalantari, M., Alipour, H., Azizi, K., Asgari, Q., & Bahreini, M. S. (2021). In vitro evaluation of CRISPR PX-LmGP63 vector effect on pathogenicity of Leishmania major as a primary step to control leishmaniasis. Microbial Pathogenesis, 161, 105281. https://doi.org/10.1016/j.micpath.2021.105281Eid, A., & Mahfouz, M. M. (2016). Genome editing: the road of CRISPR/Cas9 from bench to clinic. Experimental & Molecular Medicine 2016 48:10, 48(10), e265–e265. https://doi.org/10.1038/emm.2016.111Engstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 12. https://doi.org/10.7554/ELIFE.85605Espada, C. R., Albuquerque-Wendt, A., Hornillos, V., Gluenz, E., Coelho, A. C., & Uliana, S. R. B. (2021). Ros3 (Lem3p/CDC50) Gene Dosage Is Implicated in Miltefosine Susceptibility in Leishmania (Viannia) braziliensis Clinical Isolates and in Leishmania (Leishmania) major. ACS Infectious Diseases, 7(4), 849–858. https://doi.org/10.1021/acsinfecdis.0c00857Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania ( Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.772311Fernandez-Prada, C., Sharma, M., Plourde, M., Bresson, E., Roy, G., Leprohon, P., & Ouellette, M. (2018). High-throughput Cos-Seq screen with intracellular Leishmania infantum for the discovery of novel drug-resistance mechanisms. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 165–173. https://doi.org/10.1016/J.IJPDDR.2018.03.004Foss, D. V., Muldoon, J. J., Nguyen, D. N., Carr, D., Sahu, S. U., Hunsinger, J. M., Wyman, S. K., Krishnappa, N., Mendonsa, R., Schanzer, E. V., Shy, B. R., Vykunta, V. S., Allain, V., Li, Z., Marson, A., Eyquem, J., & Wilson, R. C. (2023). Peptide- mediated delivery of CRISPR enzymes for the efficient editing of primary human lymphocytes. Nature Biomedical Engineering, 7(5), 647–660. https://doi.org/10.1038/S41551-023-01032-2Gaj, T., Gersbach, C. A., & Barbas, C. F. (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 31(7), 397–405. https://doi.org/10.1016/J.TIBTECH.2013.04.004Garavaglia, S., D’Angelo, I., Emanuelli, M., Carnevali, F., Pierella, F., Magni, G., & Rizzi, M. (2002). Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. The Journal of Biological Chemistry, 277(10), 8524–8530. https://doi.org/10.1074/JBC.M111589200Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468(7320), 67–71. https://doi.org/10.1038/NATURE09523Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109(39). https://doi.org/10.1073/pnas.1208507109Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017 551:7681, 551(7681), 464–471. https://doi.org/10.1038/nature24644Gazanion, E., Garcia, D., Silvestre, R., Gérard, C., Guichou, J. F., Labesse, G., Seveno, M., Cordeiro-Da-Silva, A., Ouaissi, A., Sereno, D., & Vergnes, B. (2011). The Leishmania nicotinamidase is essential for NAD+ production and parasite proliferation. Molecular Microbiology, 82(1), 21–38. https://doi.org/10.1111/J.1365- 2958.2011.07799.XGoes, W. M., Brasil, C. R. F., Reis-Cunha, J. L., Coqueiro-dos-Santos, A., Grazielle-Silva, V., de Souza Reis, J., Souto, T. C., Laranjeira-Silva, M. F., Bartholomeu, D. C., Fernandes, A. P., & Teixeira, S. M. R. (2023). Complete assembly, annotation of virulence genes and CRISPR editing of the genome of Leishmania amazonensis PH8 strain. Genomics, 110661. https://doi.org/10.1016/J.YGENO.2023.110661Goldman-Pinkovich, A., Kannan, S., Nitzan-Koren, R., Puri, M., Pawar, H., Bar-Avraham, Y., McDonald, J., Sur, A., Zhang, W. W., Matlashewski, G., Madhubala, R., Michaeli, S., Myler, P. J., & Zilberstein, D. (2020). Sensing host arginine is essential for leishmania parasites’ intracellular development. MBio, 11(5), 1–13. https://doi.org/10.1128/mBio.02023-20Gonçalves, S. V. C. B., & Costa, C. H. N. (2018). Treatment