Tangent mappings and convergent sequences in the lipschitz category
The standard definition of a derivative in linear spaces is extended to a definition of tangency in the Lipschitz category, without any assumed algebraic structure on the underlying spaces. Tangency is characterized topologically, that is, solely in terms of continuity, without using any algebraic...
- Autores:
-
Hyman, Daniel M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1989
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43255
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43255
http://bdigital.unal.edu.co/33353/
- Palabra clave:
- Standard definition
derivative in linear spaces
tangency
Lipschitz category
algebraic structure
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | The standard definition of a derivative in linear spaces is extended to a definition of tangency in the Lipschitz category, without any assumed algebraic structure on the underlying spaces. Tangency is characterized topologically, that is, solely in terms of continuity, without using any algebraic concepts or other analytical concepts. The mappings in the Lipschitz category are characterized as the class of functions that preserve topologically convergent sequences of finite variation. |
---|