Development of a multicomponent wavefunction-in-DFT embedding methodology
ilustraciones, graficas
- Autores:
-
Moncada Arias, Félix Santiago
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80788
- Palabra clave:
- 540 - Química y ciencias afines::541 - Química física
Positrons
Density functional theory
Exotic molecules
Propagator theory
Any particle molecular orbital
Multicomponent methods
Positron electron correlation
Colle-Salvetti correlation
Positron covalent bond
Quantum chemistry
Positrones
Teoría del funcional de la densidad
Moléculas exóticas
Teoría del propagador
Orbital molecular para cualquier partícula
Métodos multicomponente
Correlación positrón electrón
Correlación Colle-Salvetti
Enlace covalente positrónico
Química cuántica
Onda electromagnética
Mecánica de las ondas
Partícula elemental
Electromagnetic waves
Wave mechanics
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_274002ad3b26a876f55bb5e1e6ae1dbd |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80788 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
dc.title.translated.spa.fl_str_mv |
Desarrollo de una metodología de función de onda multicomponente embebida en DFT |
title |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
spellingShingle |
Development of a multicomponent wavefunction-in-DFT embedding methodology 540 - Química y ciencias afines::541 - Química física Positrons Density functional theory Exotic molecules Propagator theory Any particle molecular orbital Multicomponent methods Positron electron correlation Colle-Salvetti correlation Positron covalent bond Quantum chemistry Positrones Teoría del funcional de la densidad Moléculas exóticas Teoría del propagador Orbital molecular para cualquier partícula Métodos multicomponente Correlación positrón electrón Correlación Colle-Salvetti Enlace covalente positrónico Química cuántica Onda electromagnética Mecánica de las ondas Partícula elemental Electromagnetic waves Wave mechanics |
title_short |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
title_full |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
title_fullStr |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
title_full_unstemmed |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
title_sort |
Development of a multicomponent wavefunction-in-DFT embedding methodology |
dc.creator.fl_str_mv |
Moncada Arias, Félix Santiago |
dc.contributor.advisor.none.fl_str_mv |
Reyes Velasco, Andrés |
dc.contributor.author.none.fl_str_mv |
Moncada Arias, Félix Santiago |
dc.contributor.researchgroup.spa.fl_str_mv |
Química Cuántica y Computacional |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::541 - Química física |
topic |
540 - Química y ciencias afines::541 - Química física Positrons Density functional theory Exotic molecules Propagator theory Any particle molecular orbital Multicomponent methods Positron electron correlation Colle-Salvetti correlation Positron covalent bond Quantum chemistry Positrones Teoría del funcional de la densidad Moléculas exóticas Teoría del propagador Orbital molecular para cualquier partícula Métodos multicomponente Correlación positrón electrón Correlación Colle-Salvetti Enlace covalente positrónico Química cuántica Onda electromagnética Mecánica de las ondas Partícula elemental Electromagnetic waves Wave mechanics |
dc.subject.proposal.eng.fl_str_mv |
Positrons Density functional theory Exotic molecules Propagator theory Any particle molecular orbital Multicomponent methods Positron electron correlation Colle-Salvetti correlation Positron covalent bond Quantum chemistry |
dc.subject.proposal.spa.fl_str_mv |
Positrones Teoría del funcional de la densidad Moléculas exóticas Teoría del propagador Orbital molecular para cualquier partícula Métodos multicomponente Correlación positrón electrón Correlación Colle-Salvetti Enlace covalente positrónico Química cuántica |
dc.subject.unesco.spa.fl_str_mv |
Onda electromagnética Mecánica de las ondas Partícula elemental |
dc.subject.unesco.eng.fl_str_mv |
Electromagnetic waves Wave mechanics |
description |
ilustraciones, graficas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-12-15T23:45:27Z |
dc.date.available.none.fl_str_mv |
2021-12-15T23:45:27Z |
dc.date.issued.none.fl_str_mv |
2021-12 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80788 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80788 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
P. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928) P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930) C. D. Anderson, Phys. Rev. 43, 491 (1933) F. Joliot, J. Phys. le Radium 5, 299 (1934) M. Deutsch, Phys. Rev. 82, 455 (1951) S. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980) J. Thibaud, Phys. Rev. 45, 781 (1934) S. Mohorovicic, Astron. Nachrichten 253, 93 (1934) A. P. Mills, Phys. Rev. Lett. 46, 717 (1981) D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007) O. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995) C. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002) Y. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003) F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013) J. Cizek, J. Mater. Sci. Technol. 34, 577 (2018) K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000) C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016) S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969) S. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012) M. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990) S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010) S. N. Nahar and B. Antony, Atoms 8, 29 (2020) L. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993) D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992) G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010) J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010) J. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012) J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012) A. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013) S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002) J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015) D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018) Y. Nagashima, Phys. Rep. 545, 95 (2014) C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014) X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012) D. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010 P. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996) G. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005) A. Ore, Phys. Rev. 83, 665 (1951) V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995) G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997) J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002) X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011) H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978) A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980) H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981) C. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984) W. R. Garrett, J. Chem. Phys. 73, 5721 (1980) M. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001 P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008) J. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018) T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996) T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996) D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998) D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998) D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998) M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999) M. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001) M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002) Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009) Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014) Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014) D. Bressanini, Phys. Rev. A 97, 012508 (2018) S. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020) V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999) M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002) S. L. Saito, J. Chem. Phys. 122, 054302 (2005) S. L. Saito, Theor. Chem. Acc. 115, 281 (2006) R. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006) M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006) F. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006) J. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006) R. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007) R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008) J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008) R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009) M. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011) M. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012) T. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014) J. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016) V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012) B. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016) F. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019) G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004) J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010) K. Strasburger, J. Chem. Phys. 111, 10555 (1999) S. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004) K. Strasburger, Struct. Chem. 15, 415 (2004) M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009) C. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012) G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998) G. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998) J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999) J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999) J. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001) J. Mitroy, Phys. Rev. A 70, 024502 (2004) J. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004) J. Mitroy, Phys. Rev. A 73, 054502 (2006) J. Mitroy, J. At. Mol. Sci. 1, 275 (2010) A. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014) Y. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009) K. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012) J. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709 Y. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014) M. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016) A. Jain, Phys. Rev. A 41, 2437 (1990) F. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996) J. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002) J. Franz, Eur. Phys. J. D 71, 44 (2017) A. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018) A. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019) Y. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019) Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020) E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986) M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995) E. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998) N. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010) N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011) B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996) J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014) B. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015) W. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015) M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994) J. G. Harrison, J. Chem. Phys. 84, 1659 (1986) D. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989) K. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996) T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997) J. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014) F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012) A. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019 M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927) Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008) S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006) W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963) W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967) P. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991) D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000) M. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003) S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013) C. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006) A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008) M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011) A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011) C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011) H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012) H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012) E. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012) E. Matyus, J. Phys. Chem. A 117, 7195 (2013) A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013) A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015) I. L. Thomas, Phys. Rev. 185, 90 (1969) I. L. Thomas, Chem. Phys. Lett. 3, 705 (1969) . L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970) I. L. Thomas, Phys. Rev. A 3, 565 (1971) J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982) H. J. Monkhorst, Phys. Rev. A 36, 1544 (1987) M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998) H. Nakai, Int. J. Quantum. Chem. 86, 511 (2002) M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998) M. Tachikawa, Chem. Phys. Lett. 360, 494 (2002) Y. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998) S. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002) M. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011) P. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015) P. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017) S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008) T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008) H. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003) C. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005) T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006) M. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006) J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012) Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016) Y. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998) Y. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999) T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001) T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006) M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007) Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008) T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014) Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017) A. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996) L. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017) B. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986) H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005) K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006) K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007) A. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005) F. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012) P. Lowdin, Int. J. Quantum Chem. 55, 77 (1995) S. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010) H. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017) B. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010) A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008) K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017) D. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019) A. D. Becke, J. Chem. Phys. 88, 1053 (1988) Z. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019) A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012) T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016) J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979) F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012) E. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014) B. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010) Y. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014) T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006) F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013) B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019) F. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010) F. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017) E. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018) M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993) J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014) M. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012) S. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000) J. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005 J. Tennyson, J. Chem. Phys. 145, 120901 (2016) T. Carrington, J. Chem. Phys. 146, 120902 (2017) T. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013) D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992) D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002) S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007) E. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009) M. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005) K. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017) M. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018) D. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010) D. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011) J. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014) R. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008) A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955) J. A. Ibers, J. Chem. Phys. 41, 25 (1964) Y. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990) F. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013) E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998) A. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010) C. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003) C. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005) M. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013) L. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016) M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014) M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015) M. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016) D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014) D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011) F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013) S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009) R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012) J. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004) J. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005) A. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017) H. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018) T. H. Dunning, J. Chem. Phys. 90, 1007 (1989) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012) D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010) W. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017 C. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006) C. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007) H. Berriche, Int. J. Quantum Chem. 113, 2405 (2013) A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983) M. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019) M. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012) G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986) P. Cortona, Phys. Rev. B 44, 8454 (1991) T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993) T. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015) Q. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016) A. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012) T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013) J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014) S. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015) S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019) A. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009) T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008) S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018) J. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012) S. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013) . Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989) G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013) J. M. Martin, Chem. Phys. Lett. 259, 669 (1996) D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011) D. Feller, J. Chem. Phys. 138, 074103 (2013) V. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017) G. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002) D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994) R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992) D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993) A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988) A. D. Becke, J. Chem. Phys. 98, 5648 (1993) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994) J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013) D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015) C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016) W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016) T. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017 F. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005) S. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019) E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995) D. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976) T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000) J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011) X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006) H. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005) Y. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018) R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975) R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979) K. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018) J. Harris, Phys. Rev. A 29, 1648 (1984) Y. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002) A. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010) Wolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, IL F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005) Y. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017) S. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000) M. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018) M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994) M. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021) M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003) S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990) M. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968) N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986) P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982) J. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017) F. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020) R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 145 pagínas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Univesidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80788/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80788/2/1019037142-2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80788/3/1019037142-2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8153f7789df02f0a4c9e079953658ab2 5ff00ac67ab49af2339aec310b00d930 b26ed8144b32df7dddc3438f1ff1c766 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089701479415808 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Velasco, Andrés4a3befe585cfa2ac4a185545798366efMoncada Arias, Félix Santiagofd85672ad898fb809221f0a7729b9558Química Cuántica y Computacional2021-12-15T23:45:27Z2021-12-15T23:45:27Z2021-12https://repositorio.unal.edu.co/handle/unal/80788Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasThis thesis presents theoretical developments, computational implementations, and numerical applications of multicomponent methodologies that describe positron-molecule interactions. The theoretical developments combine wavefunction methodologies, such as the any particle molecular orbital propagator theory, with density functional theory (DFT) approaches for electrons and positrons. The projector operator embedding scheme of Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] has been extended to a multicomponent formulation. The extended wavefunction embedded in DFT scheme reduces the computational cost of positron binding energy predictions obtained with third-order propagator theory at the complete basis set limit without affecting their quality. The stability of novel positron bound states with alkoxide and carboxylate anions is predicted with the extended embedding scheme. This thesis also reports the development of a new positron-electron correlation functional inspired by the Colle-Salvetti formulation of electron correlation. The proposed functional is parameterized to reproduce the annihilation rate and the energy of a positronium atom with a single parameter. DFT positron and positronium binding energies obtained with the new functional display good correlation with results reported employing wavefunction methodologies. In addition, this thesis contains a computational study of positron dihalide molecules, e+[X-Y-] with X,Y=F,Cl,Br, in which the positron binds two repelling halide anions. The covalent positron bonds between halide anions present similar features to one-electron bonds in dialkali cations with isoelectronic atomic cores. This study reveals that positron covalent bonding is not restricted to the e+[H-H-] molecule, previously reported.Esta tesis presenta el desarrollo teórico, la implementación computacional y aplicaciones numéricas de metodologías multicomponente que describen interacciones positrón-molécula. Los desarrollos teóricos combinan metodologías de función de onda, como la teoría del propagador para orbitales moleculares de cualquier partícula, con procedimientos de la teoría del funcional de la densidad (DFT) para electrones y positrones. El esquema de embebido empleando operadores de proyección de Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] se ha extendido a una formulación multicomponente. El esquema extendido de función de onda embebida en DFT reduce el costo computacional de las predicciones de energías de enlace de positrón obtenidas con la teoría del propagador de tercer orden en el límite de conjunto de base completo sin afectar su calidad. La estabilidad de nuevos estados ligados de positrones con aniones alcóxido y carboxilato es predicha con el esquema extendido de embebido. Esta tesis también contiene el desarrollo de un nuevo funcional de correlación positrón-electrón inspirado en la formulación de correlación electrónica de Colle-Salvetti. El funcional propuesto está parametrizado para reproducir la tasa de aniquilación y la energía de un átomo de positronio con un solo parámetro. Las energías de unión de positrón y positronio obtenidas con el nuevo funcional muestran una buena correlación con resultados reportados con metodologías de función de onda. Además, esta tesis contiene un estudio computacional de moléculas de dihaluro de positrón, e+[X-Y-] con X,Y=F,Cl,Br, en las que el positrón une dos aniones haluro que se repelen entre sí. Los enlaces covalentes de positrón entre los aniones haluro muestran características similares a los enlaces de un electrón en los cationes dialcalinos con núcleos atómicos isoelectrónicos. Este estudio revela que el enlace covalente positrónico no está restringido a la molécula e+[H-H-] previamente reportada. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias - Químicaxviii, 145 pagínasapplication/pdfengUnivesidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaPositronsDensity functional theoryExotic moleculesPropagator theoryAny particle molecular orbitalMulticomponent methodsPositron electron correlationColle-Salvetti correlationPositron covalent bondQuantum chemistryPositronesTeoría del funcional de la densidadMoléculas exóticasTeoría del propagadorOrbital molecular para cualquier partículaMétodos multicomponenteCorrelación positrón electrónCorrelación Colle-SalvettiEnlace covalente positrónicoQuímica cuánticaOnda electromagnéticaMecánica de las ondasPartícula elementalElectromagnetic wavesWave mechanicsDevelopment of a multicomponent wavefunction-in-DFT embedding methodologyDesarrollo de una metodología de función de onda multicomponente embebida en DFTTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDP. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928)P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930)C. D. Anderson, Phys. Rev. 43, 491 (1933)F. Joliot, J. Phys. le Radium 5, 299 (1934)M. Deutsch, Phys. Rev. 82, 455 (1951)S. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980)J. Thibaud, Phys. Rev. 45, 781 (1934)S. Mohorovicic, Astron. Nachrichten 253, 93 (1934)A. P. Mills, Phys. Rev. Lett. 46, 717 (1981)D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007)O. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995)C. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002)Y. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003)F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)J. Cizek, J. Mater. Sci. Technol. 34, 577 (2018)K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000)C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969)S. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012)M. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990)S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010)S. N. Nahar and B. Antony, Atoms 8, 29 (2020)L. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993)D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992)G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010)J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010)J. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012)J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012)A. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013)S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002)J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015)D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018)Y. Nagashima, Phys. Rep. 545, 95 (2014)C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014)X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012)D. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010P. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996)G. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005)A. Ore, Phys. Rev. 83, 665 (1951)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995)G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002)X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011)H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978)A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980)H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981)C. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984)W. R. Garrett, J. Chem. Phys. 73, 5721 (1980)M. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008)J. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018)T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996)T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998)M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999)M. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001)M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002)Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009)Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014)Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014)D. Bressanini, Phys. Rev. A 97, 012508 (2018)S. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999)M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002)S. L. Saito, J. Chem. Phys. 122, 054302 (2005)S. L. Saito, Theor. Chem. Acc. 115, 281 (2006)R. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006)M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006)F. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006)J. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006)R. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007)R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008)J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008)R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009)M. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)M. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012)T. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014)J. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012)B. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016)F. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019)G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004)J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010)K. Strasburger, J. Chem. Phys. 111, 10555 (1999)S. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)K. Strasburger, Struct. Chem. 15, 415 (2004)M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009)C. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998)G. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998)J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999)J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999)J. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001)J. Mitroy, Phys. Rev. A 70, 024502 (2004)J. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004)J. Mitroy, Phys. Rev. A 73, 054502 (2006)J. Mitroy, J. At. Mol. Sci. 1, 275 (2010)A. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014)Y. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009)K. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012)J. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709Y. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014)M. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016)A. Jain, Phys. Rev. A 41, 2437 (1990)F. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996)J. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002)J. Franz, Eur. Phys. J. D 71, 44 (2017)A. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018)A. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019)Y. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019)Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020)E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995)E. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998)N. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010)N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011)B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996)J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014)B. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015)W. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015)M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)J. G. Harrison, J. Chem. Phys. 84, 1659 (1986)D. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989)K. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996)T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997)J. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014)F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012)A. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927)Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008)S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006)W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963)W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967)P. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991)D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000)M. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003)S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013)C. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006)A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008)M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011)A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011)C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011)H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012)H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012)E. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012)E. Matyus, J. Phys. Chem. A 117, 7195 (2013)A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013)A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015)I. L. Thomas, Phys. Rev. 185, 90 (1969)I. L. Thomas, Chem. Phys. Lett. 3, 705 (1969). L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970)I. L. Thomas, Phys. Rev. A 3, 565 (1971)J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982)H. J. Monkhorst, Phys. Rev. A 36, 1544 (1987)M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)H. Nakai, Int. J. Quantum. Chem. 86, 511 (2002)M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)M. Tachikawa, Chem. Phys. Lett. 360, 494 (2002)Y. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998)S. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002)M. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011)P. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015)P. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017)S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008)H. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003)C. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006)M. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006)J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016)Y. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998)Y. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999)T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001)T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006)M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007)Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008)T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014)Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017)A. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996)L. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017)B. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986)H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005)K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006)K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007)A. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005)F. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012)P. Lowdin, Int. J. Quantum Chem. 55, 77 (1995)S. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010)H. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017)B. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010)A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008)K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017)D. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019)A. D. Becke, J. Chem. Phys. 88, 1053 (1988)Z. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019)A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012)T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016)J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979)F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012)E. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014)B. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010)Y. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006)F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013)B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019)F. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010)F. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017)E. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018)M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993)J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014)M. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012)S. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000)J. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005J. Tennyson, J. Chem. Phys. 145, 120901 (2016)T. Carrington, J. Chem. Phys. 146, 120902 (2017)T. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013)D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992)D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002)S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)E. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009)M. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005)K. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017)M. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018)D. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010)D. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011)J. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014)R. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008)A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955)J. A. Ibers, J. Chem. Phys. 41, 25 (1964)Y. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990)F. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013)E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)A. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010)C. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003)C. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005)M. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)L. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016)M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014)M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015)M. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016)D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014)D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011)F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013)S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009)R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012)J. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004)J. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005)A. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017)H. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018)T. H. Dunning, J. Chem. Phys. 90, 1007 (1989)F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010)W. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017C. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006)C. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007)H. Berriche, Int. J. Quantum Chem. 113, 2405 (2013)A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983)M. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019)M. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012)G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986)P. Cortona, Phys. Rev. B 44, 8454 (1991)T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993)T. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015)Q. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016)A. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012)T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013)J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014)S. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015)S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019)A. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009)T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008)S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018)J. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012)S. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013). Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013)J. M. Martin, Chem. Phys. Lett. 259, 669 (1996)D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011)D. Feller, J. Chem. Phys. 138, 074103 (2013)V. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017)G. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002)D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994)R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993)A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999)J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988)A. D. Becke, J. Chem. Phys. 98, 5648 (1993)P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994)J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013)D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015)C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016)W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016)T. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017F. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005)S. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019)E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995)D. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976)T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000)J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011)X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006)H. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005)Y. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018)R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975)R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979)K. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018)J. Harris, Phys. Rev. A 29, 1648 (1984)Y. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002)A. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010)Wolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, ILF. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)Y. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017)S. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000)M. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018)M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994)M. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021)M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003)S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990)M. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968)N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986)P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982)J. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017)F. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020)R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014)Convocatoria Doctorados Nacionales 2016Ministerio de Ciencia Tecnología e Innovación - MincienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80788/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1019037142-2021.pdf1019037142-2021.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf4975883https://repositorio.unal.edu.co/bitstream/unal/80788/2/1019037142-2021.pdf5ff00ac67ab49af2339aec310b00d930MD52THUMBNAIL1019037142-2021.pdf.jpg1019037142-2021.pdf.jpgGenerated Thumbnailimage/jpeg4410https://repositorio.unal.edu.co/bitstream/unal/80788/3/1019037142-2021.pdf.jpgb26ed8144b32df7dddc3438f1ff1c766MD53unal/80788oai:repositorio.unal.edu.co:unal/807882024-08-01 23:11:00.121Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |