Modelo de comportamiento de conductores y la generación de accidentes de tránsito.

Ilustraciones

Autores:
Arias Rojas, Wilson
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80429
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80429
https://repositorio.unal.edu.co/
Palabra clave:
380 - Comercio , comunicaciones, transporte::388 - Transporte
Conductores de automóviles
Traffic Safety
Seguridad vial
Seguridad vial - Métodos de simulación
Accidentes de tránsito - Métodos de simulación
Machine Learning
Neurosky
Human behavior
Comportamiento humano
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_26cb46c337832ee890886b737b7f464a
oai_identifier_str oai:repositorio.unal.edu.co:unal/80429
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
dc.title.translated.eng.fl_str_mv Driver behavior model and the generation of traffic accidents
Driver behavior model and the generation of traffic accidents.
title Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
spellingShingle Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
380 - Comercio , comunicaciones, transporte::388 - Transporte
Conductores de automóviles
Traffic Safety
Seguridad vial
Seguridad vial - Métodos de simulación
Accidentes de tránsito - Métodos de simulación
Machine Learning
Neurosky
Human behavior
Comportamiento humano
title_short Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
title_full Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
title_fullStr Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
title_full_unstemmed Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
title_sort Modelo de comportamiento de conductores y la generación de accidentes de tránsito.
dc.creator.fl_str_mv Arias Rojas, Wilson
dc.contributor.advisor.none.fl_str_mv Córdoba Maquilón, Jorge Eliecer
dc.contributor.author.none.fl_str_mv Arias Rojas, Wilson
dc.contributor.researchgroup.spa.fl_str_mv VIAS Y TRANSPORTE (VITRA)
dc.subject.ddc.spa.fl_str_mv 380 - Comercio , comunicaciones, transporte::388 - Transporte
topic 380 - Comercio , comunicaciones, transporte::388 - Transporte
Conductores de automóviles
Traffic Safety
Seguridad vial
Seguridad vial - Métodos de simulación
Accidentes de tránsito - Métodos de simulación
Machine Learning
Neurosky
Human behavior
Comportamiento humano
dc.subject.other.spa.fl_str_mv Conductores de automóviles
dc.subject.lemb.eng.fl_str_mv Traffic Safety
dc.subject.lemb.spa.fl_str_mv Seguridad vial
Seguridad vial - Métodos de simulación
Accidentes de tránsito - Métodos de simulación
dc.subject.proposal.eng.fl_str_mv Machine Learning
Neurosky
Human behavior
dc.subject.proposal.spa.fl_str_mv Comportamiento humano
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-07T20:12:08Z
dc.date.available.none.fl_str_mv 2021-10-07T20:12:08Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80429
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80429
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv AASHTO. 2004. A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials. Washington, D.C., USA.
Af Wåhlberg, A.E., 2012. Changes in driver acceleration behavior over time: Do drivers learn from collisions? Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), pp.471–479
Alonso G. et al (2004), Entrenamiento de una red neuronal artificial usando el algoritmo simulated annealing, Revista Scientia et Technica. Año X, No 24, Mayo 2004. UTP. ISSN 0122-1701 .
Agencia Nacional de Seguridad Vial, Observatorio Nacional de Seguridad Vial. página web https://ansv.gov.co/observatorio/index.html recuperada el 24-11-2019.
Alicea, L. 2004. Analysis and Evaluation of Crashes Involving Pedestrians in Puerto Rico. Tesis de Maestría en Ingeniería Civil, Recinto Universitario de Mayagüez, Universidad de Puerto Rico.
Alonso, M., 2016. La integración del factor humano en el ámbito técnico de la gestión de las carreteras y la seguridad vial: Un enfoque investigativo. Available at: http://roderic.uv.es/handle/10550/51943.
Arias, W., Colucci, B., 2006. Road Safety Audit. , Newsletter El puente, 19(3), p.28.
Bear, F., Connors. W, 2002. Neurociencia, explorando el cerebro, Editorial Masson, Barcelona.
Bella, F., 2014. Effects of Combined Curves on Driver’s Speed Behavior: Driving Simulator Study. Transportation Research Procedia, 3, pp.100–108.
Ben-Bassat, T. & Shinar, D., 2011. Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis and Prevention, 43(6), pp.2142–2152.
Benekohal, R.F., Hashmi, A.M. 1992, Procedures for estimating accident reductions on two-lane highways, Journal of Transportation Engineering, 118 (1), pp. 111-129.
Breen, J., 2009. Car telephone use and road safety, an overview prepared for the European Commission, European Commission.
Breiman, L., 2001. Statistical modeling: the two cultures. Statistical Science 16, 199–231
Briem, V., & Hedman, L. R. (1995). Behavioural effects of mobile telephone use during simulated driving. Ergonomics, 38(12), 2536-2562.
Brookhuis, K.A., de Vries, G., de Waard, D., 1991. The effects of mobile telephoning on driving performance, Accident Analysis & Prevention 23(4), 309-316.
Bruyas,M., Corinne Brusque, Sandrine Debailleux, Max Duraz, Isabelle Aillerie, 2009 ,Does making a conversation asynchronous reduce the negative impact of phone call on driving?, Transportation Research Part F: Traffic Psychology and Behaviour
Burgeois JP, Goldman-Rakic PS, Rakic P. 1994, Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex; 4: 78-96.
Carmona, E., 2014, Tutorial sobre Máquinas de Vectores Soporte (SVM) Dpto. de Inteligencia Artificial, ETS de Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal, 16, 28040-Madrid (Spain)
Chaves S, E.W.V. (2012). () "Mecánica del Medio Continuo. Conceptos Básicos".3ª Edición, Centro Internacional de Métodos Numéricos en Ingeniería - CIMNE - Barcelona. ISBN: 978-84-96736-38-2.
Cherri, C., Nodari, E., Toffetti, A. (2004). AIDE Subproject 2: Review of existing tools and methods (Tech. Inf.), Information Society Technologies Programme " Adaptive integrated driver-vehicle interface" (AIDE)
Cobos, C. Modelo de un meta buscador que realiza agrupación de documentos web, enriquecido con una taxonomía, ontologías e información del usuario, tesis doctoral Ingeniería de Sistemas, Universidad Nacional de Colombia, 2013.
Colab (2020), What is Colaboratory? página web disponible para ejecución de pruebas en https://colab.research.google.com/notebooks/intro.ipynb#
Córdoba, J.E., (2011) Modelo de elección discreta integrando variables latentes y racionalidad limitada, tesis doctoral, Universidad Nacional de Colombia, sede Medellín.
Dans. E. Disponible en:http://www.enriquedans. com/2011/10/big-data-una-pequena- introduccion.html, 2011.
DataSmart, (2020), Automachine Learling con Tpot, consulta realizada el 9 de junio de 2020, disponible en https://datasmarts.net/es/automl-con-tpot/
De la Fuente, S. (2011), Regresión logística, Facultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid, pp. 2-29.
Duchek, J. M., Hunt, L., Ball, K., Buckles, V., Morris, J.C., 1998. Attention and driving performance in Alzheimer’s disease. Journal of Gerontology Series B, Psychological Sciences and Social Sciences, 53, 130-141
Ellison, A.B., Greaves, S.P. & Bliemer, M.C.J., 2015. Driver behaviour profiles for road safety analysis. Accident Analysis & Prevention, 76, pp.118–132.
