Dinámica de Crecimiento y Competencia para Zymomonas Mobilis: una aproximación desde un modelo co-evolutivo basado en teoría de juegos
Zymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of micro...
- Autores:
-
Pulido Aponte, Álvaro Ervey
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77901
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77901
- Palabra clave:
- 620 - Ingeniería y operaciones afines
660 - Ingeniería química
Z.Mobilis
quimiostato
competencia
coexistencia
modelamiento
teoría de juegos
chemostat
competition
coexistence
growth
concentration
game theory
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | Zymomonas Mobilis (Z. Mobilis), are fermenting microorganisms that under anaerobic conditions transform reducing sugars into ethyl alcohol. Although to date, mathematical models based on mass transfer have been proposed that suggest the representation of phenomena associated with the growth of microbial populations, little is known about their implementation for specific cases in which the evidence is purely experimental, such as a case of the dynamics expressed by two strains of (Z. Mobilis) in the same confinement space. The objective of this thesis was to evaluate in silico the dynamics of growth and competition of two strains of the organism Zymomonas Mobilis in a fermentative process. For this, a multi-population mathematical model based on the chemostat mass transfer was represented for a fermentation process called model A, its implementation for two strains of Z. Mobilis (ZM1 and ZM4) and the possible implications for stability and process control. On the other hand, a co-evolutionary model based on an evolutionary game theory called model B was obtained, from the use of strategies adopted by the same competing strains; The criteria for selecting the strategies included growth kinetics and substrate consumption for the fermentation process. Finally, two strategies were implemented for the design of a proportional, integral, and derivative controller, the first empirical by the Ziegler-Nichols method and the second by the virtual reference feedback tuning method. In contrast to the values obtained an independent culture for ZM1 and ZM4, in competition, the results were incremental for ZM4 in terms of generation of microbial biomass and product in model A. Compared to model B, the extinction of ZM1 was evidenced by cause of the strategies adopted by ZM4. A comparative table was made showing the main advantages and disadvantages of the two proposed models. |
---|