of cutaneous leishmaniasis with thermotherapy in Brazil: an efficacy and safety study. Anais Brasileiros de Dermatologia, 93(3), 347. https://doi.org/10.1590/ABD1806-4841.20186415Green, M. R., & Sambrook, J. (2021). Separation of RNA according to Size: Electrophoresis of RNA through Denaturing Urea Polyacrylamide Gels. Cold Spring Harbor Protocols, 2021(1), pdb.prot101766. https://doi.org/10.1101/PDB.PROT101766Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR- associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), 0474–0483. https://doi.org/10.1371/JOURNAL.PCBI.0010060Herrera, G., Barragán, N., Luna, N., Martínez, D., De Martino, F., Medina, J., Niño, S., Páez, L., Ramírez, A., Vega, L., Velandia, V., Vera, M., Zúñiga, M. F., Bottin, M. J., & Ramírez, J. D. (2020). An interactive database of Leishmania species distribution in the Americas. Scientific Data, 7(1). https://doi.org/10.1038/S41597-020-0451-5Herrera T., E. A., Contreras, L. E., Suárez, A. G., Diaz, G. J., & Ramírez, M. H. (2019). GlSir2.1 of Giardia lamblia is a NAD + -dependent cytoplasmic deacetylase. Heliyon, 5(4), e01520. https://doi.org/10.1016/j.heliyon.2019.e01520Hornbeck, P. V. (2015). Enzyme-Linked Immunosorbent Assays. Current Protocols in Immunology, 110(1), 2.1.1-2.1.23. https://doi.org/10.1002/0471142735.IM0201S110Huang, C., & Yu, Y. T. (2013). Synthesis and Labeling of RNA In Vitro. Current Protocols in Molecular Biology, 102(1), 4.15.1-4.15.14. https://doi.org/10.1002/0471142727.MB0415S102Ishemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakatura, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/JB.169.12.5429-5433.1987Jesus-Santos, F. H., Lobo-Silva, J., Ramos, P. I. P., Descoteaux, A., Lima, J. B., Borges, V. M., & Farias, L. P. (2020). LPG2 Gene Duplication in Leishmania infantum: A Case for CRISPR-Cas9 Gene Editing. Frontiers in Cellular and Infection Microbiology, 10, 408. https://doi.org/10.3389/fcimb.2020.00408Jiang, F., & Doudna, J. A. (2017). CRISPR-Cas9 Structures and Mechanisms. Annual Review of Biophysics, 46, 505–529. https://doi.org/10.1146/annurev-biophys- 062215-010822Jiang, W., & Marraffini, L. A. (2015). CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 69(1), 209–228. https://doi.org/10.1146/ANNUREV-MICRO-091014-104441Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829Joung, J. K., & Sander, J. D. (2013). TALENs: a widely applicable technology for targeted genome editing. Nature Reviews. Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/NRM3486Júnior, Á. F., Ge, S., Wu, R., & Zhang, X. (2021). Immunization of hens. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 117–134. https://doi.org/10.1007/978-3-030-72688-1_10Júnior, Á. F., Morgan, P. M., Zhang, X., & Schade, R. (2021). Biology and molecular structure of Avian IgY Antibody. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 59–70. https://doi.org/10.1007/978-3-030-72688-1_5Kampmann, M. (2018). CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 13(2), 406–416. https://doi.org/10.1021/acschembio.7b00657Kar, S., & Ellington, A. D. (2018). Construction of synthetic T7 RNA polymerase expression systems. Methods (San Diego, Calif.), 143, 110–120. https://doi.org/10.1016/J.YMETH.2018.02.022Karachaliou, C.-E., Vassilakopoulou, V., & Livaniou, E. (2021). IgY technology: Methods for developing and evaluating avian immunoglobulins for the in vitro detection of biomolecules. World Journal of Methodology, 11(5), 243–262. https://doi.org/10.5662/WJM.V11.I5.243Karimian, A., Azizian, K., Parsian, H., Rafieian, S., Shafiei-Irannejad, V., Kheyrollah, M., Yousefi, M., Majidinia, M., & Yousefi, B. (2019). CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellular Physiology, 234(8), 12267–12277. https://doi.org/10.1002/JCP.27972Kawe, M., Horn, U., & Plückthun, A. (2009). Facile promoter deletion in Escherichia coli in response to leaky expression of very robust and benign proteins from common expression vectors. Microbial Cell Factories, 8(1), 1–8. https://doi.org/10.1186/1475- 2859-8-8Kellner, M. J., Koob, J. G., Gootenberg, J. S., Abudayyeh, O. O., & Zhang, F. (2019). SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols 2019 14:10, 14(10), 2986–3012. https://doi.org/10.1038/s41596-019-0210-2Kevric, I., Cappel, M. A., & Keeling, J. H. (2015). New World and Old World Leishmania Infections: A Practical Review. Dermatologic Clinics, 33(3), 579–593. https://doi.org/10.1016/J.DET.2015.03.018Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. https://doi.org/10.1016/J.MIB.2017.05.008Korencić, D., Söll, D., & Ambrogelly, A. (2002). A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Research, 30(20). https://doi.org/10.1093/NAR/GNF104Kumar, K., Basak, R., Rai, A., & Mukhopadhyay, A. (2024). GRASP negatively regulates the secretion of the virulence factor gp63 in Leishmania. Molecular Microbiology. https://doi.org/10.1111/MMI.15255Ledford, H. (2020). CRISPR treatment inserted directly into the body for first time. Nature, 579(7798), 185. https://doi.org/10.1038/D41586-020-00655-8Lee, C. H., Lee, Y. C., Lee, Y. L., Leu, S. J., Lin, L. T., Chen, C. C., Chiang, J. R., Fellow, P., Tsai, B. Y., Hung, C. S., & Yang, Y. Y. (2017). Single Chain Antibody Fragment against Venom from the Snake Daboia russelii formosensis. Toxins, 9(11). https://doi.org/10.3390/TOXINS9110347Lee, L., Samardzic, K., Wallach, M., Frumkin, L. R., & Mochly-Rosen, D. (2021). Immunoglobulin Y for Potential Diagnostic and Therapeutic Applications in Infectious Diseases. Frontiers in Immunology, 12, 2257. https://doi.org/10.3389/fimmu.2021.696003León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809–33818. https://doi.org/10.1021/ACSOMEGA.3C04273Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. feng, & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–23. https://doi.org/10.1038/s41392-023- 01309-7Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181– 211. https://doi.org/10.1146/ANNUREV.BIOCHEM.052308.093131Liu, L., Siuda, I., Richards, M. R., Renaud, J., Kitova, E. N., Mayer, P. M., Tieleman, D. P., Lowary, T. L., & Klassen, J. S. (2016). Structure and Stability of Carbohydrate– Lipid Interactions. Methylmannose Polysaccharide–Fatty Acid Complexes. ChemBioChem, 17(16), 1571–1578. https://doi.org/10.1002/CBIC.201600123López-Carvajal, L., Cardona-Arias, J. A., Zapata-Cardona, M. I., Sánchez-Giraldo, V., & Vélez, I. D. (2016). Efficacy of cryotherapy for the treatment of cutaneous leishmaniasis: meta-analyses of clinical trials. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/S12879-016-1663-3Lorenzon, L., Quilles, J. C., Campagnaro, G. D., Azevedo Orsine, L., Almeida, L., Veras, F., Miserani Magalhães, R. D., Alcoforado Diniz, J., Rodrigues Ferreira, T., & Kaysel Cruz, A. (2022). Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infectious Diseases, 8(3), 516–532. https://doi.org/10.1021/acsinfecdis.1c00509Louradour, I., Ghosh, K., Inbar, E., & Sacks, D. L. (2019). CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 10(4). https://doi.org/10.1128/MBIO.01941-19Madusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1–14. https://doi.org/10.1017/S0031182023001129Makarova, K. S., Wolf, Y. I., Alkhnbashi, O. S., Costa, F., Shah, S. A., Saunders, S. J., Barrangou, R., Brouns, S. J. J., Charpentier, E., Haft, D. H., Horvath, P., Moineau, S., Mojica, F. J. M., Terns, R. M., Terns, M. P., White, M. F., Yakunin, A. F., Garrett, R. A., Van Der Oost, J., … Koonin, E. V. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews. Microbiology, 13(11), 722– 736. https://doi.org/10.1038/NRMICRO3569Mallapaty, S. (2022). How to protect the first “CRISPR babies” prompts ethical debate. Nature, 603(7900), 213–214. https://doi.org/10.1038/D41586-022-00512-WMao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle (Georgetown, Tex.), 7(18), 2902. https://doi.org/10.4161/CC.7.18.6679Martel, D., Beneke, T., Gluenz, E., Späth, G. F., & Rachidi, N. (2017). Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit. BioMed Research International, 2017. https://doi.org/10.1155/2017/4635605McCoy, C. J., Paupelin-Vaucelle, H., Gorilak, P., Beneke, T., Varga, V., & Gluenz, E. (2023). ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell, 34(7), ar66. https://doi.org/10.1091/MBC.E22-06-0222Medeiros, L. C. S., South, L., Peng, D., Bustamante, J. M., Wang, W., Bunkofske, M., Perumal, N., Sanchez-Valdez, F., & Tarleton, R. L. (2017). Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins. MBio, 8(6). https://doi.org/10.1128/MBIO.01788-17Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., & Ferrin, T. E. (2023). UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11), e4792. https://doi.org/10.1002/PRO.4792Michels, P. A. M., & Avilán, L. (2011). The NAD+ metabolism of Leishmania, notably the enzyme nicotinamidase involved in NAD+ salvage, offers prospects for development of anti-parasite chemotherapy. Molecular Microbiology, 82(1), 4–8. https://doi.org/10.1111/J.1365-2958.2011.07810.XMirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/S41592-022-01488-1Mojica, F. J. M., Díez-Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 36(1), 244–246. https://doi.org/10.1046/J.1365-2958.2000.01838.XMorgan, P. M., Freire, M. G., Tavares, A. P. M., Michael, A., & Zhang, X. (2021). Extraction and purification of IgY. IgY-Technology: Production and Application of Egg Yolk Antibodies: Basic Knowledge for a Successful Practice, 135–160. https://doi.org/10.1007/978-3-030-72688-1_11Nilsen, T. W., Rio, D. C., & Ares, M. (2013). High-Yield Synthesis of RNA Using T7 RNA Polymerase and Plasmid DNA or Oligonucleotide Templates. Cold Spring Harbor Protocols, 2013(11), pdb.prot078535. https://doi.org/10.1101/PDB.PROT078535Nussenzweig, P. M., & Marraffini, L. A. (2020). Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 54, 93–120. https://doi.org/10.1146/ANNUREV-GENET-022120-112523Peng, D., & Tarleton, R. (2015). EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4). https://doi.org/10.1099/MGEN.0.000033Pereira, E. P. V., van Tilburg, M. F., Florean, E. O. P. T., & Guedes, M. I. F. (2019). Egg yolk antibodies (IgY) and their applications in human and veterinary health: A review. International Immunopharmacology, 73, 293–303. https://doi.org/10.1016/J.INTIMP.2019.05.015Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), E45. https://doi.org/10.1093/NAR/29.9.E45Polson, A., von Wechmar, M. B., & van Regenmortel, M. H. V. (1980). Isolation of viral IgY antibodies from yolks of immunized hens. Immunological Communications, 9(5), 475–493. https://doi.org/10.3109/08820138009066010Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9. https://doi.org/10.1186/1471-2105-9-514Potvin, J. E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2021). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases, 72(10), e526–e532. https://doi.org/10.1093/CID/CIAA1236Pradhan, S., Schwartz, R. A., Patil, A., Grabbe, S., & Goldust, M. (2022). Treatment options for leishmaniasis. Clinical and Experimental Dermatology, 47(3), 516–521. https://doi.org/10.1111/CED.14919Rajagopalan, N., Kagale, S., Bhowmik, P., & Song, H. (2018). A Two-Step Method for Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural Studies. Methods and Protocols 2018, Vol. 1, Page 17, 1(2), 17. https://doi.org/10.3390/MPS1020017Ramírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6. https://doi.org/10.1038/srep28266Ribeiro, J. M., Silva, P. A., Costa-Silva, H. M., Santi, A. M. M., & Murta, S. M. F. (2024). Deletion of the lipid droplet protein kinase gene affects lipid droplets biogenesis, parasite infectivity, and resistance to trivalent antimony in Leishmania infantum. PLoS Neglected Tropical Diseases, 18(1). https://doi.org/10.1371/JOURNAL.PNTD.0011880Rio, D. C. (2013). Expression and Purification of Active Recombinant T7 RNA Polymerase from E. coli. Cold Spring Harbor Protocols, 2013(11), pdb.prot078527. https://doi.org/10.1101/PDB.PROT078527Roberts, A. J., Ong, H. B., Clare, S., Brandt, C., Harcourt, K., Franssen, S. U., Cotton, J. A., Müller-Sienerth, N., & Wright, G. J. (2022). Systematic identification of genes encoding cell surface and secreted proteins that are essential for in vitro growth and infection in Leishmania donovani. PLOS Pathogens, 18(2), e1010364. https://doi.org/10.1371/JOURNAL.PPAT.1010364Rojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11). https://doi.org/10.1098/RSOB.200302Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770–4781. https://doi.org/10.1128/AAC.04880-14Salgado-Almario, J., Hernández, C. A., & Ovalle-Bracho, C. (2019). Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 39(2). https://doi.org/10.7705/biomedica.v39i3.4312Samnuan, K., Blakney, A. K., McKay, P. F., & Shattock, R. J. (2022). Design-of- experiments in vitro transcription yield optimization of self-amplifying RNA. F1000Research 2022 11:333, 11, 333. https://doi.org/10.12688/f1000research.75677.1Sánchez-Rivera, F. J., & Jacks, T. (2015). Applications of the CRISPR–Cas9 system in cancer biology. Nature Reviews Cancer 2015 15:7, 15(7), 387–393. https://doi.org/10.1038/nrc3950Shaddel, M., Sharifi, I., Karvar, M., Keyhani, A., & Baziar, Z. (2018). Cryotherapy of cutaneous leishmaniasis caused by Leishmania major in BALB/c mice: A comparative experimental study. Journal of Vector Borne Diseases, 55(1), 42. https://doi.org/10.4103/0972-9062.234625Sharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9- Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.790418Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., & Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology 2001 19:8, 19(8), 751–755. https://doi.org/10.1038/90802Shis, D. L., & Bennett, M. R. (2014). Synthetic biology: the many facets of T7 RNA polymerase. Molecular Systems Biology, 10(7), 745. https://doi.org/10.15252/MSB.20145492Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., Abudayyeh, O. O., Gootenberg, J. S., Makarova, K. S., Wolf, Y. I., Severinov, K., Zhang, F., & Koonin, E. V. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology, 15(3), 169–182. https://doi.org/10.1038/NRMICRO.2016.184Shrivastava, R., Tupperwar, N., Drory-Retwitzer, M., & Shapira, M. (2019). Deletion of a Single LeishIF4E-3 Allele by the CRISPR-Cas9 System Alters Cell Morphology and Infectivity of Leishmania . MSphere, 4(5). https://doi.org/10.1128/mSphere.00450-19Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 30(7), 1335–1342. https://doi.org/10.1038/EMBOJ.2011.41Sollelis, L., Ghorbal, M., Macpherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J. J., & Sterkers, Y. (2015). First efficient CRISPR- Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405–1412. https://doi.org/10.1111/cmi.12456Sousa, R. (2013). T7 RNA Polymerase. Encyclopedia of Biological Chemistry: Second Edition, 355–359. https://doi.org/10.1016/B978-0-12-378630-2.00267-XStaak, C., Schwarzkopf, C., Behn, I., Hommel, U., Hlinak, A., Schade, R., & Erhard, M. (2001). Isolation of IgY from Yolk. Chicken Egg Yolk Antibodies, Production and Application, 65–107. https://doi.org/10.1007/978-3-662-04488-9_4Steitz, T. A. (2009). The structural changes of T7 RNA polymerase from transcription initiation to elongation. Current Opinion in Structural Biology, 19(6), 683–690. https://doi.org/10.1016/J.SBI.2009.09.001Stothard, P. (2000). The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28(6). https://doi.org/10.2144/00286IR01Tamulaitis, G., Venclovas, Č., & Siksnys, V. (2017). Type III CRISPR-Cas Immunity: Major Differences Brushed Aside. Trends in Microbiology, 25(1), 49–61. https://doi.org/10.1016/J.TIM.2016.09.012Tan, S. H., Mohamedali, A., Kapur, A., Lukjanenko, L., & Baker, M. S. (2012). A novel, cost-effective and efficient chicken egg IgY purification procedure. Journal of Immunological Methods, 380(1–2), 73–76. https://doi.org/10.1016/J.JIM.2012.03.003Tan, S. I., & Ng, I. S. (2020). New Insight into Plasmid-Driven T7 RNA Polymerase in Escherichia coli and Use as a Genetic Amplifier for a Biosensor. ACS Synthetic Biology, 9(3), 613–622. https://doi.org/10.1021/acssynbio.9b00466Teixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The cell biology of Leishmania: how to teach using animations. PLoS Pathogens, 9(10). https://doi.org/10.1371/JOURNAL.PPAT.1003594Tetaud, E., Lecuix, I., Sheldrake, T., Baltz, T., & Fairlamb, A. H. (2002). A new expression vector for Crithidia fasciculata and Leishmania. Molecular and Biochemical Parasitology, 120(2), 195–204. https://doi.org/10.1016/S0166-6851(02)00002-6Thuring, R. W. J., Sanders, J. P. M., & Borst, P. (1975). A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry, 66(1), 213–220. https://doi.org/10.1016/0003-2697(75)90739-3Tong, C., Geng, F., He, Z., Cai, Z., & Ma, M. (2015). A simple method for isolating chicken egg yolk immunoglobulin using effective delipidation solution and ammonium sulfate. Poultry Science, 94(1), 104–110. https://doi.org/10.3382/PS/PEU005Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/JCC.21334Tsai, K. C., Chang, C. Di, Cheng, M. H., Lin, T. Y., Lo, Y. N., Yang, T. W., Chang, F. L., Chiang, C. W., Lee, Y. C., & Yen, Y. (2019). Chicken-Derived Humanized Antibody Targeting a Novel Epitope F2pep of Fibroblast Growth Factor Receptor 2: Potential Cancer Therapeutic Agent. ACS Omega, 4(1), 2387–2397. https://doi.org/10.1021/acsomega.8b03072Turra, G. L., Liedgens, L., Sommer, F., Schneider, L., Zimmer, D., Vilurbina Perez, J., Koncarevic, S., Schroda, M., Mühlhaus, T., & Deponte, M. (2021). In Vivo Structure-Function Analysis and Redox Interactomes of Leishmania tarentolae Erv. Microbiology Spectrum, 9(2). https://doi.org/10.1128/Spectrum.00809-21Turra, G. L., Schneider, L., Liedgens, L., & Deponte, M. (2021). Testing the CRISPR- Cas9 and glmS ribozyme systems in Leishmania tarentolae. Molecular and Biochemical Parasitology, 241, 111336. https://doi.org/10.1016/J.MOLBIOPARA.2020.111336Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics 2010 11:9, 11(9), 636–646. https://doi.org/10.1038/nrg2842Vergnes, B., Gazanion, E., Mariac, C., Du Manoir, M., Sollelis, L., Lopez-Rubio, J. J., Sterkers, Y., & Bañuls, A. L. (2019). A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 74(11), 3231–3239. https://doi.org/10.1093/JAC/DKZ334Walker, S. E., & Lorsch, J. (2013). RNA purification--precipitation methods. Methods in Enzymology, 530, 337–343. https://doi.org/10.1016/B978-0-12-420037-1.00019-1Wang, H., La Russa, M., & Qi, L. S. (2016). CRISPR/Cas9 in Genome Editing and Beyond. Annual Review of Biochemistry, 85, 227–264. https://doi.org/10.1146/ANNUREV-BIOCHEM-060815-014607Wang, J. Y., & Doudna, J. A. (2023). CRISPR technology: A decade of genome editing is only the beginning. Science, 379(6629). https://doi.org/10.1126/science.add8643Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science (New York, N.Y.), 343(6166), 80–84. https://doi.org/10.1126/SCIENCE.1246981Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9- Mediated Genome Editing. Trends in Genetics, 37(7), 639–656. https://doi.org/10.1016/J.TIG.2021.02.008Yagoubat, A., Crobu, L., Berry, L., Kuk, N., Lefebvre, M., Sarrazin, A., Bastien, P., & Sterkers, Y. (2020). Universal highly efficient conditional knockout system in Leishmania, with a focus on untranscribed region preservation. Cellular Microbiology, 22(5), e13159. https://doi.org/10.1111/CMI.13159Zarei, Z., Mohebali, M., Dehghani, H., Khamesipour, A., Tavakkol-Afshari, J., Akhoundi, B., Abbaszadeh-Afshar, M. J., Alizadeh, Z., Skandari, S. E., Asl, A. D., & Razmi, G. R. (2023). Live attenuated Leishmania infantum centrin deleted mutant (LiCen-/-) as a novel vaccine candidate: A field study on safety, immunogenicity, and efficacy against canine leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 97. https://doi.org/10.1016/J.CIMID.2023.101984Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics, 11(2), 614–648. https://doi.org/10.7150/THNO.47007Zhang, W. W., Karmakar, S., Gannavaram, S., Dey, R., Lypaczewski, P., Ismail, N., Siddiqui, A., Simonyan, V., Oliveira, F., Coutinho-Abreu, I. V., DeSouza-Vieira, T., Meneses, C., Oristian, J., Serafim, T. D., Musa, A., Nakamura, R., Saljoughian, N., Volpedo, G., Satoskar, M., … Nakhasi, H. L. (2020). A second generation leishmanization vaccine with a markerless attenuated Leishmania major strain using CRISPR gene editing. Nature Communications 2020 11:1, 11(1), 1–14. https://doi.org/10.1038/s41467-020-17154-zZhang, W. W., & Matlashewski, G. (2015). CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio, 6(4), 861–876. https://doi.org/10.1128/mBio.00861-15Zhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms . MSphere, 2(1). https://doi.org/https://doi.org/10.1128/mSphere.00340-16Zhang, W.-W., & Matlashewski, G. (2019). Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Leishmania. MSphere, 4(4). https://doi.org/10.1128/mSphere.00408-19Zhang, X., Li, T., Ou, J., Huang, J., & Liang, P. (2021). Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein & Cell 2021 13:5, 13(5), 316–335. https://doi.org/10.1007/S13238-021-00838-7Zhang, Y., & Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7), 2302–2309. https://doi.org/10.1093/NAR/GKI524Zor, T., & Selinger, Z. (1996). Linearization of the Bradford Protein Assay Increases Its Sensitivity: Theoretical and Experimental Studies. Analytical Biochemistry, 236(2), 302–308. https://doi.org/10.1006/ABIO.1996.0171EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86807/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1024588797.2024.pdf1024588797.2024.pdfTesis de Maestría en Ciencias Bioquímicaapplication/pdf9736754https://repositorio.unal.edu.co/bitstream/unal/86807/4/1024588797.2024.pdffb1ff686b186c678897c0dbbe86bd7a9MD54THUMBNAIL1024588797.2024.pdf.jpg1024588797.2024.pdf.jpgGenerated Thumbnailimage/jpeg5226https://repositorio.unal.edu.co/bitstream/unal/86807/5/1024588797.2024.pdf.jpg60b17eb6ad3a76cfe9e342b0f1373975MD55unal/86807oai:repositorio.unal.edu.co:unal/868072024-09-09 23:05:08.463Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |