Tangent mappings and convergent sequences in the lipschitz category

The standard definition of a derivative in linear spaces is extended to a definition of tangency in the Lipschitz category, without any assumed algebraic structure on the underlying spaces.  Tangency is characterized topologically, that is, solely in terms of continuity, without using any algebraic...

Full description

Autores:
Hyman, Daniel M.
Tipo de recurso:
Article of journal
Fecha de publicación:
1989
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43255
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43255
http://bdigital.unal.edu.co/33353/
Palabra clave:
Standard definition
derivative in linear spaces
tangency
Lipschitz category
algebraic structure
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The standard definition of a derivative in linear spaces is extended to a definition of tangency in the Lipschitz category, without any assumed algebraic structure on the underlying spaces.  Tangency is characterized topologically, that is, solely in terms of continuity, without using any algebraic concepts or other analytical concepts. The mappings in the Lipschitz category are characterized as the class of functions that preserve topologically convergent sequences of finite variation.