Elvik R, Vaa T., 2004. The handbook of road safety measures. Amsterdam, Elsevier Science.
Engelbrecht, A.P., 2007. Computational Intelligence. An Introduction, second ed. Wiley, NY.
Engström, J., Johansson, E., Östlund, J., 2005. Effects of visual and cognitive load in real and simulated motorway driving. Transportation Research Part F: Traffic Psychology and Behaviour, 8, 97-120
Evans, L., 2004. Traffic safety. Bloomfield Hills, MI: Science Serving Society.
P. Fancher, R. Ervin, J. Sayer, M. Hagan, S. Bogard, Z. Bareket, M. Mefford, J. Haugen, Intelligent cruise control field operational test. Technical report, Universitv of Michigan-Transportation Research Institute, 1998 May.
Ferrer, A., Smith, R. & Cuellar, M., 2013. Análisis de la Capacidad de Gestión de la Seguridad Vial. Banco Mundial, pp.92–93.
Figueroa, A., 2005. Speed factors on four lane highways in free flow conditions Doctoral thesis. Purdue University
Figueroa, A., Kong, S., A. Tarko. 2005. Roadway and Driver Factors of Risk Perception on Four-Lane Highways, International: Road Safety on Four Continents, Warsaw, Poland.
Figueroa, A., Colucci, B. Arias, W. 2006, Sistema de Gerencia en Seguridad Vial: Integrando la Planificación, el Diseño Geométrico y la Auditoria de las Carreteras Primera cumbre puertorriqueña de seguridad vial, San Juan, , Puerto Rico, USA, 2006
Fire, M. et al., 2012. Data mining opportunities in geosocial networks for improving road safety. 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, IEEEI 2012.
Gallegos, M. Gorostegui, M.E., Procesos cognitivos metodologia-de-la-investigacion/procesos-cognitivos, Pontificia Universidad Católica de Chile, 1990.
Georgiou, T. et al., 2015. Mining Complaints for Traffic-Jam Estimation. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, pp.330–335.
Gibson, J.J., 1986. The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.
Glymour, C., Madigan, D., Pregibon, D., Smyth, P., 1997. Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery 1 (1), 11–28.
Godley, S.T., Triggs, T.J., and Fildes, B.N., 2002. Driving simulator validation for speed research, Accident Analysis and Prevention 34 (5), 589-600.
Gómez, E. 2017, concepto, metáforas, modelos y bases cerebrales de la atención, Universidad de Granada, 77 pág.
Gu, Y., Qian, Z. (Sean) & Chen, F., 2016. From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, pp.321–342.
Gustafson, E. 1998. Gender Differences in Risk Perception: Theoretical and Methodological Perspectives. Risk Analysis, Vol. 18, No. 6, pp. 805-811.
Haigney, D.E., Taylor, R.G., Westerman, S.J., 2000. Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transportation Research Part F, 3, 113-121.
Hamdar, S.H. & Schorr, J., 2013. Interrupted versus uninterrupted flow: a safety propensity index for driver behavior. Accident; analysis and prevention, 55, pp.22–33. Available at: http://www.sciencedirect.com/science/article/pii/S0001457513000420 [Accessed March 11, 2016].
Hand, D.J., 2000. Data mining, new challenges for statisticians. Social Science Computer Review 18 (4), 442–449
Hassan, H.M. & Abdel-Aty, M.A., 2013. Exploring the safety implications of young drivers’ behavior, attitudes and perceptions. Accident Analysis and Prevention, 50, pp.361–370.
Hauer, E. 1990. The engineering of safety and the safety of engineering. Challenging the Old Order -Towards New Directions in Traffic Safety Theory, J.P. Rothe, ed., Transaction, New Brunswick.
Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Macmillan, NY.
Horberry, T., Anderson, J., Regan, M.A., Triggs, T.J., Brown, J., 2006. Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance. Accident Analysis and Prevention, n.38, pp.185-191.
Huttenlocher PR, Dabholkar AS. 1997, Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol; 387: 167-78.
Iversen, H.H. & Rundmo, T., 2012. Changes in Norwegian drivers’ attitudes towards traffic safety and driver behaviour from 2000 to 2008. Transportation Research Part F: Traffic Psychology and Behaviour, 15(2), pp.95–100.
Izaurieta, F. y Saavedra, C. 2015.. Redes Neuronales Artificiales. Dpto. de Física, U. de Concepción, Chile. http://www.uta.cl/charlas/volumen16/Indice/C h-csaavedra.pdf
Jacobson, D. Brail G. Woods, D., 2012. APIs: A Strategy Guide First rele., Sebastopol, CA.: O’Reilly Media Inc. Available at: www.oreilly.com.
Jamson, A.H., 2001. Image characteristics and their effect on driving simulator validity. Proceedings of the first international driving symposium on human factors in driver assessment, training and vehicle design (pp.190-195). Aspen, CO.
Jiang, Shan, Yang, Yingxiang Gupta, Siddharth, Veneziano, Daniele Athavale, Shounak González, Marta C. 2016, The Timegeo modeling framework for urban mobility without travel surveys, Proceedings of the National Academy of Sciences of the United States of America
Johnston, I. 2006. Highway Safety. En: The Handbook of Highway Engineering. CRC Press.
Jovović, I., Peraković, D., & Husnjak, S. (2018). The Impact of Using Modern Information and Communication Equipment and Services on Driving Safety. Promet-Traffic&Transportation, 30(5), 635-645
Khan, I., Khusro, S., & Alam, I. (2019, July). Smartphone Distractions and its Effect on Driving Performance using Vehicular Lifelog Dataset. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEE
Kass, S., Beede, K., 2007. Engrossed in Conversations: The impact on cell phones on simulated driving performance. Accident Analysis and Prevention, 38, 415.
Kaptei, N.A., Theeuwes, J., van der Horst, R., 1996. Driving simulator validity: some considerations, Transportation Research Record 1550, 30, 1996.
Karlaftis, M.G, Vlahogianni E.I., 2010 Statistical methods versus neural networks in transportation research, Transportation Research part C,
Khoo, H.L. & Asitha, K.S., 2016. Quantifying impact of traffic images applications (APPS) on travel choices. KSCE Journal of Civil Engineering, 20(2), pp.899–912.
Kircher, K., 2007. Driver distraction - A review of the literature. VTI Report 594A. VTI, Linköping, Sweden.
Kuan, Ch.-M., White, H., 1994. Artificial neural networks: an econometric perspective. Econometric Reviews 13 (l), 1–9
Kummetha, V., Kondyli, A., Chrysikou, E., Schrock, S. 2020, Safety analysis of work zone complexity with respect to driver characteristics — A simulator study employing performance and gaze measures,Accident Analysis & Prevention,Volume 142,ISSN 0001-4575,
LaBerge, D., 1997. Attention, awareness, and the triangular circuit. Consciousness and Cognition, 6, 148-181.
Lancheros-Cuesta, J. L. Ramirez. Y. Forero and A. C. Duran, "Evaluation of e-learning activities with NeuroSky MindWave EEG," 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, 2018, pp. 1-6.
Ledesma, R. D., Poó, F. M., Montes, S. A. 2011, Psicología del tránsito: logros y desafíos de la investigación. PSIENCIA. Revista Latinoamericana de Ciencia Psicológica ISSN: 2250-5490. Disponible en: https://www.redalyc.org/articulo.oa?id=333127105007
Luce, D. (1959), Individual Choice Behavior, John Wiley and Sons, New York
Luna del Castillo, J.D., Andrés, A.M. Tablas 2×2 y test exacto de Fisher. TDE 2, 15–43 (1987). https://doi.org/10.1007/BF02864816
Ma, R., Kaber, D. 2005. Situation awareness and workload in driving while using adaptive cruise control and a cell phone, International Journal of Industrial Ergonomics, 35, 939-953
McFadden, D. (1974), ‘Conditional logit analysis of qualitative choice behavior’, in P. Zarembka, ed., Frontiers in Econometrics, Academic Press, New York, pp. 105–142
Markkula,G., Romano, R., Waldram, R., Giles, O., Mole, C., Wilkie, R., 2019 Modelling visual-vestibular integration and behavioural adaptation in the driving simulator, Transportation Research Part F: Traffic Psychology and Behaviour, Volume 66, Pages 310-323, ISSN 1369-8478
Marschak, J. (1960), ‘Binary choice constraints on random utility indications’, in K. Arrow, ed., Stanford Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, Stanford, CA, pp. 312–329
MATLAB, 2017 Users Manual, Mathworks Inc, www.mathworks.com
Matthews, R., Legg, S., & Charlt on, S. (2003). The effect of cell phone type on drivers’ subjective workload during concurrent driving and conversing. Accident Analysis and Prevention, 35, 441-450.
McEvoy, S.P., Stevenson, M.R., McCartt, A.T., Woodward, M., Haworth, C., Palamara, P., Cercarelli, R., 2005. Role of mobile phones in motor vehicle crashes resulting in hospital attendance: a case-crossover study. BMJ, Aug. 20; 331(7514):428, Epub 2005.
McKnight A.J., McKnight A.S. (1993). The effect of mobile phone use upon driver attention. Accident Analysis and Prevention 25, 259-265. Mallikarjuna, C., Rao, K. R. (2006). Area occupancy characteristics of heterogeneous traffic. Transportmetrica, 2(3), 223–236
Murillo, M. (2003). Modelo de Comportamiento de Conductores de Automóviles Usando Razonamiento Basado en Contextos. Revista Eletrôcnica de Sistemas de Informação, 2(2).
Musicant, O., Lotan, T. & Albert, G., 2015. Do we really need to use our smartphones while driving? Accident; analysis and prevention, 85, pp.13–21.
National Center for Statistics and Analysis (NCSA). 2006a. Race and Ethnicity in Fatal Motor Vehicle Traffic Crashes 1999-2004. National Highway Traffic Safety Administration, Washington, D.C.
National Center for Statistics and Analysis (NCSA). 2006. Puerto Rico Toll of Motor Vehicle Crashes, 2005. National Highway Traffic Safety Administration, Washington, D.C.
National Center for Statistics and Analysis (NCSA). 2005. Traffic Safety Facts 2004. National Highway Traffic Safety Administration, Washington, D.C.
Nicholls, D., 1999. Statistics into the 21st century. Australia & New Zealand, Journal of Statistics 41 (2), 127–139.
Norza, E. Useche, S. Moreno, J. Granados, E. Romero, M., 2014. Componentes descriptivos y explicativos de la accidentalidad vial en Colombia: incidencia del factor humano. Revista Criminalidad, 56(1), pp.157–187.
Olsen, E.C.B., Lerner, N., Perel, M., Simmons-Morton, B.G., 2005. In-car electronic device use among teen drivers. In: Paper presented at the Transportation Research Board Meeting, Washington, DC.
Ortiz, C., Ortiz-Peregrina, S., Castro, J. J., Casares-López, M., & Salas, C. (2018). Driver distraction by smartphone use (WhatsApp) in different age groups. Accident Analysis & Prevention, 117, 239-249
Okamoto, K. , Tsiotras, P. 2019, Data-driven human driver lateral control models for developing haptic-shared control advanced driver assist systems, Robotics and Autonomous Systems, Volume 114, Pages 155-171, ISSN 0921-8890
Oviedo-Trespalacios, O, MM Haque, M King, Understanding the impacts of mobile phone distraction on driving performance: A systematic review - Transportation research part C: emerging technologies, 2016
Oviedo-Trespalacios, O., King, M., Vaezipour, A., & Truelove, V. (2019). Can our phones keep us safe? A content analysis of smartphone applications to prevent mobile phone distracted driving. Transportation research part F: traffic psychology and behaviour, 60, 657-668.
Policía Nacional de Colombia, Dirección de Tránsito 2018, Base de datos de fatalidades de 1 de enero de 2011 a 31 de diciembre de 2017, información suministrada a solicitud del autor de esta tesis doctoral.
Papantoniou, P. Risk factors, driver behaviour and accident probability. The case of distracted driving., Doctoral thesis, National Technical University of Athens, 2015.
Parasuraman, R., Nestor, P.G., 1991. Attention and Driving Skills in Aging and Alzheimer's disease, Human Factors: The Journal of the Human Factors and Ergonomics Society, 33, no. 5, 539-557.
Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A.A., Jarawan, E., Mathers, C., 2004, World report on road traffic injury prevention. Geneva, World Health Organization.
Pentland, A., & Liu, A. (1999). Modeling and prediction of human behavior. Neural computation, 11(1), 229–242. https://doi.org/10.1162/089976699300016890
Petridou, E., Moustaki, M., 2000.Human factors in the causation of road traffic crashes, European Journal of Epidemiology, 16, pp 819-826.
Pollatsek, A., Fisher, D.L., Pradhan, A.K., 2006. Identifying and remediating failures of selective attention in younger drivers. Current directions in Psychological Science, 15, 255-259.
Proakis, J. Manolakis, D., 1997, Tratamiento digital de señales, Prentice Hall.
Raajan, Narasimhan & Isra, A.R. & Greeta, S & Hemapriya, N & Narayan, S.K.G. & Madhupriya, G & Hariharan, K. (2018). Driver fatigue detection using neurosky mindwave headset. International Journal of Pure and Applied Mathematics. 119. 16383-16388
Rakauskas, M. E., Gugerty, L.J., Ward, N.J., 2004. Effects of naturalistic cell phone conversations on driving performance, Journal of Safety Research 35 (4), 453-464, 2004.
Ram, T. & Chand, K., 2016. Effect of drivers’ risk perception and perception of driving tasks on road safety attitude. Transportation Research Part F: Traffic Psychology and Behaviour.
Tibshirani RJ., 1997 Association between cellular-telephone calls and motor vehicle collisions, The New England Journal of Medicine, Volume 336, number 7.
Regan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.
Reger, M.A., Welsh, R.K., Watson, G.S., Cholerton, B., Baker, L.D., Craft, S., 2004. The relationship between neuropsychological functioning and driving ability in dementia: a meta-analysis. Neuropsychology 18, 85-93.
Rehmann, A.J., Mitman, R.D., Reynolds, M.C., 2010. A Handbook of Flight Simulation Fidelity Requirements for Human Factors Research, Report No. DOT/FFF/CT-TN95/46, U.S. Department of Transportation, Federal Aviation Administration, Atlantic City, NJ.
Reimer, B., Mehler, B., D’Ambrosio, L. A., & Fried, R. (2010). The impact of distractions on young adult drivers with attention deficit hyperactivity disorder (ADHD). Accident Analysis and Prevention, 42(3), 842–851. https://doi.org/10.1016/j.aap.2009.06.021
Roman, G.D. et al., 2015. Novice drivers’ individual trajectories of driver behavior over the first three years of driving. Accident Analysis & Prevention, 82, pp.61–69.
Rubiano, A. 2016. Smart control of soft robotic hand, Doctoral thesis, Université Paris Quest Narrente,
Rumar, K. 1985. The Role of Perceptual and Cognitive Filters in Observed Behavior. En: Human Behavior in Traffic Safety. Evans and Schwing, Plenum Press.
Sadek, A.W., Spring, G., Smith, B.L., 2003. Toward more effective transportation applications of computational intelligence paradigms. Transportation Research Record 1836, 57–63
Sagberg, F., 2001. Accident risk of car drivers during mobile telephone use. Int.J. Vehicle Design 26, 57–69.
Salgado, M. Oracle apuesta por Big Data con tecnología y proyectos. Disponible en: http://www.computerworld.es/big-data/oracle-apuesta-por-big-data-con-tecnologia-y proyectos, 2014
Sarle, W.S., 1994. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference (April 1–13).
Schlehofer, M., Thompson, S., Ting, S., Ostermann, S., Nierman, A., Jessica Skenderian, J., 2010 Psychological predictors of college students’ cell phone use while driving, Accident Analysis & Prevention, Volume 42, Issue 4, Pages 1107-1112,
Scialfa, C.T. et al., 2011. A hazard perception test for novice drivers. Accident Analysis & Prevention, 43(1), pp.204–208.
Seeman P. 1999, Brain development X: pruning during development. Am J Psychiatry; 156: 168.
Shinar, D. y J. Stiebel. 1986. The Effectiveness of Stationary Versus Moving Police Vehicle on Compliance with Speed Limit. Human Factors, Vol. 28.
Shinar, D., Tractinsky, N., & Compton, R. (2005). Effects of practice, age, and task demands, on interference from a phone task while driving. Accident Analysis and Prevention, 37(2), 315-326. doi:10.1016/j.aap.2004.09.007
Smith, P.M. et al., 2015. The development of a conceptual model and self-reported measure of occupational health and safety vulnerability. Accident; analysis and prevention, 82, pp.234–43.
Strayer, D., Drews, F., Johnston, W., 2003. Cell phone-induced failures of visual attention during simulated driving. Journal of Experimental Psychology: Applied, 9(1), 23-32.
Stutts, J.C., Reinfurt, D.W., Staplin, L., Rodgman, E.A., 2001. The role οf driver distraction in traffic crashes. Report Prepared for AAA Foundation for Traffic Safety.
SWOV, 2008. Fact sheet. Use of mobile phone while driving, SWOV, Leidschendam, the Netherlands
Triggs, T.J., 1996. Driving simulation for railway crossing research, In Seventh International Symposium on Railroad-Highway Grade Crossing Research and Safety – Getting Active at Passive Crossings, Monash University, Clayton, Australia.
Regan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.
Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge
Ülker, Mehmet Barış Tabakcıoğlu Bursa, Turkey Hüseyin Çizmeci1, Doruk Ayberkin, 2017 Relations of Attention and Meditation Level with Learning in Engineering Education ECAI International Conference – 9th Edition Electronics, Computers and Artificial Intelligence 29 June -01 July, 2017, Targoviste, ROMÂNIA
Vaa, T. 1997, Increased police enforcement> effects on speed, Accident Analysis and Prevention. 29(3) pp. 373-85.
Vlahogianni, E.I., Karlaftis M.G., 2010. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. Journal of Intelligent Transportation Systems 13 (2), 73–84
Viola, P. Jones, M. (2001) Rapid object detection using a boosted cascade of simple features. In Proceedings of the 20014 ieee computer society conference on computer vision and pattern recognition, (Vol 1, pp. I-511)
Waller, J.A., 1980. Physician’s role in highway safety. Functional impairment indriving. N Y State J Med 1980; 80:1987-1991
Warner, H.W. & Åberg, L., 2012. Drivers’ tendency to commit different aberrant driving behaviours in comparison with their perception of how often other drivers commit the same behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 27, pp.37–43.
Warner, B., Misra, M., 1996. Understanding neural networks as statistical tools. The American Statistician 50 (4), 284–293.
Wild, C.J., Pfannkuch, M., 1999. Statistical thinking in empirical enquiry. International Statistical Review 67 (3), 223–265
Winskel, H., Kim, T. H., Kardash, L., & Belic, I. (2019). Smartphone use and study behavior: A Korean and Australian comparison. Heliyon, 5(7), e02158.
Wolrld Health organization, WHO, Road Safety, Deaths, 2015, página web http://gamapserver.who.int/gho/interactive_charts/road_safety/road_traffic_deaths/atlas.html, recuperado 4/07/2017
Wu, X., Zhu, X., Wu, G.-Q., Ding, W., Data mining with big data, IEEE transactions on knowledge and data engineering, Vol. 26, No 1, 2014.
Yannis G., 2013. Review of distracted driving factors, Proceedings of the 13th World Conference on Transportation Research, COPPE - Federal University of Rio de Janeiro at Rio de Janeiro, Brazil.
Young, K., Regan, M., Hammer, M., 2003. Driver distraction: a review of the literature, MUARC, Report No. 206Zamith, M. et al., 2015. A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. Journal of Computational Science, 9, pp.51–56.
Zheng, F. (2011) Modelling Urban Travel Times. PhD Thesis, Deflt University of Technology
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 154 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80429/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80429/3/79857169.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80429/4/79857169.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
c23d7f09fa1957865b8c5716a3aebb6e
a50ab06c6a462fa64b36706e2605f665
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089822376034304
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Córdoba Maquilón, Jorge Eliecer0e25bbac3e2dada8a8ac8f5e7991f37d600Arias Rojas, Wilson7d1ca8a486c71cb38cb1d4f9fea0a01eVIAS Y TRANSPORTE (VITRA)2021-10-07T20:12:08Z2021-10-07T20:12:08Z2021https://repositorio.unal.edu.co/handle/unal/80429Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEsta investigación doctoral, presenta el resultado del análisis del comportamiento de conductores en un escenario controlado, en un simulador de conducción, en el cual, mediante la medición de ondas cerebrales, se determinó el grado de concentración al conducir y por medio del uso de Machine Learning, se planteó un modelo de comportamiento de los conductores al someterse a un efecto distractor mientras se conduce, el cual permite analizar los factores más relevantes que se reflejan en errores y malas prácticas al momento de conducir. En esta investigación se analizó una muestra poblacional desde los 16 hasta los 90 años, compuesta de hombres y mujeres, a partir de un universo obtenido de una base de datos de fatalidades durante 7 años, se construyó un simulador de conducción con un software para la simulación que permite diferentes escenarios de conducción. Se elaboró un programa de captura de ondas cerebrales el cual midió el grado de concentración de los participantes del experimento mientras eran sometidos al efecto distractor de envío de mensajes de Whatsapp mientras conducían en el escenario escogido. Posteriormente se hizo un análisis de la información obtenida por medio de redes neuronales, obteniendo los resultados del comportamiento de los conductores y errores más comunes durante el experimento, se planteó un modelo de comportamiento de conductores ante los efectos distractores Finalmente se clasificaron conductas riesgosas de conductores al ser sometidas a un efecto distractor, observando el comportamiento de conductores mayores de 50 años, los cuales son más cautelosos ante efectos distractores, y se planteó un modelo matemático que depende del grado de concentración de usuarios y varía de acuerdo con el escenario escogido por cada uno de los participantes del experimento (Texto tomado de la fuente)This doctoral research is the result of the analysis of drivers behavior in a controlled scenario, using a driving simulator, in which, by measuring brain waves, the degree of concentration was measured when driving and through the use of Machine Learning, a model of behavior of drivers was proposed to be subjected to a distracting effect while driving, which allows analyzing the most relevant factors that are reflected in errors and bad practices at the time of driving. In this research was determined a population sample of men and woman whose ages oscillate between 16 to 90 years, composed of men and women, from a universe obtained from a database of fatalities for 7 years. A driving simulator was built, and it was using a software for the simulation that allows different driving scenarios. A brainwave capture program was developed in which the participants' degree of concentration, the experiment, the moment, the effect, the sending factor of the WhatsApp messages were measured, while it was carried out in the chosen scenario. Subsequently, an analysis of the information was made in the neural networks, obtaining the results of the behavior of the drivers and the most common errors in the experiment, A model of behavior of the drivers was presented before the distracting effects. Finally, risk behaviors were classified to be a factor of distraction, observing the behavior of drivers over 50, who are more cautious about the effects of distraction, and a mathematical model was proposed that depends on the degree of concentration of users and according to the scenario chosen by each one of the participants of the experiment.DoctoradoDoctor en IngenieríaPlaneación e infraestructura para el transportexvii, 154 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Ingeniería CivilDepartamento de Ingeniería CivilFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín380 - Comercio , comunicaciones, transporte::388 - TransporteConductores de automóvilesTraffic SafetySeguridad vialSeguridad vial - Métodos de simulaciónAccidentes de tránsito - Métodos de simulaciónMachine LearningNeuroskyHuman behaviorComportamiento humanoModelo de comportamiento de conductores y la generación de accidentes de tránsito.Driver behavior model and the generation of traffic accidentsDriver behavior model and the generation of traffic accidents.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAASHTO. 2004. A Policy on Geometric Design of Highways and Streets. American Association of State Highway and Transportation Officials. Washington, D.C., USA.Af Wåhlberg, A.E., 2012. Changes in driver acceleration behavior over time: Do drivers learn from collisions? Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), pp.471–479Alonso G. et al (2004), Entrenamiento de una red neuronal artificial usando el algoritmo simulated annealing, Revista Scientia et Technica. Año X, No 24, Mayo 2004. UTP. ISSN 0122-1701 .Agencia Nacional de Seguridad Vial, Observatorio Nacional de Seguridad Vial. página web https://ansv.gov.co/observatorio/index.html recuperada el 24-11-2019.Alicea, L. 2004. Analysis and Evaluation of Crashes Involving Pedestrians in Puerto Rico. Tesis de Maestría en Ingeniería Civil, Recinto Universitario de Mayagüez, Universidad de Puerto Rico.Alonso, M., 2016. La integración del factor humano en el ámbito técnico de la gestión de las carreteras y la seguridad vial: Un enfoque investigativo. Available at: http://roderic.uv.es/handle/10550/51943.Arias, W., Colucci, B., 2006. Road Safety Audit. , Newsletter El puente, 19(3), p.28.Bear, F., Connors. W, 2002. Neurociencia, explorando el cerebro, Editorial Masson, Barcelona.Bella, F., 2014. Effects of Combined Curves on Driver’s Speed Behavior: Driving Simulator Study. Transportation Research Procedia, 3, pp.100–108.Ben-Bassat, T. & Shinar, D., 2011. Effect of shoulder width, guardrail and roadway geometry on driver perception and behavior. Accident Analysis and Prevention, 43(6), pp.2142–2152.Benekohal, R.F., Hashmi, A.M. 1992, Procedures for estimating accident reductions on two-lane highways, Journal of Transportation Engineering, 118 (1), pp. 111-129.Breen, J., 2009. Car telephone use and road safety, an overview prepared for the European Commission, European Commission.Breiman, L., 2001. Statistical modeling: the two cultures. Statistical Science 16, 199–231Briem, V., & Hedman, L. R. (1995). Behavioural effects of mobile telephone use during simulated driving. Ergonomics, 38(12), 2536-2562.Brookhuis, K.A., de Vries, G., de Waard, D., 1991. The effects of mobile telephoning on driving performance, Accident Analysis & Prevention 23(4), 309-316.Bruyas,M., Corinne Brusque, Sandrine Debailleux, Max Duraz, Isabelle Aillerie, 2009 ,Does making a conversation asynchronous reduce the negative impact of phone call on driving?, Transportation Research Part F: Traffic Psychology and BehaviourBurgeois JP, Goldman-Rakic PS, Rakic P. 1994, Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex; 4: 78-96.Carmona, E., 2014, Tutorial sobre Máquinas de Vectores Soporte (SVM) Dpto. de Inteligencia Artificial, ETS de Ingeniería Informática, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal, 16, 28040-Madrid (Spain)Chaves S, E.W.V. (2012). () "Mecánica del Medio Continuo. Conceptos Básicos".3ª Edición, Centro Internacional de Métodos Numéricos en Ingeniería - CIMNE - Barcelona. ISBN: 978-84-96736-38-2.Cherri, C., Nodari, E., Toffetti, A. (2004). AIDE Subproject 2: Review of existing tools and methods (Tech. Inf.), Information Society Technologies Programme " Adaptive integrated driver-vehicle interface" (AIDE)Cobos, C. Modelo de un meta buscador que realiza agrupación de documentos web, enriquecido con una taxonomía, ontologías e información del usuario, tesis doctoral Ingeniería de Sistemas, Universidad Nacional de Colombia, 2013.Colab (2020), What is Colaboratory? página web disponible para ejecución de pruebas en https://colab.research.google.com/notebooks/intro.ipynb#Córdoba, J.E., (2011) Modelo de elección discreta integrando variables latentes y racionalidad limitada, tesis doctoral, Universidad Nacional de Colombia, sede Medellín.Dans. E. Disponible en:http://www.enriquedans. com/2011/10/big-data-una-pequena- introduccion.html, 2011.DataSmart, (2020), Automachine Learling con Tpot, consulta realizada el 9 de junio de 2020, disponible en https://datasmarts.net/es/automl-con-tpot/De la Fuente, S. (2011), Regresión logística, Facultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid, pp. 2-29.Duchek, J. M., Hunt, L., Ball, K., Buckles, V., Morris, J.C., 1998. Attention and driving performance in Alzheimer’s disease. Journal of Gerontology Series B, Psychological Sciences and Social Sciences, 53, 130-141Ellison, A.B., Greaves, S.P. & Bliemer, M.C.J., 2015. Driver behaviour profiles for road safety analysis. Accident Analysis & Prevention, 76, pp.118–132.Elvik R, Vaa T., 2004. The handbook of road safety measures. Amsterdam, Elsevier Science.Engelbrecht, A.P., 2007. Computational Intelligence. An Introduction, second ed. Wiley, NY.Engström, J., Johansson, E., Östlund, J., 2005. Effects of visual and cognitive load in real and simulated motorway driving. Transportation Research Part F: Traffic Psychology and Behaviour, 8, 97-120Evans, L., 2004. Traffic safety. Bloomfield Hills, MI: Science Serving Society.P. Fancher, R. Ervin, J. Sayer, M. Hagan, S. Bogard, Z. Bareket, M. Mefford, J. Haugen, Intelligent cruise control field operational test. Technical report, Universitv of Michigan-Transportation Research Institute, 1998 May.Ferrer, A., Smith, R. & Cuellar, M., 2013. Análisis de la Capacidad de Gestión de la Seguridad Vial. Banco Mundial, pp.92–93.Figueroa, A., 2005. Speed factors on four lane highways in free flow conditions Doctoral thesis. Purdue UniversityFigueroa, A., Kong, S., A. Tarko. 2005. Roadway and Driver Factors of Risk Perception on Four-Lane Highways, International: Road Safety on Four Continents, Warsaw, Poland.Figueroa, A., Colucci, B. Arias, W. 2006, Sistema de Gerencia en Seguridad Vial: Integrando la Planificación, el Diseño Geométrico y la Auditoria de las Carreteras Primera cumbre puertorriqueña de seguridad vial, San Juan, , Puerto Rico, USA, 2006Fire, M. et al., 2012. Data mining opportunities in geosocial networks for improving road safety. 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, IEEEI 2012.Gallegos, M. Gorostegui, M.E., Procesos cognitivos metodologia-de-la-investigacion/procesos-cognitivos, Pontificia Universidad Católica de Chile, 1990.Georgiou, T. et al., 2015. Mining Complaints for Traffic-Jam Estimation. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015 - ASONAM ’15, pp.330–335.Gibson, J.J., 1986. The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum.Glymour, C., Madigan, D., Pregibon, D., Smyth, P., 1997. Statistical themes and lessons for data mining. Data Mining and Knowledge Discovery 1 (1), 11–28.Godley, S.T., Triggs, T.J., and Fildes, B.N., 2002. Driving simulator validation for speed research, Accident Analysis and Prevention 34 (5), 589-600.Gómez, E. 2017, concepto, metáforas, modelos y bases cerebrales de la atención, Universidad de Granada, 77 pág.Gu, Y., Qian, Z. (Sean) & Chen, F., 2016. From Twitter to detector: Real-time traffic incident detection using social media data. Transportation Research Part C: Emerging Technologies, 67, pp.321–342.Gustafson, E. 1998. Gender Differences in Risk Perception: Theoretical and Methodological Perspectives. Risk Analysis, Vol. 18, No. 6, pp. 805-811.Haigney, D.E., Taylor, R.G., Westerman, S.J., 2000. Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transportation Research Part F, 3, 113-121.Hamdar, S.H. & Schorr, J., 2013. Interrupted versus uninterrupted flow: a safety propensity index for driver behavior. Accident; analysis and prevention, 55, pp.22–33. Available at: http://www.sciencedirect.com/science/article/pii/S0001457513000420 [Accessed March 11, 2016].Hand, D.J., 2000. Data mining, new challenges for statisticians. Social Science Computer Review 18 (4), 442–449Hassan, H.M. & Abdel-Aty, M.A., 2013. Exploring the safety implications of young drivers’ behavior, attitudes and perceptions. Accident Analysis and Prevention, 50, pp.361–370.Hauer, E. 1990. The engineering of safety and the safety of engineering. Challenging the Old Order -Towards New Directions in Traffic Safety Theory, J.P. Rothe, ed., Transaction, New Brunswick.Haykin, S., 1999. Neural Networks: A Comprehensive Foundation. Macmillan, NY.Horberry, T., Anderson, J., Regan, M.A., Triggs, T.J., Brown, J., 2006. Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance. Accident Analysis and Prevention, n.38, pp.185-191.Huttenlocher PR, Dabholkar AS. 1997, Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol; 387: 167-78.Iversen, H.H. & Rundmo, T., 2012. Changes in Norwegian drivers’ attitudes towards traffic safety and driver behaviour from 2000 to 2008. Transportation Research Part F: Traffic Psychology and Behaviour, 15(2), pp.95–100.Izaurieta, F. y Saavedra, C. 2015.. Redes Neuronales Artificiales. Dpto. de Física, U. de Concepción, Chile. http://www.uta.cl/charlas/volumen16/Indice/C h-csaavedra.pdfJacobson, D. Brail G. Woods, D., 2012. APIs: A Strategy Guide First rele., Sebastopol, CA.: O’Reilly Media Inc. Available at: www.oreilly.com.Jamson, A.H., 2001. Image characteristics and their effect on driving simulator validity. Proceedings of the first international driving symposium on human factors in driver assessment, training and vehicle design (pp.190-195). Aspen, CO.Jiang, Shan, Yang, Yingxiang Gupta, Siddharth, Veneziano, Daniele Athavale, Shounak González, Marta C. 2016, The Timegeo modeling framework for urban mobility without travel surveys, Proceedings of the National Academy of Sciences of the United States of AmericaJohnston, I. 2006. Highway Safety. En: The Handbook of Highway Engineering. CRC Press.Jovović, I., Peraković, D., & Husnjak, S. (2018). The Impact of Using Modern Information and Communication Equipment and Services on Driving Safety. Promet-Traffic&Transportation, 30(5), 635-645Khan, I., Khusro, S., & Alam, I. (2019, July). Smartphone Distractions and its Effect on Driving Performance using Vehicular Lifelog Dataset. In 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (pp. 1-6). IEEEKass, S., Beede, K., 2007. Engrossed in Conversations: The impact on cell phones on simulated driving performance. Accident Analysis and Prevention, 38, 415.Kaptei, N.A., Theeuwes, J., van der Horst, R., 1996. Driving simulator validity: some considerations, Transportation Research Record 1550, 30, 1996.Karlaftis, M.G, Vlahogianni E.I., 2010 Statistical methods versus neural networks in transportation research, Transportation Research part C,Khoo, H.L. & Asitha, K.S., 2016. Quantifying impact of traffic images applications (APPS) on travel choices. KSCE Journal of Civil Engineering, 20(2), pp.899–912.Kircher, K., 2007. Driver distraction - A review of the literature. VTI Report 594A. VTI, Linköping, Sweden.Kuan, Ch.-M., White, H., 1994. Artificial neural networks: an econometric perspective. Econometric Reviews 13 (l), 1–9Kummetha, V., Kondyli, A., Chrysikou, E., Schrock, S. 2020, Safety analysis of work zone complexity with respect to driver characteristics — A simulator study employing performance and gaze measures,Accident Analysis & Prevention,Volume 142,ISSN 0001-4575,LaBerge, D., 1997. Attention, awareness, and the triangular circuit. Consciousness and Cognition, 6, 148-181.Lancheros-Cuesta, J. L. Ramirez. Y. Forero and A. C. Duran, "Evaluation of e-learning activities with NeuroSky MindWave EEG," 2018 13th Iberian Conference on Information Systems and Technologies (CISTI), Caceres, 2018, pp. 1-6.Ledesma, R. D., Poó, F. M., Montes, S. A. 2011, Psicología del tránsito: logros y desafíos de la investigación. PSIENCIA. Revista Latinoamericana de Ciencia Psicológica ISSN: 2250-5490. Disponible en: https://www.redalyc.org/articulo.oa?id=333127105007Luce, D. (1959), Individual Choice Behavior, John Wiley and Sons, New YorkLuna del Castillo, J.D., Andrés, A.M. Tablas 2×2 y test exacto de Fisher. TDE 2, 15–43 (1987). https://doi.org/10.1007/BF02864816Ma, R., Kaber, D. 2005. Situation awareness and workload in driving while using adaptive cruise control and a cell phone, International Journal of Industrial Ergonomics, 35, 939-953McFadden, D. (1974), ‘Conditional logit analysis of qualitative choice behavior’, in P. Zarembka, ed., Frontiers in Econometrics, Academic Press, New York, pp. 105–142Markkula,G., Romano, R., Waldram, R., Giles, O., Mole, C., Wilkie, R., 2019 Modelling visual-vestibular integration and behavioural adaptation in the driving simulator, Transportation Research Part F: Traffic Psychology and Behaviour, Volume 66, Pages 310-323, ISSN 1369-8478Marschak, J. (1960), ‘Binary choice constraints on random utility indications’, in K. Arrow, ed., Stanford Symposium on Mathematical Methods in the Social Sciences, Stanford University Press, Stanford, CA, pp. 312–329MATLAB, 2017 Users Manual, Mathworks Inc, www.mathworks.comMatthews, R., Legg, S., & Charlt on, S. (2003). The effect of cell phone type on drivers’ subjective workload during concurrent driving and conversing. Accident Analysis and Prevention, 35, 441-450.McEvoy, S.P., Stevenson, M.R., McCartt, A.T., Woodward, M., Haworth, C., Palamara, P., Cercarelli, R., 2005. Role of mobile phones in motor vehicle crashes resulting in hospital attendance: a case-crossover study. BMJ, Aug. 20; 331(7514):428, Epub 2005.McKnight A.J., McKnight A.S. (1993). The effect of mobile phone use upon driver attention. Accident Analysis and Prevention 25, 259-265. Mallikarjuna, C., Rao, K. R. (2006). Area occupancy characteristics of heterogeneous traffic. Transportmetrica, 2(3), 223–236Murillo, M. (2003). Modelo de Comportamiento de Conductores de Automóviles Usando Razonamiento Basado en Contextos. Revista Eletrôcnica de Sistemas de Informação, 2(2).Musicant, O., Lotan, T. & Albert, G., 2015. Do we really need to use our smartphones while driving? Accident; analysis and prevention, 85, pp.13–21.National Center for Statistics and Analysis (NCSA). 2006a. Race and Ethnicity in Fatal Motor Vehicle Traffic Crashes 1999-2004. National Highway Traffic Safety Administration, Washington, D.C.National Center for Statistics and Analysis (NCSA). 2006. Puerto Rico Toll of Motor Vehicle Crashes, 2005. National Highway Traffic Safety Administration, Washington, D.C.National Center for Statistics and Analysis (NCSA). 2005. Traffic Safety Facts 2004. National Highway Traffic Safety Administration, Washington, D.C.Nicholls, D., 1999. Statistics into the 21st century. Australia & New Zealand, Journal of Statistics 41 (2), 127–139.Norza, E. Useche, S. Moreno, J. Granados, E. Romero, M., 2014. Componentes descriptivos y explicativos de la accidentalidad vial en Colombia: incidencia del factor humano. Revista Criminalidad, 56(1), pp.157–187.Olsen, E.C.B., Lerner, N., Perel, M., Simmons-Morton, B.G., 2005. In-car electronic device use among teen drivers. In: Paper presented at the Transportation Research Board Meeting, Washington, DC.Ortiz, C., Ortiz-Peregrina, S., Castro, J. J., Casares-López, M., & Salas, C. (2018). Driver distraction by smartphone use (WhatsApp) in different age groups. Accident Analysis & Prevention, 117, 239-249Okamoto, K. , Tsiotras, P. 2019, Data-driven human driver lateral control models for developing haptic-shared control advanced driver assist systems, Robotics and Autonomous Systems, Volume 114, Pages 155-171, ISSN 0921-8890Oviedo-Trespalacios, O, MM Haque, M King, Understanding the impacts of mobile phone distraction on driving performance: A systematic review - Transportation research part C: emerging technologies, 2016Oviedo-Trespalacios, O., King, M., Vaezipour, A., & Truelove, V. (2019). Can our phones keep us safe? A content analysis of smartphone applications to prevent mobile phone distracted driving. Transportation research part F: traffic psychology and behaviour, 60, 657-668.Policía Nacional de Colombia, Dirección de Tránsito 2018, Base de datos de fatalidades de 1 de enero de 2011 a 31 de diciembre de 2017, información suministrada a solicitud del autor de esta tesis doctoral.Papantoniou, P. Risk factors, driver behaviour and accident probability. The case of distracted driving., Doctoral thesis, National Technical University of Athens, 2015.Parasuraman, R., Nestor, P.G., 1991. Attention and Driving Skills in Aging and Alzheimer's disease, Human Factors: The Journal of the Human Factors and Ergonomics Society, 33, no. 5, 539-557.Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A.A., Jarawan, E., Mathers, C., 2004, World report on road traffic injury prevention. Geneva, World Health Organization.Pentland, A., & Liu, A. (1999). Modeling and prediction of human behavior. Neural computation, 11(1), 229–242. https://doi.org/10.1162/089976699300016890Petridou, E., Moustaki, M., 2000.Human factors in the causation of road traffic crashes, European Journal of Epidemiology, 16, pp 819-826.Pollatsek, A., Fisher, D.L., Pradhan, A.K., 2006. Identifying and remediating failures of selective attention in younger drivers. Current directions in Psychological Science, 15, 255-259.Proakis, J. Manolakis, D., 1997, Tratamiento digital de señales, Prentice Hall.Raajan, Narasimhan & Isra, A.R. & Greeta, S & Hemapriya, N & Narayan, S.K.G. & Madhupriya, G & Hariharan, K. (2018). Driver fatigue detection using neurosky mindwave headset. International Journal of Pure and Applied Mathematics. 119. 16383-16388Rakauskas, M. E., Gugerty, L.J., Ward, N.J., 2004. Effects of naturalistic cell phone conversations on driving performance, Journal of Safety Research 35 (4), 453-464, 2004.Ram, T. & Chand, K., 2016. Effect of drivers’ risk perception and perception of driving tasks on road safety attitude. Transportation Research Part F: Traffic Psychology and Behaviour.Tibshirani RJ., 1997 Association between cellular-telephone calls and motor vehicle collisions, The New England Journal of Medicine, Volume 336, number 7.Regan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.Reger, M.A., Welsh, R.K., Watson, G.S., Cholerton, B., Baker, L.D., Craft, S., 2004. The relationship between neuropsychological functioning and driving ability in dementia: a meta-analysis. Neuropsychology 18, 85-93.Rehmann, A.J., Mitman, R.D., Reynolds, M.C., 2010. A Handbook of Flight Simulation Fidelity Requirements for Human Factors Research, Report No. DOT/FFF/CT-TN95/46, U.S. Department of Transportation, Federal Aviation Administration, Atlantic City, NJ.Reimer, B., Mehler, B., D’Ambrosio, L. A., & Fried, R. (2010). The impact of distractions on young adult drivers with attention deficit hyperactivity disorder (ADHD). Accident Analysis and Prevention, 42(3), 842–851. https://doi.org/10.1016/j.aap.2009.06.021Roman, G.D. et al., 2015. Novice drivers’ individual trajectories of driver behavior over the first three years of driving. Accident Analysis & Prevention, 82, pp.61–69.Rubiano, A. 2016. Smart control of soft robotic hand, Doctoral thesis, Université Paris Quest Narrente,Rumar, K. 1985. The Role of Perceptual and Cognitive Filters in Observed Behavior. En: Human Behavior in Traffic Safety. Evans and Schwing, Plenum Press.Sadek, A.W., Spring, G., Smith, B.L., 2003. Toward more effective transportation applications of computational intelligence paradigms. Transportation Research Record 1836, 57–63Sagberg, F., 2001. Accident risk of car drivers during mobile telephone use. Int.J. Vehicle Design 26, 57–69.Salgado, M. Oracle apuesta por Big Data con tecnología y proyectos. Disponible en: http://www.computerworld.es/big-data/oracle-apuesta-por-big-data-con-tecnologia-y proyectos, 2014Sarle, W.S., 1994. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference (April 1–13).Schlehofer, M., Thompson, S., Ting, S., Ostermann, S., Nierman, A., Jessica Skenderian, J., 2010 Psychological predictors of college students’ cell phone use while driving, Accident Analysis & Prevention, Volume 42, Issue 4, Pages 1107-1112,Scialfa, C.T. et al., 2011. A hazard perception test for novice drivers. Accident Analysis & Prevention, 43(1), pp.204–208.Seeman P. 1999, Brain development X: pruning during development. Am J Psychiatry; 156: 168.Shinar, D. y J. Stiebel. 1986. The Effectiveness of Stationary Versus Moving Police Vehicle on Compliance with Speed Limit. Human Factors, Vol. 28.Shinar, D., Tractinsky, N., & Compton, R. (2005). Effects of practice, age, and task demands, on interference from a phone task while driving. Accident Analysis and Prevention, 37(2), 315-326. doi:10.1016/j.aap.2004.09.007Smith, P.M. et al., 2015. The development of a conceptual model and self-reported measure of occupational health and safety vulnerability. Accident; analysis and prevention, 82, pp.234–43.Strayer, D., Drews, F., Johnston, W., 2003. Cell phone-induced failures of visual attention during simulated driving. Journal of Experimental Psychology: Applied, 9(1), 23-32.Stutts, J.C., Reinfurt, D.W., Staplin, L., Rodgman, E.A., 2001. The role οf driver distraction in traffic crashes. Report Prepared for AAA Foundation for Traffic Safety.SWOV, 2008. Fact sheet. Use of mobile phone while driving, SWOV, Leidschendam, the NetherlandsTriggs, T.J., 1996. Driving simulation for railway crossing research, In Seventh International Symposium on Railroad-Highway Grade Crossing Research and Safety – Getting Active at Passive Crossings, Monash University, Clayton, Australia.Regan, M.A., Lee, J.D., Young, K.L. (Eds.), 2008. Driver Distraction: Theory, Effects, and Mitigation. CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 31–40.Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge University Press, CambridgeÜlker, Mehmet Barış Tabakcıoğlu Bursa, Turkey Hüseyin Çizmeci1, Doruk Ayberkin, 2017 Relations of Attention and Meditation Level with Learning in Engineering Education ECAI International Conference – 9th Edition Electronics, Computers and Artificial Intelligence 29 June -01 July, 2017, Targoviste, ROMÂNIAVaa, T. 1997, Increased police enforcement> effects on speed, Accident Analysis and Prevention. 29(3) pp. 373-85.Vlahogianni, E.I., Karlaftis M.G., 2010. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. Journal of Intelligent Transportation Systems 13 (2), 73–84Viola, P. Jones, M. (2001) Rapid object detection using a boosted cascade of simple features. In Proceedings of the 20014 ieee computer society conference on computer vision and pattern recognition, (Vol 1, pp. I-511)Waller, J.A., 1980. Physician’s role in highway safety. Functional impairment indriving. N Y State J Med 1980; 80:1987-1991Warner, H.W. & Åberg, L., 2012. Drivers’ tendency to commit different aberrant driving behaviours in comparison with their perception of how often other drivers commit the same behaviours. Transportation Research Part F: Traffic Psychology and Behaviour, 27, pp.37–43.Warner, B., Misra, M., 1996. Understanding neural networks as statistical tools. The American Statistician 50 (4), 284–293.Wild, C.J., Pfannkuch, M., 1999. Statistical thinking in empirical enquiry. International Statistical Review 67 (3), 223–265Winskel, H., Kim, T. H., Kardash, L., & Belic, I. (2019). Smartphone use and study behavior: A Korean and Australian comparison. Heliyon, 5(7), e02158.Wolrld Health organization, WHO, Road Safety, Deaths, 2015, página web http://gamapserver.who.int/gho/interactive_charts/road_safety/road_traffic_deaths/atlas.html, recuperado 4/07/2017Wu, X., Zhu, X., Wu, G.-Q., Ding, W., Data mining with big data, IEEE transactions on knowledge and data engineering, Vol. 26, No 1, 2014.Yannis G., 2013. Review of distracted driving factors, Proceedings of the 13th World Conference on Transportation Research, COPPE - Federal University of Rio de Janeiro at Rio de Janeiro, Brazil.Young, K., Regan, M., Hammer, M., 2003. Driver distraction: a review of the literature, MUARC, Report No. 206Zamith, M. et al., 2015. A new stochastic cellular automata model for traffic flow simulation with drivers’ behavior prediction. Journal of Computational Science, 9, pp.51–56.Zheng, F. (2011) Modelling Urban Travel Times. PhD Thesis, Deflt University of TechnologyColcienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80429/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL79857169.2021.pdf79857169.2021.pdfDoctor en Ingeniería - Ingeniería Civilapplication/pdf6139647https://repositorio.unal.edu.co/bitstream/unal/80429/3/79857169.2021.pdfc23d7f09fa1957865b8c5716a3aebb6eMD53THUMBNAIL79857169.2021.pdf.jpg79857169.2021.pdf.jpgGenerated Thumbnailimage/jpeg4938https://repositorio.unal.edu.co/bitstream/unal/80429/4/79857169.2021.pdf.jpga50ab06c6a462fa64b36706e2605f665MD54unal/80429oai:repositorio.unal.edu.co:unal/804292023-07-29 23:03:55.92Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==