Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus
La ADN polimerasa de Geobacillus stearothermophilus (ADN Pol I Bst), es un miembro de la familia A de las polimerasas, que posee características desplazamiento de hebra que favorecen su aplicación en métodos de amplificación isotérmica. En el presente trabajo se describe la expresión y caracterizaci...
- Autores:
-
Estupiñan Molina, Cristian David
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86461
- Palabra clave:
- 540 - Química y ciencias afines
610 - Medicina y salud::616 - Enfermedades
570 - Biología::572 - Bioquímica
ADN Polimerasa I
Polimerasa Taq
Virus de la Mieloblastosis Aviar
Coronavirus
Prueba de COVID-19
DNA Polymerase I
Taq Polymerase
Avian Myeloblastosis Virus
COVID-19 Testing
Geobacillus stearothermophilus
Polimerasa
ADN Pol I Bst
Pol Bst
LAMP
SARS-CoV-2
Polyerase
Pol I Bst DNA
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_268baa85faabc860234585407805b3e1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86461 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
dc.title.translated.eng.fl_str_mv |
Expression and functional characterization of a DNA polymerase I from Geobacillus stearothermophilus |
title |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
spellingShingle |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus 540 - Química y ciencias afines 610 - Medicina y salud::616 - Enfermedades 570 - Biología::572 - Bioquímica ADN Polimerasa I Polimerasa Taq Virus de la Mieloblastosis Aviar Coronavirus Prueba de COVID-19 DNA Polymerase I Taq Polymerase Avian Myeloblastosis Virus COVID-19 Testing Geobacillus stearothermophilus Polimerasa ADN Pol I Bst Pol Bst LAMP SARS-CoV-2 Polyerase Pol I Bst DNA |
title_short |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
title_full |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
title_fullStr |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
title_full_unstemmed |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
title_sort |
Expresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilus |
dc.creator.fl_str_mv |
Estupiñan Molina, Cristian David |
dc.contributor.advisor.none.fl_str_mv |
de Brito Brandão, Pedro Filipe Calderón Manrique, Dayana |
dc.contributor.author.none.fl_str_mv |
Estupiñan Molina, Cristian David |
dc.contributor.researchgroup.spa.fl_str_mv |
Biotecnología Molecular (CorpoGen) Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA) |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051741 |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Cristian-Estupinan |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines 610 - Medicina y salud::616 - Enfermedades 570 - Biología::572 - Bioquímica |
topic |
540 - Química y ciencias afines 610 - Medicina y salud::616 - Enfermedades 570 - Biología::572 - Bioquímica ADN Polimerasa I Polimerasa Taq Virus de la Mieloblastosis Aviar Coronavirus Prueba de COVID-19 DNA Polymerase I Taq Polymerase Avian Myeloblastosis Virus COVID-19 Testing Geobacillus stearothermophilus Polimerasa ADN Pol I Bst Pol Bst LAMP SARS-CoV-2 Polyerase Pol I Bst DNA |
dc.subject.decs.spa.fl_str_mv |
ADN Polimerasa I Polimerasa Taq Virus de la Mieloblastosis Aviar Coronavirus Prueba de COVID-19 |
dc.subject.decs.eng.fl_str_mv |
DNA Polymerase I Taq Polymerase Avian Myeloblastosis Virus COVID-19 Testing |
dc.subject.proposal.spa.fl_str_mv |
Geobacillus stearothermophilus Polimerasa ADN Pol I Bst Pol Bst LAMP SARS-CoV-2 |
dc.subject.proposal.eng.fl_str_mv |
Polyerase Pol I Bst DNA |
description |
La ADN polimerasa de Geobacillus stearothermophilus (ADN Pol I Bst), es un miembro de la familia A de las polimerasas, que posee características desplazamiento de hebra que favorecen su aplicación en métodos de amplificación isotérmica. En el presente trabajo se describe la expresión y caracterización funcional de una ADN Pol I Bst, iniciando por la secuenciación del plásmido mediante tecnología Oxford Nanopore, para confirmar la secuencia codificante de la proteína, seguido de un análisis in sillico, con el propósito de determinar la estructura 3D y sitios activos de la proteína. Posteriormente, se realizó la expresión, extracción, purificación, determinación de la actividad catalítica y análisis de funcionalidad mediante Loop Mediated Isothermal Amplification (LAMP) a 65 °C por 60 min, utilizando cómo sustrato ARN de SARS-CoV-2. Los resultados reflejan una secuencia codificante de 576 aminoácidos que pertenece al fragmento grande de ADN Pol I Bst, el cual tiene peso molecular de 61,8 kDa. Se obtuvo una concentración de 2mg/ml de proteína total, que posee una actividad enzimática de 606.4 U y una actividad especifica de 3.0×105 U/mg. Finalmente, se demuestra que la proteína es funcional al amplificar una secuencia perteneciente al Orf1a de ARN de SARS-CoV-2. Aquí se presenta una proteína funcional, con libertad de operación para su distribución y que es aplicable a sistemas de amplificación isotérmica para el diagnóstico de enfermedades de importancia clínica (Texto tomado de la fuente). |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-16T16:33:17Z |
dc.date.available.none.fl_str_mv |
2024-07-16T16:33:17Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86461 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86461 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agustriana, E., Nuryana, I., Laksmi, F. A., Dewi, K. S., Wijaya, H., Rahmani, N., Yudiargo, D. R., Ismadara, A., Helbert, Hadi, M. I., Purnawan, A., & Cameliawati Djohan, A. (2023). Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry and Biotechnology, 53(4), 384–393. https://doi.org/10.1080/10826068.2022.2095573 Aidelberg, G., Aronoff, R., Eliseeva, T., Quero, F. J., Vielfaure, H., Codyre, M., Hadasch, K., & Lindner, A. B. (2021). Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 32(3), 89–97. https://doi.org/10.7171/jbt.21-3203-003 Alipoor, S. D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M., & Adcock, I M. (2021). COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.563085 Aschenbrenner, J., & Marx, A. (2017). DNA polymerases and biotechnological applications. Current Opinion in Biotechnology, 48, 187–195. https://doi.org/10.1016/J.COPBIO.2017.04.005 Astatke, M., Grindley, N. D. F., & Joyce, C. M. (1995). Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Journal of Biological Chemistry, 270(4), 1945–1954. https://doi.org/10.1074/jbc.270.4.1945 Bebenek, K. K. T. A. (2004). FUNCTIONS OF DNA POLYMERASES. Bentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., Sefrioui, H., & Ait Benhassou, H. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infectious Diseases, 16(1), 517. https://doi.org/10.1186/s12879-016-1864-9 Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905. https://doi.org/10.1007/S10096-020-04138-6 Bio-Rad Laboratories. (2012). General Protocol for Western Blotting. Bruck, I., Goodman, M. F., & O’Donnell, M. (2003). The Essential C Family DnaE Polymerase Is Error-prone and Efficient at Lesion Bypass. Journal of Biological Chemistry, 278(45), 44361–44368. https://doi.org/10.1074/jbc.M308307200 Buger, N. J. (1994). The Bradford Method for Protein Quantitation Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421/FIGURES/4 Chim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. ELife, 7. https://doi.org/10.7554/ELIFE.40444 Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 1. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045 De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666. https://doi.org/10.1093/BIOINFORMATICS/BTY149 De Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5). https://doi.org/10.1093/BIOINFORMATICS/BTAD311 Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 3(6), 461–467. https://doi.org/10.1093/PROTEIN/3.6.461 Doublié, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4 Dunn, M. R., & Chaput, J. C. (2016). Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem : A European Journal of Chemical Biology, 17(19), 1804–1808. https://doi.org/10.1002/CBIC.201600338 Fijalkowska, J., Schaaper, R. M., Jonczyk, P., Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Molecular Microbiology, 58(1), 61–70. https://doi.org/10.1111/J.1365-2958.2005.04805.X Garcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Sciences, 26(2), 105. https://doi.org/10.1080/07352680701252817 Graziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase γ in mitochondrial DNA replication and repair. Chemical Reviews, 106(2), 383–405. https://doi.org/10.1021/CR040463D/ASSET/CR040463D.FP.PNG_V03 Greenough, L., Menin, J. F., Desai, N. S., Kelman, Z., & Gardner, A. F. (2014). Characterization of Family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles, 18(4), 653. https://doi.org/10.1007/S00792-014-0646-9 Güixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291. https://doi.org/10.1016/J.BMCL.2015.12.034 Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 929–935. https://doi.org/10.1161/ATVBAHA.109.185546 Hall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14998U1.29 Hamilton, N. H., & Furey, T. S. (2023). <tt>ROCCO</tt> : A Robust Method for Detection of Open Chromatin via Convex Optimization. Bioinformatics. https://doi.org/10.1093/BIOINFORMATICS/BTAD725 Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915. https://doi.org/10.1073/PNAS.89.22.10915 Hu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses Coronaviruses: Emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/S12985-015-0422-1/FIGURES/1 Huber, L. B., Betz, K., & Marx, A. (2023). Reverse Transcriptases: From Discovery and Applications to Xenobiology. ChemBioChem, 24(5), e202200521. https://doi.org/10.1002/CBIC.202200521 Hurtado, L., Díaz, D., Escorcia, K., Flórez, L., Bello, Y., Díaz, Y., Navarro, E., Pacheco, L. C., Galán, N., Maestre, R., Acosta, A., & Pacheco, L. A. (2022). Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. Biomédica, 42(Suppl 2), 59. https://doi.org/10.7705/BIOMEDICA.6523 INS. (2024). Coronavirus Colombia. Instituto Nacional de Salud. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx Jackson, L. N., Chim, N., Shi, C., & Chaput, J. C. (2019). Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Research, 47(13), 6973. https://doi.org/10.1093/NAR/GKZ513 Jana, M., Ghosh, A., Santra, A., Kar, R. K., Misra, A. K., & Bhunia, A. (2017). Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 498, 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060 Jeck, W. R., Iafrate, A. J., & Nardi, V. (2021). Nanopore Flongle Sequencing as a Rapid, Single-Specimen Clinical Test for Fusion Detection. The Journal of Molecular Diagnostics, 23(5), 630–636. https://doi.org/10.1016/J.JMOLDX.2021.02.001 Jones, M. D., & Foulkes, N. S. (1989). Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Research, 17(20), 8387–8388. https://doi.org/10.1093/NAR/17.20.8387 Kabir, M. S., Clements, M. O., & Kimmitt, P. T. (2015). RT-Bst: An integrated approach for reverse transcription and enrichment of cDNA from viral RNA. British Journal of Biomedical Science, 72(1), 1–6. https://doi.org/10.1080/09674845.2015.11666788 Karam, J. D., & Konigsberg, W. H. (2000). DNA polymerase of the T4-related bacteriophages. Progress in Nucleic Acid Research and Molecular Biology, 64. https://doi.org/10.1016/S0079-6603(00)64002-3 Kashir, J., & Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/J.MEHY.2020.109786 Kelleher, C., Teixeira, M. T., Förstemann, K., & Lingner, J. (2002). Telomerase: Biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 27(11), 572–579. https://doi.org/10.1016/S0968-0004(02)02206-5 Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997a). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997b). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-X Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020 17:11, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020-00971-x Kornberg, A. (1960). Biologic synthesis of deoxyribonucleic acid. Science, 131(3412), 1503–1508. https://doi.org/10.1126/SCIENCE.131.3412.1503/ASSET/970D30A2-F8D7-4244-BA29-796FBAD48625/ASSETS/SCIENCE.131.3412.1503.FP.PNG Kornberg A y Baker T. (1992). DNA replication. Freeman. Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60(12 I), 2256–2268. https://doi.org/10.1107/S0907444904026460 Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore Fabrication by Controlled Dielectric Breakdown. PLOS ONE, 9(3), e92880. https://doi.org/10.1371/JOURNAL.PONE.0092880 Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00178-w Leger, A., & Leonardi, T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34), 1236. https://doi.org/10.21105/joss.01236 Li, J. J., Xiong, C., Liu, Y., Liang, J. S., & Zhou, X. W. (2016). Loop-mediated isothermal amplification (LAMP): Emergence as an alternative technology for herbal medicine identification. Frontiers in Plant Science, 7(DECEMBER2016), 214697. https://doi.org/10.3389/FPLS.2016.01956/BIBTEX Ling, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102. https://doi.org/10.1016/S0092-8674(01)00515-3 Marangoni, A. G. (2003). Enzyme kinetics : a modern approach. Wiley-Interscience. Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., … Roper, R. L. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/SCIENCE.1085953/SUPPL_FILE/MARRA.SOM.PDF Martin, S. K., & Wood, R. D. (2019). DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 47(16), 8348–8361. https://doi.org/10.1093/NAR/GKZ705 Mayanagi, K., Oki, K., Miyazaki, N., Ishino, S., Yamagami, T., Morikawa, K., Iwasaki, K., Kohda, D., Shirai, T., & Ishino, Y. (2020). Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biology, 18(1). https://doi.org/10.1186/S12915-020-00889-Y McGuffie, M. J., & Barrick, J. E. (2021). pLannotate: engineered plasmid annotation. Nucleic Acids Research, 49(W1), W516–W522. https://doi.org/10.1093/NAR/GKAB374 Minciencias. (2021). resolucion_0665-2021 (2). Mo, J. Y., & Schaaper, R. M. (1996). Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. Journal of Biological Chemistry, 271(31), 18947–18953. https://doi.org/10.1074/jbc.271.31.18947 Molero, J. M., Arranz-Izquierdo, J., Gutiérrez-Pérez, M. I., & Redondo Sánchez, J. M. (2021). Aspectos básicos de la COVID-19 para el manejo desde atención primaria. Atencion Primaria, 53(6), 101966. https://doi.org/10.1016/J.APRIM.2020.12.007 Morales, F. D., Coronado-Jimenez, L., Gonzalez-Moya, V., Mercedes-Zambrano, M., Sandoval-Herrera, J., & Arturo-Calvache, J. E. (2022). CHEMICAL ENGINEERING TRANSACTIONS Effect of agitation on Taq DNA polymerase production by Escherichia coli in bioreactor. www.cetjournal.it Nagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. https://doi.org/10.1006/mcpr.2002.0415 Neagu, M., Constantin, C., & Surcel, M. (2021). Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/IJERPH182413173 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000a). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/NAR/28.12.E63 Ohmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., & Woodgate, R. (2001). The Y-family of DNA Polymerases. Molecular Cell, 8(1), 7–8. https://doi.org/10.1016/S1097-2765(01)00278-7 Oliveira, B. B., Veigas, B., & Baptista, P. V. (2021). Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors, 2, 752600. https://doi.org/10.3389/FSENS.2021.752600 O’Reilly, M., Teichmann, S. A., & Rhodes, D. (1999). Telomerases. Current Opinion in Structural Biology, 9(1), 56–65. https://doi.org/10.1016/S0959-440X(99)80008 Oscorbin, I., & Filipenko, M. (2023). Bst polymerase — a humble relative of Taq polymerase. Computational and Structural Biotechnology Journal, 21, 4519–4535. https://doi.org/10.1016/J.CSBJ.2023.09.008 Palacios, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021). COVID-19, una emergencia de salud pública mundial. Revista Clinica Espanola, 221(1), 55. https://doi.org/10.1016/J.RCE.2020.03.001 Phang, S.-M., Teo, C.-Y., Lo, E., Wong, V., & Wong, T. (1995). Cloning and complete sequence of the DNA polymerase-encoding gene (BstpolI) and characterisation of the Klenow-like fragment from Bacillus stearothermophilus (DNA sequencing; genomic library; homologies; recombinant). In Gene (Vol. 163, Issue 65). Prakash, S., Johnson, R. E., & Prakash, L. (2005). EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Https://Doi.Org/10.1146/Annurev.Biochem.74.082803.133250, 74, 317–353. https://doi.org/10.1146/ANNUREV.BIOCHEM.74.082803.133250 QIAGEN. (2010). Quick-StartProtocol Sample & Assay Technologies QIAprep ® Spin Miniprep Kit. www.qiagen.com/contact. Rabe, B. A., & Cepko, C. (2020). SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/PNAS.2011221117/-/DCSUPPLEMENTAL Ramírez, M., Angulo, M. V., Colciencias, G., Fernando, D., Losada, H., Monroy, S. E., & Subdirectora, V. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la República Rastgoo, N., Sadeghizadeh, M., Bambaei, B., & Hosseinkhani, S. (2009). Restoring 3′-5′ exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. Journal of Biotechnology, 144(4), 245–252. https://doi.org/10.1016/j.jbiotec.2009.09.006 Rivera, M., Cazaux, S., Cerda, A., Medina, A. A., Núñez, I., Matute, T., Brown, A., Gasulla, J., Federici, F., & Ramirez-Sarmiento, C. A. (2020). Recombinant protein expression and purification of codon-optimized Bst-LF polymerase Reclone.org (The Reagent Collaboration Network). https://doi.org/10.17504/PROTOCOLS.IO.BKSRKW Robert Novy and Barbara Morri. (2003). Glucose supression. InNovations , 13 Saldanha, R., Chen, B., Wank, H., Matsuura, M., Edwards, J., & Lambowitz, A. M. (1999). RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry, 38(28), 9069–9083. https://doi.org/10.1021/bi982799l Schrödinger, L. , & D. W. (2020). PyMOL | pymol.org. https://pymol.org/2/#page-top Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381. https://doi.org/10.1093/NAR/GKG52 Sellmann, E., Schroder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174(13), 4350. https://doi.org/10.1128/JB.174.13.4350-4355.1992 Shanbhag, V., Sachdev, S., Flores, J. A., Modak, M. J., & Singh, K. (2018). Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 7(1). https://doi.org/10.3390/BIOLOGY7010005 Shcherbakova, P. V., Pavlov, Y. I., Chilkova, O., Rogozin, I. B., Johansson, E., & Kunkel, T. A. (2003). Unique Error Signature of the Four-subunit Yeast DNA Polymerase ε. Journal of Biological Chemistry, 278(44), 43770–43780. https://doi.org/10.1074/jbc.M306893200 Shi, C., Shen, X., Niu, S., & Ma, C. (2015). Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection. Journal of the American Chemical Society, 137(43), 13804–13806. https://doi.org/10.1021/jacs.5b08144 Singh, K., Srivastava, A., Patel, S. S., & Modak, M. J. (2007). Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Journal of Biological Chemistry, 282(14), 10594–10604. https://doi.org/10.1074/jbc.M611242200 Sluis-Cremer, N. (2021). Retroviral reverse transcriptase: Structure, function and inhibition. The Enzymes, 50, 179–194. https://doi.org/10.1016/BS.ENZ.2021.06.00 Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490. https://doi.org/10.1016/J.TIM.2016.03.003 Tanner, N. A., & Evans, T. C. (2013). Loop-mediated isothermal amplification for detection of nucleic acids. Current Protocols in Molecular Biology, SUPPL.105. https://doi.org/10.1002/0471142727.mb1514s105 Tsai, C. H., Chen, J., & Szostak, J. W. (2007). Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14598–14603. https://doi.org/10.1073/PNAS.0704211104 Uchiyama, Y., Takeuchi, R., Kodera, H., & Sakaguchi, K. (2009). Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie, 91(2), 165–170. https://doi.org/10.1016/J.BIOCHI.2008.07.005 Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2020). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology 2020 19:3, 19(3), 171–183. https://doi.org/10.1038/s41579-020-00461-z Wang, Y., Ngor, A. K., Nikoomanzar, A., & Chaput, J. C. (2018). Evolution of a General RNA-Cleaving FANA Enzyme. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-07611-1 Wardle, J., Burgers, P. M. J., Cann, I. K. O., Darley, K., Heslop, P., Johansson, E., Lin, L. J., McGlynn, P., Sanvoisin, J., Stith, C. M., & Connolly, B. A. (2008). Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Research, 36(3), 705–711. https://doi.org/10.1093/NAR/GKM1023 Worldometer. (2024). COVID Live - Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/ Yamtich, J., & Sweasy, J. B. (2010). DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochimica et Biophysica Acta, 1804(5), 1136. https://doi.org/10.1016/J.BBAPAP.2009.07.008 Zhao, C., & Pyle, A. M. (2016). Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nature Structural & Molecular Biology, 23(6), 558. https://doi.org/10.1038/NSMB.3224 Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Brief Report: A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727. https://doi.org/10.1056/NEJMOA2001017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 60 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86461/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86461/2/1069262590.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86461/3/1069262590.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 7f465f2339a4cc21a202b6f55524335b 4c7516d57f46b3c930ad0f3dad28af25 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089700479074304 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2de Brito Brandão, Pedro Filipe9ec73d77d555a4dff5e0457f24f26aefCalderón Manrique, Dayana98bcf96f58fa987f66eec1c797627942Estupiñan Molina, Cristian David8e668d50981c5137d386befa38458f06Biotecnología Molecular (CorpoGen)Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente (GERMINA)https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000051741https://www.researchgate.net/profile/Cristian-Estupinan2024-07-16T16:33:17Z2024-07-16T16:33:17Z2024https://repositorio.unal.edu.co/handle/unal/86461Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La ADN polimerasa de Geobacillus stearothermophilus (ADN Pol I Bst), es un miembro de la familia A de las polimerasas, que posee características desplazamiento de hebra que favorecen su aplicación en métodos de amplificación isotérmica. En el presente trabajo se describe la expresión y caracterización funcional de una ADN Pol I Bst, iniciando por la secuenciación del plásmido mediante tecnología Oxford Nanopore, para confirmar la secuencia codificante de la proteína, seguido de un análisis in sillico, con el propósito de determinar la estructura 3D y sitios activos de la proteína. Posteriormente, se realizó la expresión, extracción, purificación, determinación de la actividad catalítica y análisis de funcionalidad mediante Loop Mediated Isothermal Amplification (LAMP) a 65 °C por 60 min, utilizando cómo sustrato ARN de SARS-CoV-2. Los resultados reflejan una secuencia codificante de 576 aminoácidos que pertenece al fragmento grande de ADN Pol I Bst, el cual tiene peso molecular de 61,8 kDa. Se obtuvo una concentración de 2mg/ml de proteína total, que posee una actividad enzimática de 606.4 U y una actividad especifica de 3.0×105 U/mg. Finalmente, se demuestra que la proteína es funcional al amplificar una secuencia perteneciente al Orf1a de ARN de SARS-CoV-2. Aquí se presenta una proteína funcional, con libertad de operación para su distribución y que es aplicable a sistemas de amplificación isotérmica para el diagnóstico de enfermedades de importancia clínica (Texto tomado de la fuente).The DNA polymerase from Geobacillus stearothermophilus (Bst DNA Pol I) is a member of the A family of polymerases, exhibiting strand displacement characteristics that favor its application in isothermal amplification methods. This study describes the expression and functional characterization of a Bst DNA Pol I, starting with plasmid sequencing using Oxford Nanopore technology to confirm the protein's coding sequence. This is followed by in silico analysis to determine the protein's 3D structure and active sites. Subsequently, expression, extraction, purification, determination of catalytic activity, and functionality analysis were performed using Loop-Mediated Isothermal Amplification (LAMP) at 65 °C for 60 min, with SARS-CoV-2 RNA as the substrate. The results reveal a coding sequence of 576 amino acids belonging to the large fragment of Bst DNA Pol I, with a molecular weight of 61.8 kDa. A protein concentration of 2 mg/ml was obtained, exhibiting enzymatic activity of 606.4 U and a specific activity of 3.0×105 U/mg. Finally, it is demonstrated that the protein is functional in amplifying a sequence belonging to the Orf1a of SARS-CoV-2 RNA. While optimization studies are important to enhance the protein production process, this study presents a functional protein with operational freedom for distribution and applicability in isothermal amplification systems for the diagnosis of clinically significant diseases.Ministerio de Ciencia Tecnología e InnovaciónMaestríaMagíster en Ciencias - BioquímicaEn este proyecto se realizó la expresión y caracterización funcional de una ADN Pol I Bst, a partir de una plásmido previamente clonado. El enfoque metodológico abarca diferentes etapas, iniciando por la secuenciación del plásmido mediante tecnología Oxford Nanopore (Kwok et al., 2014) seguido de análisis secuencias y el procedimiento para el análisis in sillico, con el propósito de determinar la estructura 3D y sitios activos de la proteína. Posteriormente se detalla la metodología de los objetivos planteados que incluyen la expresión, extracción, purificación, determinación de actividad catalítica y, finalmente, el análisis de funcionalidad utilizando como sustrato ARN de SARS-CoV-2.Desarrollo de Productos Biotecnológicosxiv, 60 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines610 - Medicina y salud::616 - Enfermedades570 - Biología::572 - BioquímicaADN Polimerasa IPolimerasa TaqVirus de la Mieloblastosis AviarCoronavirusPrueba de COVID-19DNA Polymerase ITaq PolymeraseAvian Myeloblastosis VirusCOVID-19 TestingGeobacillus stearothermophilusPolimerasaADN Pol I BstPol BstLAMPSARS-CoV-2PolyerasePol I Bst DNAExpresión y caracterización funcional de una ADN polimerasa I de Geobacillus stearothermophilusExpression and functional characterization of a DNA polymerase I from Geobacillus stearothermophilusTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgustriana, E., Nuryana, I., Laksmi, F. A., Dewi, K. S., Wijaya, H., Rahmani, N., Yudiargo, D. R., Ismadara, A., Helbert, Hadi, M. I., Purnawan, A., & Cameliawati Djohan, A. (2023). Optimized expression of large fragment DNA polymerase I from Geobacillus stearothermophilus in Escherichia coli expression system. Preparative Biochemistry and Biotechnology, 53(4), 384–393. https://doi.org/10.1080/10826068.2022.2095573Aidelberg, G., Aronoff, R., Eliseeva, T., Quero, F. J., Vielfaure, H., Codyre, M., Hadasch, K., & Lindner, A. B. (2021). Corona Detective: a simple, scalable, and robust SARS-CoV-2 detection method based on reverse transcription loop-mediated isothermal amplification. Journal of Biomolecular Techniques, 32(3), 89–97. https://doi.org/10.7171/jbt.21-3203-003Alipoor, S. D., Mortaz, E., Jamaati, H., Tabarsi, P., Bayram, H., Varahram, M., & Adcock, I M. (2021). COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/FCIMB.2021.563085Aschenbrenner, J., & Marx, A. (2017). DNA polymerases and biotechnological applications. Current Opinion in Biotechnology, 48, 187–195. https://doi.org/10.1016/J.COPBIO.2017.04.005Astatke, M., Grindley, N. D. F., & Joyce, C. M. (1995). Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). Journal of Biological Chemistry, 270(4), 1945–1954. https://doi.org/10.1074/jbc.270.4.1945Bebenek, K. K. T. A. (2004). FUNCTIONS OF DNA POLYMERASES.Bentaleb, E. M., Abid, M., El Messaoudi, M. D., Lakssir, B., Ressami, E. M., Amzazi, S., Sefrioui, H., & Ait Benhassou, H. (2016). Development and evaluation of an in-house single step loop-mediated isothermal amplification (SS-LAMP) assay for the detection of Mycobacterium tuberculosis complex in sputum samples from Moroccan patients. BMC Infectious Diseases, 16(1), 517. https://doi.org/10.1186/s12879-016-1864-9Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases, 40(5), 905. https://doi.org/10.1007/S10096-020-04138-6Bio-Rad Laboratories. (2012). General Protocol for Western Blotting.Bruck, I., Goodman, M. F., & O’Donnell, M. (2003). The Essential C Family DnaE Polymerase Is Error-prone and Efficient at Lesion Bypass. Journal of Biological Chemistry, 278(45), 44361–44368. https://doi.org/10.1074/jbc.M308307200Buger, N. J. (1994). The Bradford Method for Protein QuantitationCamacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 1–9. https://doi.org/10.1186/1471-2105-10-421/FIGURES/4Chim, N., Jackson, L. N., Trinh, A. M., & Chaput, J. C. (2018). Crystal structures of DNA polymerase I capture novel intermediates in the DNA synthesis pathway. ELife, 7. https://doi.org/10.7554/ELIFE.40444Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D. K. W., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D. G. J. C., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 25(3), 1. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666. https://doi.org/10.1093/BIOINFORMATICS/BTY149De Coster, W., & Rademakers, R. (2023). NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics, 39(5). https://doi.org/10.1093/BIOINFORMATICS/BTAD311Delarue, M., Poch, O., Tordo, N., Moras, D., & Argos, P. (1990). An attempt to unify the structure of polymerases. Protein Engineering, 3(6), 461–467. https://doi.org/10.1093/PROTEIN/3.6.461Doublié, S., & Ellenberger, T. (1998). The mechanism of action of T7 DNA polymerase. Current Opinion in Structural Biology, 8(6), 704–712. https://doi.org/10.1016/S0959-440X(98)80089-4Dunn, M. R., & Chaput, J. C. (2016). Reverse Transcription of Threose Nucleic Acid by a Naturally Occurring DNA Polymerase. Chembiochem : A European Journal of Chemical Biology, 17(19), 1804–1808. https://doi.org/10.1002/CBIC.201600338Fijalkowska, J., Schaaper, R. M., Jonczyk, P., Banach-Orlowska, M., Fijalkowska, I. J., Schaaper, R. M., & Jonczyk, P. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Molecular Microbiology, 58(1), 61–70. https://doi.org/10.1111/J.1365-2958.2005.04805.XGarcia-Diaz, M., & Bebenek, K. (2007). Multiple functions of DNA polymerases. Critical Reviews in Plant Sciences, 26(2), 105. https://doi.org/10.1080/07352680701252817Graziewicz, M. A., Longley, M. J., & Copeland, W. C. (2006). DNA polymerase γ in mitochondrial DNA replication and repair. Chemical Reviews, 106(2), 383–405. https://doi.org/10.1021/CR040463D/ASSET/CR040463D.FP.PNG_V03Greenough, L., Menin, J. F., Desai, N. S., Kelman, Z., & Gardner, A. F. (2014). Characterization of Family D DNA polymerase from Thermococcus sp. 9°N. Extremophiles, 18(4), 653. https://doi.org/10.1007/S00792-014-0646-9Güixens-Gallardo, P., Hocek, M., & Perlíková, P. (2016). Inhibition of non-templated nucleotide addition by DNA polymerases in primer extension using twisted intercalating nucleic acid modified templates. Bioorganic & Medicinal Chemistry Letters, 26(2), 288–291. https://doi.org/10.1016/J.BMCL.2015.12.034Haendeler, J., Dröse, S., Büchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A. M., Brandt, U., & Dimmeler, S. (2009). Mitochondrial Telomerase Reverse Transcriptase Binds to and Protects Mitochondrial DNA and Function From Damage. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 929–935. https://doi.org/10.1161/ATVBAHA.109.185546Hall, T. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-14998U1.29Hamilton, N. H., & Furey, T. S. (2023). <tt>ROCCO</tt> : A Robust Method for Detection of Open Chromatin via Convex Optimization. Bioinformatics. https://doi.org/10.1093/BIOINFORMATICS/BTAD725Henikoff, S., & Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences of the United States of America, 89(22), 10915. https://doi.org/10.1073/PNAS.89.22.10915Hu, B., Ge, X., Wang, L. F., & Shi, Z. (2015). Bat origin of human coronaviruses Coronaviruses: Emerging and re-emerging pathogens in humans and animals Susanna Lau Positive-strand RNA viruses. Virology Journal, 12(1), 1–10. https://doi.org/10.1186/S12985-015-0422-1/FIGURES/1Huber, L. B., Betz, K., & Marx, A. (2023). Reverse Transcriptases: From Discovery and Applications to Xenobiology. ChemBioChem, 24(5), e202200521. https://doi.org/10.1002/CBIC.202200521Hurtado, L., Díaz, D., Escorcia, K., Flórez, L., Bello, Y., Díaz, Y., Navarro, E., Pacheco, L. C., Galán, N., Maestre, R., Acosta, A., & Pacheco, L. A. (2022). Validación clínica de la prueba RT-LAMP para el diagnóstico rápido del SARS-CoV-2. Biomédica, 42(Suppl 2), 59. https://doi.org/10.7705/BIOMEDICA.6523INS. (2024). Coronavirus Colombia. Instituto Nacional de Salud. https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxJackson, L. N., Chim, N., Shi, C., & Chaput, J. C. (2019). Crystal structures of a natural DNA polymerase that functions as an XNA reverse transcriptase. Nucleic Acids Research, 47(13), 6973. https://doi.org/10.1093/NAR/GKZ513Jana, M., Ghosh, A., Santra, A., Kar, R. K., Misra, A. K., & Bhunia, A. (2017). Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science, 498, 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060Jeck, W. R., Iafrate, A. J., & Nardi, V. (2021). Nanopore Flongle Sequencing as a Rapid, Single-Specimen Clinical Test for Fusion Detection. The Journal of Molecular Diagnostics, 23(5), 630–636. https://doi.org/10.1016/J.JMOLDX.2021.02.001Jones, M. D., & Foulkes, N. S. (1989). Reverse transcription of mRNA by Thermus aquaticus DNA polymerase. Nucleic Acids Research, 17(20), 8387–8388. https://doi.org/10.1093/NAR/17.20.8387Kabir, M. S., Clements, M. O., & Kimmitt, P. T. (2015). RT-Bst: An integrated approach for reverse transcription and enrichment of cDNA from viral RNA. British Journal of Biomedical Science, 72(1), 1–6. https://doi.org/10.1080/09674845.2015.11666788Karam, J. D., & Konigsberg, W. H. (2000). DNA polymerase of the T4-related bacteriophages. Progress in Nucleic Acid Research and Molecular Biology, 64. https://doi.org/10.1016/S0079-6603(00)64002-3Kashir, J., & Yaqinuddin, A. (2020). Loop mediated isothermal amplification (LAMP) assays as a rapid diagnostic for COVID-19. Medical Hypotheses, 141, 109786. https://doi.org/10.1016/J.MEHY.2020.109786Kelleher, C., Teixeira, M. T., Förstemann, K., & Lingner, J. (2002). Telomerase: Biochemical considerations for enzyme and substrate. Trends in Biochemical Sciences, 27(11), 572–579. https://doi.org/10.1016/S0968-0004(02)02206-5Kiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997a). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-XKiefer, J. R., Mao, C., Hansen, C. J., Basehore, S. L., Hogrefe, H. H., Braman, J. C., & Beese, L. S. (1997b). Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure, 5(1), 95–108. https://doi.org/10.1016/S0969-2126(97)00169-XKolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B., Kuhn, K., Yuan, J., Polevikov, E., Smith, T. P. L., & Pevzner, P. A. (2020). metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods 2020 17:11, 17(11), 1103–1110. https://doi.org/10.1038/s41592-020-00971-xKornberg, A. (1960). Biologic synthesis of deoxyribonucleic acid. Science, 131(3412), 1503–1508. https://doi.org/10.1126/SCIENCE.131.3412.1503/ASSET/970D30A2-F8D7-4244-BA29-796FBAD48625/ASSETS/SCIENCE.131.3412.1503.FP.PNGKornberg A y Baker T. (1992). DNA replication. Freeman.Krissinel, E., & Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallographica Section D: Biological Crystallography, 60(12 I), 2256–2268. https://doi.org/10.1107/S0907444904026460Kwok, H., Briggs, K., & Tabard-Cossa, V. (2014). Nanopore Fabrication by Controlled Dielectric Breakdown. PLOS ONE, 9(3), e92880. https://doi.org/10.1371/JOURNAL.PONE.0092880Lee, J. Y., Kong, M., Oh, J., Lim, J. S., Chung, S. H., Kim, J. M., Kim, J. S., Kim, K. H., Yoo, J. C., & Kwak, W. (2021). Comparative evaluation of Nanopore polishing tools for microbial genome assembly and polishing strategies for downstream analysis. Scientific Reports 2021 11:1, 11(1), 1–11. https://doi.org/10.1038/s41598-021-00178-wLeger, A., & Leonardi, T. (2019). pycoQC, interactive quality control for Oxford Nanopore Sequencing. Journal of Open Source Software, 4(34), 1236. https://doi.org/10.21105/joss.01236Li, J. J., Xiong, C., Liu, Y., Liang, J. S., & Zhou, X. W. (2016). Loop-mediated isothermal amplification (LAMP): Emergence as an alternative technology for herbal medicine identification. Frontiers in Plant Science, 7(DECEMBER2016), 214697. https://doi.org/10.3389/FPLS.2016.01956/BIBTEXLing, H., Boudsocq, F., Woodgate, R., & Yang, W. (2001). Crystal structure of a Y-family DNA polymerase in action: A mechanism for error-prone and lesion-bypass replication. Cell, 107(1), 91–102. https://doi.org/10.1016/S0092-8674(01)00515-3Marangoni, A. G. (2003). Enzyme kinetics : a modern approach. Wiley-Interscience.Marra, M. A., Jones, S. J. M., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y. S. N., Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., … Roper, R. L. (2003). The genome sequence of the SARS-associated coronavirus. Science, 300(5624), 1399–1404. https://doi.org/10.1126/SCIENCE.1085953/SUPPL_FILE/MARRA.SOM.PDFMartin, S. K., & Wood, R. D. (2019). DNA polymerase ζ in DNA replication and repair. Nucleic Acids Research, 47(16), 8348–8361. https://doi.org/10.1093/NAR/GKZ705Mayanagi, K., Oki, K., Miyazaki, N., Ishino, S., Yamagami, T., Morikawa, K., Iwasaki, K., Kohda, D., Shirai, T., & Ishino, Y. (2020). Two conformations of DNA polymerase D-PCNA-DNA, an archaeal replisome complex, revealed by cryo-electron microscopy. BMC Biology, 18(1). https://doi.org/10.1186/S12915-020-00889-YMcGuffie, M. J., & Barrick, J. E. (2021). pLannotate: engineered plasmid annotation. Nucleic Acids Research, 49(W1), W516–W522. https://doi.org/10.1093/NAR/GKAB374Minciencias. (2021). resolucion_0665-2021 (2).Mo, J. Y., & Schaaper, R. M. (1996). Fidelity and error specificity of the α catalytic subunit of Escherichia coli DNA polymerase III. Journal of Biological Chemistry, 271(31), 18947–18953. https://doi.org/10.1074/jbc.271.31.18947Molero, J. M., Arranz-Izquierdo, J., Gutiérrez-Pérez, M. I., & Redondo Sánchez, J. M. (2021). Aspectos básicos de la COVID-19 para el manejo desde atención primaria. Atencion Primaria, 53(6), 101966. https://doi.org/10.1016/J.APRIM.2020.12.007Morales, F. D., Coronado-Jimenez, L., Gonzalez-Moya, V., Mercedes-Zambrano, M., Sandoval-Herrera, J., & Arturo-Calvache, J. E. (2022). CHEMICAL ENGINEERING TRANSACTIONS Effect of agitation on Taq DNA polymerase production by Escherichia coli in bioreactor. www.cetjournal.itNagamine, K., Hase, T., & Notomi, T. (2002). Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes, 16(3), 223–229. https://doi.org/10.1006/mcpr.2002.0415Neagu, M., Constantin, C., & Surcel, M. (2021). Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. International Journal of Environmental Research and Public Health, 18(24). https://doi.org/10.3390/IJERPH182413173Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000a). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://doi.org/10.1093/NAR/28.12.E63Ohmori, H., Friedberg, E. C., Fuchs, R. P. P., Goodman, M. F., Hanaoka, F., Hinkle, D., Kunkel, T. A., Lawrence, C. W., Livneh, Z., Nohmi, T., Prakash, L., Prakash, S., Todo, T., Walker, G. C., Wang, Z., & Woodgate, R. (2001). The Y-family of DNA Polymerases. Molecular Cell, 8(1), 7–8. https://doi.org/10.1016/S1097-2765(01)00278-7Oliveira, B. B., Veigas, B., & Baptista, P. V. (2021). Isothermal Amplification of Nucleic Acids: The Race for the Next “Gold Standard.” Frontiers in Sensors, 2, 752600. https://doi.org/10.3389/FSENS.2021.752600O’Reilly, M., Teichmann, S. A., & Rhodes, D. (1999). Telomerases. Current Opinion in Structural Biology, 9(1), 56–65. https://doi.org/10.1016/S0959-440X(99)80008Oscorbin, I., & Filipenko, M. (2023). Bst polymerase — a humble relative of Taq polymerase. Computational and Structural Biotechnology Journal, 21, 4519–4535. https://doi.org/10.1016/J.CSBJ.2023.09.008Palacios, M., Santos, E., Velázquez Cervantes, M. A., & León Juárez, M. (2021). COVID-19, una emergencia de salud pública mundial. Revista Clinica Espanola, 221(1), 55. https://doi.org/10.1016/J.RCE.2020.03.001Phang, S.-M., Teo, C.-Y., Lo, E., Wong, V., & Wong, T. (1995). Cloning and complete sequence of the DNA polymerase-encoding gene (BstpolI) and characterisation of the Klenow-like fragment from Bacillus stearothermophilus (DNA sequencing; genomic library; homologies; recombinant). In Gene (Vol. 163, Issue 65).Prakash, S., Johnson, R. E., & Prakash, L. (2005). EUKARYOTIC TRANSLESION SYNTHESIS DNA POLYMERASES: Specificity of Structure and Function. Https://Doi.Org/10.1146/Annurev.Biochem.74.082803.133250, 74, 317–353. https://doi.org/10.1146/ANNUREV.BIOCHEM.74.082803.133250QIAGEN. (2010). Quick-StartProtocol Sample & Assay Technologies QIAprep ® Spin Miniprep Kit. www.qiagen.com/contact.Rabe, B. A., & Cepko, C. (2020). SARS-CoV-2 detection using isothermal amplification and a rapid, inexpensive protocol for sample inactivation and purification. Proceedings of the National Academy of Sciences of the United States of America, 117(39), 24450–24458. https://doi.org/10.1073/PNAS.2011221117/-/DCSUPPLEMENTALRamírez, M., Angulo, M. V., Colciencias, G., Fernando, D., Losada, H., Monroy, S. E., & Subdirectora, V. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro Presidencia de la República Iván Duque Márquez Vicepresidencia de la RepúblicaRastgoo, N., Sadeghizadeh, M., Bambaei, B., & Hosseinkhani, S. (2009). Restoring 3′-5′ exonuclease activity of thermophilic Geobacillus DNA polymerase I using site-directed mutagenesis in active site. Journal of Biotechnology, 144(4), 245–252. https://doi.org/10.1016/j.jbiotec.2009.09.006Rivera, M., Cazaux, S., Cerda, A., Medina, A. A., Núñez, I., Matute, T., Brown, A., Gasulla, J., Federici, F., & Ramirez-Sarmiento, C. A. (2020). Recombinant protein expression and purification of codon-optimized Bst-LF polymerase Reclone.org (The Reagent Collaboration Network). https://doi.org/10.17504/PROTOCOLS.IO.BKSRKWRobert Novy and Barbara Morri. (2003). Glucose supression. InNovations , 13Saldanha, R., Chen, B., Wank, H., Matsuura, M., Edwards, J., & Lambowitz, A. M. (1999). RNA and protein catalysis in group II intron splicing and mobility reactions using purified components. Biochemistry, 38(28), 9069–9083. https://doi.org/10.1021/bi982799lSchrödinger, L. , & D. W. (2020). PyMOL | pymol.org. https://pymol.org/2/#page-topSchwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381. https://doi.org/10.1093/NAR/GKG52Sellmann, E., Schroder, K. L., Knoblich, I. M., & Westermann, P. (1992). Purification and characterization of DNA polymerases from Bacillus species. Journal of Bacteriology, 174(13), 4350. https://doi.org/10.1128/JB.174.13.4350-4355.1992Shanbhag, V., Sachdev, S., Flores, J. A., Modak, M. J., & Singh, K. (2018). Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 7(1). https://doi.org/10.3390/BIOLOGY7010005Shcherbakova, P. V., Pavlov, Y. I., Chilkova, O., Rogozin, I. B., Johansson, E., & Kunkel, T. A. (2003). Unique Error Signature of the Four-subunit Yeast DNA Polymerase ε. Journal of Biological Chemistry, 278(44), 43770–43780. https://doi.org/10.1074/jbc.M306893200Shi, C., Shen, X., Niu, S., & Ma, C. (2015). Innate Reverse Transcriptase Activity of DNA Polymerase for Isothermal RNA Direct Detection. Journal of the American Chemical Society, 137(43), 13804–13806. https://doi.org/10.1021/jacs.5b08144Singh, K., Srivastava, A., Patel, S. S., & Modak, M. J. (2007). Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Journal of Biological Chemistry, 282(14), 10594–10604. https://doi.org/10.1074/jbc.M611242200Sluis-Cremer, N. (2021). Retroviral reverse transcriptase: Structure, function and inhibition. The Enzymes, 50, 179–194. https://doi.org/10.1016/BS.ENZ.2021.06.00Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology, 24(6), 490. https://doi.org/10.1016/J.TIM.2016.03.003Tanner, N. A., & Evans, T. C. (2013). Loop-mediated isothermal amplification for detection of nucleic acids. Current Protocols in Molecular Biology, SUPPL.105. https://doi.org/10.1002/0471142727.mb1514s105Tsai, C. H., Chen, J., & Szostak, J. W. (2007). Enzymatic synthesis of DNA on glycerol nucleic acid templates without stable duplex formation between product and template. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14598–14603. https://doi.org/10.1073/PNAS.0704211104Uchiyama, Y., Takeuchi, R., Kodera, H., & Sakaguchi, K. (2009). Distribution and roles of X-family DNA polymerases in eukaryotes. Biochimie, 91(2), 165–170. https://doi.org/10.1016/J.BIOCHI.2008.07.005Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A., & Kozlakidis, Z. (2020). Considerations for diagnostic COVID-19 tests. Nature Reviews Microbiology 2020 19:3, 19(3), 171–183. https://doi.org/10.1038/s41579-020-00461-zWang, Y., Ngor, A. K., Nikoomanzar, A., & Chaput, J. C. (2018). Evolution of a General RNA-Cleaving FANA Enzyme. Nature Communications, 9(1). https://doi.org/10.1038/S41467-018-07611-1Wardle, J., Burgers, P. M. J., Cann, I. K. O., Darley, K., Heslop, P., Johansson, E., Lin, L. J., McGlynn, P., Sanvoisin, J., Stith, C. M., & Connolly, B. A. (2008). Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Research, 36(3), 705–711. https://doi.org/10.1093/NAR/GKM1023Worldometer. (2024). COVID Live - Coronavirus Statistics - Worldometer. https://www.worldometers.info/coronavirus/Yamtich, J., & Sweasy, J. B. (2010). DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochimica et Biophysica Acta, 1804(5), 1136. https://doi.org/10.1016/J.BBAPAP.2009.07.008Zhao, C., & Pyle, A. M. (2016). Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nature Structural & Molecular Biology, 23(6), 558. https://doi.org/10.1038/NSMB.3224Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). Brief Report: A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727. https://doi.org/10.1056/NEJMOA2001017BibliotecariosEstudiantesGrupos comunitariosInvestigadoresMaestrosPadres y familiasPersonal de apoyo escolarPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86461/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1069262590.2024.pdf1069262590.2024.pdfTesis de Maestría en Ciencias-Bioquímicaapplication/pdf1679458https://repositorio.unal.edu.co/bitstream/unal/86461/2/1069262590.2024.pdf7f465f2339a4cc21a202b6f55524335bMD52THUMBNAIL1069262590.2024.pdf.jpg1069262590.2024.pdf.jpgGenerated Thumbnailimage/jpeg4835https://repositorio.unal.edu.co/bitstream/unal/86461/3/1069262590.2024.pdf.jpg4c7516d57f46b3c930ad0f3dad28af25MD53unal/86461oai:repositorio.unal.edu.co:unal/864612024-07-16 23:05:05.645Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |