Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes

tablas.

Autores:
Rueda Duran, César Augusto
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81128
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81128
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Diseño en ingeniería
Engineering design
Diseño básico
Diseño detallado
Evaluación económica
Metodología
CapEx
Estimación de costos
Basic design
Detailed design
Economic assessment
Methodology
Cost estimation
Rights
closedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_2714c671e8414b01029341da0d0bfdb4
oai_identifier_str oai:repositorio.unal.edu.co:unal/81128
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
dc.title.translated.eng.fl_str_mv Evaluación económica detallada para mejorar los cálculos de diseño conceptual basados en experiencias de la industria en procesos químicos y bioquímicos
title Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
spellingShingle Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
620 - Ingeniería y operaciones afines
Diseño en ingeniería
Engineering design
Diseño básico
Diseño detallado
Evaluación económica
Metodología
CapEx
Estimación de costos
Basic design
Detailed design
Economic assessment
Methodology
Cost estimation
title_short Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
title_full Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
title_fullStr Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
title_full_unstemmed Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
title_sort Detailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processes
dc.creator.fl_str_mv Rueda Duran, César Augusto
dc.contributor.advisor.none.fl_str_mv Cardona Alzate, Carlos Ariel
dc.contributor.author.none.fl_str_mv Rueda Duran, César Augusto
dc.contributor.researchgroup.spa.fl_str_mv Procesos Químicos Cataliticos y Biotecnológicos
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Diseño en ingeniería
Engineering design
Diseño básico
Diseño detallado
Evaluación económica
Metodología
CapEx
Estimación de costos
Basic design
Detailed design
Economic assessment
Methodology
Cost estimation
dc.subject.lemb.spa.fl_str_mv Diseño en ingeniería
dc.subject.lemb.eng.fl_str_mv Engineering design
dc.subject.proposal.spa.fl_str_mv Diseño básico
Diseño detallado
Evaluación económica
Metodología
CapEx
Estimación de costos
dc.subject.proposal.eng.fl_str_mv Basic design
Detailed design
Economic assessment
Methodology
Cost estimation
description tablas.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-03T21:46:32Z
dc.date.available.none.fl_str_mv 2022-03-03T21:46:32Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81128
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81128
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.eng.fl_str_mv M. J. French, Conceptual Design for Engineers. 1985.
G. Palh and W. Beitz, Engineering Design A Systematic Approach, no. 2a. Springer, 1996.
W. Hsu and B. Liu, “Conceptual design: issues and challenges,” Comput. Des., vol. 32, no. 14, pp. 849–850, 2000, doi: 10.1016/S0010-4485(00)00074-9.
B. Lotter, Manufacturing assembly handbook. Butterworths, 1989.
L. Wang, W. Shen, H. Xie, J. Neelamkavil, and A. Pardasani, “Collaborative conceptual design—state of the art and future trends,” Comput. Des., vol. 34, no. 13, pp. 981–996, 2002, doi: 10.1016/S0010-4485(01)00157-9.
G. Stephanopoulos and G. V. Reklaitis, “Process systems engineering: From Solvay to modern bio- and nanotechnology.,” Chem. Eng. Sci., vol. 66, no. 19, pp. 4272–4306, Oct. 2011, doi: 10.1016/j.ces.2011.05.049.
I. E. Grossmann and A. W. Westerberg, “Research challenges in process systems engineering,” AIChE J., vol. 46, no. 9, pp. 1700–1703, Sep. 2000, doi: 10.1002/aic.690460902.
A. D. Little, Chemical Engineering Research. In: KIRKPATRICH, S.D. ed. Twenty-five Years of Chemical Engineering Progress. New York: American Institute of Chemical Engineers, 1933.
D. F. Rudd, “The synthesis of system designs: I. Elementary decomposition theory,” AIChE J., vol. 14, no. 2, pp. 343–349, Mar. 1968, doi: 10.1002/aic.690140223.
T. A. Whitehead et al., “The importance and future of biochemical engineering,” Biotechnol. Bioeng., vol. 117, no. 8, pp. 2305–2318, Aug. 2020, doi: 10.1002/BIT.27364.
F. G. Acién Fernández, B. J. M Fernández Sevilla, and B. E. Molina Grima, “Photobioreactors for the production of microalgae,” Rev Env. Sci Biotechnol, vol. 12, pp. 131–151, 2013, doi: 10.1007/s11157-012-9307-6.
Y. Chacón Perez, D. L. Restrepo Serna, C. A. Cardona Alzate, Y. Chacón Pérez, D. L. Restrerpo Serna, and C. A. Cardona Alzate, “Comparison of Cassava and Sugarcane Bagasse for Fuel Ethanol Production,” in Handbook on Cassava. Production, Potential Uses and Recent Advances, C. Klein, Ed. New York: nova, 2017, pp. 1–28.
M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, and A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products,” J. Anal. Appl. Pyrolysis, vol. 109, pp. 272–277, Sep. 2014, doi: 10.1016/j.jaap.2014.05.023.
T. Ahmed et al., “Biodegradation of plastics: current scenario and future prospects for environmental safety,” Environ. Sci. Pollut. Res., vol. 25, no. 8, pp. 7287–7298, Mar. 2018, doi: 10.1007/s11356-018-1234-9.
M. Gahleitner and C. Paulik, “Polypropylene and Other Polyolefins,” in Brydson’s Plastics Materials, Butterworth-Heinemann, 2017, pp. 279–309.
O. Vogl, “POLYPROPYLENE: AN INTRODUCTION,” J. Macromol. Sci. Part A, vol. 36, no. 11, pp. 1547–1559, Nov. 1999, doi: 10.1081/MA-100101614.
J. M. Asua, Polymer Reaction Engineering. Blackweel Publishing, 2007.
V. Dolle, E. C. Carrion, P.-R. Shöneborn, and H. Terwyen, “Method for deodorizing polyolefin granulates,” US6218504B1, Mar. 07, 1997.
L. M. Fodor and kenneth W. Willcox, “Deodorizing odorous polyolefins with low concentrations of inorganic oxidizing agents,” US5066686A, Jul. 16, 1990.
G. Towler and R. Sinnott, “Capital Cost Estimating,” in Chemical Engineering Design: Principles, Practice and Economics of Plant and Process design, Second., no. 1975, 2013, pp. 307–354.
J. A. S. Richard Turton, Richard C. Bailie, Wallace B. Whiting, “Estimation of Capital Costs,” in Analysis, Synthesis and Design of Chemical Processes, Third., 2008, pp. 182–221.
J. M. Douglas, Conceptual design of chemical processes. 1988.
A. Niazi, J. S. Dai, S. Balabani, and L. Seneviratne, “Product Cost Estimation: Technique Classification and Methodology Review,” J. Manuf. Sci. Eng., vol. 128, no. 2, p. 563, 2006, doi: 10.1115/1.2137750
S. Rehman and M. D. Guenov, “A methodology for modelling manufacturing costs at conceptual design,” Comput. Ind. Eng., vol. 35, no. 3–4, pp. 623–626, 1998, doi: 10.1016/S0360-8352(98)00174-0.
S. P. Darla, “Product Life Cycle Cost Estimation at Early Design : A Review on Techniques and Applications,” Int. J. Eng. Dev. Res., vol. 5, no. 4, pp. 1558–1561, 2017.
M. Ficko, I. Drstvenšek, M. Brezočnik, J. Balič, and B. Vaupotic, “Prediction of total manufacturing costs for stamping tool on the basis of CAD-model of finished product,” J. Mater. Process. Technol., vol. 164–165, pp. 1327–1335, 2005, doi: 10.1016/j.jmatprotec.2005.02.013.
E. M. Shehab and H. S. Abdalla, “A design to cost system for innovative product development,” J. Eng. Manuf., vol. 216, no. 7, pp. 999–1019, 2002, doi: 10.1243/09544050260174201.
A. Gayretli and H. S. Abdalla, “Object-oriented constraints-based system for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 15, no. 2, pp. 133–144, 1999, doi: 10.1016/S0736-5845(99)00007-1.
E. M. Shehab and H. S. Abdalla, “Manufacturing cost modelling for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 17, no. 4, pp. 341–353, 2001, doi: 10.1016/S0736-5845(01)00009-6.
A. R. Venkatachalam, J. M. Mellichamp, and D. M. Miller, “A knowledge-based approach to design for manufacturability,” J. Intell. Manuf., vol. 4, no. 5, pp. 355–366, 1993, doi: 10.1007/BF00123780.
V. V. Aksenov, A. V. Walter, A. A. Gordeyev, and A. V. Kosovets, “Classification of geokhod units and systems based on product cost analysis and estimation for a prototype model production,” IOP Conf. Ser. Mater. Sci. Eng., vol. 91, no. 1, 2015, doi: 10.1088/1757-899X/91/1/012088.
Y. F. Zhang, J. Y. H. Fuh, and W. T. Chan, “Feature-based cost estimation for packaging products using neural networks,” Comput. Ind., vol. 32, no. 1, pp. 95–113, 1996, doi: 10.1016/S0166-3615(96)00059-0.
S. Cavalieri, P. Maccarrone, and R. Pinto, “Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry,” Int. J. Prod. Econ., vol. 91, no. 2, pp. 165–177, 2004, doi: 10.1016/j.ijpe.2003.08.005.
P. Dewhurst and G. Boothroyd, “Early cost estimating in product design,” J. Manuf. Syst., vol. 7, no. 3, pp. 183–191, 1988, doi: 10.1016/0278-6125(88)90003-9.
G. Boothroyd and C. Reynolds, “Approximate cost estimates for typical turned parts,” J. Manuf. Syst., vol. 8, no. 3, pp. 185–193, 1989, doi: 10.1016/0278-6125(89)90040-X.
Y. Wei and P. J. Egbelu, “A framework for estimating manufacturing cost from geometric design data,” Int. J. Comput. Integr. Manuf., vol. 13, no. 1, pp. 50–63, 2000, doi: 10.1080/095119200130054.
C. X. Feng, A. Kusiak, and C. C. Huang, “Cost evaluation in design with form features,” CAD Comput. Aided Des., vol. 28, no. 11, pp. 879–885, 1996, doi: 10.1016/0010-4485(96)00009-7.
J.-Y. Jung, “Manufacturing cost estimation for machined parts based on manufacturing features,” J. Intell. Manuf., vol. 13, no. 4, pp. 227–238, 2002, doi: 10.1023/A:1016092808320.
Y. K. Son, “A cost estimation model for advanced manufacturing systems,” Int. J. Prod. Res., vol. 29, no. 3, pp. 441–452, 1991, doi: 10.1080/00207549108930081.
N. Bernet, M. D. Wakeman, P. E. Bourban, and J. A. Månson, “An integrated cost and consolidation model for commingled yarn based composites,” Compos. - Part A Appl. Sci. Manuf., vol. 33, no. 4, pp. 495–506, 2002, doi: 10.1016/S1359-835X(01)00140-3.
M. M. Sfantsikopoulos, S. C. Diplaris, and P. N. Papazoglou, “Concurrent dimensioning for accuracy and cost,” Int. J. Adv. Manuf. Technol., vol. 10, no. 4, pp. 263–268, 1995, doi: 10.1007/BF01186877.
S. H. Yeo, B. K. A. Ngoi, L. S. Poh, and C. Hang, “Cost-tolerance relationships for non-traditional machining processes,” Int. J. Adv. Manuf. Technol., vol. 13, no. 1, pp. 35–41, 1997, doi: 10.1007/BF01179228.
N. Singh, “Integrated product and process design: A multi-objective modeling framework,” Robot. Comput. Integr. Manuf., vol. 18, no. 2, pp. 157–168, 2002, doi: 10.1016/S0736-5845(01)00030-8.
L. S. Wierda, “Linking design, process planning and cost information by feature-based modelling,” J. Eng. Des., vol. 2, no. 1, pp. 3–19, 1991, doi: 10.1080/09544829108901667.
C. Ou-Yang and T. S. Lin, “Developing and Integrated Framework for Feature-Based Early Manufacturing Cost Estimation,” J. Adv. Manuf. Technol., vol. 13, pp. 618–629, 1997, doi: 10.1007/BF01350820.
D. Ben-Arieh and L. Qian, “Activity-based cost management for design and development stage,” Int. J. Prod. Econ., vol. 83, no. 2, pp. 169–183, 2003, doi: 10.1016/S0925-5273(02)00323-7.
K. Tornberg, M. Jak Msen, and J. Paranko, “Activity-based costing and process modeling for cost-conscious product design: A case study in a manufacturing company,” Int. J. Prod. Econ., vol. 79, pp. 75–82, 2002, doi: 10.1016/S0925-5273(00)00179-1.
E. Noreen, “Conditions under which activity-based cost systems provide relevant costs,” J. Manag. Account. Res., vol. 3, no. 3, pp. 159–168, 1991, [Online]. Available: http://libaccess.mcmaster.ca.libaccess.lib.mcmaster.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9701273049&site=ehost-live&scope=site.
R. Cooper and R. S. Kaplan, “How Cost Accounting Distorts Product Costs,” Manag. Account., vol. 69, no. 10, pp. 20–27, 1988.
M. F. van Amsterdam, “Factorial Techniques applied in Chemical Plant Cost Estimation : A Comparative Study based on Literature and Cases,” Chem. Eng., p. 158, 2018.
AACE International, “Skills and Knowledge of Cost Engineering Skills and Knowledge of Cost Engineering,” 2015.
klemic Jhon, A Method for Presentation of Cost Estimates and Process Economics as. EEUU: UNIVERSIDAD DE ARIZONA, 1956.
M. S. Peters and K. D. Timmerhaus, Plant design and economics for chemical engineers, Fourth Edition. McGRAW-HILL INTERNATIONAL EDITIONS, 1991.
E. D Glandt, M. T Klein, and F. E. Thomas, Plant Design and Economics for Chemical Engineers, Kate Schei., vol. 4, no. 3. McGraw-Hill Chemical Engineering Series., 2002.
K. C. Hansen, J. W. Miller, and C. L. Yaws, “PROCESS FEASIBILITY STUDY IN SUPPORT OF,” Texas, Jul. 1977.
Harry Silla, CHEMICAL PROCESS ENGINEERING , 3rd ed. Ney York: MARCEL DEKKER, 2003.
F. Goodridge and K. Scott, “Cost Estimation, Profit Appraisal, Process Modeling, and Optimization,” in Electrochemical Process Engineering, Springer US, 2008, pp. 245–293.
J. P. Cellucci, V. S. Koslosky, and J. P. Bush, “Cost Estimating.,” RCA Eng, vol. 54, no. 4, pp. 102–103, 1947, doi: 10.4324/9781315529097-3.
W.D. Seider, J.D. Seader, D.R. Lewin, and S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Design. Chemical Engineering, 2009.
R. D. Hill, “What petrochemical Plants Cost,” in Petroleum Refiner, vol. 59, 1956, pp. 106–110.
V. T. Sinha, “Estimating capital costs from an equipment list: A case study,” Eng. Costs Prod. Econ., vol. 14, no. 4, pp. 259–266, Dec. 1988, doi: 10.1016/0167-188X(88)90030-4.
O. P. Kharbanda and E. A. Stallworthy, “Planning for emergencies-lessons from the chemical industry,” Long Range Plann., vol. 22, no. 1, pp. 83–89, Feb. 1989, doi: 10.1016/0024-6301(89)90054-X.
G.T. Wilson, Manual of Economic Analysis of Chemical Processes. 1971.
Taylor and J. H., “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977.
D. E. Garrett, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.
R. D S and C. L H, “Estimate costs of scaled-up process plants,” in Chemical Engineering, 1990, pp. 138–175.
G. A. Buchner, “Techno-Economic Assessment - Methodology Development and the Case of CO2-containing Polyurethane rubbers,” Berlin, 2020.
K. C. Robson and J. Bidder, “Market research in process plant contracting,” Eng. Process Econ., vol. 2, no. 4, pp. 269–279, 1977, doi: 10.1016/0377-841X(77)90005-5.
P. F. Navarrete and C. . William, Control of Chemical Construction Projects. 2001.
R Williams Jr, “Process Equipment Cost Estimating by Ratio and Proportion,” Dec. 1947.
D. S. Remer and L. H. Chai, “Design cost factors for scaling-up engineering equipment,” undefined, 1990.
S. @ Claremont, D. S. Remer, L. H. Chai, D. S. Remer, and L. H. " Chai, “Process Equipment, Cost Scale-up,” Marcel Dekker, Inc, 1993.
O. J. Symister, “An Analysis of Capital Cost Estimation Techniques for Chemical Processing,” institute of Technology of Florida, 2016.
D. A. Huettner, “Shifts of long run average cost curves: Theoretical and managerial implications,” Omega, vol. 1, no. 4, pp. 421–450, Aug. 1973, doi: 10.1016/0305-0483(73)90065-0.
C.H. Chilton, Cost Data Correlated, vol. 56. 1949.
A. Pikulik and H.E. Diaz, “Costs of Individual Equipment,” in Chemical Process Equipment, Elsevier, 2005, pp. 719–728.
R.S. Hall, J. Matley, and K.J. McNaughton, “Current Costs of Process Equipment,” Chemical Engineering, 1982. .
V. W. M, “A potpourri of equipment prices.,” Chem. Eng., vol. 102, no. 8, pp. 68–73, 1995.
D. R. Woods, Rules of thumb in engineering practice. 2007.
R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition. Prentice Hall, 2009.
J.R. Couper, W.R. Penney, J.R. Fair, and S.M. Walas, chemical process equipment walas third edition, vol. 2. Chemical Process Equipment, 2009.
D. S. Remer, L. Huynh, K. Agarwal, B. J. Auchard, and T. Heaps-Nelson, “A compilation of inflation and location indexes,” Int. J. Prod. Econ., vol. 54, no. 1, pp. 41–55, Jan. 1998, doi: 10.1016/S0925-5273(97)00121-7.
P. KOHN and K. PM, “CE COST INDEXES MAINTAIN 13-YEAR ASCENT.,” CE COST INDEXES Maint. 13-YEAR ASCENT., pp. 189–190, 1978.
J. Matley, “CE cost indexes set slower pace,” in Chemical Engineering, vol. 92, Flexicon, 1985, pp. 75–76.
G. A. Prochazka, G. Towler, and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. 2008.
R. Williams J, Standardizing Cost Data on Process Equipment, vol. 54. Chemical Engineering, 1947.
D. J. Brennan and K. A. Golonka, “New Factors for Capital Cost Estimation in Evolving Process Designs,” Chem. Eng. Res. Des., vol. 80, no. 6, pp. 579–586, Sep. 2002, doi: 10.1205/026387602760312773.
P. Cheali, K. V. Gernaey, and G. Sin, “Uncertainties in Early-Stage Capital Cost Estimation of Process Design – A Case Study on Biorefinery Design,” Front. Energy Res., vol. 3, no. FEB, p. 3, Feb. 2015, doi: 10.3389/fenrg.2015.00003.
C. H. Chilton, Cost data correlated Chilton, Chemical E. Chemical Engineering, 1949.
J. L. Sorrels and T. G. Walton, “Section 1 Introduction-2-Chapter 2 Cost Estimation: Concepts and Methodology,” 2017.
F. Yin, G. X. Huang, and D. Q. Chen, “Finite iterative algorithms for solving generalized coupled Sylvester systems-Part II: Two-sided and generalized coupled Sylvester matrix equations over reflexive solutions,” Appl. Math. Model., vol. 36, no. 4, pp. 1604–1614, Apr. 2012, doi: 10.1016/j.apm.2011.09.025.
Robert Sancier Aries and Robert D. Newton, Chemical Engineering Cost Estimation. 1955.
H.C. Bauman, chemical engineering plant . London: Reinhold Publishing Corporation, 1964.
H. J. S. Petersen, “Calculation of sales price considering dividend and interest payments, tax and inflation,” Eng. Process Econ., vol. 2, no. 2, pp. 139–142, Jun. 1977, doi: 10.1016/0377-841X(77)90027-4.
K. Suaysompol and R. M. Wood, “Estimation of the installed cost of heat exchanger networks,” Int. J. Prod. Econ., vol. 29, no. 3, pp. 303–312, May 1993, doi: 10.1016/0925-5273(93)90035-J.
Robert Sancier Aries and Robert D Newton, Chemical engineering cost estimation . New York, 1955.
R. . Aries and R. . Newton, Chemical Engineering Cost Estimation . 1955.
P. Max S and T. Klaus D, Plant Design & Economics for Chemical Engineers, 4th ed. New York: Chemical Engineering, 1991.
Eia, “Engineering Economic Analysis Guide: Liquid Fuels Technologies,” Dec. 2015.
Mahmoud M and EL-Halwagi, Sustainable Design Through Process Integration. ELSEVIER, 2017.
Bejan Adrian, Tsatsaronis George, and Moran Michael, Thermal Design and Optimization, 2nd ed. New York: Mechaical Engineering, 1996.
A. Z. Marouli and Z. B. Maroulis, “Cost data analysis for the food industry,” J. Food Eng., vol. 67, no. 3, pp. 289–299, Apr. 2005, doi: 10.1016/j.jfoodeng.2004.04.031.
Z. B. Maroulis and G. D. Saravacos, Food Plant Economics. CRC Press, 2007.
Za. B. Maroulis and G. D. Saravacos, Food Process Design . 2003.
A. Bartholomai, Food Factories: Processes, Equipment, Costs (9780895735546): Bartholomai, Alfred: Books. VCH, 1987.
R. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1997.
I. Turunen, M. Järveläinen, and M. Dohnal, “Fuzzy approach to factorial cost estimation of chemical plants,” Eng. Costs Prod. Econ., vol. 7, no. 4, pp. 279–292, 1984, doi: 10.1016/0167-188X(84)90045-4.
J. S. S. White and J. L. O’Donnell, “Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species,” Ecology, vol. 91, no. 12, pp. 3538–3548, Dec. 2010, doi: 10.1890/09-2322.1.
T. K. Geberemariam, “Deterministic and Probabilistic Engineering Cost Estimating Approaches for Complex Urban Drainage Infrastructure Capital Improvement (CIP) Programs,” Nov. 2018, doi: 10.20944/preprints201811.0259.v1.
J. Happel and J. Donald G, “Chemical process economics,” Eng. Process Econ., vol. 2, no. 1, pp. 78–79, Mar. 1977, doi: 10.1016/0377-841x(77)90069-9.
K. Khumphreys, “PROJECT AND COST ENGINEERS’ HANDBOOK, Fourth Edition,” 2005.
D. E. Garrett, Chemical Engineering Economics. Springer Netherlands, 1989.
T E Wolf and P E Land, “Lang Factor Cost Estimating,” Texas, 2021.
J. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, Nov. 1977, doi: 10.1016/0377-841X(77)90004-3.
B. Amigun and H. Von Blottnitz, “Capital cost prediction for biogas installations in Africa: Lang factor approach,” Environ. Prog. Sustain. Energy, vol. 28, no. 1, pp. 134–142, Apr. 2009, doi: 10.1002/ep.10341.
J. Y. Kim, S. Salim, J. M. Cha, and S. Park, “Development of total capital investment estimation module for waste heat power plant,” Energies, vol. 12, no. 8, Apr. 2019, doi: 10.3390/en12081492.
S. Lemmens, “Cost engineering techniques & their applicability for cost estimation of organic rankine cycle systems,” Energies, vol. 9, no. 7, 2016, doi: 10.3390/en9070485.
J. Clerk, “APPENDIX 1 EQUIPMENT COST ESTIMATES,” 1963.
J. Loh, “Process Equipment Cost Estimation Final Report,” United State, 2002.
R. S. Aries, Chemical Engineering Cost Estimation . 1955.
H. P. Loh, J. Lyons, and C. W. White, “Process Equipment Cost Estimation, Final Report,” Pittsburgh, PA, and Morgantown, WV (United States), Jan. 2002. doi: 10.2172/797810.
R. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1960.
G. K M, Data and techniques for preliminary capital cost estimating., McGraw-Hil., vol. 76. Chemical Engineering, 1969.
J Cran, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.
J. D. Yeakel et al., “Diverse interactions and ecosystem engineering can stabilize community assembly,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-17164-x.
D. Nelson, “THE ANALYSIS AND VALUATION OF DISRUPTION,” 2013.
G. D. Nichols, “Process Automation Technologies: Cost estimating for process analyzer projects,” 2007.
D. R. Woods, Rules of Thumb in Engineering Practice, WILEY-VCH. WILEY-VCH, 2007.
H. Markowitz, “Portfolio Selection,” 1952.
I. Cerón-Salazar and C. Cardona-Alzate, “Integral evaluation process for obtaining pectin and essential oil from orange peel,” Ing. y Cienc., vol. 7, no. 13, pp. 65–86, 2011, Accessed: Aug. 03, 2017. [Online]. Available: http://www.scielo.org.co/pdf/ince/v7n13/v7n13a04.pdf.
R. J. Wooley and V. Putsche, “NREL/MP-425-20685 Development of an Aspen Pus property database for biofuels components,” National Renewable Energy Laboratory, 1996.
Y. Zhang, “Review of recent advances on energy efficiency of machine tools for sustainability,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 12, pp. 2095–2108, 2015, doi: 10.1177/0954405414539490.
J. Paetzold, M. Kolouch, V. Wittstock, and M. Putz, “Methodology for Process-independent Energetic Assessment of Machine Tools,” Procedia Manuf., vol. 8, no. October 2016, pp. 254–261, 2017, doi: 10.1016/j.promfg.2017.02.032.
C. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int. J. Hydrogen Energy, vol. 2, 2017, doi: 10.1016/j.ijhydene.2017.01.073.
X. Meng, W. de Jong, N. Fu, and A. H. M. Verkooijen, “Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gas distribution and tar formation,” Biomass and Bioenergy, vol. 35, no. 7, pp. 2910–2924, Jul. 2011, doi: 10.1016/J.BIOMBIOE.2011.03.028.
C. Sheng and J. L. T. Azevedo, “Estimating the higher heating value of biomass fuels from basic analysis data,” Biomass and Bioenergy, vol. 28, no. 5, pp. 499–507, 2005, doi: 10.1016/j.biombioe.2004.11.008.
C. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J. Environ. Manage., Apr. 2017, Accessed: Aug. 10, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0301479717303705.
V. Aristizábal Marulanda, “Jet biofuel production from agroindustrial wastes through furfural platform,” Universidad Nacional de Colombia, 2015.
G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind. Eng. Chem. Res., vol. 51, no. 5, pp. 2309–2328, 2012, doi: 10.1021/ie102116e.
A. S. Erses Yay, “Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya,” J. Clean. Prod., vol. 94, pp. 284–293, 2015, doi: 10.1016/j.jclepro.2015.01.089.
S. H. Duque, C. A. Cardona, and J. Moncada, “Techno-Economic and Environmental Analysis of Ethanol Production from 10 Agroindustrial Residues in Colombia,” Energy Fuels, vol. 29, no. 2, pp. 775–783, 2015.
C. A. C. Cardona, V. F. Marulanda, and D. Young, “Analysis of the environmental impact of butylacetate process through the WAR algorithm,” Chem. Eng. Sci., vol. 59, no. 24, pp. 5839–5845, Dec. 2004, doi: 10.1016/j.ces.2004.06.043.
C. Flavin, W. D. (USA) eng Worldwatch Inst., O. Tunali, and J. A. (ed. . Peterson, “Climate of hope: new strategies for stabilizing the world’s atmosphere.” Washington, DC (USA) Worldwatch Inst., 1996, Accessed: Jul. 21, 2017. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=XF2015030474.
A. C. Wilkie, K. J. Riedesel, J. M. Owens, and A. C. Wilkie, “Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks,” Biomass and Bioenergy, vol. 19, no. 2, pp. 63–102, 2000, doi: 10.1016/S0961-9534(00)00017-9.
B. Kim and S. Sarkar, “Impact of wildfires on some greenhouse gases over continental USA: A study based on satellite data,” Remote Sens. Environ., vol. 188, pp. 118–126, 2017, doi: 10.1016/j.rse.2016.10.047.
D. Young, R. Scharp, and H. Cabezas, “The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics,” Waste Manag., vol. 20, no. 8, pp. 605–615, Dec. 2000, doi: 10.1016/S0956-053X(00)00047-7.
D. M. Young and H. Cabezas, “Designing sustainable processes with simulation: The waste reduction (WAR) algorithm,” Comput. Chem. Eng., vol. 23, no. 10, pp. 1477–1491, 1999, doi: 10.1016/S0098-1354(99)00306-3.
M. Fermeglia, G. Longo, and L. Toma, “A hierarchical approach for the estimation of environmental impact of a chemical process: from molecular modeling to process simulation,” Comput. Aided Chem. Eng., vol. 24, pp. 1199–1204, Jan. 2007, doi: 10.1016/S1570-7946(07)80224-0.
Q. Chen and X. Feng, “Potential environmental impact (PEI) analysis of reaction processes,” Comput. Aided Chem. Eng., vol. 15, pp. 748–753, Jan. 2003, doi: 10.1016/S1570-7946(03)80396-6.
J. I. Chang and C.-C. Lin, “A study of storage tank accidents,” J. Loss Prev. Process Ind., vol. 19, no. 1, pp. 51–59, Jan. 2006, doi: 10.1016/j.jlp.2005.05.015.
J. F. Ross, “Equipment and Buildings,” in Handbook for Radio Engineering Managers, Elsevier, 1980, pp. 516–528.
API 650, Welded Steel Tanks for Oil Storage, 12th ed., no. C65012. Washington, USA: API Publishing Services, 2013.
G. Description, “Settling Ponds and Sedimentation,” in Pollution Control Handbook for Oil and Gas Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016, pp. 1043–1046.
L. Stander and L. Theodore, “Pollution Prevention Act (PPA),” in Environmental Regulatory Calculations Handbook, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008, pp. 453–528.
ASME, “Boiler and Pressure Vessel Code Section VIII: Division 1 & 2,” Am. Soc. Mech. Eng., 2019.
A. Toudehdehghan and T. W. Hong, “A critical review and analysis of pressure vessel structures,” in IOP Conference Series: Materials Science and Engineering, Jan. 2019, vol. 469, no. 1, doi: 10.1088/1757-899X/469/1/012009.
S. Chattopadhyay, Pressure Vessels: Design and Practice. CRC Press, 2004.
J. J. Proczka, K. Muralidharan, D. Villela, J. H. Simmons, and G. Frantziskonis, “Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage,” Energy Convers. Manag., vol. 65, no. 2013, pp. 597–605, Jan. 2013, doi: 10.1016/j.enconman.2012.09.013.
F. Lees, “Storage,” in Lees’ Loss Prevention in the Process Industries, 3rd ed., Texas, USA: Elsevier, 2012, pp. 1889–1985.
S. Lee, Y. Park, and B. Kim, “Offshore Production Plant,” in Offshore Petroleum Drilling and Production, pp. 661–665.
“MAJOR HAZARDS AND THEIR MANAGEMENT, Appendix 1 - safety assessment of an LPG storage site,” 1992. .
M. D. Tusiani and G. Shearer, “LNG Import Terminals,” in LNG: Fuel for a Changing World—A Nontechnical Guide, 2nd ed., 2016, pp. 369–393.
“Propylene-Storage and Handling,” Wiley Critical Content - Petroleum Technology, 2007. .
S. Mokhatab, J. Y. Mak, J. V. Valappil, and D. A. Wood, “Natural Gas Liquefaction,” in Handbook of Liquefied Natural Gas, Elsevier, 2014, pp. 147–183.
NFPA® 59, Utility LP-Gas Plant Code, 2012th ed. Quincy, Massachusetts: National Fire Protection Association ®, 2012.
API 2510, Design and construction of LPG installations, Eight edit., no. 2510. American Petroleum Institute, 2001.
“NFPA 58,” in Liquefied Petroleum Gas Code, 2017th ed., National Fire Protection Association ®, 2014, pp. 1–166.
D. L. Burdick and W. L. Leffler, “Olefin plants, ethylene, and propylene,” in Petrochemicals in nontechnical language, 3rd ed., PennWell, 2001, pp. 65–85.
S. Dubovski, “Gathering Systems and Processing Facilities Risk Analysis,” in Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering, IGI Global, 2014, pp. 218–246.
Đ. Dobrota, B. Lalić, and I. Komar, “Problem of Boil - off in LNG Supply Chain,” Trans. Marit. Sci., vol. 2, no. 2, pp. 91–100, Oct. 2013, doi: 10.7225/toms.v02.n02.001.
R. J. Falkiner and A. Pickard, “Chapter 6 | Liquefied Petroleum Gas,” in Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 2nd Edition, 2nd ed., G. Totten, R. Shah, and D. Forester, Eds. West Conshohocken, PA: ASTM International, 2019, pp. 145–178.
H. Belyadi, E. Fathi, and F. Belyadi, “Hydraulic Fracturing Chemical Selection and Design,” in Hydraulic Fracturing in Unconventional Reservoirs, Gulf Professional Publishing, 2017, pp. 107–120.
B. Sharda and S. J. Bury, “Bottleneck analysis of a chemical plant using discrete event simulation,” in Proceedings of the 2010 Winter Simulation Conference, Dec. 2010, no. 2009, pp. 1547–1555, doi: 10.1109/WSC.2010.5678916.
R. Botermans and P. Smith, “Relief Systems,” in Advanced Piping Design, Gulf Publishing Company, 2008, pp. 183–196.
S. Moran, “How to do hydraulic calculations,” in An Applied Guide to Process and Plant Design, 2nd ed., Elsevier, 2019, pp. 153–166.
A. A. Wordu and B. Peterside, “Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant,” Int. J. Eng. Technol., vol. 3, no. 1, pp. 44–49, 2013.
W. Pridasawas and P. Lundqvist, “An exergy analysis of a solar-driven ejector refrigeration system,” Sol. Energy, vol. 76, no. 4, pp. 369–379, Apr. 2004, doi: 10.1016/j.solener.2003.11.004.
D. Kern, “Evaporation,” in Process heat transfer, Internatio., McGraw-Hill, 2011, pp. 375–452.
E. Edition, “API specification for oil and gas separators.,” no. October 2008, 1973.
D. W. Green and R. H. Perry, “Perry’s Chemical Engineers’ Handbook,” in Perry’s Chemical Engineers’ Handbook, 8th editio., New York, pp. 2-446,502.
American Petroleum Institute, Pressure-relieving and depressuring Systems -API 521. Washington, USA, 2007.
MarketsandMarketsTM, “Foam Glass Market by Type (open cell and Closed Cell), Process (Physical and Chemical), Application (Building & Industrial Insulation and Chemical Processing Systems), End-Use Industry (Building & Construction and Industrial) - Global Forecast to 2024,” Market reasearch report - CH 7217, 2019. .
American Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, no. August, p. 154, 2014.
American Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, p. 154, 2014.
A. P. Institute, “Flanged Steel Pressure- relief Valves,” no. April 2009, 2015.
API 521, Pressure-relieving and Depressuring Systems, no. CX52105. Washington, DC: American Petroleum Institute, 2007.
K. I. M. Al-Malah, Aspen Plus®. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016.
Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH) and the Dirección General Marítima (Dimar), “Boletín Meteomarino Mensual del Caribe Colombiano - No. 79/ Julio 2019,” 2019. .
J. L. Woodward, Estimating the Flammable Mass of a Vapor Cloud. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1999.
K. V. Reddy, “Chemical process plants: Plan for revamps,” Chemical Engineering, vol. 122, no. 12. 2015, Accessed: Jul. 23, 2021. [Online]. Available: https://www.chemengonline.com/chemical-process-plants-plan-revamps/.
N. Van Duc Long and M. Lee, “Debottlenecking the retrofitted thermally coupled distillation sequence,” Ind. Eng. Chem. Res., vol. 52, no. 35, pp. 12635–12645, Sep. 2013, doi: 10.1021/ie401140v.
D. F. Schneider, C. Engineer, S. Engineering, S. Engineering, and L. City, “Debottlenecking Options and Optimization,” 1997. Accessed: Jul. 23, 2021. [Online]. Available: http://www.stratusengr.com/Articles/DebottleOptions.pdf.
J. Zhang, X. X. Zhu, and G. P. Towler, “A Level-by-Level Debottlenecking Approach in Refinery Operation,” Ind. Eng. Chem. Res., vol. 40, no. 6, pp. 1528–1540, Mar. 2001, doi: 10.1021/IE990854W.
D. B. Litzen and J. L. Bravo, “Uncover Low-Cost Debottlenecking Opportunities,” Chem. Eng. Prog., vol. 95, no. 2–3, pp. 25–32, 1999.
N. V. D. Long and M. Lee, “Improved energy efficiency in debottlenecking using a fully thermally coupled distillation column ,” ASIA-PACIFIC J. Chem. Eng. Asia-Pac. J. Chem. Eng, vol. 6, pp. 338–348, 2011, doi: 10.1002/apj.577.
T. Sakai, “Screw extrusion technology — past, present and future,” Polimery, vol. T. 58, nr 11–12, 2013.
G. T. TODHUNTER, “ROTARY VALVES.,” no. (MARCH, 1973), 1973, Accessed: Jul. 23, 2021. [Online]. Available: https://www.coperion.com/en/products-services/process-equipment/rotary-valves.
Z. Systems, “CFH rotary feeder - Zeppelin Systems.” https://www.zeppelin.com/de-en/systems/p/zsd/cfh-rotary-feeder-Z_ZIMSER_P97993_00021/ (accessed Jul. 23, 2021).
E. Com and / Finalcontrol, “KEYSTONE KNIFE GATE VALVES FIGURE 952 POLYURETHANE,” 2017. https://www.emerson.com/documents/automation/data-sheets-knife-gate-valves-figure-952-polyurethane-keystone-en-en-5193690.pdf (accessed Jul. 23, 2021).
DeZURIK, “Knife gate valves brochure,” Seal. Technol., vol. 2000, no. 77, p. 6, 2000, doi: 10.1016/s1350-4789(00)90265-4.
“MAAG | Centrifugal dryers Underwater pelletizing.” https://maag.com/products/pelletizing-systems/dryers/ (accessed Jul. 23, 2021).
S. Ravi, M. Sudha, and P. A. Balakrishnan, “Design of Intelligent Self-Tuning GA ANFIS Temperature Controller for Plastic Extrusion System,” Model. Simul. Eng., vol. 2011, 2011, doi: 10.1155/2011/101437.
C. Rauwendaal, Polymer Extrusion, 5th ed., vol. 65. 2014.
C. Teixeira, R. Faria, J. A. Covas, and A. Gaspar-Cunha, “Solving the twin screw extrusion configuration problem: A plasticating modelling program,” Proc. 5th Int. Conf. Eng. Comput. Technol., 2006, doi: 10.4203/CCP.84.23.
Z. Jiang, Y. Yang, S. Mo, K. Yao, and F. Gao, “Polymer extrusion: From control system design to product quality,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14759–14770, Nov. 2012, doi: 10.1021/IE301036C.
B. Singh, C. Sharma, and S. Sharma, “Fundamentals of extrusion processing,” in Novel Food Processing Technologies, no. May, V. Nanda and S. Sharma, Eds. New Delhi: Novel Food Processing Technologies, 2017, pp. 1–46.
J. Albrecht, “Revamp and Upgrade Possibilities in Sulphuric Acid Plants,” Procedia Eng., vol. 138, pp. 184–198, 2016, doi: 10.1016/j.proeng.2016.02.076.
Hisham A. Maddah, “Polypropylene as a Promising Plastic: A Review,” Am. J. Polym. Sci., vol. 6, no. 1, pp. 1–11, 2016, doi: 10.5923/J.AJPS.20160601.01.
R. J. O’Leary, A. L. Miller, J. Hasselbach, and M. W. Johnson, “Rotary valve for handling solid particulate material,” Dec. 16, 2005.
D. Mills, “Pipeline feeding devices,” in Pneumatic Conveying Design Guide, Second., Elsevier, 2004.
ANTEC 2009 Plastics: Annual Technical Conference Proceedings, “Experimental Analysis of the Underwater Pelletizing system for Producing Pellets,” Soc. Plast. Eng., 2009. https://app.knovel.com/web/view/khtml/show.v/rcid:kpANTECPX1/cid:kt006PTZ4O/viewerType:khtml//root_slug:antec-2009-plastics-annual/url_slug:experimental-analysis?b-q=dryer pelletizer&sort_on=default&b-subscription=true&b-group-by=true&page=33&b-sort-on=de (accessed Mar. 03, 2021).
J. G. Drobny, “Processing Methods Applicable to Thermoplastic Elastomers,” Handb. Thermoplast. Elastomers, pp. 29–160, 2007, doi: 10.1016/B978-081551549-4.50005-0.
J. Dobbelaar, W. Hibinger, and P. Keller, “Removing residual volatiles from polymer dispersions,” Jun. 23, 1999.
G. Mulgrew and G. L. Pitman, “Polymer treatment for separating volatile material.”
M. K. Gupta, “Deodorization,” in Practical Guide to Vegetable Oil Processing, Elsevier, 2017, pp. 217–247.
F. Shahidi, “Bailey’s Industrial Oil and Fat Products, Volumes 1-6 (6th Edition),” Bailey’s Ind. Oil Fat Prod., pp. 303–332, 2005, Accessed: Jul. 23, 2021. [Online]. Available: http://dx.doi.org/10.1002/047167849X.bio005.
W. Hubinger, G. Staufer, and P. Keller, “STRIPPING TUBE WITH CONTRACORRENT OPERATION.,” Oct. 12, 1999.
C. T. Zehnder, “Deodorization,” in Practical Handbook of Soybean Processing and Utilization, Elsevier, 1995, pp. 239–257.
R. W. Bobst, B. J. Garner, and F. W. Jacob, “Degassing process for removing unpolymerized monomers from olefin polymers,” Aug. 11, 1981.
G. Zeitler, R. Paatz, V. Gierth, D. Moorwessel, and W. Schoene, “Process for removing highly odorous components from particulate olefine polymers,” Mar. 22, 1979.
A. De San Luis, C. C. Santini, Y. Chalamet, and V. Dufaud, “Removal of Volatile Organic Compounds from Bulk and Emulsion Polymers: A Comprehensive Survey of the Existing Techniques,” Ind. Eng. Chem. Res., vol. 58, no. 27, pp. 11601–11623, Jul. 2019, doi: 10.1021/ACS.IECR.9B00968.
H. Kim‐Kang, “Volatiles in packaging materials,” http://dx.doi.org/10.1080/10408399009527527, vol. 29, no. 4, pp. 255–271, Jan. 2009, doi: 10.1080/10408399009527527.
C. M. H. Grein and R. R. E. Bercx, “Method for preparing of polypropylene pellets,” Jul. 07, 2016.
N. A. and R. A. Office of the Federal Register, “21 CFR 177.1520 - Olefin polymers.,” govinfo.gov, Apr. 2011, Accessed: Jul. 23, 2021. [Online]. Available: https%3A%2F%2Fwww.govinfo.gov%2Fapp%2Fdetails%2FCFR-2011-title21-vol3%2FCFR-2011-title21-vol3-sec177-1520%2Fcontext.
Q. Xiang, M. Xanthos, S. H. Patel, and S. Mitra, “Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins,” Adv. Polym. Technol., vol. 21, no. 4, pp. 235–242, Dec. 2002, doi: 10.1002/ADV.10027.
J. G. M. S. Monteiro, O. De Queiroz Fernandes Araújo, and J. L. De Medeiros, “Sustainability metrics for eco-technologies assessment, part I: Preliminary screening,” Clean Technol. Environ. Policy, vol. 11, no. 2, pp. 209–214, 2009, doi: 10.1007/S10098-008-0189-9.
S. I. Mussatto, L. M. Aguiar, M. I. Marinha, R. C. Jorge, and E. C. Ferreira, “Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production,” Bioresour. Technol., vol. 198, pp. 673–681, Dec. 2015, doi: 10.1016/J.BIORTECH.2015.09.060.
S. Meramo-Hurtado, C. Alarcón-Suesca, and Á. D. González-Delgado, “Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia,” J. Clean. Prod., vol. 248, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119285.
A. Velásquez-Barrios et al., “Analysis of the environmental impact using the waste reduction algorithm in polypropylene production by applying grade transitions strategies in Colombia,” Environ. Sci. Pollut. Res., vol. 26, no. 35, pp. 35533–35542, Dec. 2019, doi: 10.1007/S11356-019-05493-4.
D. Nissim, “EBITDA, EBITA, or EBIT?,” SSRN Electron. J., Aug. 2017, doi: 10.2139/SSRN.2999675.
E. Topal, “Evaluation of a mining project using Discounted Cash Flow analysis, Decision Tree analysis, Monte Carlo Simulation and Real Options using an example,” Int. J. Min. Miner. Eng., vol. 1, no. 1, pp. 62–76, 2008, doi: 10.1504/IJMME.2008.020457.
P. Fernández, “WACC: Definition, Misconceptions, and Errors,” Bus. Valuat. Rev., vol. 29, no. 4, pp. 138–144, 2010, doi: 10.5791/0897-1781-29.4.138.
S. Stelling, T. Yanuar, R. Syah, R. Indrawati, and D. Dewanto, “Role of Payback Period, ROI, and NPV for Investment in Clinical Health Business,” Int. Adv. Res. J. Sci. Eng. Technol. ISO, vol. 3297, 2007, doi: 10.17148/IARJSET.2018.5714.
B. C. Kim, E. Shim, and K. F. Reinschmidt, “Probability distribution of the project payback period using the equivalent cash flow decomposition,” Eng. Econ., vol. 58, no. 2, pp. 112–136, Apr. 2013, doi: 10.1080/0013791X.2012.760696.
“Weighted Average Cost of Capital | EME 801: Energy Markets, Policy, and Regulation.” https://www.e-education.psu.edu/eme801/node/585 (accessed Jul. 23, 2021).
“Environmental Optimization Using the Waste Reduction Algorithm (WAR),” EPA, Aug. 2011. https://nepis.epa.gov/Exe/tiff2png.exe/P100DZKT.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX DATA%5C11THRU15%5CTIFF%5C00000238%5CP100DZKT.TIF (accessed Jul. 23, 2021).
L. Petrescu and C. C. Cormos, “Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage,” J. Clean. Prod., vol. 104, pp. 220–235, Oct. 2015, doi: 10.1016/J.JCLEPRO.2014.08.064.
P. Polyolefins Group, “Polypropylene (PP),” Environmental Product Declarations of the European Plastics Manufacturers.
R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic Acid Technology,” Adv. Mater., vol. 12, no. 23, pp. 1841–1846, Dec. 2000, doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.
O. Avinc and A. Khoddami, “Overview of Poly(lactic acid) (PLA) Fibre,” Fibre Chem., vol. 41, no. 6, pp. 391–401, Nov. 2009, doi: 10.1007/s10692-010-9213-z.
T. W. Yoo, H. G. Yoon, S. J. Choi, M. S. Kim, Y. H. Kim, and W. N. Kim, “Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends,” Macromol. Res., vol. 18, no. 6, pp. 583–588, Jun. 2010, doi: 10.1007/s13233-010-0613-y.
S. Lee and Y. Koo, “Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm,” Simulation, vol. 14, pp. 1163–1169, 2004.
D.-J. Min, K. H. Choi, Y. K. Chang, and J.-H. Kim, “Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth,” Korean J. Chem. Eng., vol. 28, no. 10, pp. 1969–1974, Oct. 2011, doi: 10.1007/s11814-011-0082-9.
S. Şahin, Ş. İsmail Kırbaşlar, and M. Bilgin, “(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems,” J. Chem. Thermodyn., vol. 41, no. 1, pp. 97–102, Jan. 2009, doi: 10.1016/j.jct.2008.07.014.
L. Domingues, P. A. Cussolin, J. L. da Silva, L. H. de Oliveira, and M. Aznar, “Liquid–liquid equilibrium data for ternary systems of water+lactic acid+C4–C7 alcohols at 298.2K and atmospheric pressure,” Fluid Phase Equilib., vol. 354, pp. 12–18, Sep. 2013, doi: 10.1016/j.fluid.2013.06.007.
S. I. Mussatto, M. Fernandes, I. M. Mancilha, and I. C. Roberto, “Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain,” Biochem. Eng. J., vol. 40, no. 3, pp. 437–444, Jul. 2008, doi: 10.1016/J.BEJ.2008.01.013.
E. T. H. Vink, K. R. Ra´bagora´bago, D. A. Glassner, and P. R. Gruber, “Applications of life cycle assessment to NatureWorks TM polylactide (PLA) production,” doi: 10.1016/S0141-3910(02)00372-5.
S. Petrou and A. Gray, “Economic evaluation using decision analytical modelling: Design, conduct, analysis, and reporting,” Res. Methods Report., vol. 342, no. 7808, pp. 1–6, May 2011, doi: 10.1136/bmj.d1766.
I. Reymen, H. Berends, R. Oudehand, and R. Stultiëns, “Decision making for business model development: a process study of effectuation and causation in new technology-based ventures,” R&D Manag., vol. 47, no. 4, pp. 595–606, Sep. 2017, doi: 10.1111/radm.12249.
A. J. H. Nel, J. C. Vosloo, and M. J. Mathews, “Financial model for energy efficiency projects in the mining industry,” Energy, vol. 163, pp. 546–554, Nov. 2018, doi: 10.1016/j.energy.2018.08.154.
“The Association for the Advancement of Cost Estimating International (AACE International).” .
I. Horváth, “On some Crucial Issues of Computer Support of Conceptual Design,” in Product Engineering, Dordrecht: Kluwer Academic Publishers, 2004, pp. 123–142.
M. P. Weiss, A. Hari, and A. Zonnenshain, “Design of the concept of a new system, using ICDM - Integrated, Customer Driven, Conceptual Design Method,” INCOSE Int. Symp., vol. 12, no. 1, pp. 980–988, 2002, doi: 10.1002/j.2334-5837.2002.tb02564.x.
T. Keinonen and R. Takala, Product Concept Design A Review of the Conceptual Design of Products in Industry. Springer, 2006.
F. G. Albrecht, D. H. König, N. Baucks, and R. U. Dietrich, “A standardized methodology for the techno-economic evaluation of alternative fuels – A case study,” Fuel, vol. 194, pp. 511–526, Apr. 2017, doi: 10.1016/j.fuel.2016.12.003.
D. Manca, A. Fini, and M. Oliosi, Dynamic Conceptual Design under Market Uncertainty and Price Volatility, vol. 29. 2011.
D. Manca, A. Conte, and R. Barzaghi, “How to account for market volatility in the conceptual design of chemical processes,” Chem. Eng. Trans., vol. 43, pp. 1333–1338, 2015, doi: 10.3303/CET1543223.
D. Manca, “Price model of electrical energy for PSE applications,” Comput. Chem. Eng., vol. 84, pp. 208–216, Jan. 2016, doi: 10.1016/j.compchemeng.2015.08.013.
D. Manca and R. Grana, “Dynamic conceptual design of industrial processes,” Comput. Chem. Eng., vol. 34, no. 5, pp. 656–667, May 2010, doi: 10.1016/j.compchemeng.2010.01.004.
P. Sorknæs, H. Lund, and A. N. Andersen, “Future power market and sustainable energy solutions - The treatment of uncertainties in the daily operation of combined heat and power plants,” Appl. Energy, vol. 144, pp. 129–138, Apr. 2015, doi: 10.1016/j.apenergy.2015.02.041.
C. Cardona, J. Moncada, and V. Aristizabal, “Design strategies for sustainable biorefineries,” Biochem. Eng. J., vol. 116, pp. 122–134, 2016, doi: 10.1016/j.bej.2016.06.009.
American Petroluem Institute (API), “API 660 - Shell-and-tube heat exchangers for general refinery services,” pp. 1–38, 2001.
R. K. Shah and D. P. Sekuli, Selection of Heat Exchangers and Their Components. 2007.
R. Mukherjee, “Effectively design hell-and-tube heat exchangers,” Chemical Engineering Progress, vol. 94, no. 2, pp. 21–37, 1998.
Tubular Exchanger Manufacturers Association Inc (TEMA), Standard of the Tubular Exchanger Manufacturers Association, Ninth. Tarrytown, New York 10591: TEMA, 2007.
B. Nesbitt, Ed., “Pump theory,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 145–148.
B. Nesbitt, Ed., “Pumps and piping systems,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 157–158.
J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo, and C. A. Cardona, “Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case,” Energy, vol. 33, no. 3, pp. 385–399, 2008, doi: 10.1016/J.ENERGY.2007.10.001.
R. Gomilšek, L. Čuček, M. Homšak, and Z. Kravanja, “Towards GHG emissions neutrality of aluminium slug production: An industrial study,” Chem. Eng. Trans., vol. 76, pp. 217–222, 2019, doi: 10.3303/CET1976037.
dc.relation.references.spa.fl_str_mv M. E. Tovar de Rivera, “ESTIMACION DE COSTO DE INVERSION DE PLANTAS QUIMICIAS,” Colombia, 2021.
J. Mascareñas, “El coste del capital,” MADRID, Mar. 2001.
E. News, “ESTIMACIÓN DEL COSTE DEL CAPITAL ‰ Distribución de Costes del Capital,” Chem. Eng., vol. 12, 2020.
Guillermo Larcarnarqué, “ESTIMACION DE COSTOS DE INVERSION EN PLANTAS PETROQUIMICAS.” Educación en Ingeniería Química, 2017.
D. Guillermo L, Finanzas Corporativas: un enfoque latinoamericano, Alfaomega. Colombia: Alfaomega, 2010.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv xxiii, 268 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81128/1/1143238546.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81128/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81128/3/1143238546.2021.pdf.jpg
bitstream.checksum.fl_str_mv c3e74c92db7a4dfdd65f74bf55df0db2
8153f7789df02f0a4c9e079953658ab2
de1ee1014c8537331d1eb4a4024bcb92
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089869034520576
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCardona Alzate, Carlos Ariel7ba5eaa612910e30e5cc7620a5c0ff5fRueda Duran, César Augusto7f8de113bde8ec97a297066009adc99aProcesos Químicos Cataliticos y Biotecnológicos2022-03-03T21:46:32Z2022-03-03T21:46:32Z2021https://repositorio.unal.edu.co/handle/unal/81128Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/tablas.Process engineering design involves several stages: conceptual design, basic design, and detailed design. All the design stages are essential for developing a feasible design of a process; however, the time that every engineering stage can take to define a scope and the investment (CapEx), in conjunction with the cost of the engineering, could represent an obstacle or limitation for making quick investment decisions. In this thesis, the conceptual design stage is provided with elements of the detailed design in an early stage through the adaptation of a methodology for the economic assessment of processes in the conceptual design stage, emphasizing the potential impact in the CapEx. In this work, four industrial cases are presented and studied in which the adapted methodology for the detailed economic assessment of processes is utilized to refine the process calculations based on heuristics, engineering guidelines, best practices for sizing of equipment, engineering standards, constructibility, among other, to determine the level of investment based on the definition of the technical scope from a process engineering perspective. The level of uncertainty in the definition of the technical scope for an improvement or a new process is reduced with applying the proposed methodology into the conceptual design stage. The most important aspects are identified to be linked and included in the conceptual design stage are presented in the methodology, thus the advantages and limitations. (Texto tomado de la fuente)El diseño de ingeniería de procesos involucra diferentes etapas: diseño conceptual, diseño básico y diseño detallado. Todas las etapas de diseños son importantes para el desarrollo de un diseño de procesos viable, sin embargo, el tiempo que cada etapa de ingeniería puede tomar para definir un alcance y la inversión, junto con el costo de la ingeniería para su desarrollo, puede ser un obstáculo o una limitante para la toma rápida de decisiones de inversión. En la presente tesis, la etapa de diseño conceptual es provista de elementos propios del diseño detallado en etapa temprana, a través de la adaptación de una metodología para la evaluación económica de procesos en la etapa de diseño conceptual con énfasis en el impacto potencial sobre el CapEx. En este trabajo, se presentan y se estudian cuatro casos industriales en los cuales la metodología adaptada para la evaluación económica de procesos es usara para refinar los cálculos de procesos con base en heurísticas, guías de ingeniería, mejores prácticas para el diseño de equipos, estándares de ingeniería, constructibilidad, entre otros, para determinar así el nivel de inversión basado en la definición del alcance técnico desde una perspectiva de ingeniería de procesos. La aplicación de la metodología propuesta en la etapa de diseño conceptual permite reducir el nivel de incertidumbre en la definición del alcance técnico de una mejora o un nuevo proceso. La identificación de los aspectos más importantes que puede ver vinculados e incluidos en la etapa de diseño conceptual es presentada en la metodología, así como las ventajas y limitaciones.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaIngeniería de Procesos Químicos y BiotecnológicosQuímica Y Procesosxxiii, 268 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería QuímicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afinesDiseño en ingenieríaEngineering designDiseño básicoDiseño detalladoEvaluación económicaMetodologíaCapExEstimación de costosBasic designDetailed designEconomic assessmentMethodologyCost estimationDetailed economic assessment for improving conceptual design calculations based on industry experiences in chemical and biochemical processesEvaluación económica detallada para mejorar los cálculos de diseño conceptual basados en experiencias de la industria en procesos químicos y bioquímicosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextM. J. French, Conceptual Design for Engineers. 1985.G. Palh and W. Beitz, Engineering Design A Systematic Approach, no. 2a. Springer, 1996.W. Hsu and B. Liu, “Conceptual design: issues and challenges,” Comput. Des., vol. 32, no. 14, pp. 849–850, 2000, doi: 10.1016/S0010-4485(00)00074-9.B. Lotter, Manufacturing assembly handbook. Butterworths, 1989.L. Wang, W. Shen, H. Xie, J. Neelamkavil, and A. Pardasani, “Collaborative conceptual design—state of the art and future trends,” Comput. Des., vol. 34, no. 13, pp. 981–996, 2002, doi: 10.1016/S0010-4485(01)00157-9.G. Stephanopoulos and G. V. Reklaitis, “Process systems engineering: From Solvay to modern bio- and nanotechnology.,” Chem. Eng. Sci., vol. 66, no. 19, pp. 4272–4306, Oct. 2011, doi: 10.1016/j.ces.2011.05.049.I. E. Grossmann and A. W. Westerberg, “Research challenges in process systems engineering,” AIChE J., vol. 46, no. 9, pp. 1700–1703, Sep. 2000, doi: 10.1002/aic.690460902.A. D. Little, Chemical Engineering Research. In: KIRKPATRICH, S.D. ed. Twenty-five Years of Chemical Engineering Progress. New York: American Institute of Chemical Engineers, 1933.D. F. Rudd, “The synthesis of system designs: I. Elementary decomposition theory,” AIChE J., vol. 14, no. 2, pp. 343–349, Mar. 1968, doi: 10.1002/aic.690140223.T. A. Whitehead et al., “The importance and future of biochemical engineering,” Biotechnol. Bioeng., vol. 117, no. 8, pp. 2305–2318, Aug. 2020, doi: 10.1002/BIT.27364.F. G. Acién Fernández, B. J. M Fernández Sevilla, and B. E. Molina Grima, “Photobioreactors for the production of microalgae,” Rev Env. Sci Biotechnol, vol. 12, pp. 131–151, 2013, doi: 10.1007/s11157-012-9307-6.Y. Chacón Perez, D. L. Restrepo Serna, C. A. Cardona Alzate, Y. Chacón Pérez, D. L. Restrerpo Serna, and C. A. Cardona Alzate, “Comparison of Cassava and Sugarcane Bagasse for Fuel Ethanol Production,” in Handbook on Cassava. Production, Potential Uses and Recent Advances, C. Klein, Ed. New York: nova, 2017, pp. 1–28.M. S. Abbas-Abadi, M. N. Haghighi, H. Yeganeh, and A. G. McDonald, “Evaluation of pyrolysis process parameters on polypropylene degradation products,” J. Anal. Appl. Pyrolysis, vol. 109, pp. 272–277, Sep. 2014, doi: 10.1016/j.jaap.2014.05.023.T. Ahmed et al., “Biodegradation of plastics: current scenario and future prospects for environmental safety,” Environ. Sci. Pollut. Res., vol. 25, no. 8, pp. 7287–7298, Mar. 2018, doi: 10.1007/s11356-018-1234-9.M. Gahleitner and C. Paulik, “Polypropylene and Other Polyolefins,” in Brydson’s Plastics Materials, Butterworth-Heinemann, 2017, pp. 279–309.O. Vogl, “POLYPROPYLENE: AN INTRODUCTION,” J. Macromol. Sci. Part A, vol. 36, no. 11, pp. 1547–1559, Nov. 1999, doi: 10.1081/MA-100101614.J. M. Asua, Polymer Reaction Engineering. Blackweel Publishing, 2007.V. Dolle, E. C. Carrion, P.-R. Shöneborn, and H. Terwyen, “Method for deodorizing polyolefin granulates,” US6218504B1, Mar. 07, 1997.L. M. Fodor and kenneth W. Willcox, “Deodorizing odorous polyolefins with low concentrations of inorganic oxidizing agents,” US5066686A, Jul. 16, 1990.G. Towler and R. Sinnott, “Capital Cost Estimating,” in Chemical Engineering Design: Principles, Practice and Economics of Plant and Process design, Second., no. 1975, 2013, pp. 307–354.J. A. S. Richard Turton, Richard C. Bailie, Wallace B. Whiting, “Estimation of Capital Costs,” in Analysis, Synthesis and Design of Chemical Processes, Third., 2008, pp. 182–221.J. M. Douglas, Conceptual design of chemical processes. 1988.A. Niazi, J. S. Dai, S. Balabani, and L. Seneviratne, “Product Cost Estimation: Technique Classification and Methodology Review,” J. Manuf. Sci. Eng., vol. 128, no. 2, p. 563, 2006, doi: 10.1115/1.2137750S. Rehman and M. D. Guenov, “A methodology for modelling manufacturing costs at conceptual design,” Comput. Ind. Eng., vol. 35, no. 3–4, pp. 623–626, 1998, doi: 10.1016/S0360-8352(98)00174-0.S. P. Darla, “Product Life Cycle Cost Estimation at Early Design : A Review on Techniques and Applications,” Int. J. Eng. Dev. Res., vol. 5, no. 4, pp. 1558–1561, 2017.M. Ficko, I. Drstvenšek, M. Brezočnik, J. Balič, and B. Vaupotic, “Prediction of total manufacturing costs for stamping tool on the basis of CAD-model of finished product,” J. Mater. Process. Technol., vol. 164–165, pp. 1327–1335, 2005, doi: 10.1016/j.jmatprotec.2005.02.013.E. M. Shehab and H. S. Abdalla, “A design to cost system for innovative product development,” J. Eng. Manuf., vol. 216, no. 7, pp. 999–1019, 2002, doi: 10.1243/09544050260174201.A. Gayretli and H. S. Abdalla, “Object-oriented constraints-based system for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 15, no. 2, pp. 133–144, 1999, doi: 10.1016/S0736-5845(99)00007-1.E. M. Shehab and H. S. Abdalla, “Manufacturing cost modelling for concurrent product development,” Robot. Comput. Integr. Manuf., vol. 17, no. 4, pp. 341–353, 2001, doi: 10.1016/S0736-5845(01)00009-6.A. R. Venkatachalam, J. M. Mellichamp, and D. M. Miller, “A knowledge-based approach to design for manufacturability,” J. Intell. Manuf., vol. 4, no. 5, pp. 355–366, 1993, doi: 10.1007/BF00123780.V. V. Aksenov, A. V. Walter, A. A. Gordeyev, and A. V. Kosovets, “Classification of geokhod units and systems based on product cost analysis and estimation for a prototype model production,” IOP Conf. Ser. Mater. Sci. Eng., vol. 91, no. 1, 2015, doi: 10.1088/1757-899X/91/1/012088.Y. F. Zhang, J. Y. H. Fuh, and W. T. Chan, “Feature-based cost estimation for packaging products using neural networks,” Comput. Ind., vol. 32, no. 1, pp. 95–113, 1996, doi: 10.1016/S0166-3615(96)00059-0.S. Cavalieri, P. Maccarrone, and R. Pinto, “Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry,” Int. J. Prod. Econ., vol. 91, no. 2, pp. 165–177, 2004, doi: 10.1016/j.ijpe.2003.08.005.P. Dewhurst and G. Boothroyd, “Early cost estimating in product design,” J. Manuf. Syst., vol. 7, no. 3, pp. 183–191, 1988, doi: 10.1016/0278-6125(88)90003-9.G. Boothroyd and C. Reynolds, “Approximate cost estimates for typical turned parts,” J. Manuf. Syst., vol. 8, no. 3, pp. 185–193, 1989, doi: 10.1016/0278-6125(89)90040-X.Y. Wei and P. J. Egbelu, “A framework for estimating manufacturing cost from geometric design data,” Int. J. Comput. Integr. Manuf., vol. 13, no. 1, pp. 50–63, 2000, doi: 10.1080/095119200130054.C. X. Feng, A. Kusiak, and C. C. Huang, “Cost evaluation in design with form features,” CAD Comput. Aided Des., vol. 28, no. 11, pp. 879–885, 1996, doi: 10.1016/0010-4485(96)00009-7.J.-Y. Jung, “Manufacturing cost estimation for machined parts based on manufacturing features,” J. Intell. Manuf., vol. 13, no. 4, pp. 227–238, 2002, doi: 10.1023/A:1016092808320.Y. K. Son, “A cost estimation model for advanced manufacturing systems,” Int. J. Prod. Res., vol. 29, no. 3, pp. 441–452, 1991, doi: 10.1080/00207549108930081.N. Bernet, M. D. Wakeman, P. E. Bourban, and J. A. Månson, “An integrated cost and consolidation model for commingled yarn based composites,” Compos. - Part A Appl. Sci. Manuf., vol. 33, no. 4, pp. 495–506, 2002, doi: 10.1016/S1359-835X(01)00140-3.M. M. Sfantsikopoulos, S. C. Diplaris, and P. N. Papazoglou, “Concurrent dimensioning for accuracy and cost,” Int. J. Adv. Manuf. Technol., vol. 10, no. 4, pp. 263–268, 1995, doi: 10.1007/BF01186877.S. H. Yeo, B. K. A. Ngoi, L. S. Poh, and C. Hang, “Cost-tolerance relationships for non-traditional machining processes,” Int. J. Adv. Manuf. Technol., vol. 13, no. 1, pp. 35–41, 1997, doi: 10.1007/BF01179228.N. Singh, “Integrated product and process design: A multi-objective modeling framework,” Robot. Comput. Integr. Manuf., vol. 18, no. 2, pp. 157–168, 2002, doi: 10.1016/S0736-5845(01)00030-8.L. S. Wierda, “Linking design, process planning and cost information by feature-based modelling,” J. Eng. Des., vol. 2, no. 1, pp. 3–19, 1991, doi: 10.1080/09544829108901667.C. Ou-Yang and T. S. Lin, “Developing and Integrated Framework for Feature-Based Early Manufacturing Cost Estimation,” J. Adv. Manuf. Technol., vol. 13, pp. 618–629, 1997, doi: 10.1007/BF01350820.D. Ben-Arieh and L. Qian, “Activity-based cost management for design and development stage,” Int. J. Prod. Econ., vol. 83, no. 2, pp. 169–183, 2003, doi: 10.1016/S0925-5273(02)00323-7.K. Tornberg, M. Jak Msen, and J. Paranko, “Activity-based costing and process modeling for cost-conscious product design: A case study in a manufacturing company,” Int. J. Prod. Econ., vol. 79, pp. 75–82, 2002, doi: 10.1016/S0925-5273(00)00179-1.E. Noreen, “Conditions under which activity-based cost systems provide relevant costs,” J. Manag. Account. Res., vol. 3, no. 3, pp. 159–168, 1991, [Online]. Available: http://libaccess.mcmaster.ca.libaccess.lib.mcmaster.ca/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9701273049&site=ehost-live&scope=site.R. Cooper and R. S. Kaplan, “How Cost Accounting Distorts Product Costs,” Manag. Account., vol. 69, no. 10, pp. 20–27, 1988.M. F. van Amsterdam, “Factorial Techniques applied in Chemical Plant Cost Estimation : A Comparative Study based on Literature and Cases,” Chem. Eng., p. 158, 2018.AACE International, “Skills and Knowledge of Cost Engineering Skills and Knowledge of Cost Engineering,” 2015.klemic Jhon, A Method for Presentation of Cost Estimates and Process Economics as. EEUU: UNIVERSIDAD DE ARIZONA, 1956.M. S. Peters and K. D. Timmerhaus, Plant design and economics for chemical engineers, Fourth Edition. McGRAW-HILL INTERNATIONAL EDITIONS, 1991.E. D Glandt, M. T Klein, and F. E. Thomas, Plant Design and Economics for Chemical Engineers, Kate Schei., vol. 4, no. 3. McGraw-Hill Chemical Engineering Series., 2002.K. C. Hansen, J. W. Miller, and C. L. Yaws, “PROCESS FEASIBILITY STUDY IN SUPPORT OF,” Texas, Jul. 1977.Harry Silla, CHEMICAL PROCESS ENGINEERING , 3rd ed. Ney York: MARCEL DEKKER, 2003.F. Goodridge and K. Scott, “Cost Estimation, Profit Appraisal, Process Modeling, and Optimization,” in Electrochemical Process Engineering, Springer US, 2008, pp. 245–293.J. P. Cellucci, V. S. Koslosky, and J. P. Bush, “Cost Estimating.,” RCA Eng, vol. 54, no. 4, pp. 102–103, 1947, doi: 10.4324/9781315529097-3.W.D. Seider, J.D. Seader, D.R. Lewin, and S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Design. Chemical Engineering, 2009.R. D. Hill, “What petrochemical Plants Cost,” in Petroleum Refiner, vol. 59, 1956, pp. 106–110.V. T. Sinha, “Estimating capital costs from an equipment list: A case study,” Eng. Costs Prod. Econ., vol. 14, no. 4, pp. 259–266, Dec. 1988, doi: 10.1016/0167-188X(88)90030-4.O. P. Kharbanda and E. A. Stallworthy, “Planning for emergencies-lessons from the chemical industry,” Long Range Plann., vol. 22, no. 1, pp. 83–89, Feb. 1989, doi: 10.1016/0024-6301(89)90054-X.G.T. Wilson, Manual of Economic Analysis of Chemical Processes. 1971.Taylor and J. H., “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977.D. E. Garrett, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.R. D S and C. L H, “Estimate costs of scaled-up process plants,” in Chemical Engineering, 1990, pp. 138–175.G. A. Buchner, “Techno-Economic Assessment - Methodology Development and the Case of CO2-containing Polyurethane rubbers,” Berlin, 2020.K. C. Robson and J. Bidder, “Market research in process plant contracting,” Eng. Process Econ., vol. 2, no. 4, pp. 269–279, 1977, doi: 10.1016/0377-841X(77)90005-5.P. F. Navarrete and C. . William, Control of Chemical Construction Projects. 2001.R Williams Jr, “Process Equipment Cost Estimating by Ratio and Proportion,” Dec. 1947.D. S. Remer and L. H. Chai, “Design cost factors for scaling-up engineering equipment,” undefined, 1990.S. @ Claremont, D. S. Remer, L. H. Chai, D. S. Remer, and L. H. " Chai, “Process Equipment, Cost Scale-up,” Marcel Dekker, Inc, 1993.O. J. Symister, “An Analysis of Capital Cost Estimation Techniques for Chemical Processing,” institute of Technology of Florida, 2016.D. A. Huettner, “Shifts of long run average cost curves: Theoretical and managerial implications,” Omega, vol. 1, no. 4, pp. 421–450, Aug. 1973, doi: 10.1016/0305-0483(73)90065-0.C.H. Chilton, Cost Data Correlated, vol. 56. 1949.A. Pikulik and H.E. Diaz, “Costs of Individual Equipment,” in Chemical Process Equipment, Elsevier, 2005, pp. 719–728.R.S. Hall, J. Matley, and K.J. McNaughton, “Current Costs of Process Equipment,” Chemical Engineering, 1982. .V. W. M, “A potpourri of equipment prices.,” Chem. Eng., vol. 102, no. 8, pp. 68–73, 1995.D. R. Woods, Rules of thumb in engineering practice. 2007.R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, Analysis, Synthesis, and Design of Chemical Processes Fourth Edition. Prentice Hall, 2009.J.R. Couper, W.R. Penney, J.R. Fair, and S.M. Walas, chemical process equipment walas third edition, vol. 2. Chemical Process Equipment, 2009.D. S. Remer, L. Huynh, K. Agarwal, B. J. Auchard, and T. Heaps-Nelson, “A compilation of inflation and location indexes,” Int. J. Prod. Econ., vol. 54, no. 1, pp. 41–55, Jan. 1998, doi: 10.1016/S0925-5273(97)00121-7.P. KOHN and K. PM, “CE COST INDEXES MAINTAIN 13-YEAR ASCENT.,” CE COST INDEXES Maint. 13-YEAR ASCENT., pp. 189–190, 1978.J. Matley, “CE cost indexes set slower pace,” in Chemical Engineering, vol. 92, Flexicon, 1985, pp. 75–76.G. A. Prochazka, G. Towler, and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. 2008.R. Williams J, Standardizing Cost Data on Process Equipment, vol. 54. Chemical Engineering, 1947.D. J. Brennan and K. A. Golonka, “New Factors for Capital Cost Estimation in Evolving Process Designs,” Chem. Eng. Res. Des., vol. 80, no. 6, pp. 579–586, Sep. 2002, doi: 10.1205/026387602760312773.P. Cheali, K. V. Gernaey, and G. Sin, “Uncertainties in Early-Stage Capital Cost Estimation of Process Design – A Case Study on Biorefinery Design,” Front. Energy Res., vol. 3, no. FEB, p. 3, Feb. 2015, doi: 10.3389/fenrg.2015.00003.C. H. Chilton, Cost data correlated Chilton, Chemical E. Chemical Engineering, 1949.J. L. Sorrels and T. G. Walton, “Section 1 Introduction-2-Chapter 2 Cost Estimation: Concepts and Methodology,” 2017.F. Yin, G. X. Huang, and D. Q. Chen, “Finite iterative algorithms for solving generalized coupled Sylvester systems-Part II: Two-sided and generalized coupled Sylvester matrix equations over reflexive solutions,” Appl. Math. Model., vol. 36, no. 4, pp. 1604–1614, Apr. 2012, doi: 10.1016/j.apm.2011.09.025.Robert Sancier Aries and Robert D. Newton, Chemical Engineering Cost Estimation. 1955.H.C. Bauman, chemical engineering plant . London: Reinhold Publishing Corporation, 1964.H. J. S. Petersen, “Calculation of sales price considering dividend and interest payments, tax and inflation,” Eng. Process Econ., vol. 2, no. 2, pp. 139–142, Jun. 1977, doi: 10.1016/0377-841X(77)90027-4.K. Suaysompol and R. M. Wood, “Estimation of the installed cost of heat exchanger networks,” Int. J. Prod. Econ., vol. 29, no. 3, pp. 303–312, May 1993, doi: 10.1016/0925-5273(93)90035-J.Robert Sancier Aries and Robert D Newton, Chemical engineering cost estimation . New York, 1955.R. . Aries and R. . Newton, Chemical Engineering Cost Estimation . 1955.P. Max S and T. Klaus D, Plant Design & Economics for Chemical Engineers, 4th ed. New York: Chemical Engineering, 1991.Eia, “Engineering Economic Analysis Guide: Liquid Fuels Technologies,” Dec. 2015.Mahmoud M and EL-Halwagi, Sustainable Design Through Process Integration. ELSEVIER, 2017.Bejan Adrian, Tsatsaronis George, and Moran Michael, Thermal Design and Optimization, 2nd ed. New York: Mechaical Engineering, 1996.A. Z. Marouli and Z. B. Maroulis, “Cost data analysis for the food industry,” J. Food Eng., vol. 67, no. 3, pp. 289–299, Apr. 2005, doi: 10.1016/j.jfoodeng.2004.04.031.Z. B. Maroulis and G. D. Saravacos, Food Plant Economics. CRC Press, 2007.Za. B. Maroulis and G. D. Saravacos, Food Process Design . 2003.A. Bartholomai, Food Factories: Processes, Equipment, Costs (9780895735546): Bartholomai, Alfred: Books. VCH, 1987.R. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1997.I. Turunen, M. Järveläinen, and M. Dohnal, “Fuzzy approach to factorial cost estimation of chemical plants,” Eng. Costs Prod. Econ., vol. 7, no. 4, pp. 279–292, 1984, doi: 10.1016/0167-188X(84)90045-4.J. S. S. White and J. L. O’Donnell, “Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species,” Ecology, vol. 91, no. 12, pp. 3538–3548, Dec. 2010, doi: 10.1890/09-2322.1.T. K. Geberemariam, “Deterministic and Probabilistic Engineering Cost Estimating Approaches for Complex Urban Drainage Infrastructure Capital Improvement (CIP) Programs,” Nov. 2018, doi: 10.20944/preprints201811.0259.v1.J. Happel and J. Donald G, “Chemical process economics,” Eng. Process Econ., vol. 2, no. 1, pp. 78–79, Mar. 1977, doi: 10.1016/0377-841x(77)90069-9.K. Khumphreys, “PROJECT AND COST ENGINEERS’ HANDBOOK, Fourth Edition,” 2005.D. E. Garrett, Chemical Engineering Economics. Springer Netherlands, 1989.T E Wolf and P E Land, “Lang Factor Cost Estimating,” Texas, 2021.J. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, Nov. 1977, doi: 10.1016/0377-841X(77)90004-3.B. Amigun and H. Von Blottnitz, “Capital cost prediction for biogas installations in Africa: Lang factor approach,” Environ. Prog. Sustain. Energy, vol. 28, no. 1, pp. 134–142, Apr. 2009, doi: 10.1002/ep.10341.J. Y. Kim, S. Salim, J. M. Cha, and S. Park, “Development of total capital investment estimation module for waste heat power plant,” Energies, vol. 12, no. 8, Apr. 2019, doi: 10.3390/en12081492.S. Lemmens, “Cost engineering techniques & their applicability for cost estimation of organic rankine cycle systems,” Energies, vol. 9, no. 7, 2016, doi: 10.3390/en9070485.J. Clerk, “APPENDIX 1 EQUIPMENT COST ESTIMATES,” 1963.J. Loh, “Process Equipment Cost Estimation Final Report,” United State, 2002.R. S. Aries, Chemical Engineering Cost Estimation . 1955.H. P. Loh, J. Lyons, and C. W. White, “Process Equipment Cost Estimation, Final Report,” Pittsburgh, PA, and Morgantown, WV (United States), Jan. 2002. doi: 10.2172/797810.R. E. Westney, “The Engineer’s Cost Handbook Tools for Managing Project Costs,” 1960.G. K M, Data and techniques for preliminary capital cost estimating., McGraw-Hil., vol. 76. Chemical Engineering, 1969.J Cran, “Plant Cost Estimates,” in Chemical Engineering Economics, Springer Netherlands, 1989, pp. 22–43.J. D. Yeakel et al., “Diverse interactions and ecosystem engineering can stabilize community assembly,” Nat. Commun., vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-17164-x.D. Nelson, “THE ANALYSIS AND VALUATION OF DISRUPTION,” 2013.G. D. Nichols, “Process Automation Technologies: Cost estimating for process analyzer projects,” 2007.D. R. Woods, Rules of Thumb in Engineering Practice, WILEY-VCH. WILEY-VCH, 2007.H. Markowitz, “Portfolio Selection,” 1952.I. Cerón-Salazar and C. Cardona-Alzate, “Integral evaluation process for obtaining pectin and essential oil from orange peel,” Ing. y Cienc., vol. 7, no. 13, pp. 65–86, 2011, Accessed: Aug. 03, 2017. [Online]. Available: http://www.scielo.org.co/pdf/ince/v7n13/v7n13a04.pdf.R. J. Wooley and V. Putsche, “NREL/MP-425-20685 Development of an Aspen Pus property database for biofuels components,” National Renewable Energy Laboratory, 1996.Y. Zhang, “Review of recent advances on energy efficiency of machine tools for sustainability,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 229, no. 12, pp. 2095–2108, 2015, doi: 10.1177/0954405414539490.J. Paetzold, M. Kolouch, V. Wittstock, and M. Putz, “Methodology for Process-independent Energetic Assessment of Machine Tools,” Procedia Manuf., vol. 8, no. October 2016, pp. 254–261, 2017, doi: 10.1016/j.promfg.2017.02.032.C. A. García, J. Moncada, V. Aristizábal, and C. A. Cardona, “Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case,” Int. J. Hydrogen Energy, vol. 2, 2017, doi: 10.1016/j.ijhydene.2017.01.073.X. Meng, W. de Jong, N. Fu, and A. H. M. Verkooijen, “Biomass gasification in a 100 kWth steam-oxygen blown circulating fluidized bed gasifier: Effects of operational conditions on product gas distribution and tar formation,” Biomass and Bioenergy, vol. 35, no. 7, pp. 2910–2924, Jul. 2011, doi: 10.1016/J.BIOMBIOE.2011.03.028.C. Sheng and J. L. T. Azevedo, “Estimating the higher heating value of biomass fuels from basic analysis data,” Biomass and Bioenergy, vol. 28, no. 5, pp. 499–507, 2005, doi: 10.1016/j.biombioe.2004.11.008.C. A. García, Á. Peña, R. Betancourt, and C. A. Cardona, “Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case,” J. Environ. Manage., Apr. 2017, Accessed: Aug. 10, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0301479717303705.V. Aristizábal Marulanda, “Jet biofuel production from agroindustrial wastes through furfural platform,” Universidad Nacional de Colombia, 2015.G. J. Ruiz-Mercado, R. L. Smith, and M. A. Gonzalez, “Sustainability indicators for chemical processes: I. Taxonomy,” Ind. Eng. Chem. Res., vol. 51, no. 5, pp. 2309–2328, 2012, doi: 10.1021/ie102116e.A. S. Erses Yay, “Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya,” J. Clean. Prod., vol. 94, pp. 284–293, 2015, doi: 10.1016/j.jclepro.2015.01.089.S. H. Duque, C. A. Cardona, and J. Moncada, “Techno-Economic and Environmental Analysis of Ethanol Production from 10 Agroindustrial Residues in Colombia,” Energy Fuels, vol. 29, no. 2, pp. 775–783, 2015.C. A. C. Cardona, V. F. Marulanda, and D. Young, “Analysis of the environmental impact of butylacetate process through the WAR algorithm,” Chem. Eng. Sci., vol. 59, no. 24, pp. 5839–5845, Dec. 2004, doi: 10.1016/j.ces.2004.06.043.C. Flavin, W. D. (USA) eng Worldwatch Inst., O. Tunali, and J. A. (ed. . Peterson, “Climate of hope: new strategies for stabilizing the world’s atmosphere.” Washington, DC (USA) Worldwatch Inst., 1996, Accessed: Jul. 21, 2017. [Online]. Available: http://agris.fao.org/agris-search/search.do?recordID=XF2015030474.A. C. Wilkie, K. J. Riedesel, J. M. Owens, and A. C. Wilkie, “Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks,” Biomass and Bioenergy, vol. 19, no. 2, pp. 63–102, 2000, doi: 10.1016/S0961-9534(00)00017-9.B. Kim and S. Sarkar, “Impact of wildfires on some greenhouse gases over continental USA: A study based on satellite data,” Remote Sens. Environ., vol. 188, pp. 118–126, 2017, doi: 10.1016/j.rse.2016.10.047.D. Young, R. Scharp, and H. Cabezas, “The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics,” Waste Manag., vol. 20, no. 8, pp. 605–615, Dec. 2000, doi: 10.1016/S0956-053X(00)00047-7.D. M. Young and H. Cabezas, “Designing sustainable processes with simulation: The waste reduction (WAR) algorithm,” Comput. Chem. Eng., vol. 23, no. 10, pp. 1477–1491, 1999, doi: 10.1016/S0098-1354(99)00306-3.M. Fermeglia, G. Longo, and L. Toma, “A hierarchical approach for the estimation of environmental impact of a chemical process: from molecular modeling to process simulation,” Comput. Aided Chem. Eng., vol. 24, pp. 1199–1204, Jan. 2007, doi: 10.1016/S1570-7946(07)80224-0.Q. Chen and X. Feng, “Potential environmental impact (PEI) analysis of reaction processes,” Comput. Aided Chem. Eng., vol. 15, pp. 748–753, Jan. 2003, doi: 10.1016/S1570-7946(03)80396-6.J. I. Chang and C.-C. Lin, “A study of storage tank accidents,” J. Loss Prev. Process Ind., vol. 19, no. 1, pp. 51–59, Jan. 2006, doi: 10.1016/j.jlp.2005.05.015.J. F. Ross, “Equipment and Buildings,” in Handbook for Radio Engineering Managers, Elsevier, 1980, pp. 516–528.API 650, Welded Steel Tanks for Oil Storage, 12th ed., no. C65012. Washington, USA: API Publishing Services, 2013.G. Description, “Settling Ponds and Sedimentation,” in Pollution Control Handbook for Oil and Gas Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016, pp. 1043–1046.L. Stander and L. Theodore, “Pollution Prevention Act (PPA),” in Environmental Regulatory Calculations Handbook, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008, pp. 453–528.ASME, “Boiler and Pressure Vessel Code Section VIII: Division 1 & 2,” Am. Soc. Mech. Eng., 2019.A. Toudehdehghan and T. W. Hong, “A critical review and analysis of pressure vessel structures,” in IOP Conference Series: Materials Science and Engineering, Jan. 2019, vol. 469, no. 1, doi: 10.1088/1757-899X/469/1/012009.S. Chattopadhyay, Pressure Vessels: Design and Practice. CRC Press, 2004.J. J. Proczka, K. Muralidharan, D. Villela, J. H. Simmons, and G. Frantziskonis, “Guidelines for the pressure and efficient sizing of pressure vessels for compressed air energy storage,” Energy Convers. Manag., vol. 65, no. 2013, pp. 597–605, Jan. 2013, doi: 10.1016/j.enconman.2012.09.013.F. Lees, “Storage,” in Lees’ Loss Prevention in the Process Industries, 3rd ed., Texas, USA: Elsevier, 2012, pp. 1889–1985.S. Lee, Y. Park, and B. Kim, “Offshore Production Plant,” in Offshore Petroleum Drilling and Production, pp. 661–665.“MAJOR HAZARDS AND THEIR MANAGEMENT, Appendix 1 - safety assessment of an LPG storage site,” 1992. .M. D. Tusiani and G. Shearer, “LNG Import Terminals,” in LNG: Fuel for a Changing World—A Nontechnical Guide, 2nd ed., 2016, pp. 369–393.“Propylene-Storage and Handling,” Wiley Critical Content - Petroleum Technology, 2007. .S. Mokhatab, J. Y. Mak, J. V. Valappil, and D. A. Wood, “Natural Gas Liquefaction,” in Handbook of Liquefied Natural Gas, Elsevier, 2014, pp. 147–183.NFPA® 59, Utility LP-Gas Plant Code, 2012th ed. Quincy, Massachusetts: National Fire Protection Association ®, 2012.API 2510, Design and construction of LPG installations, Eight edit., no. 2510. American Petroleum Institute, 2001.“NFPA 58,” in Liquefied Petroleum Gas Code, 2017th ed., National Fire Protection Association ®, 2014, pp. 1–166.D. L. Burdick and W. L. Leffler, “Olefin plants, ethylene, and propylene,” in Petrochemicals in nontechnical language, 3rd ed., PennWell, 2001, pp. 65–85.S. Dubovski, “Gathering Systems and Processing Facilities Risk Analysis,” in Risk Analysis for Prevention of Hazardous Situations in Petroleum and Natural Gas Engineering, IGI Global, 2014, pp. 218–246.Đ. Dobrota, B. Lalić, and I. Komar, “Problem of Boil - off in LNG Supply Chain,” Trans. Marit. Sci., vol. 2, no. 2, pp. 91–100, Oct. 2013, doi: 10.7225/toms.v02.n02.001.R. J. Falkiner and A. Pickard, “Chapter 6 | Liquefied Petroleum Gas,” in Fuels and Lubricants Handbook: Technology, Properties, Performance, and Testing, 2nd Edition, 2nd ed., G. Totten, R. Shah, and D. Forester, Eds. West Conshohocken, PA: ASTM International, 2019, pp. 145–178.H. Belyadi, E. Fathi, and F. Belyadi, “Hydraulic Fracturing Chemical Selection and Design,” in Hydraulic Fracturing in Unconventional Reservoirs, Gulf Professional Publishing, 2017, pp. 107–120.B. Sharda and S. J. Bury, “Bottleneck analysis of a chemical plant using discrete event simulation,” in Proceedings of the 2010 Winter Simulation Conference, Dec. 2010, no. 2009, pp. 1547–1555, doi: 10.1109/WSC.2010.5678916.R. Botermans and P. Smith, “Relief Systems,” in Advanced Piping Design, Gulf Publishing Company, 2008, pp. 183–196.S. Moran, “How to do hydraulic calculations,” in An Applied Guide to Process and Plant Design, 2nd ed., Elsevier, 2019, pp. 153–166.A. A. Wordu and B. Peterside, “Estimation of Boil-off-Gas BOG from Refrigerated Vessels in Liquefied Natural Gas Plant,” Int. J. Eng. Technol., vol. 3, no. 1, pp. 44–49, 2013.W. Pridasawas and P. Lundqvist, “An exergy analysis of a solar-driven ejector refrigeration system,” Sol. Energy, vol. 76, no. 4, pp. 369–379, Apr. 2004, doi: 10.1016/j.solener.2003.11.004.D. Kern, “Evaporation,” in Process heat transfer, Internatio., McGraw-Hill, 2011, pp. 375–452.E. Edition, “API specification for oil and gas separators.,” no. October 2008, 1973.D. W. Green and R. H. Perry, “Perry’s Chemical Engineers’ Handbook,” in Perry’s Chemical Engineers’ Handbook, 8th editio., New York, pp. 2-446,502.American Petroleum Institute, Pressure-relieving and depressuring Systems -API 521. Washington, USA, 2007.MarketsandMarketsTM, “Foam Glass Market by Type (open cell and Closed Cell), Process (Physical and Chemical), Application (Building & Industrial Insulation and Chemical Processing Systems), End-Use Industry (Building & Construction and Industrial) - Global Forecast to 2024,” Market reasearch report - CH 7217, 2019. .American Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, no. August, p. 154, 2014.American Petroleum Institute (API), “Sizing , Selection , and Installation of Pressure-Relieving Devices in Refineries Part I — Sizing and Selection,” vol. 1, p. 154, 2014.A. P. Institute, “Flanged Steel Pressure- relief Valves,” no. April 2009, 2015.API 521, Pressure-relieving and Depressuring Systems, no. CX52105. Washington, DC: American Petroleum Institute, 2007.K. I. M. Al-Malah, Aspen Plus®. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016.Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (CIOH) and the Dirección General Marítima (Dimar), “Boletín Meteomarino Mensual del Caribe Colombiano - No. 79/ Julio 2019,” 2019. .J. L. Woodward, Estimating the Flammable Mass of a Vapor Cloud. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1999.K. V. Reddy, “Chemical process plants: Plan for revamps,” Chemical Engineering, vol. 122, no. 12. 2015, Accessed: Jul. 23, 2021. [Online]. Available: https://www.chemengonline.com/chemical-process-plants-plan-revamps/.N. Van Duc Long and M. Lee, “Debottlenecking the retrofitted thermally coupled distillation sequence,” Ind. Eng. Chem. Res., vol. 52, no. 35, pp. 12635–12645, Sep. 2013, doi: 10.1021/ie401140v.D. F. Schneider, C. Engineer, S. Engineering, S. Engineering, and L. City, “Debottlenecking Options and Optimization,” 1997. Accessed: Jul. 23, 2021. [Online]. Available: http://www.stratusengr.com/Articles/DebottleOptions.pdf.J. Zhang, X. X. Zhu, and G. P. Towler, “A Level-by-Level Debottlenecking Approach in Refinery Operation,” Ind. Eng. Chem. Res., vol. 40, no. 6, pp. 1528–1540, Mar. 2001, doi: 10.1021/IE990854W.D. B. Litzen and J. L. Bravo, “Uncover Low-Cost Debottlenecking Opportunities,” Chem. Eng. Prog., vol. 95, no. 2–3, pp. 25–32, 1999.N. V. D. Long and M. Lee, “Improved energy efficiency in debottlenecking using a fully thermally coupled distillation column ,” ASIA-PACIFIC J. Chem. Eng. Asia-Pac. J. Chem. Eng, vol. 6, pp. 338–348, 2011, doi: 10.1002/apj.577.T. Sakai, “Screw extrusion technology — past, present and future,” Polimery, vol. T. 58, nr 11–12, 2013.G. T. TODHUNTER, “ROTARY VALVES.,” no. (MARCH, 1973), 1973, Accessed: Jul. 23, 2021. [Online]. Available: https://www.coperion.com/en/products-services/process-equipment/rotary-valves.Z. Systems, “CFH rotary feeder - Zeppelin Systems.” https://www.zeppelin.com/de-en/systems/p/zsd/cfh-rotary-feeder-Z_ZIMSER_P97993_00021/ (accessed Jul. 23, 2021).E. Com and / Finalcontrol, “KEYSTONE KNIFE GATE VALVES FIGURE 952 POLYURETHANE,” 2017. https://www.emerson.com/documents/automation/data-sheets-knife-gate-valves-figure-952-polyurethane-keystone-en-en-5193690.pdf (accessed Jul. 23, 2021).DeZURIK, “Knife gate valves brochure,” Seal. Technol., vol. 2000, no. 77, p. 6, 2000, doi: 10.1016/s1350-4789(00)90265-4.“MAAG | Centrifugal dryers Underwater pelletizing.” https://maag.com/products/pelletizing-systems/dryers/ (accessed Jul. 23, 2021).S. Ravi, M. Sudha, and P. A. Balakrishnan, “Design of Intelligent Self-Tuning GA ANFIS Temperature Controller for Plastic Extrusion System,” Model. Simul. Eng., vol. 2011, 2011, doi: 10.1155/2011/101437.C. Rauwendaal, Polymer Extrusion, 5th ed., vol. 65. 2014.C. Teixeira, R. Faria, J. A. Covas, and A. Gaspar-Cunha, “Solving the twin screw extrusion configuration problem: A plasticating modelling program,” Proc. 5th Int. Conf. Eng. Comput. Technol., 2006, doi: 10.4203/CCP.84.23.Z. Jiang, Y. Yang, S. Mo, K. Yao, and F. Gao, “Polymer extrusion: From control system design to product quality,” Ind. Eng. Chem. Res., vol. 51, no. 45, pp. 14759–14770, Nov. 2012, doi: 10.1021/IE301036C.B. Singh, C. Sharma, and S. Sharma, “Fundamentals of extrusion processing,” in Novel Food Processing Technologies, no. May, V. Nanda and S. Sharma, Eds. New Delhi: Novel Food Processing Technologies, 2017, pp. 1–46.J. Albrecht, “Revamp and Upgrade Possibilities in Sulphuric Acid Plants,” Procedia Eng., vol. 138, pp. 184–198, 2016, doi: 10.1016/j.proeng.2016.02.076.Hisham A. Maddah, “Polypropylene as a Promising Plastic: A Review,” Am. J. Polym. Sci., vol. 6, no. 1, pp. 1–11, 2016, doi: 10.5923/J.AJPS.20160601.01.R. J. O’Leary, A. L. Miller, J. Hasselbach, and M. W. Johnson, “Rotary valve for handling solid particulate material,” Dec. 16, 2005.D. Mills, “Pipeline feeding devices,” in Pneumatic Conveying Design Guide, Second., Elsevier, 2004.ANTEC 2009 Plastics: Annual Technical Conference Proceedings, “Experimental Analysis of the Underwater Pelletizing system for Producing Pellets,” Soc. Plast. Eng., 2009. https://app.knovel.com/web/view/khtml/show.v/rcid:kpANTECPX1/cid:kt006PTZ4O/viewerType:khtml//root_slug:antec-2009-plastics-annual/url_slug:experimental-analysis?b-q=dryer pelletizer&sort_on=default&b-subscription=true&b-group-by=true&page=33&b-sort-on=de (accessed Mar. 03, 2021).J. G. Drobny, “Processing Methods Applicable to Thermoplastic Elastomers,” Handb. Thermoplast. Elastomers, pp. 29–160, 2007, doi: 10.1016/B978-081551549-4.50005-0.J. Dobbelaar, W. Hibinger, and P. Keller, “Removing residual volatiles from polymer dispersions,” Jun. 23, 1999.G. Mulgrew and G. L. Pitman, “Polymer treatment for separating volatile material.”M. K. Gupta, “Deodorization,” in Practical Guide to Vegetable Oil Processing, Elsevier, 2017, pp. 217–247.F. Shahidi, “Bailey’s Industrial Oil and Fat Products, Volumes 1-6 (6th Edition),” Bailey’s Ind. Oil Fat Prod., pp. 303–332, 2005, Accessed: Jul. 23, 2021. [Online]. Available: http://dx.doi.org/10.1002/047167849X.bio005.W. Hubinger, G. Staufer, and P. Keller, “STRIPPING TUBE WITH CONTRACORRENT OPERATION.,” Oct. 12, 1999.C. T. Zehnder, “Deodorization,” in Practical Handbook of Soybean Processing and Utilization, Elsevier, 1995, pp. 239–257.R. W. Bobst, B. J. Garner, and F. W. Jacob, “Degassing process for removing unpolymerized monomers from olefin polymers,” Aug. 11, 1981.G. Zeitler, R. Paatz, V. Gierth, D. Moorwessel, and W. Schoene, “Process for removing highly odorous components from particulate olefine polymers,” Mar. 22, 1979.A. De San Luis, C. C. Santini, Y. Chalamet, and V. Dufaud, “Removal of Volatile Organic Compounds from Bulk and Emulsion Polymers: A Comprehensive Survey of the Existing Techniques,” Ind. Eng. Chem. Res., vol. 58, no. 27, pp. 11601–11623, Jul. 2019, doi: 10.1021/ACS.IECR.9B00968.H. Kim‐Kang, “Volatiles in packaging materials,” http://dx.doi.org/10.1080/10408399009527527, vol. 29, no. 4, pp. 255–271, Jan. 2009, doi: 10.1080/10408399009527527.C. M. H. Grein and R. R. E. Bercx, “Method for preparing of polypropylene pellets,” Jul. 07, 2016.N. A. and R. A. Office of the Federal Register, “21 CFR 177.1520 - Olefin polymers.,” govinfo.gov, Apr. 2011, Accessed: Jul. 23, 2021. [Online]. Available: https%3A%2F%2Fwww.govinfo.gov%2Fapp%2Fdetails%2FCFR-2011-title21-vol3%2FCFR-2011-title21-vol3-sec177-1520%2Fcontext.Q. Xiang, M. Xanthos, S. H. Patel, and S. Mitra, “Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins,” Adv. Polym. Technol., vol. 21, no. 4, pp. 235–242, Dec. 2002, doi: 10.1002/ADV.10027.J. G. M. S. Monteiro, O. De Queiroz Fernandes Araújo, and J. L. De Medeiros, “Sustainability metrics for eco-technologies assessment, part I: Preliminary screening,” Clean Technol. Environ. Policy, vol. 11, no. 2, pp. 209–214, 2009, doi: 10.1007/S10098-008-0189-9.S. I. Mussatto, L. M. Aguiar, M. I. Marinha, R. C. Jorge, and E. C. Ferreira, “Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production,” Bioresour. Technol., vol. 198, pp. 673–681, Dec. 2015, doi: 10.1016/J.BIORTECH.2015.09.060.S. Meramo-Hurtado, C. Alarcón-Suesca, and Á. D. González-Delgado, “Exergetic sensibility analysis and environmental evaluation of chitosan production from shrimp exoskeleton in Colombia,” J. Clean. Prod., vol. 248, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119285.A. Velásquez-Barrios et al., “Analysis of the environmental impact using the waste reduction algorithm in polypropylene production by applying grade transitions strategies in Colombia,” Environ. Sci. Pollut. Res., vol. 26, no. 35, pp. 35533–35542, Dec. 2019, doi: 10.1007/S11356-019-05493-4.D. Nissim, “EBITDA, EBITA, or EBIT?,” SSRN Electron. J., Aug. 2017, doi: 10.2139/SSRN.2999675.E. Topal, “Evaluation of a mining project using Discounted Cash Flow analysis, Decision Tree analysis, Monte Carlo Simulation and Real Options using an example,” Int. J. Min. Miner. Eng., vol. 1, no. 1, pp. 62–76, 2008, doi: 10.1504/IJMME.2008.020457.P. Fernández, “WACC: Definition, Misconceptions, and Errors,” Bus. Valuat. Rev., vol. 29, no. 4, pp. 138–144, 2010, doi: 10.5791/0897-1781-29.4.138.S. Stelling, T. Yanuar, R. Syah, R. Indrawati, and D. Dewanto, “Role of Payback Period, ROI, and NPV for Investment in Clinical Health Business,” Int. Adv. Res. J. Sci. Eng. Technol. ISO, vol. 3297, 2007, doi: 10.17148/IARJSET.2018.5714.B. C. Kim, E. Shim, and K. F. Reinschmidt, “Probability distribution of the project payback period using the equivalent cash flow decomposition,” Eng. Econ., vol. 58, no. 2, pp. 112–136, Apr. 2013, doi: 10.1080/0013791X.2012.760696.“Weighted Average Cost of Capital | EME 801: Energy Markets, Policy, and Regulation.” https://www.e-education.psu.edu/eme801/node/585 (accessed Jul. 23, 2021).“Environmental Optimization Using the Waste Reduction Algorithm (WAR),” EPA, Aug. 2011. https://nepis.epa.gov/Exe/tiff2png.exe/P100DZKT.PNG?-r+75+-g+7+D%3A%5CZYFILES%5CINDEX DATA%5C11THRU15%5CTIFF%5C00000238%5CP100DZKT.TIF (accessed Jul. 23, 2021).L. Petrescu and C. C. Cormos, “Waste reduction algorithm applied for environmental impact assessment of coal gasification with carbon capture and storage,” J. Clean. Prod., vol. 104, pp. 220–235, Oct. 2015, doi: 10.1016/J.JCLEPRO.2014.08.064.P. Polyolefins Group, “Polypropylene (PP),” Environmental Product Declarations of the European Plastics Manufacturers.R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic Acid Technology,” Adv. Mater., vol. 12, no. 23, pp. 1841–1846, Dec. 2000, doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.O. Avinc and A. Khoddami, “Overview of Poly(lactic acid) (PLA) Fibre,” Fibre Chem., vol. 41, no. 6, pp. 391–401, Nov. 2009, doi: 10.1007/s10692-010-9213-z.T. W. Yoo, H. G. Yoon, S. J. Choi, M. S. Kim, Y. H. Kim, and W. N. Kim, “Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly(lactic acid) blends,” Macromol. Res., vol. 18, no. 6, pp. 583–588, Jun. 2010, doi: 10.1007/s13233-010-0613-y.S. Lee and Y. Koo, “Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm,” Simulation, vol. 14, pp. 1163–1169, 2004.D.-J. Min, K. H. Choi, Y. K. Chang, and J.-H. Kim, “Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth,” Korean J. Chem. Eng., vol. 28, no. 10, pp. 1969–1974, Oct. 2011, doi: 10.1007/s11814-011-0082-9.S. Şahin, Ş. İsmail Kırbaşlar, and M. Bilgin, “(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems,” J. Chem. Thermodyn., vol. 41, no. 1, pp. 97–102, Jan. 2009, doi: 10.1016/j.jct.2008.07.014.L. Domingues, P. A. Cussolin, J. L. da Silva, L. H. de Oliveira, and M. Aznar, “Liquid–liquid equilibrium data for ternary systems of water+lactic acid+C4–C7 alcohols at 298.2K and atmospheric pressure,” Fluid Phase Equilib., vol. 354, pp. 12–18, Sep. 2013, doi: 10.1016/j.fluid.2013.06.007.S. I. Mussatto, M. Fernandes, I. M. Mancilha, and I. C. Roberto, “Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain,” Biochem. Eng. J., vol. 40, no. 3, pp. 437–444, Jul. 2008, doi: 10.1016/J.BEJ.2008.01.013.E. T. H. Vink, K. R. Ra´bagora´bago, D. A. Glassner, and P. R. Gruber, “Applications of life cycle assessment to NatureWorks TM polylactide (PLA) production,” doi: 10.1016/S0141-3910(02)00372-5.S. Petrou and A. Gray, “Economic evaluation using decision analytical modelling: Design, conduct, analysis, and reporting,” Res. Methods Report., vol. 342, no. 7808, pp. 1–6, May 2011, doi: 10.1136/bmj.d1766.I. Reymen, H. Berends, R. Oudehand, and R. Stultiëns, “Decision making for business model development: a process study of effectuation and causation in new technology-based ventures,” R&D Manag., vol. 47, no. 4, pp. 595–606, Sep. 2017, doi: 10.1111/radm.12249.A. J. H. Nel, J. C. Vosloo, and M. J. Mathews, “Financial model for energy efficiency projects in the mining industry,” Energy, vol. 163, pp. 546–554, Nov. 2018, doi: 10.1016/j.energy.2018.08.154.“The Association for the Advancement of Cost Estimating International (AACE International).” .I. Horváth, “On some Crucial Issues of Computer Support of Conceptual Design,” in Product Engineering, Dordrecht: Kluwer Academic Publishers, 2004, pp. 123–142.M. P. Weiss, A. Hari, and A. Zonnenshain, “Design of the concept of a new system, using ICDM - Integrated, Customer Driven, Conceptual Design Method,” INCOSE Int. Symp., vol. 12, no. 1, pp. 980–988, 2002, doi: 10.1002/j.2334-5837.2002.tb02564.x.T. Keinonen and R. Takala, Product Concept Design A Review of the Conceptual Design of Products in Industry. Springer, 2006.F. G. Albrecht, D. H. König, N. Baucks, and R. U. Dietrich, “A standardized methodology for the techno-economic evaluation of alternative fuels – A case study,” Fuel, vol. 194, pp. 511–526, Apr. 2017, doi: 10.1016/j.fuel.2016.12.003.D. Manca, A. Fini, and M. Oliosi, Dynamic Conceptual Design under Market Uncertainty and Price Volatility, vol. 29. 2011.D. Manca, A. Conte, and R. Barzaghi, “How to account for market volatility in the conceptual design of chemical processes,” Chem. Eng. Trans., vol. 43, pp. 1333–1338, 2015, doi: 10.3303/CET1543223.D. Manca, “Price model of electrical energy for PSE applications,” Comput. Chem. Eng., vol. 84, pp. 208–216, Jan. 2016, doi: 10.1016/j.compchemeng.2015.08.013.D. Manca and R. Grana, “Dynamic conceptual design of industrial processes,” Comput. Chem. Eng., vol. 34, no. 5, pp. 656–667, May 2010, doi: 10.1016/j.compchemeng.2010.01.004.P. Sorknæs, H. Lund, and A. N. Andersen, “Future power market and sustainable energy solutions - The treatment of uncertainties in the daily operation of combined heat and power plants,” Appl. Energy, vol. 144, pp. 129–138, Apr. 2015, doi: 10.1016/j.apenergy.2015.02.041.C. Cardona, J. Moncada, and V. Aristizabal, “Design strategies for sustainable biorefineries,” Biochem. Eng. J., vol. 116, pp. 122–134, 2016, doi: 10.1016/j.bej.2016.06.009.American Petroluem Institute (API), “API 660 - Shell-and-tube heat exchangers for general refinery services,” pp. 1–38, 2001.R. K. Shah and D. P. Sekuli, Selection of Heat Exchangers and Their Components. 2007.R. Mukherjee, “Effectively design hell-and-tube heat exchangers,” Chemical Engineering Progress, vol. 94, no. 2, pp. 21–37, 1998.Tubular Exchanger Manufacturers Association Inc (TEMA), Standard of the Tubular Exchanger Manufacturers Association, Ninth. Tarrytown, New York 10591: TEMA, 2007.B. Nesbitt, Ed., “Pump theory,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 145–148.B. Nesbitt, Ed., “Pumps and piping systems,” in Handbook of Pumps and Pumping, Elsevier, 2006, pp. 157–158.J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo, and C. A. Cardona, “Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case,” Energy, vol. 33, no. 3, pp. 385–399, 2008, doi: 10.1016/J.ENERGY.2007.10.001.R. Gomilšek, L. Čuček, M. Homšak, and Z. Kravanja, “Towards GHG emissions neutrality of aluminium slug production: An industrial study,” Chem. Eng. Trans., vol. 76, pp. 217–222, 2019, doi: 10.3303/CET1976037.M. E. Tovar de Rivera, “ESTIMACION DE COSTO DE INVERSION DE PLANTAS QUIMICIAS,” Colombia, 2021.J. Mascareñas, “El coste del capital,” MADRID, Mar. 2001.E. News, “ESTIMACIÓN DEL COSTE DEL CAPITAL ‰ Distribución de Costes del Capital,” Chem. Eng., vol. 12, 2020.Guillermo Larcarnarqué, “ESTIMACION DE COSTOS DE INVERSION EN PLANTAS PETROQUIMICAS.” Educación en Ingeniería Química, 2017.D. Guillermo L, Finanzas Corporativas: un enfoque latinoamericano, Alfaomega. Colombia: Alfaomega, 2010.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1143238546.2021.pdf1143238546.2021.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf6032689https://repositorio.unal.edu.co/bitstream/unal/81128/1/1143238546.2021.pdfc3e74c92db7a4dfdd65f74bf55df0db2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81128/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1143238546.2021.pdf.jpg1143238546.2021.pdf.jpgGenerated Thumbnailimage/jpeg5593https://repositorio.unal.edu.co/bitstream/unal/81128/3/1143238546.2021.pdf.jpgde1ee1014c8537331d1eb4a4024bcb92MD53unal/81128oai:repositorio.unal.edu.co:unal/811282023-08-01 23:04:14.732Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK