Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering
ilustraciones, diagramas
- Autores:
-
Ramos Adame, Lizeth Vanessa
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85347
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Acero inoxidable
Steel, stainless
Recubrimiento nanoestructurado
Desgaste
Corrosión electroquímica
Nanostructured coating
HiPIMS
Wear
Electrochemical corrosion
CrTiAlN
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_27921c100d599085cb01cfa1a9a93f44 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85347 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
dc.title.translated.eng.fl_str_mv |
Growth and characterization of nanostructured coatings CrTiAlN-Ni deposited by co-sputtering technique |
title |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
spellingShingle |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Acero inoxidable Steel, stainless Recubrimiento nanoestructurado Desgaste Corrosión electroquímica Nanostructured coating HiPIMS Wear Electrochemical corrosion CrTiAlN |
title_short |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
title_full |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
title_fullStr |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
title_full_unstemmed |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
title_sort |
Crecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputtering |
dc.creator.fl_str_mv |
Ramos Adame, Lizeth Vanessa |
dc.contributor.advisor.none.fl_str_mv |
Olaya Flórez, Jhon Jairo Piamba Tulcán, Oscar Edwin |
dc.contributor.author.none.fl_str_mv |
Ramos Adame, Lizeth Vanessa |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Acero inoxidable Steel, stainless Recubrimiento nanoestructurado Desgaste Corrosión electroquímica Nanostructured coating HiPIMS Wear Electrochemical corrosion CrTiAlN |
dc.subject.lemb.spa.fl_str_mv |
Acero inoxidable |
dc.subject.lemb.eng.fl_str_mv |
Steel, stainless |
dc.subject.proposal.spa.fl_str_mv |
Recubrimiento nanoestructurado Desgaste Corrosión electroquímica |
dc.subject.proposal.eng.fl_str_mv |
Nanostructured coating HiPIMS Wear Electrochemical corrosion |
dc.subject.proposal.none.fl_str_mv |
CrTiAlN |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12 |
dc.date.accessioned.none.fl_str_mv |
2024-01-17T16:38:46Z |
dc.date.available.none.fl_str_mv |
2024-01-17T16:38:46Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85347 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85347 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. J. Lockwood et al., “Nanostructured Coatings Nanostructure Science and Technology.” H. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf Coat Technol, vol. 201, no. 6, pp. 2193–2201, Dec. 2006, doi: 10.1016/j.surfcoat.2006.03.037. G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “The structure and tribological behaviors of CrN and Cr-Ti-N coatings,” Appl Surf Sci, vol. 253, no. 18, pp. 7353–7359, Jul. 2007, doi: 10.1016/j.apsusc.2007.02.061. P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, Jun. 2008, doi: 10.1016/j.tsf.2007.07.127. P. C. Wo, P. R. Munroe, Z. T. Jiang, Z. Zhou, K. Y. Li, and Z. Xie, “Enhancing toughness of CrN coatings by Ni addition for safety-critical applications,” Materials Science and Engineering A, vol. 596, pp. 264–274, Feb. 2014, doi: 10.1016/j.msea.2013.12.064. S. Tan, X. Zhang, R. Zhen, Z. Tian, and Z. Wang, “Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering,” Vacuum, vol. 120, no. PA, pp. 54–59, Jun. 2015, doi: 10.1016/j.vacuum.2015.06.017. C. Sha, P. Munroe, Z. Zhou, and Z. Xie, “Effect of Ni content on the microstructure and mechanical behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 357, pp. 445–455, Jan. 2019, doi: 10.1016/j.surfcoat.2018.10.052. C. He et al., “Microstructure and mechanical properties of reactive sputtered nanocrystalline Ti-Al-Ni-N thin films,” Surf Coat Technol, vol. 320, pp. 472–477, Jun. 2017, doi: 10.1016/j.surfcoat.2016.11.079. K. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, “Friction and wear of coated surfaces - scales, modelling and simulation of tribomechanisms,” Surf Coat Technol, vol. 202, no. 4–7, pp. 1034–1049, Dec. 2007, doi: 10.1016/j.surfcoat.2007.07.105. “Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.org P. W. Shum, K. Y. Li, Z. F. Zhou, and Y. G. Shen, “Structural and mechanical properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 185, no. 2–3, pp. 245–253, Jul. 2004, doi: 10.1016/j.surfcoat.2003.12.011 Y. J. Kim, H. Y. Lee, S. I. Kim, J. G. Han, and K. S. Kim, “Microstructural and Mechanical Properties of CrTiAlN Nanocomposite Thin Films Synthesized by Closed Field Unbalanced Magnetron Sputtering,” 2007. H. Zhang, S. Duo, X. Fei, X. Xu, T. Liu, and Y. Wang, “Effect of CrTiAlN coatings on high-temperature oxidation behavior of H13 steel,” in Key Engineering Materials, Trans Tech Publications Ltd, 2012, pp. 343–346. doi: 10.4028/www.scientific.net/KEM.544.343. A. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021. J. Lin, X. Zhang, Y. Ou, and R. Wei, “The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings,” Surf Coat Technol, vol. 277, pp. 58–66, Sep. 2015, doi: 10.1016/j.surfcoat.2015.07.013. Q. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf Coat Technol, vol. 285, pp. 203–213, Jan. 2016, doi: 10.1016/j.surfcoat.2015.11.040. E. N. Borja-Goyeneche and J. J. Olaya-Florez, “A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering,” DYNA (Colombia), vol. 85, no. 207, pp. 192–207, Oct. 2018, doi: 10.15446/dyna.v85n207.73304. M. Mišina, J. Musil, and S. Kadlec, “Composite TiN-Ni thin films deposited by reactive magnetron sputter ion-plating,” 1998. H. Gleiter, “NANOSTRUCTURED MATERIALS: BASIC CONCEPTS AND MICROSTRUCTURE p.” [Online]. Disponible: www.elsevier.com/locate/actamat J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1. Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, pp. 1050–1074, Apr. 03, 2018. doi: 10.3762/bjnano.9.98. H. Samir and V. Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de cosputtering magnetrón reactivo." “Simulation of wear and friction,” Tribology Series, vol. 44, pp. 13–23, 2004, doi: 10.1016/s0167-8922(04)80018-x. R. L. Boxman, S. Vepřek, and A. Raveh, “Hard Coatings Vacuum Arcs View project Teaching Scientific Writing View project,” 2014. [Online]. Available: https://www.researchgate.net/publication/245229890 N. I. M. Nadzri, A. Khemar, J. A. Wahab, and M. M. Mahat, “High Entropy Alloy towards Functional Materials Application: A Review,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1742-6596/2169/1/012007. “Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.org H. Caliskan, P. Panjan, and C. Kurbanoglu, “Hard Coatings on Cutting Tools and Surface Finish,” in Comprehensive Materials Finishing, Elsevier Inc., 2017, pp. 230–242. doi: 10.1016/B978-0-12-803581-8.09178-5. R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs-A review,” Science and Technology of Advanced Materials, vol. 8, no. 7–8. pp. 588–600, Oct. 2007. doi: 10.1016/j.stam.2007.08.005. H. 0 Pierson, “HANDBO OK OF REFRAC TORY CARBID ES AND NITRIDE S Propertie s, Characte ristics, Processin g and Applicatio ns,” 1996. V. К. Prokudina, “Titanium Nitride,” in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, Elsevier, 2017, pp. 398–401. doi: 10.1016/b978-0-12-804173-4.00160-5. S. Zhang and W. Zhu, “TiN coating of tool steels: a review,” 1993. A. Ruden and A. R. Muñoz, “ANALISIS ESTRUCTURAL, SUPERFICIAL Y TRIBOLOGICO DE RECUBRIMIENTOS DE NITRURO DE CROMO (CrN) SINTETIZADO POR MAGNETRON SPUTTERING REACTIVO DC STRUCTURAL, SURFACE AND TRIBOLOGICAL ANALYZED OF CRN THIN FILMS BY REACTIVE MAGNETRÓN SPUTTERING DC." Y. Baik and R. A. L. Drew, “Aluminum nitride: Processing and applications,” Key Eng Mater, no. 122–124, pp. 553–570, 1996, doi: 10.4028/www.scientific.net/kem.122-124.553. A. Egeberg, L. Warmuth, S. Riegsinger, D. Gerthsen, and C. Feldmann, “Pyridine-based low-temperature synthesis of CoN, Ni3N and Cu3N nanoparticles,” Chemical Communications, vol. 54, no. 71, pp. 9957–9960, 2018, doi: 10.1039/c8cc04893b. “Surface engineering for wear resistance”. R. A. Buchanan and E. E. Stansbury, “Electrochemical Corrosion,” in Handbook of Environmental Degradation of Materials: Second Edition, Elsevier Inc., 2012, pp. 87–125. doi: 10.1016/B978-1-4377-3455-3.00004-3. P. R. Roberge, Handbook of corrosion engineering. McGraw-Hill, 2000. J. R. (Joseph R. ) Davis, Surface engineering for corrosion and wear resistance. ASM International, 2001. A. Baptista, F. Silva, J. Porteiro, J. Míguez, and G. Pinto, “Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement andmarket trend demands,” Coatings, vol. 8, no. 11. MDPI AG, 2018. doi: 10.3390/COATINGS8110402. “Handbook of Sputter Deposition Technology.” V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” 1999. [Online]. Available: www.elsevier.nl/locate/surfcoat C. Badini et al., “Thermal shock and oxidation behavior of HiPIMS TiAlN coatings grown on Ti-48Al-2Cr-2Nb intermetallic alloy,” Materials, vol. 9, no. 12, 2016, doi: 10.3390/ma9120961. L. Zauner et al., “Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition,” Surf Coat Technol, vol. 382, Jan. 2020, doi: 10.1016/j.surfcoat.2019.125007. H. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, and K. H. Kim, “Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques,” J Alloys Compd, vol. 735, pp. 422–429, Feb. 2018, doi: 10.1016/j.jallcom.2017.11.162. R. Bandorf, V. Sittinger, and G. Bräuer, “High Power Impulse Magnetron Sputtering - HIPIMS,” in Comprehensive Materials Processing, Elsevier Ltd, 2014, pp. 75–99. doi: 10.1016/B978-0-08-096532-1.00404-0. A. Mishra, P. J. Kelly, and J. W. Bradley, “The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate,” Plasma Sources Sci Technol, vol. 19, no. 4, 2010, doi: 10.1088/0963-0252/19/4/045014. J. W. Bradley, A. Mishra, and P. J. Kelly, “The effect of changing the magnetic field strength on HiPIMS deposition rates,” J Phys D Appl Phys, vol. 48, no. 21, Jun. 2015, doi: 10.1088/0022-3727/48/21/215202. “Deposición de peliculas delgadas de TiN”.Tesis, CIMAV. [Online]. Avaible: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/913/3/TESIS%20DEPOSICION%20DE%20PELICULAS%20DELGADAS.pdf J. A. Thornton, “HIGH RATE THICK FILM GROWTH,” 1977. [Online]. Available: www.annualreviews.org J. A. Thornton, “Structure-Zone Models of Thin Films.” [Online]. Available: http://spiedl.org/terms R. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 2, no. 2, pp. 500–503, Apr. 1984, doi: 10.1116/1.572604. J. Epp, “X-Ray Diffraction (XRD) Techniques for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier Inc., 2016, pp. 81–124. doi: 10.1016/B978-0-08-100040-3.00004-3. A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Critical Reviews in Analytical Chemistry, vol. 45, no. 4. Taylor and Francis Ltd., pp. 289–299, Oct. 02, 2015. doi: 10.1080/10408347.2014.949616. “Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing 1”, doi: 10.1520/C1624-05R10. G. Instruments, “Getting Started with Electrochemical Corrosion Measurement.” A. Doménech-Carbó, L. Machado De Carvalho, M. Martini, D. P. Valencia, and G. Cebrián-Torrejón, “Electrochemical monitoring of the pharmacological activity of natural products,” in Studies in Natural Products Chemistry, Elsevier B.V., 2015, pp. 59–84. doi: 10.1016/B978-0-444-63473-3.00003-4. A. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021. Y. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, Jul. 2015, doi: 10.1016/j.vacuum.2015.07.004. M. A. Baker, P. J. Kench, C. Tsotsos, P. N. Gibson, A. Leyland, and A. Matthews, “Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 3, pp. 423–433, May 2005, doi: 10.1116/1.1875212. Z. R. Liu, B. Peng, Y. X. Xu, Q. Zhang, Q. Wang, and L. Chen, “Influence of Ni-addition on mechanical, tribological properties and oxidation resistance of AlCrSiN coatings,” Ceram Int, vol. 45, no. 3, pp. 3735–3742, Feb. 2019, doi: 10.1016/j.ceramint.2018.11.039. J. Liang, S. Chen, C. Zou, C. Tian, Z. Wang, and S. Liao, “Influence of oxygen contents on the microstructure, high temperature oxidation and corrosion resistance properties of Cr-Si-O-N Coatings,” Coatings, vol. 8, no. 1, Jan. 2018, doi: 10.3390/coatings8010019. S. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” in Thin Solid Films, Nov. 2012, pp. 274–282. doi: 10.1016/j.tsf.2012.08.048. A. P. Ehiasarian, “High-power impulse magnetron sputtering and its applications,” in Pure and Applied Chemistry, 2010, pp. 1247–1258. doi: 10.1351/PAC-CON-09-10-43. J. Jin, D. Zheng, S. Han, J. Ma, and Z. Zhu, “Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell,” Int J Hydrogen Energy, vol. 42, no. 2, pp. 1142–1153, Jan. 2017, doi: 10.1016/j.ijhydene.2016.11.007. N. D. Nam, J. H. Ahn, N. E. Lee, and J. G. Kim, “Electrochemical evaluation of the reliability of plasma-polymerized methylcyclohexane films,” Mater Res Bull, vol. 45, no. 3, pp. 269–274, Mar. 2010, doi: 10.1016/j.materresbull.2009.12.024. R. Cabrera-Sierra, J. Marín-Cruz, and I. González, “Comunicaciones técnicas,” Bol. Soc. Quím. Méx, vol. 1, no. 1, pp. 32–41, 2007. U. Piratoba and A. Marino, “magnetic dilute semiconductors (DMS) View project Obtención y caracterizacion de recubrimientos de Nitruro de cromo mediante magnetron sputtering View project,” 2010. [Online]. Available: https://www.researchgate.net/publication/303145142 C. Liliana and E. Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas.” C. Lipson and L. Vern Colwell, “Handbook of mechanical wear: wear, frettage, pitting, cavitation, corrosion,” Literary Licensing, LLC (21 Julio 2012), ISBN-10: 1258442272 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 149 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85347/2/1118567227.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85347/4/1118567227.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85347/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85347/5/1118567227.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
6e1b281dc119eb52a25aa87960d70bed 6e1b281dc119eb52a25aa87960d70bed eb34b1cf90b7e1103fc9dfd26be24b4a 90469d3d763b1f4258f33aff7f53dab0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089340397027328 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Olaya Flórez, Jhon Jairo6742336e78cba204f151e59d8e612f56Piamba Tulcán, Oscar Edwin033a75a569122c165a4115dc829748eaRamos Adame, Lizeth Vanessa2583cd094720039f230bc30cc20698aa2024-01-17T16:38:46Z2024-01-17T16:38:46Z2023-12https://repositorio.unal.edu.co/handle/unal/85347Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn esta investigación, se depositaron recubrimientos nanoestructurados de CrTiAlN-Ni sobre sustratos de metal duro K20, vidrio, silicio (100) y acero inoxidable AISI 316L mediante la técnica HiPIMS (High Power Impulse Sputtering); se estudiaron sus propiedades y comportamientos para establecer el efecto del Ni en el desgaste y en la resistencia a la corrosión electroquímica de los recubrimientos. Los recubrimientos obtenidos fueron nombrados de acuerdo con el número de piezas de Ni puestas en el blanco de cromo durante los depósitos, por lo cual, se obtuvieron los siguientes sistemas: CrTiAlN-0Ni, CrTiAlN-1Ni, CrTiAlN-3Ni, CrTiAlN-5Ni y CrTiAlN-9Ni. Se utilizaron técnicas de caracterización con el propósito de establecer la relación del contenido de Ni y las propiedades estructurales, mecánicas, tribológicas y anticorrosivas de los recubrimientos para lo cual fue necesario utilizar difracción de rayos X (DRX), espectroscopia de rayos X de energía dispersiva (EDS), microscopía electrónica de barrido (SEM), prueba de nanoindentación, pin-on-disc, prueba scratch, espectroscopía de impedancia electroquímica (EIS) y prueba de polarización potenciodinámica (PP). En los patrones de difracción se encontraron picos asociados al níquel presentes en los recubrimientos depositados sobre sustrato 316L, que permitieron intuir que átomos libres de Ni favorecieron la formación de una fase amorfa en los picos de DRX; sin embargo, no fue posible establecer un efecto de refinamiento del tamaño de cristalito. El análisis de las imágenes SEM sugirió que la morfología superficial es más densa y uniforme con la adición de Ni en el recubrimiento que permitió mejorar la dureza del recubrimiento con 0,08 % at. de Ni. La ausencia de un voltaje bias durante los procesos de deposición, una capa intermedia o un pretratamiento pudieron ser las razones principales de la baja adherencia de los recubrimientos. Además, la incorporación de poco contenido de Ni influyó significativamente en el desempeño tribológico y las propiedades mecánicas de los recubrimientos estudiados. Los fenómenos de corrosión identificados después de las pruebas PP y EIS corresponden a corrosión uniforme con pitting. (Texto tomado de la fuente)In recent decades, Colombia has positioned itself as a world leader in the flower industry. However, this thriving sector faces environmental challenges, with waste generation being a constant concern. In context, carnation waste production in the country is 1500 kg/month per hectare, of which an average of 10% is used in composting and the remaining 90% is usually given as animal feed, which has been questioned for magnifying pesticides in the food chain. Thus, the search for sustainable and efficient solutions for the degradation of plant residues has become a priority in this agricultural sector. One alternative that has been studied is the direct use of microorganisms with lignocellulolytic capacity. Biocultivos S.A. and the Institute of Biotechnology of the National University of Colombia - IBUN developed an inoculum from Penicillium sp. HC1 to accelerate the degradation of lignocellulosic material. This bioinput presents challenges aligned to the production and quality of its conidia in submerged fermentation and, therefore, the present work evaluated different culture conditions on the production of Penicillium sp. HC1, as well as its use in the degradation of plant material residues from carnation residue crops in search of product improvement. This research did not show significant changes in the final product using CaCl2. On the other hand, the influence of various complex additives such as casamino acids, branched amino acids, other supplements and vitamins when added to the liquid culture medium on the production of Penicillium sp. HC1 was studied, and positive results were found. Concentrations of 13 g/L of casamino acids improve the production of biomass and conidia 6% and 11%, respectively, with respect to the control (base medium). Similarly, the so- called test amino acids (PA) in this research proved to be an effective and more economical replacement for casamino acids, also improving the viability and productivity of Penicillium sp. HC1 conidia. However, thermal tolerance did not show progress. This was solved by adding vitamins, obtaining a 64% increase in thermal tolerance with respect to the initial product. Additionally, the effect of three air flows in the submerged fermentation process in a stirred tank was explored, achieving a significant improvement in the product at 2.5 vvm. In summary, biomass improved 27%, conidia 16%, viability 76% and thermal tolerance 54% in the bioreactor product. Finally, the use of Penicillium sp. HC1 from the MBAP VIT culture medium produced at 2.5 vvm was validated, thus satisfying an agricultural need in the floriculture industry, which is constantly looking for alternatives for the management of its plant residues. This research demonstrated the improvement in the acceleration of carnation waste degradation using Penicillium sp. HC1, achieving favorable results in co-cultures with Pleurotus ostreatus T1.1.MaestríaIngeniería de superficiesxvii, 149 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAcero inoxidableSteel, stainlessRecubrimiento nanoestructuradoDesgasteCorrosión electroquímicaNanostructured coatingHiPIMSWearElectrochemical corrosionCrTiAlNCrecimiento y caracterización de recubrimientos nanoestructurados de CrTiAlN-Ni depositados mediante la técnica co-sputteringGrowth and characterization of nanostructured coatings CrTiAlN-Ni deposited by co-sputtering techniqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMD. J. Lockwood et al., “Nanostructured Coatings Nanostructure Science and Technology.”H. C. Barshilia, N. Selvakumar, B. Deepthi, and K. S. Rajam, “A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings,” Surf Coat Technol, vol. 201, no. 6, pp. 2193–2201, Dec. 2006, doi: 10.1016/j.surfcoat.2006.03.037.G. A. Zhang, P. X. Yan, P. Wang, Y. M. Chen, and J. Y. Zhang, “The structure and tribological behaviors of CrN and Cr-Ti-N coatings,” Appl Surf Sci, vol. 253, no. 18, pp. 7353–7359, Jul. 2007, doi: 10.1016/j.apsusc.2007.02.061.P. L. Tam, Z. F. Zhou, P. W. Shum, and K. Y. Li, “Structural, mechanical, and tribological studies of Cr-Ti-Al-N coating with different chemical compositions,” Thin Solid Films, vol. 516, no. 16, pp. 5725–5731, Jun. 2008, doi: 10.1016/j.tsf.2007.07.127.P. C. Wo, P. R. Munroe, Z. T. Jiang, Z. Zhou, K. Y. Li, and Z. Xie, “Enhancing toughness of CrN coatings by Ni addition for safety-critical applications,” Materials Science and Engineering A, vol. 596, pp. 264–274, Feb. 2014, doi: 10.1016/j.msea.2013.12.064.S. Tan, X. Zhang, R. Zhen, Z. Tian, and Z. Wang, “Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering,” Vacuum, vol. 120, no. PA, pp. 54–59, Jun. 2015, doi: 10.1016/j.vacuum.2015.06.017.C. Sha, P. Munroe, Z. Zhou, and Z. Xie, “Effect of Ni content on the microstructure and mechanical behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 357, pp. 445–455, Jan. 2019, doi: 10.1016/j.surfcoat.2018.10.052.C. He et al., “Microstructure and mechanical properties of reactive sputtered nanocrystalline Ti-Al-Ni-N thin films,” Surf Coat Technol, vol. 320, pp. 472–477, Jun. 2017, doi: 10.1016/j.surfcoat.2016.11.079.K. Holmberg, H. Ronkainen, A. Laukkanen, and K. Wallin, “Friction and wear of coated surfaces - scales, modelling and simulation of tribomechanisms,” Surf Coat Technol, vol. 202, no. 4–7, pp. 1034–1049, Dec. 2007, doi: 10.1016/j.surfcoat.2007.07.105.“Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.orgP. W. Shum, K. Y. Li, Z. F. Zhou, and Y. G. Shen, “Structural and mechanical properties of titanium-aluminium-nitride films deposited by reactive close-field unbalanced magnetron sputtering,” Surf Coat Technol, vol. 185, no. 2–3, pp. 245–253, Jul. 2004, doi: 10.1016/j.surfcoat.2003.12.011Y. J. Kim, H. Y. Lee, S. I. Kim, J. G. Han, and K. S. Kim, “Microstructural and Mechanical Properties of CrTiAlN Nanocomposite Thin Films Synthesized by Closed Field Unbalanced Magnetron Sputtering,” 2007.H. Zhang, S. Duo, X. Fei, X. Xu, T. Liu, and Y. Wang, “Effect of CrTiAlN coatings on high-temperature oxidation behavior of H13 steel,” in Key Engineering Materials, Trans Tech Publications Ltd, 2012, pp. 343–346. doi: 10.4028/www.scientific.net/KEM.544.343.A. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021.J. Lin, X. Zhang, Y. Ou, and R. Wei, “The structure, oxidation resistance, mechanical and tribological properties of CrTiAlN coatings,” Surf Coat Technol, vol. 277, pp. 58–66, Sep. 2015, doi: 10.1016/j.surfcoat.2015.07.013.Q. Wang, F. Zhou, and J. Yan, “Evaluating mechanical properties and crack resistance of CrN, CrTiN, CrAlN and CrTiAlN coatings by nanoindentation and scratch tests,” Surf Coat Technol, vol. 285, pp. 203–213, Jan. 2016, doi: 10.1016/j.surfcoat.2015.11.040.E. N. Borja-Goyeneche and J. J. Olaya-Florez, “A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering,” DYNA (Colombia), vol. 85, no. 207, pp. 192–207, Oct. 2018, doi: 10.15446/dyna.v85n207.73304.M. Mišina, J. Musil, and S. Kadlec, “Composite TiN-Ni thin films deposited by reactive magnetron sputter ion-plating,” 1998.H. Gleiter, “NANOSTRUCTURED MATERIALS: BASIC CONCEPTS AND MICROSTRUCTURE p.” [Online]. Disponible: www.elsevier.com/locate/actamatJ. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein Journal of Nanotechnology, vol. 9, no. 1. Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, pp. 1050–1074, Apr. 03, 2018. doi: 10.3762/bjnano.9.98.H. Samir and V. Parra, “Recubrimientos funcionales de (Zr, Ag, Si) N y (Zr, Cu, Si) N producidos por la técnica de cosputtering magnetrón reactivo."“Simulation of wear and friction,” Tribology Series, vol. 44, pp. 13–23, 2004, doi: 10.1016/s0167-8922(04)80018-x.R. L. Boxman, S. Vepřek, and A. Raveh, “Hard Coatings Vacuum Arcs View project Teaching Scientific Writing View project,” 2014. [Online]. Available: https://www.researchgate.net/publication/245229890N. I. M. Nadzri, A. Khemar, J. A. Wahab, and M. M. Mahat, “High Entropy Alloy towards Functional Materials Application: A Review,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jan. 2022. doi: 10.1088/1742-6596/2169/1/012007.“Nanocomposite Hard Coatings for Wear Protection.” [Online]. Available: http://advertisers.mrs.orgH. Caliskan, P. Panjan, and C. Kurbanoglu, “Hard Coatings on Cutting Tools and Surface Finish,” in Comprehensive Materials Finishing, Elsevier Inc., 2017, pp. 230–242. doi: 10.1016/B978-0-12-803581-8.09178-5.R. J. Xie and N. Hirosaki, “Silicon-based oxynitride and nitride phosphors for white LEDs-A review,” Science and Technology of Advanced Materials, vol. 8, no. 7–8. pp. 588–600, Oct. 2007. doi: 10.1016/j.stam.2007.08.005.H. 0 Pierson, “HANDBO OK OF REFRAC TORY CARBID ES AND NITRIDE S Propertie s, Characte ristics, Processin g and Applicatio ns,” 1996.V. К. Prokudina, “Titanium Nitride,” in Concise Encyclopedia of Self-Propagating High-Temperature Synthesis, Elsevier, 2017, pp. 398–401. doi: 10.1016/b978-0-12-804173-4.00160-5.S. Zhang and W. Zhu, “TiN coating of tool steels: a review,” 1993.A. Ruden and A. R. Muñoz, “ANALISIS ESTRUCTURAL, SUPERFICIAL Y TRIBOLOGICO DE RECUBRIMIENTOS DE NITRURO DE CROMO (CrN) SINTETIZADO POR MAGNETRON SPUTTERING REACTIVO DC STRUCTURAL, SURFACE AND TRIBOLOGICAL ANALYZED OF CRN THIN FILMS BY REACTIVE MAGNETRÓN SPUTTERING DC."Y. Baik and R. A. L. Drew, “Aluminum nitride: Processing and applications,” Key Eng Mater, no. 122–124, pp. 553–570, 1996, doi: 10.4028/www.scientific.net/kem.122-124.553.A. Egeberg, L. Warmuth, S. Riegsinger, D. Gerthsen, and C. Feldmann, “Pyridine-based low-temperature synthesis of CoN, Ni3N and Cu3N nanoparticles,” Chemical Communications, vol. 54, no. 71, pp. 9957–9960, 2018, doi: 10.1039/c8cc04893b.“Surface engineering for wear resistance”.R. A. Buchanan and E. E. Stansbury, “Electrochemical Corrosion,” in Handbook of Environmental Degradation of Materials: Second Edition, Elsevier Inc., 2012, pp. 87–125. doi: 10.1016/B978-1-4377-3455-3.00004-3.P. R. Roberge, Handbook of corrosion engineering. McGraw-Hill, 2000.J. R. (Joseph R. ) Davis, Surface engineering for corrosion and wear resistance. ASM International, 2001.A. Baptista, F. Silva, J. Porteiro, J. Míguez, and G. Pinto, “Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement andmarket trend demands,” Coatings, vol. 8, no. 11. MDPI AG, 2018. doi: 10.3390/COATINGS8110402.“Handbook of Sputter Deposition Technology.”V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson, and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities,” 1999. [Online]. Available: www.elsevier.nl/locate/surfcoatC. Badini et al., “Thermal shock and oxidation behavior of HiPIMS TiAlN coatings grown on Ti-48Al-2Cr-2Nb intermetallic alloy,” Materials, vol. 9, no. 12, 2016, doi: 10.3390/ma9120961.L. Zauner et al., “Reactive HiPIMS deposition of Ti-Al-N: Influence of the deposition parameters on the cubic to hexagonal phase transition,” Surf Coat Technol, vol. 382, Jan. 2020, doi: 10.1016/j.surfcoat.2019.125007.H. Elmkhah, F. Attarzadeh, A. Fattah-alhosseini, and K. H. Kim, “Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques,” J Alloys Compd, vol. 735, pp. 422–429, Feb. 2018, doi: 10.1016/j.jallcom.2017.11.162.R. Bandorf, V. Sittinger, and G. Bräuer, “High Power Impulse Magnetron Sputtering - HIPIMS,” in Comprehensive Materials Processing, Elsevier Ltd, 2014, pp. 75–99. doi: 10.1016/B978-0-08-096532-1.00404-0.A. Mishra, P. J. Kelly, and J. W. Bradley, “The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate,” Plasma Sources Sci Technol, vol. 19, no. 4, 2010, doi: 10.1088/0963-0252/19/4/045014.J. W. Bradley, A. Mishra, and P. J. Kelly, “The effect of changing the magnetic field strength on HiPIMS deposition rates,” J Phys D Appl Phys, vol. 48, no. 21, Jun. 2015, doi: 10.1088/0022-3727/48/21/215202.“Deposición de peliculas delgadas de TiN”.Tesis, CIMAV. [Online]. Avaible: https://cimav.repositorioinstitucional.mx/jspui/bitstream/1004/913/3/TESIS%20DEPOSICION%20DE%20PELICULAS%20DELGADAS.pdfJ. A. Thornton, “HIGH RATE THICK FILM GROWTH,” 1977. [Online]. Available: www.annualreviews.orgJ. A. Thornton, “Structure-Zone Models of Thin Films.” [Online]. Available: http://spiedl.org/termsR. Messier, A. P. Giri, and R. A. Roy, “Revised structure zone model for thin film physical structure,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 2, no. 2, pp. 500–503, Apr. 1984, doi: 10.1116/1.572604.J. Epp, “X-Ray Diffraction (XRD) Techniques for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier Inc., 2016, pp. 81–124. doi: 10.1016/B978-0-08-100040-3.00004-3.A. A. Bunaciu, E. gabriela Udriştioiu, and H. Y. Aboul-Enein, “X-Ray Diffraction: Instrumentation and Applications,” Critical Reviews in Analytical Chemistry, vol. 45, no. 4. Taylor and Francis Ltd., pp. 289–299, Oct. 02, 2015. doi: 10.1080/10408347.2014.949616.“Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing 1”, doi: 10.1520/C1624-05R10.G. Instruments, “Getting Started with Electrochemical Corrosion Measurement.”A. Doménech-Carbó, L. Machado De Carvalho, M. Martini, D. P. Valencia, and G. Cebrián-Torrejón, “Electrochemical monitoring of the pharmacological activity of natural products,” in Studies in Natural Products Chemistry, Elsevier B.V., 2015, pp. 59–84. doi: 10.1016/B978-0-444-63473-3.00003-4.A. Georgiadis, G. G. Fuentes, E. Almandoz, A. Medrano, J. F. Palacio, and A. Miguel, “Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C,” Mater Chem Phys, vol. 190, pp. 194–201, Apr. 2017, doi: 10.1016/j.matchemphys.2017.01.021.Y. Xu, L. Chen, Z. Liu, F. Pei, and Y. Du, “Influence of Ti on the mechanical properties, thermal stability and oxidation resistance of Al-Cr-N coatings,” Vacuum, vol. 120, no. PA, pp. 127–131, Jul. 2015, doi: 10.1016/j.vacuum.2015.07.004.M. A. Baker, P. J. Kench, C. Tsotsos, P. N. Gibson, A. Leyland, and A. Matthews, “Investigation of the nanostructure and wear properties of physical vapor deposited CrCuN nanocomposite coatings,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 23, no. 3, pp. 423–433, May 2005, doi: 10.1116/1.1875212.Z. R. Liu, B. Peng, Y. X. Xu, Q. Zhang, Q. Wang, and L. Chen, “Influence of Ni-addition on mechanical, tribological properties and oxidation resistance of AlCrSiN coatings,” Ceram Int, vol. 45, no. 3, pp. 3735–3742, Feb. 2019, doi: 10.1016/j.ceramint.2018.11.039.J. Liang, S. Chen, C. Zou, C. Tian, Z. Wang, and S. Liao, “Influence of oxygen contents on the microstructure, high temperature oxidation and corrosion resistance properties of Cr-Si-O-N Coatings,” Coatings, vol. 8, no. 1, Jan. 2018, doi: 10.3390/coatings8010019.S. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” in Thin Solid Films, Nov. 2012, pp. 274–282. doi: 10.1016/j.tsf.2012.08.048.A. P. Ehiasarian, “High-power impulse magnetron sputtering and its applications,” in Pure and Applied Chemistry, 2010, pp. 1247–1258. doi: 10.1351/PAC-CON-09-10-43.J. Jin, D. Zheng, S. Han, J. Ma, and Z. Zhu, “Effect of Ni content on the electrical and corrosion properties of CrNiN coating in simulated proton exchange membrane fuel cell,” Int J Hydrogen Energy, vol. 42, no. 2, pp. 1142–1153, Jan. 2017, doi: 10.1016/j.ijhydene.2016.11.007.N. D. Nam, J. H. Ahn, N. E. Lee, and J. G. Kim, “Electrochemical evaluation of the reliability of plasma-polymerized methylcyclohexane films,” Mater Res Bull, vol. 45, no. 3, pp. 269–274, Mar. 2010, doi: 10.1016/j.materresbull.2009.12.024.R. Cabrera-Sierra, J. Marín-Cruz, and I. González, “Comunicaciones técnicas,” Bol. Soc. Quím. Méx, vol. 1, no. 1, pp. 32–41, 2007.U. Piratoba and A. Marino, “magnetic dilute semiconductors (DMS) View project Obtención y caracterizacion de recubrimientos de Nitruro de cromo mediante magnetron sputtering View project,” 2010. [Online]. Available: https://www.researchgate.net/publication/303145142C. Liliana and E. Peña, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas.”C. Lipson and L. Vern Colwell, “Handbook of mechanical wear: wear, frettage, pitting, cavitation, corrosion,” Literary Licensing, LLC (21 Julio 2012), ISBN-10: 1258442272ORIGINAL1118567227.2023.pdf1118567227.2023.pdfTesis de Maestría Maestría en Ingeniería - Materiales y Procesos parteapplication/pdf3301068https://repositorio.unal.edu.co/bitstream/unal/85347/2/1118567227.2023.pdf6e1b281dc119eb52a25aa87960d70bedMD521118567227.2023.pdf1118567227.2023.pdfapplication/pdf3301068https://repositorio.unal.edu.co/bitstream/unal/85347/4/1118567227.2023.pdf6e1b281dc119eb52a25aa87960d70bedMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85347/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1118567227.2023.pdf.jpg1118567227.2023.pdf.jpgGenerated Thumbnailimage/jpeg5435https://repositorio.unal.edu.co/bitstream/unal/85347/5/1118567227.2023.pdf.jpg90469d3d763b1f4258f33aff7f53dab0MD55unal/85347oai:repositorio.unal.edu.co:unal/853472024-01-17 23:03:43.989Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |