Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos
Zymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of micro...
- Autores:
-
Pulido Aponte, Álvaro Ervey
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77901
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77901
- Palabra clave:
- 620 - Ingeniería y operaciones afines
660 - Ingeniería química
Z.Mobilis
quimiostato
competencia
coexistencia
modelamiento
teoría de juegos
chemostat
competition
coexistence
growth
concentration
game theory
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_27c7c6c4358ca5a6e5bed2173ecb372f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77901 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
title |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
spellingShingle |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos 620 - Ingeniería y operaciones afines 660 - Ingeniería química Z.Mobilis quimiostato competencia coexistencia modelamiento teoría de juegos chemostat competition coexistence growth concentration game theory |
title_short |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
title_full |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
title_fullStr |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
title_full_unstemmed |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
title_sort |
Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos |
dc.creator.fl_str_mv |
Pulido Aponte, Álvaro Ervey |
dc.contributor.advisor.spa.fl_str_mv |
Mojica Nava, Eduardo Alirio Rivera Escobar, Hernán Mauricio |
dc.contributor.author.spa.fl_str_mv |
Pulido Aponte, Álvaro Ervey |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines 660 - Ingeniería química |
topic |
620 - Ingeniería y operaciones afines 660 - Ingeniería química Z.Mobilis quimiostato competencia coexistencia modelamiento teoría de juegos chemostat competition coexistence growth concentration game theory |
dc.subject.proposal.spa.fl_str_mv |
Z.Mobilis quimiostato competencia coexistencia modelamiento teoría de juegos |
dc.subject.proposal.eng.fl_str_mv |
chemostat competition coexistence growth concentration game theory |
description |
Zymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of microbial populations, little is known about their implementation for specific cases in which the evidence is purely experimental, such as a case of the dynamics expressed by two strains of (Z. Mobilis) in the same confinement space. The objective of this thesis was to evaluate in silico the dynamics of growth and competition of two strains of the organism Zymomonas Mobilis in a fermentative process. For this, a multi-population mathematical model based on the chemostat mass transfer was represented for a fermentation process called model A, its implementation for two strains of Z. Mobilis (ZM1 and ZM4) and the possible implications for stability and process control. On the other hand, a co-evolutionary model based on an evolutionary game theory called model B was obtained, from the use of strategies adopted by the same competing strains; The criteria for selecting the strategies included growth kinetics and substrate consumption for the fermentation process. Finally, two strategies were implemented for the design of a proportional, integral, and derivative controller, the first empirical by the Ziegler-Nichols method and the second by the virtual reference feedback tuning method. In contrast to the values obtained an independent culture for ZM1 and ZM4, in competition, the results were incremental for ZM4 in terms of generation of microbial biomass and product in model A. Compared to model B, the extinction of ZM1 was evidenced by cause of the strategies adopted by ZM4. A comparative table was made showing the main advantages and disadvantages of the two proposed models. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-03T20:46:12Z |
dc.date.available.spa.fl_str_mv |
2020-08-03T20:46:12Z |
dc.date.issued.spa.fl_str_mv |
2020-06-16 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77901 |
url |
https://repositorio.unal.edu.co/handle/unal/77901 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] N. Abdellatif, R. Fekih-Salem, and T. Sari, "Competition model of n species for a single ressource and coexistence in the chemostat," 2015. [2] J. M. Alexander, "Evolutionary game theory," in The Stanford Encyclopedia of Philosophy, summer 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019. [3] N. Amenaghawon, C. Okieimen, and S. Ogbeide, "Kinetic modelling of ethanol inhibition during alcohol fermentation of corn stover using saccharomyces cerevisiae," Inter J Eng Res Appl, vol. 2, no. 4, pp. 798-803, 2012. [4] M. Annuar, I. Tan, S. Ibrahim, and K. Ramachandran, "A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) in pseudomonas putida," Brazilian Journal of Chemical Engineering, vol. 25, no. 2, pp. 217-228, 2008. [5] B. Armstrong, J. McPherson, and Y. Li, "A lyapunov stability proof for nonlinear stiffness pd control," in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 1996, pp. 945-950. [6] I. P. Astudillo, "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," 2010. [7] I. C. P. Astudillo and C. A. C. Alzate, "Importance of stability study of continuous systems for ethanol production," Journal of biotechnology, vol. 151, no. 1, pp. 43-55, 2011. [8] E. Aycardi, "Alcance, desarrollo y perspectivas de la biotecnología en el país," 1986. [9] J. A. Barnett, "A history of research on yeasts 5: the fermentation pathway," Yeast, vol. 20, no. 6, pp. 509-543, 2003. [10] G. Bastin, "Dochain. on-line estimation and adaptive control of bioreactors," 1990. [11] P. Bergeron, "Environmental impacts of bioethanol," in Handbook on Bioethanol. Routledge, 2018, pp. 89-103. [12] D. Berry, "Physiology and microbiology of scotch whisky production," Progress in industrial microbiology, 1984. [13] M. C. Campi, A. Lecchini, and S. M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers," Automatica, vol. 38, no. 8, pp. 1337-1346, 2002. [14] A. Cano, "Sistemas de lotka-volterra en dinámica poblacional," Ph.D. dissertation, Tesis de maestría. Universidad Nacional de Educación a Distancia. España, 2011. [15] G. Caponi, Leyes sin causa y causas sin ley en la explicación biológica. Universidad Nacional de Colombia Bogotá, 2014. [16] A. Caré, F. Torricelli, M. C. Campi, and S. M. Savaresi, "A toolbox for Virtual Reference Feedback Tuning (VRFT)," in 2019 European Control Conference (ECC). IEEE, June 2019, pp. 4252-4257. [17] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc., 1998. [18] E. D. De Robertis and E. M. De Robertis, Fundamentos de biología celular y molecular. El Ateneo,, 1982. [19] B. Dien, M. Cotta, and T. Jeffries, "Bacteria engineered for fuel ethanol production: current status," Applied microbiology and biotechnology, vol. 63, no. 3, pp. 258-266, 2003. [20] O. Dragesund, J. Hamre, and O. Ulltang, "Biology and population dynamics of the Norwegian spring-spawning herring," 1980. [21] J. Du, Z. Yuan, Z. Ma, J. Song, X. Xie, and Y. Chen, "Kegg-path: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model," Molecular bioSystems, vol. 10, no. 9, pp. 2441-2447, 2014. [22] H. S. Fogler, Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education, 2010. [23] S. Freilich, R. Zarecki, O. Eilam, E. S. Segal, C. S. Henry, M. Kupiec, U. Gophna, R. Sharan, and E. Ruppin, "Competitive and cooperative metabolic interactions in bacterial communities," Nature communications, vol. 2, p. 589, 2011. [24] E. L. Gaden Jr, "Fermentation process kinetics," Biotechnology and bioengineering, vol. 67, no. 6, pp. 629-635, 2000. [25] J.-P. Grivet, "Nonlinear population dynamics in the chemostat," Computing in Science & Engineering, vol. 3, no. 1, pp. 48-55, 2001. [26] W. D. Hamilton, "The genetic theory of social behavior. i and ii," Journal of theoretical biology, vol. 7, pp. 1-52, 1964. [27] A. Haurie, J. B. Krawczyk, G. Zaccour, et al., Games and dynamic games. World Scienti c, 2012, vol. 1. [28] E. Heinzle, A. P. Biwer, and C. L. Cooney, Development of sustainable bioprocesses: modeling and assessment. John Wiley & Sons, 2007. [29] S.-B. Hsu, T.-W. Hwang, and Y. Kuang, "Global analysis of the michaelis{menten-type ratio-dependent predator-prey system," Journal of mathematical biology, vol. 42, no. 6, pp. 489-506, 2001. [30] J. Izquierdo Sebastián, "Ley de malthus del crecimiento de una población," 2011. [31] I. Jóbses, G. Egberts, K. Luyben, and J. Roels, "Fermentation kinetics of zymomonas mobilis at high ethanol concentrations: oscillations in continuous cultures," Biotechnology and bioengineering, vol. 28, no. 6, pp. 868-877, 1986. [32] U. Kalnenieks, A. Pentjuss, R. Rutkis, E. Stalidzans, and D. A. Fell, "Modeling of zymomonas mobilis central metabolism for novel metabolic engineering strategies," Frontiers in microbiology, vol. 5, p. 42, 2014. [33] F. Kargi and M. L. Shuler, Bioprocess engineering: basic concepts. Prentice-Hall PTR, 1992. [34] A. Kayser, J. Weber, V. Hecht, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. i. growth-rate-dependent metabolic efficiency at steady state," Microbiology, vol. 151, no. 3, pp. 693-706, 2005. [35] A. I. Kiseliov, M. L. Krasnov, G. I. Makarenko, and E. A. Bernardo, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973. [36] -, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973. [37] M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, and J. J. Collins, "A common mechanism of cellular death induced by bactericidal antibiotics," Cell, vol. 130, no. 5, pp. 797-810, 2007. [38] H. Kurosawa, N. Nomura, and H. Tanaka, "Ethanol production from starch by a coimmobilized mixed culture system of aspergillus awamori and saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 33, no. 6, pp. 716-723, 1989. [39] Y. A. Kuznetsov, Elements of applied bifurcation theory. Springer Science & Business Media, 2013, vol. 112. [40] M. W. Lau, C. Gunawan, V. Balan, and B. E. Dale, "Comparing the fermentation performance of escherichia coli ko11, saccharomyces cerevisiae 424a (lnh-st) and zymomonas mobilis ax101 for cellulosic ethanol production," Biotechnology for biofuels, vol. 3, no. 1, p. 11, 2010. [41] K. Lee, M. Skotnicki, D. Tribe, and P. Rogers, "Kinetic studies on a highly productive strain of zymomonas mobilis," Biotechnology Letters, vol. 2, no. 8, pp. 339-344, 1980. [42] W.-C. Lee and C.-T. Huang, "Modeling of ethanol fermentation using zymomonas mobilis atcc 10988 grown on the media containing glucose and fructose," Biochemical Engineering Journal, vol. 4, no. 3, pp. 217-227, 2000. [43] L. Ljung et al., "Theory for the user," in System Identi cation. Prentice-hall, Inc., 1987. [44] B. Maiorella, H. W. Blanch, and C. R. Wilke, "By-product inhibition effects on ethanolic fermentation by saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 25, no. 1, pp. 103-121, 1983. [45] A. A. Martín, F. G.-O. Soria, and V. E. S. Mazorra, Desarrollo de modelos cinéticos para bioprocesos: aplicación a la producción de xantano. Universidad Complutense de Madrid, 1999. [46] L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem Z, vol. 49, no. 333-369, p. 5, 1913. [47] E. Mojica, "Identi ficación y control de un proceso de crecimiento celular en bioreactor," Ph.D. dissertation, Master thesis, University de los Andes, 2005. [48] J. Monod, "Sur l'expression analytique de la croissance des populations bactériennes en collaboration avec f. morin," Rev. Sci, vol. 5, pp. 227-229, 1942. [49] -, "La technique de culture continue: theorie et applications," 1950. [50] A. Moser, Bioprocess technology: kinetics and reactors. Springer Science & Business Media, 2012. [51] A. Musatti, C. Mapelli, M. Rollini, R. Foschino, and C. Picozzi, "Can zymomonas mobilis substitute saccharomyces cerevisiae in cereal dough leavening?" Foods, vol. 7, no. 4, p. 61, 2018. [52] J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286-295, 1951. [53] M. A. Nowak, "Five rules for the evolution of cooperation," science, vol. 314, no. 5805, pp. 1560-1563, 2006. [54] M. A. Nowak and R. M. May, "Evolutionary games and spatial chaos," Nature, vol. 359, no. 6398, p. 826, 1992. [55] M. A. Nowak and K. Sigmund, "Evolution of indirect reciprocity by image scoring," Nature, vol. 393, no. 6685, p. 573, 1998. [56] Y. Ogawa, Y. Sugiyama, H. J. Ferrer, L. G. Sotos, and M. M. Juárez, La fórmula preferida del profesor. Funambulista, 2008. [57] F. M. Pagane Guereschi Ernandes and C. H. Garcia-Cruz, "Zymomonas mobilis: um microrganismo promissor para a fermentação alcoólica," Semina: Ciencias Agrárias, pp. 361-380, 2009. [58] I. C. Paz Astudillo et al., "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," Ph.D. dissertation, Universidad Nacional de Colombia-Sede Manizales, 2010. [59] M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, "Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation," Biochemical engineering journal, vol. 28, no. 1, pp. 36-43, 2006. [60] L. Pinal, M. Ceden, H. Gutie, J. Alvarez-Jacobs, et al., "Fermentation parameters influencing higher alcohol production in the tequila process," Biotechnology Letters, vol. 19, no. 1, pp. 45-47, 1997. [61] Y. Piñeros-Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia. UTADEO, Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias . . . , 2014. [62] Á. E. Pulido Aponte, H. M. Rivera Escobar, and J. J. Espitia Pardo, "Control, supervisión y representación matemática de un proceso de biodigestión anaerobia para la biomasa de contenido ruminal bovino," Tecnura, vol. 22, no. 58, pp. 21-30, 2018. [63] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando, A. Pantoja, and E. Mojica-Nava, "The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory," IEEE Control Systems Magazine, vol. 37, no. 1, pp. 70-97, 2017. [64] N. Qureshi and I. Maddox, "Application of novel technology to the abe fermentation process," Applied Biochemistry and Biotechnology, vol. 34, no. 1, pp. 441-448, 1992. [65] M. Ribas-García, R. Hurtado-Vargas, N. Garrido-Carralero, F. Domenech-López, and R. Sabadí-Díaz, "Metodología para la modelación matemática de procesos. caso de estudio, fermentación alcohólica," ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 45, no. 1, pp. 37-47, 2011. [66] P. Rogers, Y. Jeon, K. Lee, and H. Lawford, "Zymomonas mobilis for fuel ethanol and higher value products," in Biofuels. Springer, 2007, pp. 263-288. [67] P. Rogers, K. Lee, M. Skotnicki, and D. Tribe, "Ethanol production by zymomonas mobilis," in Microbial reactions. Springer, 1982, pp. 37-84. [68] D. Ross, "Game theory," in The Stanford Encyclopedia of Philosophy, spring 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019. [69] R. Rutkis, U. Kalnenieks, E. Stalidzans, and D. A. Fell, "Kinetic modelling of the zymomonas mobilis entner-doudoroff pathway: insights into control and functionality," Microbiology, vol. 159, no. 12, pp. 2674-2689, 2013. [70] W. H. Sandholm, Population games and evolutionary dynamics. MIT press, 2010. [71] H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition. Cambridge university press, 1995, vol. 13. [72] C. Smolke, The metabolic pathway engineering handbook: fundamentals. CRC press, 2009. [73] P. Taylor and P. L. Williams, "Theoretical studies on the coexistence of competing species under continuous-flow conditions," Canadian Journal of Microbiology, vol. 21, no. 1, pp. 90-98, 1975. [74] K. G. TeBeest, "Classroom note: Numerical and analytical solutions of volterra's population model," SIAM review, vol. 39, no. 3, pp. 484-493, 1997. [75] Y. Tian, K. Sun, A. Kasperski, and L. Chen, "Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding," Discrete Dynamics in Nature and Society, vol. 2010, 2010. [76] A. Traulsen and M. A. Nowak, "Evolution of cooperation by multilevel selection," Proceedings of the National Academy of Sciences, vol. 103, no. 29, pp. 10 952-10 955, 2006. [77] V. TREJOS, J. Fontalvo Alzate, and M. A. Gomez Garcia, "Mathematical description and stability analysis of fermentative processes," Dyna, vol. 76, no. 158, pp. 111-121, 2009. [78] R. L. Trivers, "The evolution of reciprocal altruism," The Quarterly review of biology, vol. 46, no. 1, pp. 35-57, 1971. [79] C. H. S. Trujillo, "La historia de los benefactores de la humanidad," Infectio, vol. 8, no. 2, 2011. [80] V. Vásquez and C. Lescano, "Predicción por redes neuronales arti ficiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo-temperatura de alimentación a evaporador-destilador flash," Scientia Agropecuaria, vol. 1, no. 1, pp. 63-73, 2010. [81] U. Veeramallu and P. Agrawal, "A structured kinetic model for zymomonas mobilis atcc10988," Biotechnology and bioengineering, vol. 36, no. 7, pp. 694-704, 1990. [82] J. Villadsen, J. Nielsen, and G. Lidén, Bioreaction engineering principles. Springer Science & Business Media, 2011. [83] J. Y. Wakano, K. Aoki, and M. W. Feldman, "Evolution of social learning: a mathematical analysis," Theoretical population biology, vol. 66, no. 3, pp. 249-258, 2004. [84] O. P. Ward, Fermentation biotechnology: principles, processes and products. Open University Press Milton Keynes, 1989. [85] J.Weber, A. Kayser, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. ii. dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behavior," Microbiology, vol. 151, no. 3, pp. 707-716, 2005. [86] H. Widiastuti, J. Y. Kim, S. Selvarasu, I. A. Karimi, H. Kim, J.-S. Seo, and D.-Y. Lee, "Genome-scale modeling and in silico analysis of ethanologenic bacteria zymomonas mobilis," Biotechnology and bioengineering, vol. 108, no. 3, pp. 655-665, 2011. [87] Z. Wu, E. Xu, J. Long, Y. Zhang, F. Wang, X. Xu, Z. Jin, and A. Jiao, "Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy," Food Control, vol. 50, pp. 405-412, 2015. [88] S. Yang, T. J. Tschaplinski, N. L. Engle, S. L. Carroll, S. L. Martin, B. H. Davison, A. V. Palumbo, M. Rodriguez, and S. D. Brown, "Transcriptomic and metabolomic pro ling of zymomonas mobilis during aerobic and anaerobic fermentations," Bmc Genomics, vol. 10, no. 1, p. 34, 2009. [89] M. L. Zeeman, "Extinction in competitive lotka-volterra systems," Proceedings of the American Mathematical Society, vol. 123, no. 1, pp. 87-96, 1995. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
83 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77901/1/1024508293.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77901/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77901/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77901/4/1024508293.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
b895825144f720643aafbbc3bda969c5 6f3f13b02594d02ad110b3ad534cd5df 217700a34da79ed616c2feb68d4c5e06 7eba0a61d33a121ec9d045fa969101f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089693865705472 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mojica Nava, Eduardo Alirio050d6ad9-99b6-40d6-a22a-47bd4afc1ead-1Rivera Escobar, Hernán Mauricio3d1261aa-89b7-452d-a75b-1e05bf1081b7-1Pulido Aponte, Álvaro Ervey76754848-c381-4fc2-9d3b-f5212a8baf4fUniversidad Nacional de Colombia2020-08-03T20:46:12Z2020-08-03T20:46:12Z2020-06-16https://repositorio.unal.edu.co/handle/unal/77901Zymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of microbial populations, little is known about their implementation for specific cases in which the evidence is purely experimental, such as a case of the dynamics expressed by two strains of (Z. Mobilis) in the same confinement space. The objective of this thesis was to evaluate in silico the dynamics of growth and competition of two strains of the organism Zymomonas Mobilis in a fermentative process. For this, a multi-population mathematical model based on the chemostat mass transfer was represented for a fermentation process called model A, its implementation for two strains of Z. Mobilis (ZM1 and ZM4) and the possible implications for stability and process control. On the other hand, a co-evolutionary model based on an evolutionary game theory called model B was obtained, from the use of strategies adopted by the same competing strains; The criteria for selecting the strategies included growth kinetics and substrate consumption for the fermentation process. Finally, two strategies were implemented for the design of a proportional, integral, and derivative controller, the first empirical by the Ziegler-Nichols method and the second by the virtual reference feedback tuning method. In contrast to the values obtained an independent culture for ZM1 and ZM4, in competition, the results were incremental for ZM4 in terms of generation of microbial biomass and product in model A. Compared to model B, the extinction of ZM1 was evidenced by cause of the strategies adopted by ZM4. A comparative table was made showing the main advantages and disadvantages of the two proposed models.Zymomonas Mobilis (Z. Mobilis), son microorganismos fermentadores que bajo condiciones anaeróbicas transforman los azucares reductores en alcohol etílico. Aunque a la fecha se han planteado modelos matemáticos basados en transferencia de masa que sugieren la representación de fenómenos asociados al crecimiento de poblaciones microbianas, poco se sabe en cuanto a su implementación para casos específicos en los que la evidencia es netamente experimental, como es el caso de la dinámica expresada por dos cepas de (Z. Mobilis) en el mismo espacio de con finamiento. El objetivo de esta tesis fue evaluar in silico la dinámica del crecimiento y competencia de dos cepas del organismo Zymomonas Mobilis en un proceso fermentativo. Para ello, se representó un modelo matemático multipoblacional basado en la transferencia de masa del quimiostato para un proceso fermentativo denominado modelo A, su implementación para dos cepas de Z. Mobilis (ZM1 y ZM4) y las posibles implicaciones en la estabilidad y el control del proceso. Por otro lado, se obtuvo un modelo co-evolutivo basado en teoría de juegos evolutivos denominado modelo B, desde el uso de estrategias adoptadas por las mismas cepas en competencia; el criterio de selección de las estrategias incluyó la cinética de crecimiento y el consumo de sustrato para el proceso de fermentación. Finalmente, se implementaron dos estrategias para el diseño de un controlador proporcional, integral y derivativo, la primera empírica por el método de Ziegler-Nichols y la segunda por el método de ajuste de realimentación por referencia virtual. A diferencia de los valores obtenidos en cultivo independiente para ZM1 y ZM4, en competencia, los resultados fueron incrementales para ZM4 en términos de generación de biomasa microbiana y producto en el modelo A. Frente al modelo B, se evidenció la extinción de ZM1 a causa de las estrategias adoptadas por ZM4. Se realizó un cuadro comparativo donde se presentan las principales ventajas y desventajas de los dos modelos propuestos.Magíster en Ingeniería - Automatización Industrial . Línea de Investigación: Control de Procesos.Maestría83application/pdfspa620 - Ingeniería y operaciones afines660 - Ingeniería químicaZ.Mobilisquimiostatocompetenciacoexistenciamodelamientoteoría de juegoschemostatcompetitioncoexistencegrowthconcentrationgame theoryDinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialUniversidad Nacional de Colombia - Sede Bogotá[1] N. Abdellatif, R. Fekih-Salem, and T. Sari, "Competition model of n species for a single ressource and coexistence in the chemostat," 2015.[2] J. M. Alexander, "Evolutionary game theory," in The Stanford Encyclopedia of Philosophy, summer 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019.[3] N. Amenaghawon, C. Okieimen, and S. Ogbeide, "Kinetic modelling of ethanol inhibition during alcohol fermentation of corn stover using saccharomyces cerevisiae," Inter J Eng Res Appl, vol. 2, no. 4, pp. 798-803, 2012.[4] M. Annuar, I. Tan, S. Ibrahim, and K. Ramachandran, "A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) in pseudomonas putida," Brazilian Journal of Chemical Engineering, vol. 25, no. 2, pp. 217-228, 2008.[5] B. Armstrong, J. McPherson, and Y. Li, "A lyapunov stability proof for nonlinear stiffness pd control," in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1. IEEE, 1996, pp. 945-950.[6] I. P. Astudillo, "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," 2010.[7] I. C. P. Astudillo and C. A. C. Alzate, "Importance of stability study of continuous systems for ethanol production," Journal of biotechnology, vol. 151, no. 1, pp. 43-55, 2011.[8] E. Aycardi, "Alcance, desarrollo y perspectivas de la biotecnología en el país," 1986.[9] J. A. Barnett, "A history of research on yeasts 5: the fermentation pathway," Yeast, vol. 20, no. 6, pp. 509-543, 2003.[10] G. Bastin, "Dochain. on-line estimation and adaptive control of bioreactors," 1990.[11] P. Bergeron, "Environmental impacts of bioethanol," in Handbook on Bioethanol. Routledge, 2018, pp. 89-103.[12] D. Berry, "Physiology and microbiology of scotch whisky production," Progress in industrial microbiology, 1984.[13] M. C. Campi, A. Lecchini, and S. M. Savaresi, "Virtual reference feedback tuning: a direct method for the design of feedback controllers," Automatica, vol. 38, no. 8, pp. 1337-1346, 2002.[14] A. Cano, "Sistemas de lotka-volterra en dinámica poblacional," Ph.D. dissertation, Tesis de maestría. Universidad Nacional de Educación a Distancia. España, 2011.[15] G. Caponi, Leyes sin causa y causas sin ley en la explicación biológica. Universidad Nacional de Colombia Bogotá, 2014.[16] A. Caré, F. Torricelli, M. C. Campi, and S. M. Savaresi, "A toolbox for Virtual Reference Feedback Tuning (VRFT)," in 2019 European Control Conference (ECC). IEEE, June 2019, pp. 4252-4257.[17] C.-T. Chen, Linear system theory and design. Oxford University Press, Inc., 1998.[18] E. D. De Robertis and E. M. De Robertis, Fundamentos de biología celular y molecular. El Ateneo,, 1982.[19] B. Dien, M. Cotta, and T. Jeffries, "Bacteria engineered for fuel ethanol production: current status," Applied microbiology and biotechnology, vol. 63, no. 3, pp. 258-266, 2003.[20] O. Dragesund, J. Hamre, and O. Ulltang, "Biology and population dynamics of the Norwegian spring-spawning herring," 1980.[21] J. Du, Z. Yuan, Z. Ma, J. Song, X. Xie, and Y. Chen, "Kegg-path: Kyoto encyclopedia of genes and genomes-based pathway analysis using a path analysis model," Molecular bioSystems, vol. 10, no. 9, pp. 2441-2447, 2014.[22] H. S. Fogler, Essentials of Chemical Reaction Engineering: Essenti Chemica Reactio Engi. Pearson Education, 2010.[23] S. Freilich, R. Zarecki, O. Eilam, E. S. Segal, C. S. Henry, M. Kupiec, U. Gophna, R. Sharan, and E. Ruppin, "Competitive and cooperative metabolic interactions in bacterial communities," Nature communications, vol. 2, p. 589, 2011.[24] E. L. Gaden Jr, "Fermentation process kinetics," Biotechnology and bioengineering, vol. 67, no. 6, pp. 629-635, 2000.[25] J.-P. Grivet, "Nonlinear population dynamics in the chemostat," Computing in Science & Engineering, vol. 3, no. 1, pp. 48-55, 2001.[26] W. D. Hamilton, "The genetic theory of social behavior. i and ii," Journal of theoretical biology, vol. 7, pp. 1-52, 1964.[27] A. Haurie, J. B. Krawczyk, G. Zaccour, et al., Games and dynamic games. World Scienti c, 2012, vol. 1.[28] E. Heinzle, A. P. Biwer, and C. L. Cooney, Development of sustainable bioprocesses: modeling and assessment. John Wiley & Sons, 2007.[29] S.-B. Hsu, T.-W. Hwang, and Y. Kuang, "Global analysis of the michaelis{menten-type ratio-dependent predator-prey system," Journal of mathematical biology, vol. 42, no. 6, pp. 489-506, 2001.[30] J. Izquierdo Sebastián, "Ley de malthus del crecimiento de una población," 2011.[31] I. Jóbses, G. Egberts, K. Luyben, and J. Roels, "Fermentation kinetics of zymomonas mobilis at high ethanol concentrations: oscillations in continuous cultures," Biotechnology and bioengineering, vol. 28, no. 6, pp. 868-877, 1986.[32] U. Kalnenieks, A. Pentjuss, R. Rutkis, E. Stalidzans, and D. A. Fell, "Modeling of zymomonas mobilis central metabolism for novel metabolic engineering strategies," Frontiers in microbiology, vol. 5, p. 42, 2014.[33] F. Kargi and M. L. Shuler, Bioprocess engineering: basic concepts. Prentice-Hall PTR, 1992.[34] A. Kayser, J. Weber, V. Hecht, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. i. growth-rate-dependent metabolic efficiency at steady state," Microbiology, vol. 151, no. 3, pp. 693-706, 2005.[35] A. I. Kiseliov, M. L. Krasnov, G. I. Makarenko, and E. A. Bernardo, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973.[36] -, Problemas de ecuaciones diferenciales ordinarias. Mir, 1973.[37] M. A. Kohanski, D. J. Dwyer, B. Hayete, C. A. Lawrence, and J. J. Collins, "A common mechanism of cellular death induced by bactericidal antibiotics," Cell, vol. 130, no. 5, pp. 797-810, 2007.[38] H. Kurosawa, N. Nomura, and H. Tanaka, "Ethanol production from starch by a coimmobilized mixed culture system of aspergillus awamori and saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 33, no. 6, pp. 716-723, 1989.[39] Y. A. Kuznetsov, Elements of applied bifurcation theory. Springer Science & Business Media, 2013, vol. 112.[40] M. W. Lau, C. Gunawan, V. Balan, and B. E. Dale, "Comparing the fermentation performance of escherichia coli ko11, saccharomyces cerevisiae 424a (lnh-st) and zymomonas mobilis ax101 for cellulosic ethanol production," Biotechnology for biofuels, vol. 3, no. 1, p. 11, 2010.[41] K. Lee, M. Skotnicki, D. Tribe, and P. Rogers, "Kinetic studies on a highly productive strain of zymomonas mobilis," Biotechnology Letters, vol. 2, no. 8, pp. 339-344, 1980.[42] W.-C. Lee and C.-T. Huang, "Modeling of ethanol fermentation using zymomonas mobilis atcc 10988 grown on the media containing glucose and fructose," Biochemical Engineering Journal, vol. 4, no. 3, pp. 217-227, 2000.[43] L. Ljung et al., "Theory for the user," in System Identi cation. Prentice-hall, Inc., 1987.[44] B. Maiorella, H. W. Blanch, and C. R. Wilke, "By-product inhibition effects on ethanolic fermentation by saccharomyces cerevisiae," Biotechnology and bioengineering, vol. 25, no. 1, pp. 103-121, 1983.[45] A. A. Martín, F. G.-O. Soria, and V. E. S. Mazorra, Desarrollo de modelos cinéticos para bioprocesos: aplicación a la producción de xantano. Universidad Complutense de Madrid, 1999.[46] L. Menten and M. Michaelis, "Die kinetik der invertinwirkung," Biochem Z, vol. 49, no. 333-369, p. 5, 1913.[47] E. Mojica, "Identi ficación y control de un proceso de crecimiento celular en bioreactor," Ph.D. dissertation, Master thesis, University de los Andes, 2005.[48] J. Monod, "Sur l'expression analytique de la croissance des populations bactériennes en collaboration avec f. morin," Rev. Sci, vol. 5, pp. 227-229, 1942.[49] -, "La technique de culture continue: theorie et applications," 1950.[50] A. Moser, Bioprocess technology: kinetics and reactors. Springer Science & Business Media, 2012.[51] A. Musatti, C. Mapelli, M. Rollini, R. Foschino, and C. Picozzi, "Can zymomonas mobilis substitute saccharomyces cerevisiae in cereal dough leavening?" Foods, vol. 7, no. 4, p. 61, 2018.[52] J. Nash, "Non-cooperative games," Annals of mathematics, pp. 286-295, 1951.[53] M. A. Nowak, "Five rules for the evolution of cooperation," science, vol. 314, no. 5805, pp. 1560-1563, 2006.[54] M. A. Nowak and R. M. May, "Evolutionary games and spatial chaos," Nature, vol. 359, no. 6398, p. 826, 1992.[55] M. A. Nowak and K. Sigmund, "Evolution of indirect reciprocity by image scoring," Nature, vol. 393, no. 6685, p. 573, 1998.[56] Y. Ogawa, Y. Sugiyama, H. J. Ferrer, L. G. Sotos, and M. M. Juárez, La fórmula preferida del profesor. Funambulista, 2008.[57] F. M. Pagane Guereschi Ernandes and C. H. Garcia-Cruz, "Zymomonas mobilis: um microrganismo promissor para a fermentação alcoólica," Semina: Ciencias Agrárias, pp. 361-380, 2009.[58] I. C. Paz Astudillo et al., "Diseño integral de biorreactores continuos de tanque agitado aplicados a procesos de fermentación," Ph.D. dissertation, Universidad Nacional de Colombia-Sede Manizales, 2010.[59] M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, "Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation," Biochemical engineering journal, vol. 28, no. 1, pp. 36-43, 2006.[60] L. Pinal, M. Ceden, H. Gutie, J. Alvarez-Jacobs, et al., "Fermentation parameters influencing higher alcohol production in the tequila process," Biotechnology Letters, vol. 19, no. 1, pp. 45-47, 1997.[61] Y. Piñeros-Castro, Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia. UTADEO, Universidad de Bogotá Jorge Tadeo Lozano, Facultad de Ciencias . . . , 2014.[62] Á. E. Pulido Aponte, H. M. Rivera Escobar, and J. J. Espitia Pardo, "Control, supervisión y representación matemática de un proceso de biodigestión anaerobia para la biomasa de contenido ruminal bovino," Tecnura, vol. 22, no. 58, pp. 21-30, 2018.[63] N. Quijano, C. Ocampo-Martinez, J. Barreiro-Gomez, G. Obando, A. Pantoja, and E. Mojica-Nava, "The role of population games and evolutionary dynamics in distributed control systems: The advantages of evolutionary game theory," IEEE Control Systems Magazine, vol. 37, no. 1, pp. 70-97, 2017.[64] N. Qureshi and I. Maddox, "Application of novel technology to the abe fermentation process," Applied Biochemistry and Biotechnology, vol. 34, no. 1, pp. 441-448, 1992.[65] M. Ribas-García, R. Hurtado-Vargas, N. Garrido-Carralero, F. Domenech-López, and R. Sabadí-Díaz, "Metodología para la modelación matemática de procesos. caso de estudio, fermentación alcohólica," ICIDCA. Sobre los Derivados de la Caña de Azúcar, vol. 45, no. 1, pp. 37-47, 2011.[66] P. Rogers, Y. Jeon, K. Lee, and H. Lawford, "Zymomonas mobilis for fuel ethanol and higher value products," in Biofuels. Springer, 2007, pp. 263-288.[67] P. Rogers, K. Lee, M. Skotnicki, and D. Tribe, "Ethanol production by zymomonas mobilis," in Microbial reactions. Springer, 1982, pp. 37-84.[68] D. Ross, "Game theory," in The Stanford Encyclopedia of Philosophy, spring 2019 ed., E. N. Zalta, Ed. Metaphysics Research Lab, Stanford University, 2019.[69] R. Rutkis, U. Kalnenieks, E. Stalidzans, and D. A. Fell, "Kinetic modelling of the zymomonas mobilis entner-doudoroff pathway: insights into control and functionality," Microbiology, vol. 159, no. 12, pp. 2674-2689, 2013.[70] W. H. Sandholm, Population games and evolutionary dynamics. MIT press, 2010.[71] H. L. Smith and P. Waltman, The theory of the chemostat: dynamics of microbial competition. Cambridge university press, 1995, vol. 13.[72] C. Smolke, The metabolic pathway engineering handbook: fundamentals. CRC press, 2009.[73] P. Taylor and P. L. Williams, "Theoretical studies on the coexistence of competing species under continuous-flow conditions," Canadian Journal of Microbiology, vol. 21, no. 1, pp. 90-98, 1975.[74] K. G. TeBeest, "Classroom note: Numerical and analytical solutions of volterra's population model," SIAM review, vol. 39, no. 3, pp. 484-493, 1997.[75] Y. Tian, K. Sun, A. Kasperski, and L. Chen, "Nonlinear modelling and qualitative analysis of a real chemostat with pulse feeding," Discrete Dynamics in Nature and Society, vol. 2010, 2010.[76] A. Traulsen and M. A. Nowak, "Evolution of cooperation by multilevel selection," Proceedings of the National Academy of Sciences, vol. 103, no. 29, pp. 10 952-10 955, 2006.[77] V. TREJOS, J. Fontalvo Alzate, and M. A. Gomez Garcia, "Mathematical description and stability analysis of fermentative processes," Dyna, vol. 76, no. 158, pp. 111-121, 2009.[78] R. L. Trivers, "The evolution of reciprocal altruism," The Quarterly review of biology, vol. 46, no. 1, pp. 35-57, 1971.[79] C. H. S. Trujillo, "La historia de los benefactores de la humanidad," Infectio, vol. 8, no. 2, 2011.[80] V. Vásquez and C. Lescano, "Predicción por redes neuronales arti ficiales de la calidad fisicoquímica de vinagre de melaza de caña por efecto de tiempo-temperatura de alimentación a evaporador-destilador flash," Scientia Agropecuaria, vol. 1, no. 1, pp. 63-73, 2010.[81] U. Veeramallu and P. Agrawal, "A structured kinetic model for zymomonas mobilis atcc10988," Biotechnology and bioengineering, vol. 36, no. 7, pp. 694-704, 1990.[82] J. Villadsen, J. Nielsen, and G. Lidén, Bioreaction engineering principles. Springer Science & Business Media, 2011.[83] J. Y. Wakano, K. Aoki, and M. W. Feldman, "Evolution of social learning: a mathematical analysis," Theoretical population biology, vol. 66, no. 3, pp. 249-258, 2004.[84] O. P. Ward, Fermentation biotechnology: principles, processes and products. Open University Press Milton Keynes, 1989.[85] J.Weber, A. Kayser, and U. Rinas, "Metabolic flux analysis of escherichia coli in glucose-limited continuous culture. ii. dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behavior," Microbiology, vol. 151, no. 3, pp. 707-716, 2005.[86] H. Widiastuti, J. Y. Kim, S. Selvarasu, I. A. Karimi, H. Kim, J.-S. Seo, and D.-Y. Lee, "Genome-scale modeling and in silico analysis of ethanologenic bacteria zymomonas mobilis," Biotechnology and bioengineering, vol. 108, no. 3, pp. 655-665, 2011.[87] Z. Wu, E. Xu, J. Long, Y. Zhang, F. Wang, X. Xu, Z. Jin, and A. Jiao, "Monitoring of fermentation process parameters of Chinese rice wine using attenuated total reflectance mid-infrared spectroscopy," Food Control, vol. 50, pp. 405-412, 2015.[88] S. Yang, T. J. Tschaplinski, N. L. Engle, S. L. Carroll, S. L. Martin, B. H. Davison, A. V. Palumbo, M. Rodriguez, and S. D. Brown, "Transcriptomic and metabolomic pro ling of zymomonas mobilis during aerobic and anaerobic fermentations," Bmc Genomics, vol. 10, no. 1, p. 34, 2009.[89] M. L. Zeeman, "Extinction in competitive lotka-volterra systems," Proceedings of the American Mathematical Society, vol. 123, no. 1, pp. 87-96, 1995.ORIGINAL1024508293.2020.pdf1024508293.2020.pdfapplication/pdf8117265https://repositorio.unal.edu.co/bitstream/unal/77901/1/1024508293.2020.pdfb895825144f720643aafbbc3bda969c5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77901/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77901/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1024508293.2020.pdf.jpg1024508293.2020.pdf.jpgGenerated Thumbnailimage/jpeg4986https://repositorio.unal.edu.co/bitstream/unal/77901/4/1024508293.2020.pdf.jpg7eba0a61d33a121ec9d045fa969101f7MD54unal/77901oai:repositorio.unal.edu.co:unal/779012024-07-20 23:11:36.512Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |