Development of a multicomponent wavefunction-in-DFT embedding methodology

ilustraciones, graficas

Autores:
Moncada Arias, Félix Santiago
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80788
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80788
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
Positrons
Density functional theory
Exotic molecules
Propagator theory
Any particle molecular orbital
Multicomponent methods
Positron electron correlation
Colle-Salvetti correlation
Positron covalent bond
Quantum chemistry
Positrones
Teoría del funcional de la densidad
Moléculas exóticas
Teoría del propagador
Orbital molecular para cualquier partícula
Métodos multicomponente
Correlación positrón electrón
Correlación Colle-Salvetti
Enlace covalente positrónico
Química cuántica
Onda electromagnética
Mecánica de las ondas
Partícula elemental
Electromagnetic waves
Wave mechanics
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_274002ad3b26a876f55bb5e1e6ae1dbd
oai_identifier_str oai:repositorio.unal.edu.co:unal/80788
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Development of a multicomponent wavefunction-in-DFT embedding methodology
dc.title.translated.spa.fl_str_mv Desarrollo de una metodología de función de onda multicomponente embebida en DFT
title Development of a multicomponent wavefunction-in-DFT embedding methodology
spellingShingle Development of a multicomponent wavefunction-in-DFT embedding methodology
540 - Química y ciencias afines::541 - Química física
Positrons
Density functional theory
Exotic molecules
Propagator theory
Any particle molecular orbital
Multicomponent methods
Positron electron correlation
Colle-Salvetti correlation
Positron covalent bond
Quantum chemistry
Positrones
Teoría del funcional de la densidad
Moléculas exóticas
Teoría del propagador
Orbital molecular para cualquier partícula
Métodos multicomponente
Correlación positrón electrón
Correlación Colle-Salvetti
Enlace covalente positrónico
Química cuántica
Onda electromagnética
Mecánica de las ondas
Partícula elemental
Electromagnetic waves
Wave mechanics
title_short Development of a multicomponent wavefunction-in-DFT embedding methodology
title_full Development of a multicomponent wavefunction-in-DFT embedding methodology
title_fullStr Development of a multicomponent wavefunction-in-DFT embedding methodology
title_full_unstemmed Development of a multicomponent wavefunction-in-DFT embedding methodology
title_sort Development of a multicomponent wavefunction-in-DFT embedding methodology
dc.creator.fl_str_mv Moncada Arias, Félix Santiago
dc.contributor.advisor.none.fl_str_mv Reyes Velasco, Andrés
dc.contributor.author.none.fl_str_mv Moncada Arias, Félix Santiago
dc.contributor.researchgroup.spa.fl_str_mv Química Cuántica y Computacional
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
topic 540 - Química y ciencias afines::541 - Química física
Positrons
Density functional theory
Exotic molecules
Propagator theory
Any particle molecular orbital
Multicomponent methods
Positron electron correlation
Colle-Salvetti correlation
Positron covalent bond
Quantum chemistry
Positrones
Teoría del funcional de la densidad
Moléculas exóticas
Teoría del propagador
Orbital molecular para cualquier partícula
Métodos multicomponente
Correlación positrón electrón
Correlación Colle-Salvetti
Enlace covalente positrónico
Química cuántica
Onda electromagnética
Mecánica de las ondas
Partícula elemental
Electromagnetic waves
Wave mechanics
dc.subject.proposal.eng.fl_str_mv Positrons
Density functional theory
Exotic molecules
Propagator theory
Any particle molecular orbital
Multicomponent methods
Positron electron correlation
Colle-Salvetti correlation
Positron covalent bond
Quantum chemistry
dc.subject.proposal.spa.fl_str_mv Positrones
Teoría del funcional de la densidad
Moléculas exóticas
Teoría del propagador
Orbital molecular para cualquier partícula
Métodos multicomponente
Correlación positrón electrón
Correlación Colle-Salvetti
Enlace covalente positrónico
Química cuántica
dc.subject.unesco.spa.fl_str_mv Onda electromagnética
Mecánica de las ondas
Partícula elemental
dc.subject.unesco.eng.fl_str_mv Electromagnetic waves
Wave mechanics
description ilustraciones, graficas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-15T23:45:27Z
dc.date.available.none.fl_str_mv 2021-12-15T23:45:27Z
dc.date.issued.none.fl_str_mv 2021-12
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80788
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80788
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv P. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928)
P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930)
C. D. Anderson, Phys. Rev. 43, 491 (1933)
F. Joliot, J. Phys. le Radium 5, 299 (1934)
M. Deutsch, Phys. Rev. 82, 455 (1951)
S. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980)
J. Thibaud, Phys. Rev. 45, 781 (1934)
S. Mohorovicic, Astron. Nachrichten 253, 93 (1934)
A. P. Mills, Phys. Rev. Lett. 46, 717 (1981)
D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007)
O. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995)
C. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002)
Y. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003)
F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)
J. Cizek, J. Mater. Sci. Technol. 34, 577 (2018)
K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000)
C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)
S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969)
S. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012)
M. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990)
S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010)
S. N. Nahar and B. Antony, Atoms 8, 29 (2020)
L. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993)
D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992)
G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010)
J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010)
J. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012)
J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012)
A. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013)
S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002)
J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015)
D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018)
Y. Nagashima, Phys. Rep. 545, 95 (2014)
C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014)
X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012)
D. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010
P. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996)
G. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005)
A. Ore, Phys. Rev. 83, 665 (1951)
V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995)
G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)
J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002)
X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011)
H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978)
A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980)
H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981)
C. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984)
W. R. Garrett, J. Chem. Phys. 73, 5721 (1980)
M. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001
P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008)
J. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018)
T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996)
T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996)
D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998)
D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998)
D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998)
M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999)
M. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001)
M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002)
Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009)
Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014)
Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014)
D. Bressanini, Phys. Rev. A 97, 012508 (2018)
S. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020)
V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999)
M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002)
S. L. Saito, J. Chem. Phys. 122, 054302 (2005)
S. L. Saito, Theor. Chem. Acc. 115, 281 (2006)
R. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006)
M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006)
F. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006)
J. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006)
R. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007)
R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008)
J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008)
R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009)
M. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)
M. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012)
T. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014)
J. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016)
V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012)
B. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016)
F. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019)
G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004)
J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010)
K. Strasburger, J. Chem. Phys. 111, 10555 (1999)
S. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)
K. Strasburger, Struct. Chem. 15, 415 (2004)
M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009)
C. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)
G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998)
G. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998)
J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999)
J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999)
J. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001)
J. Mitroy, Phys. Rev. A 70, 024502 (2004)
J. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004)
J. Mitroy, Phys. Rev. A 73, 054502 (2006)
J. Mitroy, J. At. Mol. Sci. 1, 275 (2010)
A. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014)
Y. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009)
K. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012)
J. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709
Y. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014)
M. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016)
A. Jain, Phys. Rev. A 41, 2437 (1990)
F. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996)
J. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002)
J. Franz, Eur. Phys. J. D 71, 44 (2017)
A. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018)
A. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019)
Y. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019)
Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020)
E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)
M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995)
E. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998)
N. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010)
N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011)
B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996)
J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014)
B. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015)
W. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015)
M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)
J. G. Harrison, J. Chem. Phys. 84, 1659 (1986)
D. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989)
K. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996)
T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997)
J. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014)
F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012)
A. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019
M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927)
Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008)
S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006)
W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963)
W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967)
P. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991)
D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000)
M. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003)
S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013)
C. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006)
A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008)
M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011)
A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011)
C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011)
H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012)
H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012)
E. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012)
E. Matyus, J. Phys. Chem. A 117, 7195 (2013)
A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013)
A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015)
I. L. Thomas, Phys. Rev. 185, 90 (1969)
I. L. Thomas, Chem. Phys. Lett. 3, 705 (1969)
. L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970)
I. L. Thomas, Phys. Rev. A 3, 565 (1971)
J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982)
H. J. Monkhorst, Phys. Rev. A 36, 1544 (1987)
M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)
H. Nakai, Int. J. Quantum. Chem. 86, 511 (2002)
M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)
M. Tachikawa, Chem. Phys. Lett. 360, 494 (2002)
Y. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998)
S. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002)
M. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011)
P. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015)
P. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017)
S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008)
T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008)
H. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003)
C. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005)
T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006)
M. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006)
J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)
Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016)
Y. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998)
Y. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999)
T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001)
T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006)
M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007)
Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008)
T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014)
Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017)
A. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996)
L. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017)
B. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986)
H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005)
K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006)
K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007)
A. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005)
F. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012)
P. Lowdin, Int. J. Quantum Chem. 55, 77 (1995)
S. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010)
H. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017)
B. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010)
A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008)
K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017)
D. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019)
A. D. Becke, J. Chem. Phys. 88, 1053 (1988)
Z. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019)
A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012)
T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016)
J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979)
F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012)
E. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014)
B. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010)
Y. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014)
T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006)
F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013)
B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019)
F. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010)
F. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017)
E. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018)
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993)
J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014)
M. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012)
S. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000)
J. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005
J. Tennyson, J. Chem. Phys. 145, 120901 (2016)
T. Carrington, J. Chem. Phys. 146, 120902 (2017)
T. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013)
D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992)
D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002)
S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)
E. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009)
M. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005)
K. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017)
M. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018)
D. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010)
D. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011)
J. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014)
R. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008)
A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955)
J. A. Ibers, J. Chem. Phys. 41, 25 (1964)
Y. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990)
F. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013)
E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)
A. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010)
C. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003)
C. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005)
M. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)
L. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016)
M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014)
M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015)
M. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016)
D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014)
D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011)
F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013)
S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009)
R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012)
J. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004)
J. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005)
A. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017)
H. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018)
T. H. Dunning, J. Chem. Phys. 90, 1007 (1989)
F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)
D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010)
W. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017
C. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006)
C. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007)
H. Berriche, Int. J. Quantum Chem. 113, 2405 (2013)
A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983)
M. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019)
M. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012)
G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986)
P. Cortona, Phys. Rev. B 44, 8454 (1991)
T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993)
T. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015)
Q. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016)
A. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012)
T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013)
J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014)
S. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015)
S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019)
A. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009)
T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008)
S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018)
J. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012)
S. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013)
. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)
G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013)
J. M. Martin, Chem. Phys. Lett. 259, 669 (1996)
D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011)
D. Feller, J. Chem. Phys. 138, 074103 (2013)
V. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017)
G. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002)
D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994)
R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)
D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993)
A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999)
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988)
A. D. Becke, J. Chem. Phys. 98, 5648 (1993)
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994)
J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013)
D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015)
C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016)
W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016)
T. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017
F. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005)
S. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019)
E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995)
D. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976)
T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000)
J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011)
X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006)
H. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005)
Y. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018)
R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975)
R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979)
K. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018)
J. Harris, Phys. Rev. A 29, 1648 (1984)
Y. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002)
A. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010)
Wolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, IL
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)
Y. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017)
S. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000)
M. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018)
M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994)
M. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021)
M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003)
S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990)
M. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968)
N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986)
P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982)
J. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017)
F. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020)
R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 145 pagínas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Univesidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80788/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80788/2/1019037142-2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80788/3/1019037142-2021.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
5ff00ac67ab49af2339aec310b00d930
b26ed8144b32df7dddc3438f1ff1c766
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089701479415808
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Reyes Velasco, Andrés4a3befe585cfa2ac4a185545798366efMoncada Arias, Félix Santiagofd85672ad898fb809221f0a7729b9558Química Cuántica y Computacional2021-12-15T23:45:27Z2021-12-15T23:45:27Z2021-12https://repositorio.unal.edu.co/handle/unal/80788Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasThis thesis presents theoretical developments, computational implementations, and numerical applications of multicomponent methodologies that describe positron-molecule interactions. The theoretical developments combine wavefunction methodologies, such as the any particle molecular orbital propagator theory, with density functional theory (DFT) approaches for electrons and positrons. The projector operator embedding scheme of Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] has been extended to a multicomponent formulation. The extended wavefunction embedded in DFT scheme reduces the computational cost of positron binding energy predictions obtained with third-order propagator theory at the complete basis set limit without affecting their quality. The stability of novel positron bound states with alkoxide and carboxylate anions is predicted with the extended embedding scheme. This thesis also reports the development of a new positron-electron correlation functional inspired by the Colle-Salvetti formulation of electron correlation. The proposed functional is parameterized to reproduce the annihilation rate and the energy of a positronium atom with a single parameter. DFT positron and positronium binding energies obtained with the new functional display good correlation with results reported employing wavefunction methodologies. In addition, this thesis contains a computational study of positron dihalide molecules, e+[X-Y-] with X,Y=F,Cl,Br, in which the positron binds two repelling halide anions. The covalent positron bonds between halide anions present similar features to one-electron bonds in dialkali cations with isoelectronic atomic cores. This study reveals that positron covalent bonding is not restricted to the e+[H-H-] molecule, previously reported.Esta tesis presenta el desarrollo teórico, la implementación computacional y aplicaciones numéricas de metodologías multicomponente que describen interacciones positrón-molécula. Los desarrollos teóricos combinan metodologías de función de onda, como la teoría del propagador para orbitales moleculares de cualquier partícula, con procedimientos de la teoría del funcional de la densidad (DFT) para electrones y positrones. El esquema de embebido empleando operadores de proyección de Manby et al. [J. Chem. Theory Comput., 8, 2564 (2012)] se ha extendido a una formulación multicomponente. El esquema extendido de función de onda embebida en DFT reduce el costo computacional de las predicciones de energías de enlace de positrón obtenidas con la teoría del propagador de tercer orden en el límite de conjunto de base completo sin afectar su calidad. La estabilidad de nuevos estados ligados de positrones con aniones alcóxido y carboxilato es predicha con el esquema extendido de embebido. Esta tesis también contiene el desarrollo de un nuevo funcional de correlación positrón-electrón inspirado en la formulación de correlación electrónica de Colle-Salvetti. El funcional propuesto está parametrizado para reproducir la tasa de aniquilación y la energía de un átomo de positronio con un solo parámetro. Las energías de unión de positrón y positronio obtenidas con el nuevo funcional muestran una buena correlación con resultados reportados con metodologías de función de onda. Además, esta tesis contiene un estudio computacional de moléculas de dihaluro de positrón, e+[X-Y-] con X,Y=F,Cl,Br, en las que el positrón une dos aniones haluro que se repelen entre sí. Los enlaces covalentes de positrón entre los aniones haluro muestran características similares a los enlaces de un electrón en los cationes dialcalinos con núcleos atómicos isoelectrónicos. Este estudio revela que el enlace covalente positrónico no está restringido a la molécula e+[H-H-] previamente reportada. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias - Químicaxviii, 145 pagínasapplication/pdfengUnivesidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química físicaPositronsDensity functional theoryExotic moleculesPropagator theoryAny particle molecular orbitalMulticomponent methodsPositron electron correlationColle-Salvetti correlationPositron covalent bondQuantum chemistryPositronesTeoría del funcional de la densidadMoléculas exóticasTeoría del propagadorOrbital molecular para cualquier partículaMétodos multicomponenteCorrelación positrón electrónCorrelación Colle-SalvettiEnlace covalente positrónicoQuímica cuánticaOnda electromagnéticaMecánica de las ondasPartícula elementalElectromagnetic wavesWave mechanicsDevelopment of a multicomponent wavefunction-in-DFT embedding methodologyDesarrollo de una metodología de función de onda multicomponente embebida en DFTTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDP. A. M. Dirac, Proc. R. Soc. London. Ser. A 117, 610 (1928)P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 361 (1930)C. D. Anderson, Phys. Rev. 43, 491 (1933)F. Joliot, J. Phys. le Radium 5, 299 (1934)M. Deutsch, Phys. Rev. 82, 455 (1951)S. Berko and H. N. Pendleton, Annu. Rev. Nucl. Part. Sci. 30, 543 (1980)J. Thibaud, Phys. Rev. 45, 781 (1934)S. Mohorovicic, Astron. Nachrichten 253, 93 (1934)A. P. Mills, Phys. Rev. Lett. 46, 717 (1981)D. B. Cassidy and A. P. Mills, Nature 449, 195 (2007)O. E. Mogensen, Positron Annihilation in Chemistry (Springer-Verlag, Berlin,Heidelberg, 1995)C. M. Surko and F. A. Gianturco, editors, New Directions in Antimatter Chemistry and Physics (Springer, Dordrecht, 2002)Y. Jean, P. Mallon, and D. Schrader, editors, Principles and Applications of Positron and Positronium Chemistry (World Scientific, Singapore, 2003)F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)J. Cizek, J. Mater. Sci. Technol. 34, 577 (2018)K. Hagiwara, T. Ougizawa, T. Inoue, K. Hirata, and Y. Kobayashi, Radiat. Phys. Chem. 58, 525 (2000)C. Hugenschmidt, Surf. Sci. Rep. 71, 547 (2016)S. J. Tao and J. H. Green, J. Phys. Chem. 73, 882 (1969)S. V. Stepanov, V. M. Byakov, D. S. Zvezhinskiy, G. Duplatre, R. R. Nurmukhametov, and P. S. Stepanov, Adv. Phys. Chem. 2012, 1 (2012)M. Charlton and G. Laricchia, J. Phys. B At. Mol. Opt. Phys. 23, 1045 (1990)S. J. Brawley, S. Armitage, J. Beale, D. E. Leslie, A. I. Williams, and G. Laricchia, Science 330, 789 (2010)S. N. Nahar and B. Antony, Atoms 8, 29 (2020)L. D. Hulett, D. L. Donohue, J. Xu, T. A. Lewis, S. A. McLuckey, and G. L. Glish, Chem. Phys. Lett. 216, 236 (1993)D. M. Schrader, F. M. Jacobsen, N.-P. Frandsen, and U. Mikkelsen, Phys. Rev. Lett. 69, 57 (1992)G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys. 82, 2557 (2010)J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett. 104, 233201 (2010)J. R. Danielson, A. C. L. Jones, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 109, 113201 (2012)J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin, and C. M. Surko, Phys. Rev. A 85, 022709 (2012)A. C. L. Jones, J. R. Danielson, M. R. Natisin, and C. M. Surko, Phys. Rev. Lett. 110, 223201 (2013)S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 4 (2002)J. R. Danielson, D. H. E. Dubin, R. G. Greaves, and C. M. Surko, Rev. Mod. Phys. 87, 247 (2015)D. B. Cassidy, Eur. Phys. J. D 72, 53 (2018)Y. Nagashima, Phys. Rep. 545, 95 (2014)C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 89, 022517 (2014)X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 85, 012503 (2012)D. M. Schrader, Compounds of positrons with koino-atoms and molecules, in Physics with Many Positrons, edited by A. Dupasquier, A. P. Mills Jr, and R. S. Brusa, pp. 337–398, IOS Press, Amsterdam, 2010P. M. Kozlowski and L. Adamowicz, J. Phys. Chem. 100, 6266 (1996)G. W. Drake and M. Grigorescu, J. Phys. B At. Mol. Opt. Phys. 38, 3377 (2005)A. Ore, Phys. Rev. 83, 665 (1951)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King, Phys. Rev. A 52, 4541 (1995)G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997)J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 35, 201 (2002)X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83, 032504 (2011)H. A. Kurtz and K. D. Jordan, Int. J. Quantum Chem. 14, 747 (1978)A. Farazdel and P. E. Cade, Chem. Phys. Lett. 72, 131 (1980)H. A. Kurtz and K. D. Jordan, J. Chem. Phys. 75, 1876 (1981)C. Kao and P. E. Cade, J. Chem. Phys. 80, 3234 (1984)W. R. Garrett, J. Chem. Phys. 73, 5721 (1980)M. Tachikawa, I. Shimamura, R. Buenker, and M. Kimura, ”bound states of positron with molecules”, in New Directions in Antimatter Chemistry and Physics, edited by C. Surko and F. Gianturco, pp. 437–450, Springer, Dordrecht, 2001P. E. Adamson, X. F. Duan, L. W. Burggraf, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Phys. Chem. A 112, 1346 (2008)J. Charry, M. T. d. N. Varella, and A. Reyes, Angew. Chemie Int. Ed. 57, 8859 (2018)T. Yoshida, G. Miyako, N. Jiang, and D. M. Schrader, Phys. Rev. A - At. Mol. Opt. Phys. 54, 964 (1996)T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, and K. Suzuki, J. Phys. Chem. 100, 6057 (1996)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 108, 4756 (1998)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 1716 (1998)D. Bressanini, M. Mella, and G. Morosi, J. Chem. Phys. 109, 5931 (1998)M. Mella, G. Morosi, and D. Bressanini, J. Chem. Phys. 111, 108 (1999)M. Mella, D. Bressanini, and G. Morosi, J. Chem. Phys. 114, 10579 (2001)M. Mella, S. Chiesa, and G. Morosi, J. Chem. Phys. 116, 2852 (2002)Y. Kita, R. Maezono, M. Tachikawa, M. Towler, and R. J. Needs, J. Chem. Phys. 131, 134310 (2009)Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler, and R. J. Needs, Eur. Phys. J. D 68, 63 (2014)Y. Yamada, Y. Kita, and M. Tachikawa, Phys. Rev. A 89, 062711 (2014)D. Bressanini, Phys. Rev. A 97, 012508 (2018)S. Ito, D. Yoshida, Y. Kita, and M. Tachikawa, J. Chem. Phys. 153, 224305 (2020)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 60, 3641 (1999)M. W. J. Bromley and J. Mitroy, Phys. Rev. A 66, 062504 (2002)S. L. Saito, J. Chem. Phys. 122, 054302 (2005)S. L. Saito, Theor. Chem. Acc. 115, 281 (2006)R. J. Buenker, H.-P. Liebermann, M. Tachikawa, L. Pichl, and M. Kimura, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 247, 47 (2006)M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507 (2006)F. A. Gianturco, J. Franz, R. J. Buenker, H. P. Liebermann, L. Pichl, J. M. Rost, M. Tachikawa, and M. Kimura, Phys. Rev. A 73, 022705 (2006)J. Mitroy and M. W. J. Bromley, Phys. Rev. A 73, 052712 (2006)R. J. Buenker, H. P. Liebermann, L. Pichl, M. Tachikawa, and M. Kimura, J. Chem. Phys. 126, 104305 (2007)R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 483 (2008)J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys. Rev. A 78, 012715 (2008)R. J. Buenker and H.-P. Liebermann, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 267, 763 (2009)M. Tachikawa, Y. Kita, and R. J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)M. Tachikawa, Y. Kita, and R. J. Buenker, New J. Phys. 14, 035004 (2012)T. Oyamada and M. Tachikawa, Eur. Phys. J. D 68, 231 (2014)J. P. Coe and M. J. Paterson, Chem. Phys. Lett. 645, 106 (2016)V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati, Phys. Rev. A 86, 032503 (2012)B. H. Ellis, S. Aggarwal, and A. Chakraborty, J. Chem. Theory Comput. 12, 188 (2016)F. Pavosevic and S. Hammes-Schiffer, J. Chem. Phys. 150, 161102 (2019)G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720 (2004)J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73 (2010)K. Strasburger, J. Chem. Phys. 111, 10555 (1999)S. Bubin and L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)K. Strasburger, Struct. Chem. 15, 415 (2004)M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 113, 4004 (2009)C. Swalina, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B At. Mol. Opt. Phys. 31, 3965 (1998)G. Ryzhikh and J. Mitroy, J. Phys. B At. Mol. Opt. Phys. 31, 4459 (1998)J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 1375 (1999)J. Mitroy and G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 32, 3839 (1999)J. Mitroy and G. G. Ryzhikh, J. Phys. B At. Mol. Opt. Phys. 34, 2001 (2001)J. Mitroy, Phys. Rev. A 70, 024502 (2004)J. Mitroy and S. A. Novikov, Phys. Rev. A 70, 032511 (2004)J. Mitroy, Phys. Rev. A 73, 054502 (2006)J. Mitroy, J. At. Mol. Sci. 1, 275 (2010)A. Zubiaga, F. Tuomisto, and M. J. Puska, Phys. Rev. A 89, 052707 (2014)Y. Kita and M. Tachikawa, Chem. Phys. Lett. 482, 201 (2009)K. Koyanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 66, 121 (2012)J. Charry, J. Romero, M. T. d. N. Varella, and A. Reyes, Phys. Rev. A 89, 052709Y. Oba and M. Tachikawa, Int. J. Quantum Chem. 114, 1146 (2014)M. Nummela, H. Raebiger, D. Yoshida, and M. Tachikawa, J. Phys. Chem. A 120, 4037 (2016)A. Jain, Phys. Rev. A 41, 2437 (1990)F. A. Gianturco, P. Paioletti, and J. A. Rodriguez-Ruiz, Z. Phys. D Atoms, Mol. Clust. 36, 51 (1996)J. Mitroy and I. A. Ivanov, Phys. Rev. A - At. Mol. Opt. Phys. 65, 15 (2002)J. Franz, Eur. Phys. J. D 71, 44 (2017)A. R. Swann and G. F. Gribakin, J. Chem. Phys. 149, 244305 (2018)A. R. Swann and G. F. Gribakin, Phys. Rev. Lett. 123, 113402 (2019)Y. Sugiura, T. Takayanagi, Y. Kita, and M. Tachikawa, Eur. Phys. J. D 73, 162 (2019)Y. Sugiura, H. Suzuki, T. Otomo, T. Miyazaki, T. Takayanagi, and M. Tachikawa, J. Comput. Chem. 41, 1576 (2020)E. Boronski and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Phys. Rev. B 52, 10947 (1995)E. Boronski and H. Stachowiak, Phys. Rev. B 57, 6215 (1998)N. D. Drummond, P. Lopez Rios, C. J. Pickard, and R. J. Needs, Phys. Rev. B 82, 035107 (2010)N. D. Drummond, P. Lopez Rios, R. J. Needs, and C. J. Pickard, Phys. Rev. Lett. 107, 207402 (2011)B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53, 16201 (1996)J. Kuriplach and B. Barbiellini, Phys. Rev. B 89, 155111 (2014)B. Barbiellini and J. Kuriplach, Phys. Rev. Lett. 114, 147401 (2015)W. Zhang, B. Gu, J. Liu, and B. Ye, Comput. Mater. Sci. 105, 32 (2015)M. J. Puska and R. M. Nieminen, Rev. Mod. Phys. 66, 841 (1994)J. G. Harrison, J. Chem. Phys. 84, 1659 (1986)D. Kanhere, A. Kshirsagar, and V. Bhamre, Chem. Phys. Lett. 160, 526 (1989)K. Kim and J. G. Harrison, J. Phys. B At. Mol. Opt. Phys. 29, 595 (1996)T. Baruah, R. K. Pathak, and A. Kshirsagar, Phys. Rev. A 55, 1518 (1997)J. Romero, J. A. Charry, R. Flores-Moreno, M. T. d. N. Varella, and A. Reyes, J. Chem. Phys. 141, 114103 (2014)F. R. Manby, M. Stella, J. D. Goodpaster, and T. F. Miller, J. Chem. Theory Comput. 8, 2564 (2012)A. Reyes, F. Moncada, and J. Charry, Int. J. Quantum Chem. 119, e25705 (2019M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927)Q. Peng, X. Zhang, L. Hung, E. A. Carter, and G. Lu, Phys. Rev. B 78, 054118 (2008)S. Takahashi and K. Takatsuka, J. Chem. Phys. 124, 144101 (2006)W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963)W. Kolos and L. Wolniewicz, J. Chem. Phys. 46, 1426 (1967)P. M. Kozlowski and L. Adamowicz, J. Chem. Phys. 95, 6681 (1991)D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 113, 4203 (2000)M. Cafiero, S. Bubin, L. Adamowicz, M. Cafiero, and L. Adamowicz, Phys. Chem. Chem. Phys. 5, 1491 (2003)S. Bubin, M. Pavanello, W.-C. Tung, K. L. Sharkey, and L. Adamowicz, Chem. Rev. 113, 36 (2013)C. Swalina, M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 110, 9983 (2006)A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 129, 014101 (2008)M. Hoshino, H. Nishizawa, and H. Nakai, J. Chem. Phys. 135, 24111 (2011)A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Theory Comput. 7, 2689 (2011)C. Ko, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 135, 054106 (2011)H. Nishizawa, M. Hoshino, Y. Imamura, and H. Nakai, Chem. Phys. Lett. 521, 142 (2012)H. Nishizawa, Y. Imamura, Y. Ikabata, and H. Nakai, Chem. Phys. Lett. 533, 100 (2012)E. Matyus and M. Reiher, J. Chem. Phys. 137, 024104 (2012)E. Matyus, J. Phys. Chem. A 117, 7195 (2013)A. Sirjoosingh, M. V. Pak, C. Swalina, and S. Hammes-Schiffer, J. Chem. Phys. 139, 034102 (2013)A. Sirjoosingh, M. V. Pak, K. R. Brorsen, and S. Hammes-Schiffer, J. Chem. Phys. 142, 214107 (2015)I. L. Thomas, Phys. Rev. 185, 90 (1969)I. L. Thomas, Chem. Phys. Lett. 3, 705 (1969). L. Thomas and H. W. Joy, Phys. Rev. A 2, 1200 (1970)I. L. Thomas, Phys. Rev. A 3, 565 (1971)J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982)H. J. Monkhorst, Phys. Rev. A 36, 1544 (1987)M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998)H. Nakai, Int. J. Quantum. Chem. 86, 511 (2002)M. Tachikawa, K. Mori, K. Suzuki, and K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998)M. Tachikawa, Chem. Phys. Lett. 360, 494 (2002)Y. Shigeta, H. Takahashi, S. Yamanaka, M. Mitani, H. Nagao, and K. Yamaguchi, Int. J. Quantum Chem. 70, 659 (1998)S. P. Webb, T. Iordanov, and S. Hammes-Schiffer, J. Chem. Phys. 117, 4106 (2002)M. Goli and S. Shahbazian, Theor. Chem. Acc. 129, 235 (2011)P. Cassam-Chenai, B. Suo, and W. Liu, Phys. Rev. A 92, 012502 (2015)P. Cassam-Chenai, B. Suo, and W. Liu, Theor. Chem. Acc. 136, 52 (2017)S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 108, 1742 (2008)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 128, 164118 (2008)H. Nakai and K. Sodeyama, J. Chem. Phys. 118, 1119 (2003)C. Swalina, M. V. Pak, and S. Hammes-Schiffer, Chem. Phys. Lett. 404, 394 (2005)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 125, 144103 (2006)M. Hoshino and H. Nakai, J. Chem. Phys. 124, 194110 (2006)J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)Y. Tsukamoto, Y. Ikabata, J. Romero, A. Reyes, and H. Nakai, Phys. Chem. Chem. Phys. 18, 27422 (2016)Y. Shigeta, Y. Ozaki, K. Kodama, H. Nagao, H. Kawabe, and K. Nishikawa, Int. J. Quantum Chem. 69, 629 (1998)Y. Shigeta, H. Nagao, K. Nishikawa, and K. Yamaguchi, Int. J. Quantum Chem. 75, 875 (1999)T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001)T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006)M. V. Pak, A. Chakraborty, and S. Hammes-Schiffer, J. Phys. Chem. A 111, 4522 (2007)Y. Imamura, H. Kiryu, and H. Nakai, J. Comput. Chem. 29, 735 (2008)T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. A 89, 052519 (2014)Y. Yang, K. R. Brorsen, T. Culpitt, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 147, 114113 (2017)A. Szabo and N. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Dover Publications, 1996)L. M. Pedraza-Gonzalez, J. A. Charry Martinez, W. D. Quintero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 19, 25324 (2017)B. A. Pettitt, Chem. Phys. Lett. 130, 399 (1986)H. Nakai, M. Hoshino, K. Miyamoto, and S. Hyodo, J. Chem. Phys. 122, 164101 (2005)K. Miyamoto, M. Hoshino, and H. Nakai, J. Chem. Theory Comput. 2, 1544 (2006)K. Sodeyama, H. Nishizawa, M. Hoshino, M. Kobayashi, and H. Nakai, Chem. Phys. Lett. 433, 409 (2007)A. Reyes, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 123, 064104 (2005)F. Moncada, E. Posada, R. Flores-Moreno, and A. Reyes, Chem. Phys. 400, 103 (2012)P. Lowdin, Int. J. Quantum Chem. 55, 77 (1995)S. A. Gonzalez and A. Reyes, Int. J. Quantum Chem. 110, 689 (2010)H. H. Corzo and J. V. Ortiz, Adv. Quantum. Chem. 74, 267 (2017)B. Auer and S. Hammes-Schiffer, J. Chem. Phys. 132, 084110 (2010)A. Chakraborty, M. V. Pak, and S. Hammes-Schiffer, Phys. Rev. Lett. 101, 153001 (2008)K. R. Brorsen, Y. Yang, and S. Hammes-Schiffer, J. Phys. Chem. Lett. 8, 3488 (2017)D. Mejia-Rodriguez and A. de la Lande, J. Chem. Phys. 150, 174115 (2019)A. D. Becke, J. Chem. Phys. 88, 1053 (1988)Z. Tao, Y. Yang, and S. Hammes-Schiffer, J. Chem. Phys. 151, 124102 (2019)A. Sirjoosingh, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 136, 174114 (2012)T. Culpitt, K. R. Brorsen, M. V. Pak, and S. Hammes-Schiffer, J. Chem. Phys. 145, 044106 (2016)J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979)F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 539-540, 209 (2012)E. Posada, F. Moncada, and A. Reyes, J. Phys. Chem. A 118, 9491 (2014)B. Auer, M. V. Pak, and S. Hammes-Schiffer, J. Phys. Chem. C 114, 5582 (2010)Y. Kanematsu and M. Tachikawa, J. Chem. Phys. 141, 185101 (2014)T. Ishimoto, M. Tachikawa, and U. Nagashima, J. Chem. Phys. 124, 014112 (2006)F. Jensen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 273 (2013)B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019)F. Moncada, S. A. Gonzalez, and A. Reyes, Mol. Phys. 108, 1545 (2010)F. Moncada, R. Flores-Moreno, and A. Reyes, J. Mol. Model. 23, 90 (2017)E. Posada, F. Moncada, and A. Reyes, J. Chem. Phys. 148, 084113 (2018)M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993)J. Romero, J. A. Charry, H. Nakai, and A. Reyes, Chem. Phys. Lett. 591, 82 (2014)M. A. Marques, M. J. Oliveira, and T. Burnus, Comp. Phys. Comm. 183, 2227 (2012)S. Scheiner, Biochim. Biophys. Acta Bioenerg. 1458, 28 (2000)J. Bigeleisen, Theoretical Basis of Isotope Effects from an Autobiographical Perspective, in Isotope Effects In Chemistry and Biology, edited by A. Kohen and H.-H. Limbach, chap. 1, CRC Press, Boca Raton, Florida, 2005J. Tennyson, J. Chem. Phys. 145, 120901 (2016)T. Carrington, J. Chem. Phys. 146, 120902 (2017)T. K. Roy and R. B. Gerber, Phys. Chem. Chem. Phys. 15, 9468 (2013)D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992)D. Lauvergnat and A. Nauts, J. Chem. Phys. 116, 8560 (2002)S. N. Yurchenko, W. Thiel, and P. Jensen, J. Mol. Spectrosc. 245, 126 (2007)E. Matyus, G. Czako, and A. G. Csaszar, J. Chem. Phys. 130, 134112 (2009)M. Tachikawa and M. Shiga, J. Am. Chem. Soc. 127, 11908 (2005)K. Karandashev, Z.-H. Xu, M. Meuwly, J. Van ́ıˇcek, and J. O. Richardson, Struc. Dyn. 4, 061501 (2017)M. Machida, K. Kato, and M. Shiga, J. Chem. Phys. 148, 102324 (2018)D. V. Moreno, S. A. Gonz ́alez, and A. Reyes, J. Phys. Chem. A 114, 9231 (2010)D. V. Moreno, S. A. Gonzalez, and A. Reyes, J. Chem. Phys. 134, 024115 (2011)J. Romero, A. Restrepo, and A. Reyes, Mol. Phys. 112, 518 (2014)R. Flores-Moreno and A. M. K ̈oster, J. Chem. Phys. 128, 134105 (2008)A. R. Ubbelohde and K. J. Gallagher, Acta Crystallogr. 8, 71 (1955)J. A. Ibers, J. Chem. Phys. 41, 25 (1964)Y. Noda, H. Kasatani, Y. Watanabe, H. Terauchi, and K. Gesi, J. Phys. Soc. Japan 59, 3249 (1990)F. Moncada, L. S. Uribe, J. Romero, and A. Reyes, Int. J. Quantum Chem. 113, 1556 (2013)E. P. L. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998)A. Moser, K. Range, and D. M. York, J. Phys. Chem. B 114, 13911 (2010)C. A. Deakyne, Int. J. Mass Spectrom. 227, 601 (2003)C. Cramer, Essentials of Computational Chemistry Theories and Models (Wiley, 2005)M. Diaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)L. Pedraza-Gonzalez, J. Romero, J. Ali-Torres, and A. Reyes, Phys. Chem. Chem. Phys. 18, 27185 (2016)M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 16, 6602 (2014)M. Goli and S. Shahbazian, Phys. Chem. Chem. Phys. 17, 7023 (2015)M. Goli and S. Shahbazian, Chem. Eur. J. 22, 2525 (2016)D. G. Fleming, J. Manz, K. Sato, and T. Takayanagi, Angew. Chem. Int. Ed. 53, 13706 (2014)D. G. Fleming, D. J. Arseneau, O. Sukhorukov, J. H. Brewer, S. L. Mielke, G. C. Schatz, B. C. Garrett, K. A. Peterson, and D. G. Truhlar, Science 331, 448 (2011)F. Moncada, D. Cruz, and A. Reyes, Chem. Phys. Lett. 570, 16 (2013)S. L. Mielke, D. W. Schwenke, G. C. Schatz, B. C. Garrett, and K. A. Peterson, J. Phys. Chem. A 113, 4479 (2009)R. J. Bartlett, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 126 (2012)J. V. Ortiz and I. Mart ́ın, J. Chem. Phys. 120, 7949 (2004)J. Melin, J. V. Ortiz, I. Martin, A. M. Velasco, and C. Lavin, J. Chem. Phys. 122, 234317 (2005)A. M. Velasco, C. Lavin, M. Diaz-Tinoco, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 187, 161 (2017)H. H. Corzo, A. M. Velasco, C. Lavin, and J. V. Ortiz, J. Quant. Spectrosc. Radiat. Transf. 206, 323 (2018)T. H. Dunning, J. Chem. Phys. 90, 1007 (1989)F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010)W. C. Martin, Electron configuration and ionization energy of neutral atoms in the ground state, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 1, pp. 1–16, CRC Press, Boca Raton, Florida, 2017C. Ghanmi, H. Berriche, and H. Ben Ouada, J. Mol. Spectrosc. 235, 158 (2006)C. Ghanmi, H. Bouzouita, N. Mabrouk, and H. Berriche, J. Mol. Struc. THEOCHEM 808, 1 (2007)H. Berriche, Int. J. Quantum Chem. 113, 2405 (2013)A. K. Bhatia and R. J. Drachman, Phys. Rev. A 28, 2523 (1983)M. Goli and S. Shahbazian, ChemPhysChem 20, 831 (2019)M. v. Hopffgarten and G. Frenking, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 43 (2012)G. Senatore and K. R. Subbaswamy, Phys. Rev. B 34, 5754 (1986)P. Cortona, Phys. Rev. B 44, 8454 (1991)T. A. Wesolowski and A. Warshel, J. Phys. Chem. 97, 8050 (1993)T. Dresselhaus and J. Neugebauer, Theor. Chem. Acc. 134, 97 (2015)Q. Sun and G. K. L. Chan, Acc. Chem. Res. 49, 2705 (2016)A. Severo Pereira Gomes and C. R. Jacob, Annu. Reports Sect. C 108, 222 (2012)T. A. Barnes, J. D. Goodpaster, F. R. Manby, and T. F. Miller, J. Chem. Phys. 139, 024103 (2013)J. D. Goodpaster, T. A. Barnes, F. R. Manby, and T. F. Miller, J. Chem. Phys. 140, 18A507 (2014)S. J. Bennie, M. Stella, T. F. Miller, and F. R. Manby, J. Chem. Phys. 143, 024105 (2015)S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller, Acc. Chem. Res. 52, 1359 (2019)A. W. Gotz, S. Maya Beyhan, and L. Visscher, J. Chem. Theory Comput. 5, 3161 (2009)T. Heaton-Burgess and W. Yang, J. Chem. Phys. 129, 25 (2008)S. Lehtola, C. Steigemann, M. J. Oliveira, and M. A. Marques, SoftwareX 7, 1 (2018)J. Lehtola, M. Hakala, A. Sakko, and K. H ̈am ̈al ̈ainen, J. Comput. Chem. 33, 1572 (2012)S. Lehtola and H. Jonsson, J. Chem. Theory Comput. 9, 5365 (2013). Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989)G. Knizia, J. Chem. Theory Comput. 9, 4834 (2013)J. M. Martin, Chem. Phys. Lett. 259, 669 (1996)D. Feller, K. A. Peterson, and J. Grant Hill, J. Chem. Phys. 135, 044102 (2011)D. Feller, J. Chem. Phys. 138, 074103 (2013)V. Vasilyev, Comput. Theor. Chem. 1115, 1 (2017)G. F. Gribakin and J. Ludlow, J. Phys. B At. Mol. Opt. Phys. 35, 339 (2002)D. E. Woon and T. H. Dunning, J. Chem. Phys. 100, 2975 (1994)R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992)D. E. Woon and T. H. Dunning, J. Chem. Phys. 98, 1358 (1993)A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning, J. Chem. Phys. 110, 7667 (1999)J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988)A. D. Becke, J. Chem. Phys. 98, 5648 (1993)P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994)J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123 (2013)D. G. Liakos, M. Sparta, M. K. Kesharwani, J. M. L. Martin, and F. Neese, J. Chem. Theory Comput. 11, 1525 (2015)C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 024109 (2016)W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, and F. Neese, J. Chem. Theory Comput. 12, 4778 (2016)T. M. Miller, Electron affinities, in Handbook of Chemistry and Physics, edited by W. M. Haynes, D. R. Lide, and T. J. Bruno, chap. 10, pp. 10–147, CRC Press, Boca Raton, Florida, 2017F. Goldfarb, C. Drag, W. Chaibi, S. Kr ̈oger, C. Blondel, and C. Delsart, J. Chem. Phys. 122, 014308 (2005)S. T. Stokes, J. E. Bartmess, A. Buonaugurio, Y. Wang, S. N. Eustis, and K. H. Bowen, Chem. Phys. Lett. 732, 136638 (2019)E. H. Kim, S. E. Bradforth, D. W. Arnold, R. B. Metz, and D. M. Neumark, J. Chem. Phys. 103, 7801 (1995)D. M. Schrader and C. M. Wang, J. Phys. Chem. 80, 2507 (1976)T. M. Ramond, G. E. Davico, R. L. Schwartz, and W. C. Lineberger, J. Chem. Phys. 112, 1158 (2000)J. B. Kim, T. I. Yacovitch, C. Hock, and D. M. Neumark, Phys. Chem. Chem. Phys. 13, 17378 (2011)X. B. Wang, H. K. Woo, L. S. Wang, B. Minofar, and P. Jungwirth, J. Phys. Chem. A 110, 5047 (2006)H. K. Woo, X. B. Wang, B. Kiran, and L. S. Wang, J. Phys. Chem. A 109, 11395 (2005)Y. Suzuki, S. Hagiwara, and K. Watanabe, Phys. Rev. Lett. 121, 133001 (2018)R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975)R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979)K. R. Brorsen, P. E. Schneider, and S. Hammes-Schiffer, J. Chem. Phys. 149, 044110 (2018)J. Harris, Phys. Rev. A 29, 1648 (1984)Y. Imamura, G. E. Scuseria, and R. M. Martin, J. Chem. Phys. 116, 6458 (2002)A. Nagy and C. Amovilli, Phys. Rev. A 82, 042510 (2010)Wolfram Research, Inc., Mathematica, Version 9.0, 2012, Champaign, ILF. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005)Y. J. Bagul, Int. J. Math. Sci. Engg. Appls. 11, 213 (2017)S. L. Saito, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 171, 60 (2000)M. D ́ıaz-Tinoco, H. H. Corzo, and J. V. Ortiz, J. Chem. Theory Comput. 14, 5881 (2018)M. Tachikawa, H. Sainowo, K. Iguchi, and K. Suzuki, J. Chem. Phys. 101, 5925 (1994)M. Barborini, J. A. Charry, M. Ditte, and A. Tkatchenko, Manuscript in preparation (2021)M. Casula and S. Sorella, J. Chem. Phys. 119, 6500 (2003)S. Fahy, X. W. Wang, and S. G. Louie, Phys. Rev. B 42, 3503 (1990)M. S. Becker, A. A. Broyles, and T. Dunn, Phys. Rev. 175, 224 (1968)N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J. Saykally, J. Chem. Phys. 84, 5308 (1986)P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, J. Chem. Phys. 77, 5593 (1982)J. Charry, L. Pedraza-Gonzalez, and A. Reyes, J. Chem. Phys. 146, 214103 (2017)F. Moncada, L. Pedraza-Gonzalez, J. Charry, M. T. do N. Varella, and A. Reyes, Chem. Sci. 11, 44 (2020)R. Flores-Moreno, E. Posada, F. Moncada, J. Romero, J. Charry, M. Diaz-Tinoco, S. A. Gonzalez, N. F. Aguirre, and A. Reyes, Int. J. Quantum Chem. 114, 50 (2014)Convocatoria Doctorados Nacionales 2016Ministerio de Ciencia Tecnología e Innovación - MincienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80788/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1019037142-2021.pdf1019037142-2021.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf4975883https://repositorio.unal.edu.co/bitstream/unal/80788/2/1019037142-2021.pdf5ff00ac67ab49af2339aec310b00d930MD52THUMBNAIL1019037142-2021.pdf.jpg1019037142-2021.pdf.jpgGenerated Thumbnailimage/jpeg4410https://repositorio.unal.edu.co/bitstream/unal/80788/3/1019037142-2021.pdf.jpgb26ed8144b32df7dddc3438f1ff1c766MD53unal/80788oai:repositorio.unal.edu.co:unal/807882024-08-01 23:11:00.121Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK