Modelo integrado del comportamiento de asfaltenos en condiciones de flujo

Ilustraciones, gráficos

Autores:
Cundar Paredes, Cristiam David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86119
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86119
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Asfaltenos
Permeabilidad
Dinámica de fluidos
Industria energética
Termodinámica
Formación de daños (Ingeniería de petróleos)
Simulación por computadores
Pozos petroleros
Campos petrolíferos
Asfaltenos
Ecuación de estado
Cinética de agregación
Daño de formación
Simulación numérica
Asphaltenes
Equation of state
Aggregation kinetics
Formation damage
Numerical simulation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_275608f6326b456664e4e32fab88eacf
oai_identifier_str oai:repositorio.unal.edu.co:unal/86119
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
dc.title.translated.eng.fl_str_mv Integrated model of asphaltene behavior in flow conditions
title Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
spellingShingle Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
660 - Ingeniería química
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Asfaltenos
Permeabilidad
Dinámica de fluidos
Industria energética
Termodinámica
Formación de daños (Ingeniería de petróleos)
Simulación por computadores
Pozos petroleros
Campos petrolíferos
Asfaltenos
Ecuación de estado
Cinética de agregación
Daño de formación
Simulación numérica
Asphaltenes
Equation of state
Aggregation kinetics
Formation damage
Numerical simulation
title_short Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
title_full Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
title_fullStr Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
title_full_unstemmed Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
title_sort Modelo integrado del comportamiento de asfaltenos en condiciones de flujo
dc.creator.fl_str_mv Cundar Paredes, Cristiam David
dc.contributor.advisor.none.fl_str_mv Benjumea, Pedro Nel
dc.contributor.author.none.fl_str_mv Cundar Paredes, Cristiam David
dc.contributor.orcid.spa.fl_str_mv Cundar Paredes, Cristiam David [0000-0002-3409-7862]
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
topic 660 - Ingeniería química
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Asfaltenos
Permeabilidad
Dinámica de fluidos
Industria energética
Termodinámica
Formación de daños (Ingeniería de petróleos)
Simulación por computadores
Pozos petroleros
Campos petrolíferos
Asfaltenos
Ecuación de estado
Cinética de agregación
Daño de formación
Simulación numérica
Asphaltenes
Equation of state
Aggregation kinetics
Formation damage
Numerical simulation
dc.subject.lemb.none.fl_str_mv Asfaltenos
Permeabilidad
Dinámica de fluidos
Industria energética
Termodinámica
Formación de daños (Ingeniería de petróleos)
Simulación por computadores
Pozos petroleros
Campos petrolíferos
dc.subject.proposal.spa.fl_str_mv Asfaltenos
Ecuación de estado
Cinética de agregación
Daño de formación
Simulación numérica
dc.subject.proposal.eng.fl_str_mv Asphaltenes
Equation of state
Aggregation kinetics
Formation damage
Numerical simulation
description Ilustraciones, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-20T16:13:15Z
dc.date.available.none.fl_str_mv 2024-05-20T16:13:15Z
dc.date.issued.none.fl_str_mv 2024-05-20
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86119
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86119
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Alhammadi, A. A., Vargas, F. M., & Chapman, W. G. (2015). Comparison of cubic-plus-association and perturbed-chain statistical associating fluid theory methods for modeling asphaltene phase behavior and pressure-volume-temperature properties. Energy and Fuels, 29(5), 2864–2875. https://doi.org/10.1021/ef502129p
Ali, M. A., & Islam, M. R. (1998). The Effect of Asphaltene Precipitation on Carbonate-Rock Permeability: An Experimental and Numerical Approach. SPE.
Al-Noor, N. H., & Assi, N. K. (2020). Rayleigh-Rayleigh Distribution: Properties and Applications. Journal of Physics: Conference Series, 1591(1). https://doi.org/10.1088/1742-6596/1591/1/012038
Arya, A. (2016). Modeling of Asphaltene Systems with Association Models. In Citation. Technical University of Denmark.
Arya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 400, 8–19. https://doi.org/10.1016/j.fluid.2015.04.032
Benesty, J., Chen, J., Huang, Y., & Cohen, israel. (2009). Pearson Correlation Coefficient. In Noise Reduction in Speech Processing .
Bikmukhametov, T., & Jäschke, J. (2020). Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers and Chemical Engineering, 138. https://doi.org/10.1016/j.compchemeng.2020.106834
Boek, E., Fadili, A., Michael, F., & Williams, J. (2011). Prediction of Asphaltene Deposition in Porous Media by Systematic Upscaling from a Colloidal Pore Scale Model to a Deep Bed Filtration Model. SPE.
Boek, E. S., Ladva, H. K., Crawshaw, J. P., & Padding, J. T. (2008). Deposition of colloidal asphaltene in capillary flow: Experiments and mesoscopic simulation. Energy and Fuels, 22(2), 805–813. https://doi.org/10.1021/ef700670f
Buenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AIChE Journal, 50(10), 2552–2570. https://doi.org/10.1002/aic.10243
Castellanos Díaz, O., Sánchez-Lemus, M. C., Schoeggl, F. F., Satyro, M. A., Taylor, S. D., & Yarranton, H. W. (2014). Deep-vacuum fractionation of heavy oil and bitumen, part I: Apparatus and standardized procedure.
Civan, F. (2006). Reservoir Formation Damage.
Civan, F. (2007). FORMATION DAMAGE BY ORGANIC DEPOSITION. In Reservoir Formation Damage. https://doi.org/10.1016/B978-0-7506-7738-7.50015-4
Civan, F. (2016). Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media. In Transport in Porous Media (Vol. 111, Issue 2, pp. 381–410). Springer Netherlands. https://doi.org/10.1007/s11242-015-0600-z
Daigle, H. (2016). Application of critical path analysis for permeability prediction in natural porous media. Advances in Water Resources, 96, 43–54. https://doi.org/10.1016/j.advwatres.2016.06.016
Davudov, D., & Moghanloo, R. G. (2019). A new model for permeability impairment due to asphaltene deposition. Fuel, 235, 239–248. https://doi.org/10.1016/j.fuel.2018.07.079
Eskandari, N. (2020). Asphaltene deposition simulation in porous media during CO 2 injection using Lattice Boltzmann Method. University of Newfoundland
Firoozabadi, A. (1999). Thermodynamics of Hydrocarbon Reservoir - Firoozabadi. In McGraw-Hill.
Forte, E., & Taylor, S. E. (2015). Thermodynamic modelling of asphaltene precipitation and related phenomena. In Advances in Colloid and Interface Science (Vol. 217, pp. 1–12). Elsevier. https://doi.org/10.1016/j.cis.2014.12.002
Ghanbarian, B., Hunt, A. G., Ewing, R. P., & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 41(11), 3884–3890. https://doi.org/10.1002/2014GL060180
Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21(3), 1231–1242. https://doi.org/10.1021/ef060453a
Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Forschungszentrum, |, Day, J. H., Spellacy, B., Sharqawy, M. H., Burns, A., Lehnert, W., Jülich, F., Aachen, R., & Putz, A. (2016). Section title Software engineering track OpenPNM: A Pore Network Modeling Package. www.scipy.org
Gottschalk, M. (2007). Equations of state for complex fluids. Reviews in Mineralogy and Geochemistry, 65, 49–97. https://doi.org/10.2138/rmg.2007.65.3
Gruesbeck, C., & Collins, R. E. (1982). Entrainment and Deposition of Fine Particles in Porous Media. SPE
Haji-Akbari, N. (2014). Destabilization and Aggregation Kinetics of Asphaltenes. University of Michigan
Huang, S. H., & Radosz, M. (1990). Equation of State for Small, Large, Polydisperse, and Associating Molecules. In 2284 I n d. Eng. Cheni. Res (Vol. 29).
Idris, M., & Okoro, L. N. (2013). A review on the effects of asphaltenes on petroleum processing. Chem. Bull, 6, 393–396. https://doi.org/10.17628/ECB.2013.2.393
Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: Theoretical and experimental investigation. Energy and Fuels, 27(2), 622–639. https://doi.org/10.1021/ef3017255
Jamaluddin, A. K. M. (2002). An Investigation of Asphaltene Instability Under Nitrogen Injection. SPE Journal .
Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002a). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability.
Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002b). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability. SPE.
Jeldres, R. I., Fawell, P. D., & Florio, B. J. (2018). Population balance modelling to describe the particle aggregation process: A review. In Powder Technology (Vol. 326, pp. 190–207). Elsevier B.V. https://doi.org/10.1016/j.powtec.2017.12.033
Jiang, H., & Adidharma, H. (2014). Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions. Journal of Chemical Physics, 141(17). https://doi.org/10.1063/1.4900985
Kesler M. (1976). Improve Prediction of Enthalpy of Fractions. Hydrocarbon Processing
Khelfaoui, F., & Babahani, O. (2019). How to Use the Monte Carlo Simulation Technique? Application: A Study of the Gas Phase during Thin Film Deposition. In Theory, Application, and Implementation of Monte Carlo Method in Science and Technology.
Kikuchi, N., Pooley, C. M., Ryder, J. F., & Yeomans, J. M. (2003). Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 119(12), 6388–6395. https://doi.org/10.1063/1.1603721
Kocabas, I. (2003). Characterization of Asphaltene Precipitation Effect on Reducing Carbonate Rock Permeability. SPE.
Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V, & Tassios, D. P. (1996). An Equation of State for Associating Fluids.
Kord, S., Miri, R., Ayatollahi, S., & Escrochi, M. (2012). Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation. Energy and Fuels, 26(10), 6186–6199. https://doi.org/10.1021/ef300692e
Kord, S., Mohammadzadeh, O., Miri, R., & Soulgani, B. S. (2014). Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel, 117(PART A), 259–268. https://doi.org/10.1016/j.fuel.2013.09.038
Lai, C.-D., Murthy, D. N. ;, & Xie, Min. (2006). Weibull Distributions and Their Applications (Springer Handbooks).
Leontaritis, K. J. (1998). Asphaltene Near-wellbore Formation Damage Modeling. SPE.
Leontaritis, K. J., & Mansoori, G. A. (1988). ASPHALTENE DEPOSITION: A SURVEY OF FIELD EXPERIENCES AND RESEARCH APPROACHES. In Journal of Petroleum Science and Engineering (Vol. 1).
Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24(5), 2956–2963. https://doi.org/10.1021/ef9014263
Lin, Y. J., He, P., Tavakkoli, M., Mathew, N. T., Fatt, Y. Y., Chai, J. C., Goharzadeh, A., Vargas, F. M., & Biswal, S. L. (2016). Examining Asphaltene Solubility on Deposition in Model Porous Media. Langmuir, 32(34), 8729–8734. https://doi.org/10.1021/acs.langmuir.6b02376
Mahdavi Far, M., Roozshenas, A. A., & Miri, R. (2023). Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities. Energy, 283. https://doi.org/10.1016/j.energy.2023.129210
Maqbool, T. (2011). Understanding the kinetic of asphaltene precipitation from crude oils.
Mendoza de La Cruz, J. L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. D. L. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous Medium: An experimental investigation and modeling approach. Energy and Fuels, 23(11), 5611–5625. https://doi.org/10.1021/ef9006142
Minssieux, L. (1997). Core damage from asphaltene deposition. SPE.
Mohammadi, S., Rashidi, F., Ghazanfari, M. H., & Mousavi-Dehghani, S. A. (2016). Kinetics of asphaltene aggregation phenomena in live oils. Journal of Molecular Liquids, 222, 359–369. https://doi.org/10.1016/j.molliq.2016.07.062
Mohammadi, S., Rashidi, F., Mousavi-Dehghani, S. A., & Ghazanfari, M. H. (2016). On the effect of temperature on precipitation and aggregation of asphaltenes in light live oils. Canadian Journal of Chemical Engineering, 94(9), 1820–1829. https://doi.org/10.1002/cjce.22555
Moncayo-Riascos, I., Rojas-Ruiz, F. A., Orrego-Ruiz, J. A., Cundar, C., Torres, R. G., & Cañas-Marín, W. (2022). Reconstruction of a Synthetic Crude Oil Using Petroleomics and Molecular Dynamics Simulations: A Multistructural Approach to Understanding Asphaltene Aggregation Behavior. Energy and Fuels, 36(2), 837–850. https://doi.org/10.1021/acs.energyfuels.1c03497
Moukalled, F., Mangani, L., & Darwish, M. (2016). Fluid Mechanics and Its Applications The Finite Volume Method in Computational Fluid Dynamics. http://www.springer.com/series/5980
Mousavi, S. M. R., Jafari, S., Schaffie, M., & Norouzi-Apourvari, S. (2020). Experimental study and modeling permeability damage in porous media due to asphaltene deposition. Journal of Petroleum Science and Engineering, 193. https://doi.org/10.1016/j.petrol.2020.107396
Mozo, I. D. (2017). Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad Iván Darío. Universidad Nacional de Colombia.
Mullins, O. C., Sheu Eric Y., Hammami, A., & Marshall, A. G. (2007). Asphaltenes, Heavy Oils, and Petroleomics
Nascimento, F. P., Costa, G. M. N., & Vieira de Melo, S. A. B. (2019). A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope. Fluid Phase Equilibria, 494, 74–92. https://doi.org/10.1016/j.fluid.2019.04.027
Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016a). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944
Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016b). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944
Nghiem, L. X., Kohse, B. F., Ali, F., & Doan, Q. (2000). Asphaltene Precipitation: Phase Behaviour Modelling and Compositional Simulation. SPE.
Nield, D. A., & Bejan, A. (2017). Convection in porous media. In Convection in Porous Media. Springer International Publishing. https://doi.org/10.1007/978-3-319-49562-0
Padding, J. T., & Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3). https://doi.org/10.1103/PhysRevE.74.031402
Pautz, J. F., & Crocker, M. E. (1989). Relating Water Quality and Formation Permeability to Loss of lnjectivity. SPE.
Rahmani, N. H. G., Dabros, T., & Masliyah, J. H. (2004). Evolution of asphaltene floc size distribution in organic solvents under shear. Chemical Engineering Science, 59(3), 685–697. https://doi.org/10.1016/j.ces.2003.10.017
Raoof, A., & Majid Hassanizadeh, S. (2010). A new method for generating pore-network models of porous media. Transport in Porous Media, 81(3), 391–407. https://doi.org/10.1007/s11242-009-9412-3
Seifried, C. M. (2016). Asphaltene Precipitation and Deposition from Crude Oil with CO 2 and Hydrocarbons: Experimental Investigation and Numerical Simulation. Imperial College London.
Shirani, B., Nikazar, M., & Mousavi-Dehghani, S. A. (2012). Prediction of asphaltene phase behavior in live oil with CPA equation of state. Fuel, 97, 89–96. https://doi.org/10.1016/j.fuel.2012.02.016
Sim, S., Research Council, A., Takabayashi, K., Okatsu, K., Oil, J., Natl Corp, M., & Fisher, D. (2005). Asphaltene-Induced Formation Damage: Effect of Asphaltene Particle Size and Core Permeability. SPE, 9–12.
Su, P., Xia, Z., Wang, P., Ding, W., Hu, Y., Zhang, W., & Peng, Y. (2019). Fractal and multifractal analysis of pore size distribution in low permeability reservoirs based on mercury intrusion porosimetry. Energies, 12(7). https://doi.org/10.3390/en12071337
Tabzar, A., Fathinasab, M., Salehi, A., Bahrami, B., Mohammadi, A. H., & Mohammadi Multi, A. H. (2018). Multiphase flow modeling of asphaltene precipitation and deposition. Oil & Gas Science and Technology. https://doi.org/10.2516/ogst/2018039ï
Ting, P. D., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21(3–4), 647–661. https://doi.org/10.1081/lft-120018544
Tsakiroglou, C. D., & Payatakes, A. C. (1990). A New Simulator of Mercury Porosimetry for the Characterization of Porous Materials. Journal of Colloid and Interface Science.
Tsirikolias, K. (2016). Low level image processing and analysis using radius filters. Digital Signal Processing: A Review Journal, 50, 72–83. https://doi.org/10.1016/j.dsp.2015.12.001
Uetani, T. (2014). Wettability Alteration by Asphaltene Deposition: A Field Example. SPE.
Valderrama, J. O. (2003). The state of the cubic equations of state. In Industrial and Engineering Chemistry Research (Vol. 42, Issue 8, pp. 1603–1618). American Chemical Society. https://doi.org/10.1021/ie020447b
Wang, J., & Ferguson, A. L. (2016). Mesoscale Simulation of Asphaltene Aggregation. Journal of Physical Chemistry B, 120(32), 8016–8035. https://doi.org/10.1021/acs.jpcb.6b05925
Wang, J., Gayatri, M., & Ferguson, A. L. (2018). Coarse-Grained Molecular Simulation and Nonlinear Manifold Learning of Archipelago Asphaltene Aggregation and Folding. Journal of Physical Chemistry B, 122(25), 6627–6647. https://doi.org/10.1021/acs.jpcb.8b01634
Wang, J. X., Brower, K. R., & Buckley, J. S. (2000). Observation of Asphaltene Destabilization at Elevated Temperature and Pressure. SPE.
Wang, J. X., & Buckley, J. S. (2001). An Experimental Approach to Prediction of Asphaltene Flocculation. SPE.
Wang, S., & Civan, F. (2005). Modeling formation damage by asphaltene deposition during primary oil recovery. Journal of Energy Resources Technology, Transactions of the ASME, 127(4), 310–317. https://doi.org/10.1115/1.1924465
Yonebayashi, H., Masuzawa, T., Dabbouk, C., & Urasaki, D. (2009). Reservoir Characterization and Simulation Conference. SPE/EAGE
Yonebayashi, H., Miyagawa, Y., Ikarashi, M., Watanabe, T., Maeda, H., & Yazawa, N. (2018). Determination of asphaltene-onset pressure using multiple techniques in parallel. SPE Production and Operations, 33(3), 486–497. https://doi.org/10.2118/181278-PA
Zendehboudi, S., Shafiei, A., Bahadori, A., James, L. A., Elkamel, A., & Lohi, A. (2014). Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools. Chemical Engineering Research and Design, 92(5), 857–875. https://doi.org/10.1016/j.cherd.2013.08.001
Zhang, X. and P. N. and M. T. (2012). Modeling asphaltene phase behavior: comparison of methods for flow assurance studies. Energy & Fuels
Zhang, Y., Lin, Q., Raeini, A. Q., Onaka, Y., Iwama, H., Takabayashi, K., Blunt, M. J., & Bijeljic, B. (2022). Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123202
Zidane, A., & Firoozabadi, A. (2022). Higher-order compositional simulation of asphaltene damage and removal in the wellbore by the CPA-EOS. Fuel, 307. https://doi.org/10.1016/j.fuel.2021.121776
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 155 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86119/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86119/2/1152186356.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86119/3/1152186356.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c8a59cad667e257108f0e08bfaf391a0
11fde3aff7f00bf34e5fab94a6573d93
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089603638886400
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Benjumea, Pedro Nel229b0414b1cf72d35d0a101fd2979e53Cundar Paredes, Cristiam David2640c7e15949658b6140f52fdf738879Cundar Paredes, Cristiam David [0000-0002-3409-7862]2024-05-20T16:13:15Z2024-05-20T16:13:15Z2024-05-20https://repositorio.unal.edu.co/handle/unal/86119Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficosLos asfaltenos se consideran como la fracción más polar del petróleo y su estructura química es desconocida. En general se acepta que los asfaltenos poseen una estructura poli-aromática, incluidos algunos metales, oxígeno, sulfuro y nitrógeno. Este compuesto se define como la fracción de crudo insoluble en alcanos (n-pentano, heptano) y soluble en aromáticos (benceno, tolueno).(Firoozabadi, 1999) A nivel yacimiento, este fenómeno implica una reducción de la transmisibilidad y alteración de la humectabilidad en la roca afectando la productividad de pozos. La desestabilización del componente asfalteno en el fluido de yacimiento se debe a cambios en presión, temperatura, composición y/o solventes o gases externos inyectados en el yacimiento en procesos de recobro mejorado (Firoozabadi, 1999). Los asfaltenos se precipitan y pueden depositarse en el yacimiento cerca a la cara del pozo productor. Lo anterior conlleva a una reducción del flujo de fluidos en el medio poroso a través de la reducción de permeabilidad y alteración de la humectabilidad de la roca. Además, los asfaltenos pueden fluir estables en el medio poroso y desestabilizarse en la línea de producción fondo de pozo superficie, ocasionado obstrucción del flujo por depositación de asfaltenos en las paredes de la tubería de producción; e incluso causando problemas en las líneas de trasporte de crudo en superficie. El modelamiento de la precipitación y depositación de asfaltenos se establece como una herramienta primordial para entender el comportamiento termodinámico del sistema de fluidos presentes en el yacimiento, y permite la predicción de este fenómeno indeseable a diferentes condiciones de presión, temperatura y composición. Dicho modelamiento, a pesar de que ha sido objeto de estudio en las últimas décadas, aún se considera un reto en la industria debido a la naturaleza del asfalteno, el cual es diferente en cada crudo, sus diferentes afinidades asociativas y su estructura (coloidal o macromolecular) desconocida. Por dicha razón, la predicción de la precipitación y posterior depositación hace necesario el entendimiento del modelamiento termodinámico y de flujo de los fluidos presentes en la formación, y las bases de cada modelo con sus limitaciones a la hora de predecir el comportamiento de los asfaltenos en un yacimiento en particular. En el presente proyecto se plantea estudiar el comportamiento de los asfaltenos a condiciones de flujo de fluidos. Para desarrollar este estudio se considera necesario profundizar en 4 ítems: ecuaciones de estado avanzadas, cinéticas de agregación de asfaltenos, diagnóstico del daño de formación y finalmente integración de los fenómenos anteriores en una simulación numérica de yacimientos. (Tomado de la fuente)Asphaltenes are considered the most polar fraction of petroleum and their chemical structure is unknown. It is generally accepted that asphaltenes have a polyaromatic structure, including some metals, oxygen, sulfur, and nitrogen. This compound is defined as the fraction of crude oil that is insoluble in alkanes (n-pentane, heptane) and soluble in aromatics (benzene, toluene). Firoozabadi, 1999) At the reservoir level, this phenomenon implies a reduction in transmissibility and alteration of the rock wettability affecting its productivity. The destabilization of the asphaltene component in the reservoir fluid is due to changes in pressure, temperature, composition and/or solvents or external gases injected into the reservoir in enhanced recovery processes (Firoozabadi, 1999). Asphaltenes precipitate and may be deposited in the reservoir near the face of the producing well. This leads to a reduction in the flow of fluids in the porous medium through the reduction of permeability and alteration of the wettability of the rock. In addition, asphaltenes can flow stable in the porous medium and become destabilized in the production line downhole surface, causing flow obstruction by depositing asphaltenes on the walls of the production tubing; and even causing problems in the crude oil transport lines on the surface. The modeling of the precipitation and deposition of asphaltenes is established as a fundamental tool to understand the thermodynamic behavior of the fluid system present in the reservoir and allows the prediction of this undesirable phenomenon at different conditions of pressure, temperature and composition. Said modeling, despite the fact that it has been the object of study in the last decades, is still considered a challenge in the industry due to the nature of asphaltene, which is different in each crude, its different associative affinities and its structure (colloidal or macromolecular) unknown. For this reason, the prediction of precipitation and subsequent deposition makes it necessary to understand the thermodynamic and flow modeling of the fluids present in the formation, and the bases of each model with its limitations when predicting the behavior of asphaltenes in a particular deposit. In the present project it is proposed to study the behavior of asphaltenes under fluid flow conditions. To develop this study, it is considered necessary to delve into 4 items: advanced equations of state, asphaltene aggregation kinetics, formation damage diagnosis and finally integration of the above phenomena in a numerical simulation of reservoirs.DoctoradoDoctor en IngenieríaHidrocarburosIngeniería Química E Ingeniería De Petróleos.Sede Medellín155 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasAsfaltenosPermeabilidadDinámica de fluidosIndustria energéticaTermodinámicaFormación de daños (Ingeniería de petróleos)Simulación por computadoresPozos petrolerosCampos petrolíferosAsfaltenosEcuación de estadoCinética de agregaciónDaño de formaciónSimulación numéricaAsphaltenesEquation of stateAggregation kineticsFormation damageNumerical simulationModelo integrado del comportamiento de asfaltenos en condiciones de flujoIntegrated model of asphaltene behavior in flow conditionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDLaReferenciaAlhammadi, A. A., Vargas, F. M., & Chapman, W. G. (2015). Comparison of cubic-plus-association and perturbed-chain statistical associating fluid theory methods for modeling asphaltene phase behavior and pressure-volume-temperature properties. Energy and Fuels, 29(5), 2864–2875. https://doi.org/10.1021/ef502129pAli, M. A., & Islam, M. R. (1998). The Effect of Asphaltene Precipitation on Carbonate-Rock Permeability: An Experimental and Numerical Approach. SPE.Al-Noor, N. H., & Assi, N. K. (2020). Rayleigh-Rayleigh Distribution: Properties and Applications. Journal of Physics: Conference Series, 1591(1). https://doi.org/10.1088/1742-6596/1591/1/012038Arya, A. (2016). Modeling of Asphaltene Systems with Association Models. In Citation. Technical University of Denmark.Arya, A., von Solms, N., & Kontogeorgis, G. M. (2015). Determination of asphaltene onset conditions using the cubic plus association equation of state. Fluid Phase Equilibria, 400, 8–19. https://doi.org/10.1016/j.fluid.2015.04.032Benesty, J., Chen, J., Huang, Y., & Cohen, israel. (2009). Pearson Correlation Coefficient. In Noise Reduction in Speech Processing .Bikmukhametov, T., & Jäschke, J. (2020). Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers and Chemical Engineering, 138. https://doi.org/10.1016/j.compchemeng.2020.106834Boek, E., Fadili, A., Michael, F., & Williams, J. (2011). Prediction of Asphaltene Deposition in Porous Media by Systematic Upscaling from a Colloidal Pore Scale Model to a Deep Bed Filtration Model. SPE.Boek, E. S., Ladva, H. K., Crawshaw, J. P., & Padding, J. T. (2008). Deposition of colloidal asphaltene in capillary flow: Experiments and mesoscopic simulation. Energy and Fuels, 22(2), 805–813. https://doi.org/10.1021/ef700670fBuenrostro-Gonzalez, E., Lira-Galeana, C., Gil-Villegas, A., & Wu, J. (2004). Asphaltene precipitation in crude oils: Theory and experiments. AIChE Journal, 50(10), 2552–2570. https://doi.org/10.1002/aic.10243Castellanos Díaz, O., Sánchez-Lemus, M. C., Schoeggl, F. F., Satyro, M. A., Taylor, S. D., & Yarranton, H. W. (2014). Deep-vacuum fractionation of heavy oil and bitumen, part I: Apparatus and standardized procedure.Civan, F. (2006). Reservoir Formation Damage.Civan, F. (2007). FORMATION DAMAGE BY ORGANIC DEPOSITION. In Reservoir Formation Damage. https://doi.org/10.1016/B978-0-7506-7738-7.50015-4Civan, F. (2016). Modified Formulations of Particle Deposition and Removal Kinetics in Saturated Porous Media. In Transport in Porous Media (Vol. 111, Issue 2, pp. 381–410). Springer Netherlands. https://doi.org/10.1007/s11242-015-0600-zDaigle, H. (2016). Application of critical path analysis for permeability prediction in natural porous media. Advances in Water Resources, 96, 43–54. https://doi.org/10.1016/j.advwatres.2016.06.016Davudov, D., & Moghanloo, R. G. (2019). A new model for permeability impairment due to asphaltene deposition. Fuel, 235, 239–248. https://doi.org/10.1016/j.fuel.2018.07.079Eskandari, N. (2020). Asphaltene deposition simulation in porous media during CO 2 injection using Lattice Boltzmann Method. University of NewfoundlandFiroozabadi, A. (1999). Thermodynamics of Hydrocarbon Reservoir - Firoozabadi. In McGraw-Hill.Forte, E., & Taylor, S. E. (2015). Thermodynamic modelling of asphaltene precipitation and related phenomena. In Advances in Colloid and Interface Science (Vol. 217, pp. 1–12). Elsevier. https://doi.org/10.1016/j.cis.2014.12.002Ghanbarian, B., Hunt, A. G., Ewing, R. P., & Skinner, T. E. (2014). Universal scaling of the formation factor in porous media derived by combining percolation and effective medium theories. Geophysical Research Letters, 41(11), 3884–3890. https://doi.org/10.1002/2014GL060180Gonzalez, D. L., Hirasaki, G. J., Creek, J., & Chapman, W. G. (2007). Modeling of asphaltene precipitation due to changes in composition using the perturbed chain statistical associating fluid theory equation of state. Energy and Fuels, 21(3), 1231–1242. https://doi.org/10.1021/ef060453aGostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Forschungszentrum, |, Day, J. H., Spellacy, B., Sharqawy, M. H., Burns, A., Lehnert, W., Jülich, F., Aachen, R., & Putz, A. (2016). Section title Software engineering track OpenPNM: A Pore Network Modeling Package. www.scipy.orgGottschalk, M. (2007). Equations of state for complex fluids. Reviews in Mineralogy and Geochemistry, 65, 49–97. https://doi.org/10.2138/rmg.2007.65.3Gruesbeck, C., & Collins, R. E. (1982). Entrainment and Deposition of Fine Particles in Porous Media. SPEHaji-Akbari, N. (2014). Destabilization and Aggregation Kinetics of Asphaltenes. University of MichiganHuang, S. H., & Radosz, M. (1990). Equation of State for Small, Large, Polydisperse, and Associating Molecules. In 2284 I n d. Eng. Cheni. Res (Vol. 29).Idris, M., & Okoro, L. N. (2013). A review on the effects of asphaltenes on petroleum processing. Chem. Bull, 6, 393–396. https://doi.org/10.17628/ECB.2013.2.393Jafari Behbahani, T., Ghotbi, C., Taghikhani, V., & Shahrabadi, A. (2013). Asphaltene deposition under dynamic conditions in porous media: Theoretical and experimental investigation. Energy and Fuels, 27(2), 622–639. https://doi.org/10.1021/ef3017255Jamaluddin, A. K. M. (2002). An Investigation of Asphaltene Instability Under Nitrogen Injection. SPE Journal .Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002a). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability.Jamaluddin, A., Mcfadden, J., Creek, J., Dcruz, D., Manakalathil, J., Kabir, C., Joshi, N., & Ross, B. (2002b). Laboratory Techniques to Measure Thermodynamic Asphaltene Instability. SPE.Jeldres, R. I., Fawell, P. D., & Florio, B. J. (2018). Population balance modelling to describe the particle aggregation process: A review. In Powder Technology (Vol. 326, pp. 190–207). Elsevier B.V. https://doi.org/10.1016/j.powtec.2017.12.033Jiang, H., & Adidharma, H. (2014). Monte Carlo simulation and equation of state for flexible charged hard-sphere chain fluids: Polyampholyte and polyelectrolyte solutions. Journal of Chemical Physics, 141(17). https://doi.org/10.1063/1.4900985Kesler M. (1976). Improve Prediction of Enthalpy of Fractions. Hydrocarbon ProcessingKhelfaoui, F., & Babahani, O. (2019). How to Use the Monte Carlo Simulation Technique? Application: A Study of the Gas Phase during Thin Film Deposition. In Theory, Application, and Implementation of Monte Carlo Method in Science and Technology.Kikuchi, N., Pooley, C. M., Ryder, J. F., & Yeomans, J. M. (2003). Transport coefficients of a mesoscopic fluid dynamics model. Journal of Chemical Physics, 119(12), 6388–6395. https://doi.org/10.1063/1.1603721Kocabas, I. (2003). Characterization of Asphaltene Precipitation Effect on Reducing Carbonate Rock Permeability. SPE.Kontogeorgis, G. M., Voutsas, E. C., Yakoumis, I. V, & Tassios, D. P. (1996). An Equation of State for Associating Fluids.Kord, S., Miri, R., Ayatollahi, S., & Escrochi, M. (2012). Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation. Energy and Fuels, 26(10), 6186–6199. https://doi.org/10.1021/ef300692eKord, S., Mohammadzadeh, O., Miri, R., & Soulgani, B. S. (2014). Further investigation into the mechanisms of asphaltene deposition and permeability impairment in porous media using a modified analytical model. Fuel, 117(PART A), 259–268. https://doi.org/10.1016/j.fuel.2013.09.038Lai, C.-D., Murthy, D. N. ;, & Xie, Min. (2006). Weibull Distributions and Their Applications (Springer Handbooks).Leontaritis, K. J. (1998). Asphaltene Near-wellbore Formation Damage Modeling. SPE.Leontaritis, K. J., & Mansoori, G. A. (1988). ASPHALTENE DEPOSITION: A SURVEY OF FIELD EXPERIENCES AND RESEARCH APPROACHES. In Journal of Petroleum Science and Engineering (Vol. 1).Li, Z., & Firoozabadi, A. (2010). Cubic-plus-association equation of state for asphaltene precipitation in live oils. Energy and Fuels, 24(5), 2956–2963. https://doi.org/10.1021/ef9014263Lin, Y. J., He, P., Tavakkoli, M., Mathew, N. T., Fatt, Y. Y., Chai, J. C., Goharzadeh, A., Vargas, F. M., & Biswal, S. L. (2016). Examining Asphaltene Solubility on Deposition in Model Porous Media. Langmuir, 32(34), 8729–8734. https://doi.org/10.1021/acs.langmuir.6b02376Mahdavi Far, M., Roozshenas, A. A., & Miri, R. (2023). Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities. Energy, 283. https://doi.org/10.1016/j.energy.2023.129210Maqbool, T. (2011). Understanding the kinetic of asphaltene precipitation from crude oils.Mendoza de La Cruz, J. L., Argüelles-Vivas, F. J., Matías-Pérez, V., Durán-Valencia, C. D. L. A., & López-Ramírez, S. (2009). Asphaltene-induced precipitation and deposition during pressure depletion on a porous Medium: An experimental investigation and modeling approach. Energy and Fuels, 23(11), 5611–5625. https://doi.org/10.1021/ef9006142Minssieux, L. (1997). Core damage from asphaltene deposition. SPE.Mohammadi, S., Rashidi, F., Ghazanfari, M. H., & Mousavi-Dehghani, S. A. (2016). Kinetics of asphaltene aggregation phenomena in live oils. Journal of Molecular Liquids, 222, 359–369. https://doi.org/10.1016/j.molliq.2016.07.062Mohammadi, S., Rashidi, F., Mousavi-Dehghani, S. A., & Ghazanfari, M. H. (2016). On the effect of temperature on precipitation and aggregation of asphaltenes in light live oils. Canadian Journal of Chemical Engineering, 94(9), 1820–1829. https://doi.org/10.1002/cjce.22555Moncayo-Riascos, I., Rojas-Ruiz, F. A., Orrego-Ruiz, J. A., Cundar, C., Torres, R. G., & Cañas-Marín, W. (2022). Reconstruction of a Synthetic Crude Oil Using Petroleomics and Molecular Dynamics Simulations: A Multistructural Approach to Understanding Asphaltene Aggregation Behavior. Energy and Fuels, 36(2), 837–850. https://doi.org/10.1021/acs.energyfuels.1c03497Moukalled, F., Mangani, L., & Darwish, M. (2016). Fluid Mechanics and Its Applications The Finite Volume Method in Computational Fluid Dynamics. http://www.springer.com/series/5980Mousavi, S. M. R., Jafari, S., Schaffie, M., & Norouzi-Apourvari, S. (2020). Experimental study and modeling permeability damage in porous media due to asphaltene deposition. Journal of Petroleum Science and Engineering, 193. https://doi.org/10.1016/j.petrol.2020.107396Mozo, I. D. (2017). Desarrollo de un modelo matemático de la estimulación de pozos productores de crudo pesado con nanofluidos reductores de viscosidad Iván Darío. Universidad Nacional de Colombia.Mullins, O. C., Sheu Eric Y., Hammami, A., & Marshall, A. G. (2007). Asphaltenes, Heavy Oils, and PetroleomicsNascimento, F. P., Costa, G. M. N., & Vieira de Melo, S. A. B. (2019). A comparative study of CPA and PC-SAFT equations of state to calculate the asphaltene onset pressure and phase envelope. Fluid Phase Equilibria, 494, 74–92. https://doi.org/10.1016/j.fluid.2019.04.027Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016a). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944Nasrabadi, H., Moortgat, J., & Firoozabadi, A. (2016b). New Three-Phase Multicomponent Compositional Model for Asphaltene Precipitation during CO2 Injection Using CPA-EOS. Energy and Fuels, 30(4), 3306–3319. https://doi.org/10.1021/acs.energyfuels.5b02944Nghiem, L. X., Kohse, B. F., Ali, F., & Doan, Q. (2000). Asphaltene Precipitation: Phase Behaviour Modelling and Compositional Simulation. SPE.Nield, D. A., & Bejan, A. (2017). Convection in porous media. In Convection in Porous Media. Springer International Publishing. https://doi.org/10.1007/978-3-319-49562-0Padding, J. T., & Louis, A. A. (2006). Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 74(3). https://doi.org/10.1103/PhysRevE.74.031402Pautz, J. F., & Crocker, M. E. (1989). Relating Water Quality and Formation Permeability to Loss of lnjectivity. SPE.Rahmani, N. H. G., Dabros, T., & Masliyah, J. H. (2004). Evolution of asphaltene floc size distribution in organic solvents under shear. Chemical Engineering Science, 59(3), 685–697. https://doi.org/10.1016/j.ces.2003.10.017Raoof, A., & Majid Hassanizadeh, S. (2010). A new method for generating pore-network models of porous media. Transport in Porous Media, 81(3), 391–407. https://doi.org/10.1007/s11242-009-9412-3Seifried, C. M. (2016). Asphaltene Precipitation and Deposition from Crude Oil with CO 2 and Hydrocarbons: Experimental Investigation and Numerical Simulation. Imperial College London.Shirani, B., Nikazar, M., & Mousavi-Dehghani, S. A. (2012). Prediction of asphaltene phase behavior in live oil with CPA equation of state. Fuel, 97, 89–96. https://doi.org/10.1016/j.fuel.2012.02.016Sim, S., Research Council, A., Takabayashi, K., Okatsu, K., Oil, J., Natl Corp, M., & Fisher, D. (2005). Asphaltene-Induced Formation Damage: Effect of Asphaltene Particle Size and Core Permeability. SPE, 9–12.Su, P., Xia, Z., Wang, P., Ding, W., Hu, Y., Zhang, W., & Peng, Y. (2019). Fractal and multifractal analysis of pore size distribution in low permeability reservoirs based on mercury intrusion porosimetry. Energies, 12(7). https://doi.org/10.3390/en12071337Tabzar, A., Fathinasab, M., Salehi, A., Bahrami, B., Mohammadi, A. H., & Mohammadi Multi, A. H. (2018). Multiphase flow modeling of asphaltene precipitation and deposition. Oil & Gas Science and Technology. https://doi.org/10.2516/ogst/2018039ïTing, P. D., Hirasaki, G. J., & Chapman, W. G. (2003). Modeling of asphaltene phase behavior with the SAFT equation of state. Petroleum Science and Technology, 21(3–4), 647–661. https://doi.org/10.1081/lft-120018544Tsakiroglou, C. D., & Payatakes, A. C. (1990). A New Simulator of Mercury Porosimetry for the Characterization of Porous Materials. Journal of Colloid and Interface Science.Tsirikolias, K. (2016). Low level image processing and analysis using radius filters. Digital Signal Processing: A Review Journal, 50, 72–83. https://doi.org/10.1016/j.dsp.2015.12.001Uetani, T. (2014). Wettability Alteration by Asphaltene Deposition: A Field Example. SPE.Valderrama, J. O. (2003). The state of the cubic equations of state. In Industrial and Engineering Chemistry Research (Vol. 42, Issue 8, pp. 1603–1618). American Chemical Society. https://doi.org/10.1021/ie020447bWang, J., & Ferguson, A. L. (2016). Mesoscale Simulation of Asphaltene Aggregation. Journal of Physical Chemistry B, 120(32), 8016–8035. https://doi.org/10.1021/acs.jpcb.6b05925Wang, J., Gayatri, M., & Ferguson, A. L. (2018). Coarse-Grained Molecular Simulation and Nonlinear Manifold Learning of Archipelago Asphaltene Aggregation and Folding. Journal of Physical Chemistry B, 122(25), 6627–6647. https://doi.org/10.1021/acs.jpcb.8b01634Wang, J. X., Brower, K. R., & Buckley, J. S. (2000). Observation of Asphaltene Destabilization at Elevated Temperature and Pressure. SPE.Wang, J. X., & Buckley, J. S. (2001). An Experimental Approach to Prediction of Asphaltene Flocculation. SPE.Wang, S., & Civan, F. (2005). Modeling formation damage by asphaltene deposition during primary oil recovery. Journal of Energy Resources Technology, Transactions of the ASME, 127(4), 310–317. https://doi.org/10.1115/1.1924465Yonebayashi, H., Masuzawa, T., Dabbouk, C., & Urasaki, D. (2009). Reservoir Characterization and Simulation Conference. SPE/EAGEYonebayashi, H., Miyagawa, Y., Ikarashi, M., Watanabe, T., Maeda, H., & Yazawa, N. (2018). Determination of asphaltene-onset pressure using multiple techniques in parallel. SPE Production and Operations, 33(3), 486–497. https://doi.org/10.2118/181278-PAZendehboudi, S., Shafiei, A., Bahadori, A., James, L. A., Elkamel, A., & Lohi, A. (2014). Asphaltene precipitation and deposition in oil reservoirs - Technical aspects, experimental and hybrid neural network predictive tools. Chemical Engineering Research and Design, 92(5), 857–875. https://doi.org/10.1016/j.cherd.2013.08.001Zhang, X. and P. N. and M. T. (2012). Modeling asphaltene phase behavior: comparison of methods for flow assurance studies. Energy & FuelsZhang, Y., Lin, Q., Raeini, A. Q., Onaka, Y., Iwama, H., Takabayashi, K., Blunt, M. J., & Bijeljic, B. (2022). Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. Fuel, 316. https://doi.org/10.1016/j.fuel.2022.123202Zidane, A., & Firoozabadi, A. (2022). Higher-order compositional simulation of asphaltene damage and removal in the wellbore by the CPA-EOS. Fuel, 307. https://doi.org/10.1016/j.fuel.2021.121776EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86119/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1152186356.2024.pdf1152186356.2024.pdfTesis de Doctorado en Ingeniería - Sistemas Energéticosapplication/pdf5209868https://repositorio.unal.edu.co/bitstream/unal/86119/2/1152186356.2024.pdfc8a59cad667e257108f0e08bfaf391a0MD52THUMBNAIL1152186356.2024.pdf.jpg1152186356.2024.pdf.jpgGenerated Thumbnailimage/jpeg4450https://repositorio.unal.edu.co/bitstream/unal/86119/3/1152186356.2024.pdf.jpg11fde3aff7f00bf34e5fab94a6573d93MD53unal/86119oai:repositorio.unal.edu.co:unal/861192024-05-20 23:04:57.868Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=