Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model

ilustraciones, diagramas

Autores:
Moreno Cristancho, Camilo Ernesto
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86219
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86219
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::576 - Genética y evolución
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
610 - Medicina y salud::615 - Farmacología y terapéutica
Cadenas J de Inmunoglobulina
eucemia-Linfoma Linfoblástico de Células Precursoras
Resistencia a Antineoplásicos
Immunoglobulin J-Chains
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Drug Resistance, Neoplasm
Leucemia linfoblástica aguda
Genes pronósticos adversos
CRISPRa
Actividad metabólica
Quimioterapia del cáncer
Acute lymphoblastic leukemia
Adverse prognostic genes
CRISPRa
Metabolic activity
Cancer chemotherapy
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_267fd4c4f0158d3f5a298b84d0c79e5b
oai_identifier_str oai:repositorio.unal.edu.co:unal/86219
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
dc.title.translated.spa.fl_str_mv Evaluación del efecto quimiorresistente de la sobreexpresión del gen asociado a mal pronóstico IGJ en un modelo de leucemia linfoblástica aguda de precursores B
title Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
spellingShingle Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
570 - Biología::576 - Genética y evolución
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
610 - Medicina y salud::615 - Farmacología y terapéutica
Cadenas J de Inmunoglobulina
eucemia-Linfoma Linfoblástico de Células Precursoras
Resistencia a Antineoplásicos
Immunoglobulin J-Chains
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Drug Resistance, Neoplasm
Leucemia linfoblástica aguda
Genes pronósticos adversos
CRISPRa
Actividad metabólica
Quimioterapia del cáncer
Acute lymphoblastic leukemia
Adverse prognostic genes
CRISPRa
Metabolic activity
Cancer chemotherapy
title_short Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
title_full Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
title_fullStr Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
title_full_unstemmed Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
title_sort Evaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia model
dc.creator.fl_str_mv Moreno Cristancho, Camilo Ernesto
dc.contributor.advisor.spa.fl_str_mv Godoy Silva, Rubén Darío
Gutierrez Triana, José Arturo
dc.contributor.author.spa.fl_str_mv Moreno Cristancho, Camilo Ernesto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-0402-0530
dc.subject.ddc.spa.fl_str_mv 570 - Biología::576 - Genética y evolución
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
610 - Medicina y salud::615 - Farmacología y terapéutica
topic 570 - Biología::576 - Genética y evolución
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
610 - Medicina y salud::615 - Farmacología y terapéutica
Cadenas J de Inmunoglobulina
eucemia-Linfoma Linfoblástico de Células Precursoras
Resistencia a Antineoplásicos
Immunoglobulin J-Chains
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Drug Resistance, Neoplasm
Leucemia linfoblástica aguda
Genes pronósticos adversos
CRISPRa
Actividad metabólica
Quimioterapia del cáncer
Acute lymphoblastic leukemia
Adverse prognostic genes
CRISPRa
Metabolic activity
Cancer chemotherapy
dc.subject.decs.spa.fl_str_mv Cadenas J de Inmunoglobulina
eucemia-Linfoma Linfoblástico de Células Precursoras
Resistencia a Antineoplásicos
dc.subject.decs.eng.fl_str_mv Immunoglobulin J-Chains
Precursor Cell Lymphoblastic Leukemia-Lymphoma
Drug Resistance, Neoplasm
dc.subject.proposal.spa.fl_str_mv Leucemia linfoblástica aguda
Genes pronósticos adversos
CRISPRa
Actividad metabólica
Quimioterapia del cáncer
dc.subject.proposal.eng.fl_str_mv Acute lymphoblastic leukemia
Adverse prognostic genes
CRISPRa
Metabolic activity
Cancer chemotherapy
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-07T21:22:53Z
dc.date.available.none.fl_str_mv 2024-06-07T21:22:53Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86219
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86219
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv M. J. Gacha Garay, V. Akle, L. Enciso, and Z. V. Garavito Aguilar, “La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia,” Revista Colombiana de Cancerología, vol. 21, no. 4, pp. 212–224, Oct. 2017, doi: 10.1016/j.rccan.2016.10.001.
A. Miranda-Filho, M. Piñeros, J. Ferlay, I. Soerjomataram, A. Monnereau, and F. Bray, “Epidemiological patterns of leukaemia in 184 countries: a population-based study,” Lancet Haematol, vol. 5, no. 1, pp. e14–e24, Jan. 2018, doi: 10.1016/S2352-3026(17)30232-6.
N. Cruz-Rodriguez et al., “High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia,” Journal of Experimental and Clinical Cancer Research, vol. 35, no. 1, 2016, doi: 10.1186/s13046-016-0333-z
Instituto Nacional del Cáncer, “Estadísticas del cáncer,” Instituto Nacional del Cáncer. Accessed: Nov. 03, 2022. [Online]. Available: https://www.cancer.gov/espanol/cancer/naturaleza/estadisticas
Organización Mundial de la Salud, “Cáncer,” Organización Mundial de la Salud. Accessed: Nov. 03, 2022. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancer
International Agency for Research on Cancer, “Leukaemia Globocan 2020,” 2020. Accessed: Nov. 03, 2022. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/36-Leukaemia-fact-sheet.pdf
U. Bacher, A. Kohlmann, and T. Haferlach, “Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies,” Cancer Treatment Reviews, vol. 36, no. 8. pp. 637–646, Dec. 2010. doi: 10.1016/j.ctrv.2010.05.002.
C. Allemani et al., “Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2),” The Lancet, vol. 385, no. 9972, pp. 977–1010, Mar. 2015, doi: 10.1016/S0140-6736(14)62038-9.
C. A. Gómez-Mercado, A. M. Segura-Cardona, D. E. Pájaro-Cantillo, and M. Mesa-Largo, “Incidencia y determinantes demográficos de la leucemia linfoide aguda en pacientes con cáncer pediátrico, Antioquia.,” Univ Salud, vol. 22, no. 2, pp. 112–119, May 2020, doi: 10.22267/rus.202202.182.
M. P. Curado, T. Pontes, E. Guerra-Yi, and M. De Camargo Cancela Cancela, “Leukemia mortality trends among children, adolescents, and young adults in Latin America.” Rev Panam Salud Publica, vol. 29, no. 2, pp.96-102, 2011 Feb doi: 10.1590/s1020-49892011000200004.
S. Chiaretti, G. Zini, and R. Bassan, “Diagnosis and subclassification of acute lymphoblastic leukemia,” Mediterranean Journal of Hematology and Infectious Diseases, vol. 6, no. 1. Universita Cattolica del Sacro Cuore, 2014. doi: 10.4084/mjhid.2014.073.
D. A. Arber et al., “The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia,” Blood, vol. 127, no. 20. American Society of Hematology, pp. 2391–2405, May 19, 2016. doi: 10.1182/blood-2016-03-643544.
X. Zhang, P. Rastogi, B. Shah, and L. Zhang, “B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy,” Oncotarget, vol. 8, no. 39, pp. 66728-66741, Jul 15, 2017. doi: 10.18632/oncotarget.19271
N. Cruz-Rodriguez et al., “Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL,” Journal of Experimental and Clinical Cancer Research, vol. 36, no. 1, Feb. 2017, doi: 10.1186/s13046-017-0506-4.
C. A. O’Brien et al., “ID1 and ID3 Regulate the Self-Renewal Capacity of Human Colon Cancer-Initiating Cells through p21,” Cancer Cell, vol. 21, no. 6, pp. 777–792, Jun. 2012, doi: 10.1016/J.CCR.2012.04.036.
P. Sharma, D. Patel, and J. Chaudhary, “Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B,” Cancer Med, vol. 1, no. 2, pp. 187–197, 2012, doi: 10.1002/cam4.19.
C. Roschger and C. Cabrele, “The Id-protein family in developmental and cancer-associated pathways,” Cell Communication and Signaling, vol. 15, no. 1, p. 7, 2017, doi: 10.1186/s12964-016-0161-y.
C. Larsson et al., “Prognostic implications of the expression levels of different immunoglobulin heavy chain-encoding RNAs in early breast cancer,” NPJ Breast Cancer, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41523-020-0170-2.
J. Padilla, “Evaluación del efecto de la modulación de la firma génica de mal pronóstico ID1/ID3/IGJ en un modelo celular de LLA-B,” Trabajo de Grado para Optar el Título de Magíster en Microbiología, Universidad Industrial de Santander , Bucaramanga.
C. del P. Villalba Toquica, P. A. Martínez Silva, and H. Acero, “Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014,” Pediatria (Bucur), vol. 49, no. 1, pp. 17–22, Jan. 2016, doi: 10.1016/j.rcpe.2016.01.002.
A. M. Vera, C. Pardo, M. C. Duarte, and A. Suárez, “Análisis de la mortalidad por leucemia aguda pediátrica en el instituto nacional de cancerología,” Biomedica, vol. 32, no. 3, pp. 355–364, Sep. 2012, doi: 10.7705/biomedica.v32i3.691.
A. Wojtuszkiewicz et al., “Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia,” J Hematol Oncol, vol. 8, no. 1, May 2015, doi: 10.1186/s13045-015-0158-9.
R. Pieters and M. L. Den Boer, “Molecular Pharmacodynamics in,” Int J Hematol, vol. 78:402-413, 2003, doi: https://doi.org/10.1007/BF02983812.
S. Paul, H. Kantarjian, and E. J. Jabbour, “Adult Acute Lymphoblastic Leukemia,” Mayo Clinic Proceedings, vol. 91, no. 11. Elsevier Ltd, pp. 1645–1666, Nov. 01, 2016. doi: 10.1016/j.mayocp.2016.09.010.
National Cancer Institute, “Chronic Lymphocytic Leukemia Treatment (PDQ®)–Health Professional Version,” National Cancer Institute.
A. Gaviria, L. Correa, C. Davila, G. Burgos, and G. Escobar, “Guía de práctica clínica. Para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Gobierno de Colombia.,” Instituto Nacional de Cancerologia-ESE Colombia, vol. 34. 2017.
D. Dale, “Recuento elevado de glóbulos blancos (leucocitos),” MANUAL MSD Versión para púplico general. Accessed: Oct. 21, 2022. [Online]. Available: https://www.msdmanuals.com/es-co/hogar/trastornos-de-la-sangre/trastornos-de-los-gl%C3%B3bulos-blancos-leucocitos/trastornos-de-los-bas%C3%B3filos
M. Vizcaíno, J. E. Lopera, L. Martínez, I. D. los Reyes, and A. Linares, “Guía de atención integral para la detección oportuna, diagnóstico, tratamiento y seguimiento de leucemia linfoide aguda en niños, niñas y adolescentes,” Revista Colombiana de Cancerología, vol. 20, no. 1, pp. 17–27, Jan. 2016, doi: 10.1016/j.rccan.2015.08.003.
A. L. Atienza, “PEDIATRÍA INTEGRAL Leucemias. Leucemia linfoblástica aguda,” Madrid, 2016.
C. Ma et al., “Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche,” 2020. doi: doi:10.1126/sciadv.aba5536.
American Cancer Society, “Tratamiento de la leucemia linfocítica aguda,” American Cancer Society. Accessed: Nov. 10, 2022. [Online]. Available: https://www.cancer.org/content/dam/CRC/PDF/Public/9057.00.pdf
C. O. Ramos-Peñafiel et al., “Factores pronósticos de remisión en pacientes con leucemia linfoblástica aguda posterior a primer recaída,” Revista Colombiana de Cancerología, vol. 20, no. 4, pp. 159–166, Oct. 2016, doi: 10.1016/j.rccan.2016.11.001.
P. Kaaijk et al., “Cell proliferation is related to in vitro drug resistance in childhood acute leukaemia,” Br J Cancer, vol. 88, no. 5, pp. 775–781, Mar. 2003, doi: 10.1038/sj.bjc.6600787.
D. Campana, “Role of Minimal Residual Disease Monitoring in Adult and Pediatric Acute Lymphoblastic Leukemia,” Hematology/Oncology Clinics of North America, vol. 23, no. 5. pp. 1083–1098, Oct. 2009. doi: 10.1016/j.hoc.2009.07.010.
H. Inaba and C. H. Pui, “Glucocorticoid use in acute lymphoblastic leukaemia,” The Lancet Oncology, vol. 11, no. 11. pp. 1096–1106, Nov. 2010. doi: 10.1016/S1470-2045(10)70114-5.
R. A. Chougule, K. Shah, S. A. Moharram, J. Vallon-Christersson, and J. U. Kazi, “Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation,” NPJ Genom Med, vol. 4, no. 1, p. 7, 2019, doi: 10.1038/s41525-019-0082-y.
J. M. Nørgaard, L. H. Olesen, and P. Hokland, “Changing picture of cellular drug resistance in human leukemia,” Critical Reviews in Oncology/Hematology, vol. 50, no. 1. pp. 39–49, Apr. 2004. doi: 10.1016/S1040-8428(03)00173-2.
J. Styczynski et al., “Predictive value of multidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia,” J Cancer Res Clin Oncol, vol. 133, no. 11, pp. 875–893, 2007, doi: 10.1007/s00432-007-0274-1.
A. Sociedad Española de Oncología., C. SPARC (Organization), and M. Echenique Elizondo, Oncología., vol. 29, no. 6. Ediciones Cutor, 2006. Accessed: Jan. 03, 2024. [Online]. Available: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0378-48352006000600003&lng=es&nrm=iso&tlng=es.
C. Song, M. Reeves, and M. Mcgrath, “IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity inhigh-risk B-cell acute lymphoblastic leukemia,” Blood, 2021, doi: 10.1182/blood.2019002655/1729606/blood.2019002655.pdf.
H. Nishida et al., “CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells,” Biochem Biophys Res Commun, vol. 382, no. 1, pp. 57–62, Apr. 2009, doi: 10.1016/J.BBRC.2009.02.123.
M. L. Den Boer et al., “A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study,” Lancet Oncol, vol. 10, no. 2, pp. 125–134, Feb. 2009, doi: 10.1016/S1470-2045(08)70339-5.
A. Simons et al., “Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia,” Genes Chromosomes Cancer, vol. 50, no. 12, pp. 969–981, Dec. 2011, doi: 10.1002/gcc.20919.
C. Song et al., “Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia,” Leukemia, vol. 30, no. 6, pp. 1436–1440, 2016, doi: 10.1038/leu.2015.331.
G. M. Charles et al., “JAK mutations in high-risk childhood acute lymphoblastic leukemia,” PNAS, Chicago, Nov. 2009. doi: doi: 10.1073/pnas.0811761106.
C. G. Mullighan et al., “ Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia ,” New England Journal of Medicine, vol. 360, no. 5, pp. 470–480, Jan. 2009, doi: 10.1056/nejmoa0808253.
R. P. Kuiper et al., “High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression,” Leukemia, vol. 21, no. 6, pp. 1258–1266, 2007, doi: 10.1038/sj.leu.2404691.
C. K. Gestrich and K. A. Oduro, “Restricted Immunoglobulin Joining Chain (IgJ) Protein Expression in B Lymphoblastic Leukemia (B-ALL) Based on B-ALL Subtype,” Blood, vol. 136, no. Supplement 1, p. 7, Nov. 2020, doi: 10.1182/blood-2020-143201.
O. Cristina and L. Camelo, “‘Estudio piloto para la determinación de la expresión de ID1, ID3 e IGJ en Leucemia Linfoblástica Aguda B a partir de muestras de médula ósea,’” 2020. Accessed: Nov. 10, 2022. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/79413/1018417049.2020.pdf?sequence=1&isAllowed=y
K. Hoffmann et al., “Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index,” Br J Haematol, vol. 140, no. 6, pp. 656–664, Mar. 2008, doi: 10.1111/j.1365-2141.2008.06981.x.
E. E. Max, W. MCBRIDEt, C. C. Morton, and M. Ann Robinson, “Human J chain gene: Chromosomal localization and associated restriction fragment length polymorphisms,” 1986. doi: https://doi.org/10.1073/pnas.83.15.5592.
S. Khan et al., “Role of recombinant DNA technology to improve life,” International Journal of Genomics, vol. 2016. Hindawi Publishing Corporation, 2016. doi: 10.1155/2016/2405954.
Ameera Alsadeq et al., “The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system,” Haematologica, vol. 102, no. 2, pp. 346–355, Feb. 2017, doi: 10.3324/haematol.2016.147744.
L. Debaize et al., “Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation,” Nucleic Acids Res, vol. 46, no. 21, pp. 11214–11228, Nov. 2018, doi: 10.1093/nar/gky756.
V. M. Chávez-Jacobo and V. M. Chávez-Jacobo, “El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico,” TIP. Revista especializada en ciencias químico-biológicas, vol. 21, no. 2, 2018, doi: 10.22201/fesz.23958723e.2018.2.5.
J. A. Doudna and E. Charpentier, “The new frontier of genome engineering with CRISPR-Cas9,” Science (1979), vol. 346, no. 6213, p. 1258096, Nov. 2014, doi: 10.1126/science.1258096.
L. S. Qi et al., “Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression,” Cell, vol. 152, no. 5, pp. 1173–1183, Feb. 2013, doi: 10.1016/j.cell.2013.02.022.
G. Clouse, “CRISPR Activators: A Comparison Between dCas9-VP64, SAM, SunTag, VPR, and More!,” Addgene. Accessed: Nov. 10, 2022. [Online]. Available: https://blog.addgene.org/crispr-activators-dcas9-vp64-sam-suntag-vpr
A. Chavez et al., “Comparison of Cas9 activators in multiple species,” Nat Methods, vol. 13, no. 7, pp. 563–567, 2016, doi: 10.1038/nmeth.3871.
S. Sajwan and M. Mannervik, “Gene activation by dCas9-CBP and the SAM system differ in target preference,” Sci Rep, vol. 9, no. 1, p. 18104, 2019, doi: 10.1038/s41598-019-54179-x.
C. Hunt et al., “Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice,” Nat Commun, vol. 12, no. 1, p. 2770, 2021, doi: 10.1038/s41467-021-22932-4.
E. M. Czekanska, “Assessment of Cell Proliferation with Resazurin-Based Fluorescent Dye,” in Mammalian Cell Viability: Methods and Protocols, M. J. Stoddart, Ed., Totowa, NJ: Humana Press, 2011, pp. 27–32. doi: 10.1007/978-1-61779-108-6_5.
A. R. Fernie, F. Carrari, and L. J. Sweetlove, “Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport,” Curr Opin Plant Biol, vol. 7, no. 3, pp. 254–261, Jun. 2004, doi: 10.1016/J.PBI.2004.03.007.
S. Kamiloglu, G. Sari, T. Ozdal, and E. Capanoglu, “Guidelines for cell viability assays,” Food Front, vol. 1, no. 3, pp. 332–349, Sep. 2020, doi: 10.1002/fft2.44.
A. Y. Chang, V. W. Chau, J. A. Landas, and Yvonne, “Preparation of calcium competent Escherichia coli and heat-shock transformation,” Vancouver, Jun. 2017.
P. Thomas and T. G. Smart, “HEK293 cell line: A vehicle for the expression of recombinant proteins,” J Pharmacol Toxicol Methods, vol. 51, no. 3, pp. 187–200, May 2005, doi: 10.1016/J.VASCN.2004.08.014.
M. Jordan and F. M. Wurm, “Co-transfer of multiple plasmids/viruses as an attractive method to introduce several genes in mammalian cells,” New Comprehensive Biochemistry, vol. 38, pp. 337–348, Jan. 2003, doi: 10.1016/S0167-7306(03)38020-2.
W. Xu, H. Chang, C. K. Qin, and Y. P. Zhai, “Impact of co-transfection with livin and survivin shRNA expression vectors on biological behavior of HepG2 cells,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 9, pp. 5467–5472, 2013, doi: 10.7314/APJCP.2013.14.9.5467.
A. J. Heidersbach, K. M. Dorighi, J. A. Gomez, A. M. Jacobi, and B. Haley, “A versatile, high-efficiency platform for CRISPR-based gene activation,” Nat Commun, vol. 14, no. 1, p. 902, 2023, doi: 10.1038/s41467-023-36452-w.
F. Cardarelli et al., “The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery,” Sci Rep, vol. 6, no. 1, p. 25879, 2016, doi: 10.1038/srep25879.
H. Bai, G. M. S. Lester, L. C. Petishnok, and D. A. Dean, “Cytoplasmic transport and nuclear import of plasmid DNA,” Bioscience Reports, vol. 37, no. 6. Portland Press Ltd, Dec. 22, 2017. doi: 10.1042/BSR20160616.
M. Aluigi et al., “Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow–Derived Mesenchymal Stem Cells,” Stem Cells, vol. 24, no. 2, pp. 454–461, Feb. 2006, doi: 10.1634/stemcells.2005-0198.
N. Iversen, B. Birkenes, K. Torsdalen, and S. Djurovic, “Electroporation by nucleofector is the best nonviral transfection technique in human endothelial and smooth muscle cells,” Genet Vaccines Ther, vol. 3, no. 1, p. 2, 2005, doi: 10.1186/1479-0556-3-2.
R. Ren et al., “Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications,” J Biol Eng, vol. 16, no. 1, p. 30, 2022, doi: 10.1186/s13036-022-00309-5.
C. Maucksch, B. Connor, and C. Rudolph, “Plasmid DNA Concatemers: Influence of Plasmid Structure on Transfection Efficiency,” in Minicircle and Miniplasmid DNA Vectors, 2013, pp. 59–69. doi: https://doi.org/10.1002/9783527670420.ch5.
H. Bruns et al., “A novel immunoregulatory function of beta-2-microglobulin as a promoter of myeloid derived suppressor cell induction,” Leukemia, vol. 33, no. 5, pp. 1282–1287, 2019, doi: 10.1038/s41375-018-0345-0.
J. E. Miller et al., “Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles,” Biomolecules, vol. 13, no. 7, Jul. 2023, doi: 10.3390/biom13071122.
M. Yagi and M. E. Koshland, “Expression of the J chain gene during B cell differentiation is inversely correlated with DNA methylation,” 1981. doi: https://doi.org/10.1073/pnas.78.8.4907.
C. D. Castro and M. F. Flajnik, “Putting J Chain Back on the Map: How Might Its Expression Define Plasma Cell Development?,” The Journal of Immunology, vol. 193, no. 7, pp. 3248–3255, Oct. 2014, doi: 10.4049/jimmunol.1400531.
J. Y. Kim, S. K. Park, H. G. Kim, S. J. Cho, J. Kim, and C. J. Kang, “The HSS3/4 enhancer of Crlz1-IgJ locus is another target of EBF in the pre-B cell stage of B cell development,” Immunol Lett, vol. 107, no. 1, pp. 63–70, Sep. 2006, doi: 10.1016/J.IMLET.2006.07.007.
J. H. Lim, H. G. Kim, S. K. Park, and C. J. Kang, “The Promoter of the Immunoglobulin J Chain Gene Receives Its Authentic Enhancer Activity through the Abutting MEF2 and PU.1 Sites in a DNA-Looping Interaction,” J Mol Biol, vol. 390, no. 3, pp. 339–352, Jul. 2009, doi: 10.1016/J.JMB.2009.05.040.
Z. X. Chong, S. K. Yeap, and W. Y. Ho, “Transfection types, methods and strategies: A technical review,” PeerJ, vol. 9. PeerJ Inc., Apr. 21, 2021. doi: 10.7717/peerj.11165.
M. E. Hystad et al., “Characterization of Early Stages of Human B Cell Development by Gene Expression Profiling,” The Journal of Immunology, vol. 179, no. 6, pp. 3662–3671, Sep. 2007, doi: 10.4049/jimmunol.179.6.3662.
J. J. Wallin, J. L. Rinkenberger, S. Rao, E. R. Gackstetter, M. E. Koshland, and P. Zwollo, “B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15959–15965, May 1999, doi: 10.1074/jbc.274.22.15959.
W. E. Stansfield et al., “The Pathophysiology of Cardiac Hypertrophy and Heart Failure,” Cellular and Molecular Pathobiology of Cardiovascular Disease, pp. 51–78, Jan. 2014, doi: 10.1016/B978-0-12-405206-2.00004-1.
S. L. Nutt, C. Thévenin, and M. Busslinger, “Essential Functions of Pax-5 (BSAP) in pro-B Cell Development,” Immunobiology, vol. 198, no. 1–3, pp. 227–235, Dec. 1997, doi: 10.1016/S0171-2985(97)80043-5.
M. Wang, Y. Wu, X. Li, M. Dai, and S. Li, “IGJ suppresses breast cancer growth and metastasis by inhibiting EMT via the NF κB signaling pathway,” Int J Oncol, vol. 63, no. 3, Sep. 2023, doi: 10.3892/ijo.2023.5553.
B. Sprangers, L. Cosmai, and C. Porta, “Conventional chemotherapy,” Onco-Nephrology, pp. 127-153.e11, Jan. 2020, doi: 10.1016/B978-0-323-54945-5.00025-4.
Y. Cao et al., “Cyr61 decreases Cytarabine chemosensitivity in acute lymphoblastic leukemia cells via NF-κB pathway activation,” Int J Mol Med, vol. 43, no. 2, pp. 1011–1020, Feb. 2019, doi: 10.3892/ijmm.2018.4018.
C. F. Thorn et al., “Doxorubicin pathways: Pharmacodynamics and adverse effects,” Pharmacogenet Genomics, vol. 21, no. 7, pp. 440–446, 2011, doi: 10.1097/FPC.0b013e32833ffb56.
Y. Yang, W. Dai, Y. Sun, and Z. Zhao, “Long non coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells,” Oncol Rep, vol. 41, no. 4, pp. 2311–2320, Apr. 2019, doi: 10.3892/or.2019.6991.
T. T. T. Vo et al., “mTORC1 inhibition induces resistance to methotrexate and 6-mercaptopurine in Ph+ and Ph-like B-ALL,” Mol Cancer Ther, vol. 16, no. 9, pp. 1942–1953, Sep. 2017, doi: 10.1158/1535-7163.MCT-17-0024.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 83 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86219/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86219/3/1026587046.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86219/4/1026587046.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
65e9c1a775f72d331693ee229065e0e9
224dc8f74f9cac262fc9e587f70868d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089338989838336
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Godoy Silva, Rubén Darío019810b6b9f5c2a275ca1c832cf9cda7600Gutierrez Triana, José Arturoa6771eeaec99d8019e68b43a45d4baa1600Moreno Cristancho, Camilo Ernestof45c40448ce987469f30f0e49facc6adGrupo de Investigación en Procesos Químicos y Bioquímicoshttps://orcid.org/0000-0002-0402-05302024-06-07T21:22:53Z2024-06-07T21:22:53Z2024https://repositorio.unal.edu.co/handle/unal/86219Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa Leucemia Linfoblástica Aguda (LLA) es una neoplasia hematológica que se caracteriza por la proliferación desordenada de células progenitoras de linaje linfoide B o T, siendo comúnmente diagnosticada en la población pediátrica y mostrando agresividad en adultos. A pesar de que Colombia ocupa el tercer lugar mundial en incidencia de LLA, la información sobre perfiles genéticos específicos en su población es insuficiente. En estudios recientes con pacientes adultos colombianos con LLA-B, tanto respondedores como no respondedores al tratamiento quimioterapéutico de inducción, se identificó un perfil con elevada expresión simultánea de los genes IGJ (Immunoglobulin J polypeptide), ID3 (DNA-binding protein inhibitor 3) e ID1 (DNA-binding protein inhibitor 1). Sin embargo, La relevancia funcional de esta firma génica de mal pronóstico en LLA-B, especialmente la del gen IGJ, es desconocida al carecer de información asociada con la quimiorresistencia. En este trabajo, establecimos un modelo celular de LLA-B con la sobreexpresión del gen de mal pronóstico IGJ utilizando la activación transcripcional mediada por CRISPR (IGJ_CRISPRa) para evaluar posibles alteraciones en la actividad metabólica y la resistencia a agentes quimioterapéuticos comúnmente utilizados en el tratamiento de la LLA. El análisis de RT-qPCR de las células IGJ_CRISPRa demostró un aumento sustancial en la expresión del gen endógeno IGJ a las 96, 120 y 144 horas después de la nucleofección, junto con alteraciones menores en la expresión génica de ID3 e ID1. Además, la evaluación de la actividad metabólica y la quimiorresistencia en las células IGJ_CRISPRa reveló un aumento en la actividad metabólica y la resistencia a dexametasona, metotrexato, doxorrubicina, y un aumento moderado en la resistencia a citarabina. Esto sugiere una posible asociación entre el gen IGJ y los mecanismos epigenéticos que alteran la expresión génica y las vías metabólicas. (Texto tomado de la fuente).Acute Lymphoblastic Leukemia (ALL) is a hematologic neoplasm characterized by the disordered proliferation of progenitor cells of B or T lymphoid lineage, commonly diagnosed in the pediatric population, and exhibiting aggressiveness in adults. Despite Colombia ranking third globally in ALL incidences, specific genetic profiles in its population are insufficiently documented. Recent studies with Colombian adult patients diagnosed with B-cell ALL identified a profile with simultaneous overexpression of genes IGJ (Immunoglobulin J polypeptide), ID3 (DNA-binding protein inhibitor 3), and ID1 (DNA-binding protein inhibitor 1). However, the functional relevance of this adverse genetic signature in B-cell ALL, especially regarding the IGJ gene, remains unknown due to a lack of information associated with chemoresistance. In this study, we established a B-cell ALL cellular model with overexpression of the poor prognostic gene IGJ using CRISPR-mediated transcriptional activation (IGJ_CRISPRa) to assess potential alterations in metabolic activity and resistance to chemotherapeutic agents commonly used in ALL treatment. RT-qPCR analysis of IGJ_CRISPRa cells demonstrated a substantial increase in the expression of the IGJ endogenous gene at 96, 120, and 144 hours after nucleofection, along with minor alterations in the gene expression of ID3 and ID1. In addition, the evaluation of metabolic activity and chemoresistance in IGJ_CRISPRa cells revealed an increase in metabolic activity and resistance to dexamethasone, methotrexate, doxorubicin, and a moderate increase in resistance to cytarabine. This suggests a potential association between the IGJ gene and epigenetic mechanisms that alter gene expression and metabolic pathways.Texto en inglésMaestríaMagíster en Ingeniería - Ingeniería QuímicaBiotecnologíaxviii, 83 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::576 - Genética y evolución660 - Ingeniería química::668 - Tecnología de otros productos orgánicos610 - Medicina y salud::615 - Farmacología y terapéuticaCadenas J de Inmunoglobulinaeucemia-Linfoma Linfoblástico de Células PrecursorasResistencia a AntineoplásicosImmunoglobulin J-ChainsPrecursor Cell Lymphoblastic Leukemia-LymphomaDrug Resistance, NeoplasmLeucemia linfoblástica agudaGenes pronósticos adversosCRISPRaActividad metabólicaQuimioterapia del cáncerAcute lymphoblastic leukemiaAdverse prognostic genesCRISPRaMetabolic activityCancer chemotherapyEvaluating the chemoresistant effect of poor prognosis-associated gene IGJ overexpression in a B-acute lymphoblastic leukemia modelEvaluación del efecto quimiorresistente de la sobreexpresión del gen asociado a mal pronóstico IGJ en un modelo de leucemia linfoblástica aguda de precursores BTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeM. J. Gacha Garay, V. Akle, L. Enciso, and Z. V. Garavito Aguilar, “La leucemia linfoblástica aguda y modelos animales alternativos para su estudio en Colombia,” Revista Colombiana de Cancerología, vol. 21, no. 4, pp. 212–224, Oct. 2017, doi: 10.1016/j.rccan.2016.10.001.A. Miranda-Filho, M. Piñeros, J. Ferlay, I. Soerjomataram, A. Monnereau, and F. Bray, “Epidemiological patterns of leukaemia in 184 countries: a population-based study,” Lancet Haematol, vol. 5, no. 1, pp. e14–e24, Jan. 2018, doi: 10.1016/S2352-3026(17)30232-6.N. Cruz-Rodriguez et al., “High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia,” Journal of Experimental and Clinical Cancer Research, vol. 35, no. 1, 2016, doi: 10.1186/s13046-016-0333-zInstituto Nacional del Cáncer, “Estadísticas del cáncer,” Instituto Nacional del Cáncer. Accessed: Nov. 03, 2022. [Online]. Available: https://www.cancer.gov/espanol/cancer/naturaleza/estadisticasOrganización Mundial de la Salud, “Cáncer,” Organización Mundial de la Salud. Accessed: Nov. 03, 2022. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancerInternational Agency for Research on Cancer, “Leukaemia Globocan 2020,” 2020. Accessed: Nov. 03, 2022. [Online]. Available: https://gco.iarc.fr/today/data/factsheets/cancers/36-Leukaemia-fact-sheet.pdfU. Bacher, A. Kohlmann, and T. Haferlach, “Gene expression profiling for diagnosis and therapy in acute leukaemia and other haematologic malignancies,” Cancer Treatment Reviews, vol. 36, no. 8. pp. 637–646, Dec. 2010. doi: 10.1016/j.ctrv.2010.05.002.C. Allemani et al., “Global surveillance of cancer survival 1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2),” The Lancet, vol. 385, no. 9972, pp. 977–1010, Mar. 2015, doi: 10.1016/S0140-6736(14)62038-9.C. A. Gómez-Mercado, A. M. Segura-Cardona, D. E. Pájaro-Cantillo, and M. Mesa-Largo, “Incidencia y determinantes demográficos de la leucemia linfoide aguda en pacientes con cáncer pediátrico, Antioquia.,” Univ Salud, vol. 22, no. 2, pp. 112–119, May 2020, doi: 10.22267/rus.202202.182.M. P. Curado, T. Pontes, E. Guerra-Yi, and M. De Camargo Cancela Cancela, “Leukemia mortality trends among children, adolescents, and young adults in Latin America.” Rev Panam Salud Publica, vol. 29, no. 2, pp.96-102, 2011 Feb doi: 10.1590/s1020-49892011000200004.S. Chiaretti, G. Zini, and R. Bassan, “Diagnosis and subclassification of acute lymphoblastic leukemia,” Mediterranean Journal of Hematology and Infectious Diseases, vol. 6, no. 1. Universita Cattolica del Sacro Cuore, 2014. doi: 10.4084/mjhid.2014.073.D. A. Arber et al., “The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia,” Blood, vol. 127, no. 20. American Society of Hematology, pp. 2391–2405, May 19, 2016. doi: 10.1182/blood-2016-03-643544.X. Zhang, P. Rastogi, B. Shah, and L. Zhang, “B lymphoblastic leukemia/lymphoma: new insights into genetics, molecular aberrations, subclassification and targeted therapy,” Oncotarget, vol. 8, no. 39, pp. 66728-66741, Jul 15, 2017. doi: 10.18632/oncotarget.19271N. Cruz-Rodriguez et al., “Prognostic stratification improvement by integrating ID1/ID3/IGJ gene expression signature and immunophenotypic profile in adult patients with B-ALL,” Journal of Experimental and Clinical Cancer Research, vol. 36, no. 1, Feb. 2017, doi: 10.1186/s13046-017-0506-4.C. A. O’Brien et al., “ID1 and ID3 Regulate the Self-Renewal Capacity of Human Colon Cancer-Initiating Cells through p21,” Cancer Cell, vol. 21, no. 6, pp. 777–792, Jun. 2012, doi: 10.1016/J.CCR.2012.04.036.P. Sharma, D. Patel, and J. Chaudhary, “Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B,” Cancer Med, vol. 1, no. 2, pp. 187–197, 2012, doi: 10.1002/cam4.19.C. Roschger and C. Cabrele, “The Id-protein family in developmental and cancer-associated pathways,” Cell Communication and Signaling, vol. 15, no. 1, p. 7, 2017, doi: 10.1186/s12964-016-0161-y.C. Larsson et al., “Prognostic implications of the expression levels of different immunoglobulin heavy chain-encoding RNAs in early breast cancer,” NPJ Breast Cancer, vol. 6, no. 1, Dec. 2020, doi: 10.1038/s41523-020-0170-2.J. Padilla, “Evaluación del efecto de la modulación de la firma génica de mal pronóstico ID1/ID3/IGJ en un modelo celular de LLA-B,” Trabajo de Grado para Optar el Título de Magíster en Microbiología, Universidad Industrial de Santander , Bucaramanga.C. del P. Villalba Toquica, P. A. Martínez Silva, and H. Acero, “Caracterización clínico-epidemiológica de los pacientes pediátricos con leucemias agudas en la Clínica Universitaria Colombia. Serie de casos 2011-2014,” Pediatria (Bucur), vol. 49, no. 1, pp. 17–22, Jan. 2016, doi: 10.1016/j.rcpe.2016.01.002.A. M. Vera, C. Pardo, M. C. Duarte, and A. Suárez, “Análisis de la mortalidad por leucemia aguda pediátrica en el instituto nacional de cancerología,” Biomedica, vol. 32, no. 3, pp. 355–364, Sep. 2012, doi: 10.7705/biomedica.v32i3.691.A. Wojtuszkiewicz et al., “Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia,” J Hematol Oncol, vol. 8, no. 1, May 2015, doi: 10.1186/s13045-015-0158-9.R. Pieters and M. L. Den Boer, “Molecular Pharmacodynamics in,” Int J Hematol, vol. 78:402-413, 2003, doi: https://doi.org/10.1007/BF02983812.S. Paul, H. Kantarjian, and E. J. Jabbour, “Adult Acute Lymphoblastic Leukemia,” Mayo Clinic Proceedings, vol. 91, no. 11. Elsevier Ltd, pp. 1645–1666, Nov. 01, 2016. doi: 10.1016/j.mayocp.2016.09.010.National Cancer Institute, “Chronic Lymphocytic Leukemia Treatment (PDQ®)–Health Professional Version,” National Cancer Institute.A. Gaviria, L. Correa, C. Davila, G. Burgos, and G. Escobar, “Guía de práctica clínica. Para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Gobierno de Colombia.,” Instituto Nacional de Cancerologia-ESE Colombia, vol. 34. 2017.D. Dale, “Recuento elevado de glóbulos blancos (leucocitos),” MANUAL MSD Versión para púplico general. Accessed: Oct. 21, 2022. [Online]. Available: https://www.msdmanuals.com/es-co/hogar/trastornos-de-la-sangre/trastornos-de-los-gl%C3%B3bulos-blancos-leucocitos/trastornos-de-los-bas%C3%B3filosM. Vizcaíno, J. E. Lopera, L. Martínez, I. D. los Reyes, and A. Linares, “Guía de atención integral para la detección oportuna, diagnóstico, tratamiento y seguimiento de leucemia linfoide aguda en niños, niñas y adolescentes,” Revista Colombiana de Cancerología, vol. 20, no. 1, pp. 17–27, Jan. 2016, doi: 10.1016/j.rccan.2015.08.003.A. L. Atienza, “PEDIATRÍA INTEGRAL Leucemias. Leucemia linfoblástica aguda,” Madrid, 2016.C. Ma et al., “Leukemia-on-a-chip: Dissecting the chemoresistance mechanisms in B cell acute lymphoblastic leukemia bone marrow niche,” 2020. doi: doi:10.1126/sciadv.aba5536.American Cancer Society, “Tratamiento de la leucemia linfocítica aguda,” American Cancer Society. Accessed: Nov. 10, 2022. [Online]. Available: https://www.cancer.org/content/dam/CRC/PDF/Public/9057.00.pdfC. O. Ramos-Peñafiel et al., “Factores pronósticos de remisión en pacientes con leucemia linfoblástica aguda posterior a primer recaída,” Revista Colombiana de Cancerología, vol. 20, no. 4, pp. 159–166, Oct. 2016, doi: 10.1016/j.rccan.2016.11.001.P. Kaaijk et al., “Cell proliferation is related to in vitro drug resistance in childhood acute leukaemia,” Br J Cancer, vol. 88, no. 5, pp. 775–781, Mar. 2003, doi: 10.1038/sj.bjc.6600787.D. Campana, “Role of Minimal Residual Disease Monitoring in Adult and Pediatric Acute Lymphoblastic Leukemia,” Hematology/Oncology Clinics of North America, vol. 23, no. 5. pp. 1083–1098, Oct. 2009. doi: 10.1016/j.hoc.2009.07.010.H. Inaba and C. H. Pui, “Glucocorticoid use in acute lymphoblastic leukaemia,” The Lancet Oncology, vol. 11, no. 11. pp. 1096–1106, Nov. 2010. doi: 10.1016/S1470-2045(10)70114-5.R. A. Chougule, K. Shah, S. A. Moharram, J. Vallon-Christersson, and J. U. Kazi, “Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation,” NPJ Genom Med, vol. 4, no. 1, p. 7, 2019, doi: 10.1038/s41525-019-0082-y.J. M. Nørgaard, L. H. Olesen, and P. Hokland, “Changing picture of cellular drug resistance in human leukemia,” Critical Reviews in Oncology/Hematology, vol. 50, no. 1. pp. 39–49, Apr. 2004. doi: 10.1016/S1040-8428(03)00173-2.J. Styczynski et al., “Predictive value of multidrug resistance proteins and cellular drug resistance in childhood relapsed acute lymphoblastic leukemia,” J Cancer Res Clin Oncol, vol. 133, no. 11, pp. 875–893, 2007, doi: 10.1007/s00432-007-0274-1.A. Sociedad Española de Oncología., C. SPARC (Organization), and M. Echenique Elizondo, Oncología., vol. 29, no. 6. Ediciones Cutor, 2006. Accessed: Jan. 03, 2024. [Online]. Available: https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S0378-48352006000600003&lng=es&nrm=iso&tlng=es.C. Song, M. Reeves, and M. Mcgrath, “IKAROS and CK2 regulate expression of BCL-XL and chemosensitivity inhigh-risk B-cell acute lymphoblastic leukemia,” Blood, 2021, doi: 10.1182/blood.2019002655/1729606/blood.2019002655.pdf.H. Nishida et al., “CD9 correlates with cancer stem cell potentials in human B-acute lymphoblastic leukemia cells,” Biochem Biophys Res Commun, vol. 382, no. 1, pp. 57–62, Apr. 2009, doi: 10.1016/J.BBRC.2009.02.123.M. L. Den Boer et al., “A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study,” Lancet Oncol, vol. 10, no. 2, pp. 125–134, Feb. 2009, doi: 10.1016/S1470-2045(08)70339-5.A. Simons et al., “Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia,” Genes Chromosomes Cancer, vol. 50, no. 12, pp. 969–981, Dec. 2011, doi: 10.1002/gcc.20919.C. Song et al., “Epigenetic regulation of gene expression by Ikaros, HDAC1 and Casein Kinase II in leukemia,” Leukemia, vol. 30, no. 6, pp. 1436–1440, 2016, doi: 10.1038/leu.2015.331.G. M. Charles et al., “JAK mutations in high-risk childhood acute lymphoblastic leukemia,” PNAS, Chicago, Nov. 2009. doi: doi: 10.1073/pnas.0811761106.C. G. Mullighan et al., “ Deletion of IKZF1 and Prognosis in Acute Lymphoblastic Leukemia ,” New England Journal of Medicine, vol. 360, no. 5, pp. 470–480, Jan. 2009, doi: 10.1056/nejmoa0808253.R. P. Kuiper et al., “High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression,” Leukemia, vol. 21, no. 6, pp. 1258–1266, 2007, doi: 10.1038/sj.leu.2404691.C. K. Gestrich and K. A. Oduro, “Restricted Immunoglobulin Joining Chain (IgJ) Protein Expression in B Lymphoblastic Leukemia (B-ALL) Based on B-ALL Subtype,” Blood, vol. 136, no. Supplement 1, p. 7, Nov. 2020, doi: 10.1182/blood-2020-143201.O. Cristina and L. Camelo, “‘Estudio piloto para la determinación de la expresión de ID1, ID3 e IGJ en Leucemia Linfoblástica Aguda B a partir de muestras de médula ósea,’” 2020. Accessed: Nov. 10, 2022. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/79413/1018417049.2020.pdf?sequence=1&isAllowed=yK. Hoffmann et al., “Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index,” Br J Haematol, vol. 140, no. 6, pp. 656–664, Mar. 2008, doi: 10.1111/j.1365-2141.2008.06981.x.E. E. Max, W. MCBRIDEt, C. C. Morton, and M. Ann Robinson, “Human J chain gene: Chromosomal localization and associated restriction fragment length polymorphisms,” 1986. doi: https://doi.org/10.1073/pnas.83.15.5592.S. Khan et al., “Role of recombinant DNA technology to improve life,” International Journal of Genomics, vol. 2016. Hindawi Publishing Corporation, 2016. doi: 10.1155/2016/2405954.Ameera Alsadeq et al., “The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system,” Haematologica, vol. 102, no. 2, pp. 346–355, Feb. 2017, doi: 10.3324/haematol.2016.147744.L. Debaize et al., “Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation,” Nucleic Acids Res, vol. 46, no. 21, pp. 11214–11228, Nov. 2018, doi: 10.1093/nar/gky756.V. M. Chávez-Jacobo and V. M. Chávez-Jacobo, “El sistema de edición genética CRISPR/Cas y su uso como antimicrobiano específico,” TIP. Revista especializada en ciencias químico-biológicas, vol. 21, no. 2, 2018, doi: 10.22201/fesz.23958723e.2018.2.5.J. A. Doudna and E. Charpentier, “The new frontier of genome engineering with CRISPR-Cas9,” Science (1979), vol. 346, no. 6213, p. 1258096, Nov. 2014, doi: 10.1126/science.1258096.L. S. Qi et al., “Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression,” Cell, vol. 152, no. 5, pp. 1173–1183, Feb. 2013, doi: 10.1016/j.cell.2013.02.022.G. Clouse, “CRISPR Activators: A Comparison Between dCas9-VP64, SAM, SunTag, VPR, and More!,” Addgene. Accessed: Nov. 10, 2022. [Online]. Available: https://blog.addgene.org/crispr-activators-dcas9-vp64-sam-suntag-vprA. Chavez et al., “Comparison of Cas9 activators in multiple species,” Nat Methods, vol. 13, no. 7, pp. 563–567, 2016, doi: 10.1038/nmeth.3871.S. Sajwan and M. Mannervik, “Gene activation by dCas9-CBP and the SAM system differ in target preference,” Sci Rep, vol. 9, no. 1, p. 18104, 2019, doi: 10.1038/s41598-019-54179-x.C. Hunt et al., “Tissue-specific activation of gene expression by the Synergistic Activation Mediator (SAM) CRISPRa system in mice,” Nat Commun, vol. 12, no. 1, p. 2770, 2021, doi: 10.1038/s41467-021-22932-4.E. M. Czekanska, “Assessment of Cell Proliferation with Resazurin-Based Fluorescent Dye,” in Mammalian Cell Viability: Methods and Protocols, M. J. Stoddart, Ed., Totowa, NJ: Humana Press, 2011, pp. 27–32. doi: 10.1007/978-1-61779-108-6_5.A. R. Fernie, F. Carrari, and L. J. Sweetlove, “Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport,” Curr Opin Plant Biol, vol. 7, no. 3, pp. 254–261, Jun. 2004, doi: 10.1016/J.PBI.2004.03.007.S. Kamiloglu, G. Sari, T. Ozdal, and E. Capanoglu, “Guidelines for cell viability assays,” Food Front, vol. 1, no. 3, pp. 332–349, Sep. 2020, doi: 10.1002/fft2.44.A. Y. Chang, V. W. Chau, J. A. Landas, and Yvonne, “Preparation of calcium competent Escherichia coli and heat-shock transformation,” Vancouver, Jun. 2017.P. Thomas and T. G. Smart, “HEK293 cell line: A vehicle for the expression of recombinant proteins,” J Pharmacol Toxicol Methods, vol. 51, no. 3, pp. 187–200, May 2005, doi: 10.1016/J.VASCN.2004.08.014.M. Jordan and F. M. Wurm, “Co-transfer of multiple plasmids/viruses as an attractive method to introduce several genes in mammalian cells,” New Comprehensive Biochemistry, vol. 38, pp. 337–348, Jan. 2003, doi: 10.1016/S0167-7306(03)38020-2.W. Xu, H. Chang, C. K. Qin, and Y. P. Zhai, “Impact of co-transfection with livin and survivin shRNA expression vectors on biological behavior of HepG2 cells,” Asian Pacific Journal of Cancer Prevention, vol. 14, no. 9, pp. 5467–5472, 2013, doi: 10.7314/APJCP.2013.14.9.5467.A. J. Heidersbach, K. M. Dorighi, J. A. Gomez, A. M. Jacobi, and B. Haley, “A versatile, high-efficiency platform for CRISPR-based gene activation,” Nat Commun, vol. 14, no. 1, p. 902, 2023, doi: 10.1038/s41467-023-36452-w.F. Cardarelli et al., “The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery,” Sci Rep, vol. 6, no. 1, p. 25879, 2016, doi: 10.1038/srep25879.H. Bai, G. M. S. Lester, L. C. Petishnok, and D. A. Dean, “Cytoplasmic transport and nuclear import of plasmid DNA,” Bioscience Reports, vol. 37, no. 6. Portland Press Ltd, Dec. 22, 2017. doi: 10.1042/BSR20160616.M. Aluigi et al., “Nucleofection Is an Efficient Nonviral Transfection Technique for Human Bone Marrow–Derived Mesenchymal Stem Cells,” Stem Cells, vol. 24, no. 2, pp. 454–461, Feb. 2006, doi: 10.1634/stemcells.2005-0198.N. Iversen, B. Birkenes, K. Torsdalen, and S. Djurovic, “Electroporation by nucleofector is the best nonviral transfection technique in human endothelial and smooth muscle cells,” Genet Vaccines Ther, vol. 3, no. 1, p. 2, 2005, doi: 10.1186/1479-0556-3-2.R. Ren et al., “Nucleic acid direct delivery to fibroblasts: a review of nucleofection and applications,” J Biol Eng, vol. 16, no. 1, p. 30, 2022, doi: 10.1186/s13036-022-00309-5.C. Maucksch, B. Connor, and C. Rudolph, “Plasmid DNA Concatemers: Influence of Plasmid Structure on Transfection Efficiency,” in Minicircle and Miniplasmid DNA Vectors, 2013, pp. 59–69. doi: https://doi.org/10.1002/9783527670420.ch5.H. Bruns et al., “A novel immunoregulatory function of beta-2-microglobulin as a promoter of myeloid derived suppressor cell induction,” Leukemia, vol. 33, no. 5, pp. 1282–1287, 2019, doi: 10.1038/s41375-018-0345-0.J. E. Miller et al., “Design of Beta-2 Microglobulin Adsorbent Protein Nanoparticles,” Biomolecules, vol. 13, no. 7, Jul. 2023, doi: 10.3390/biom13071122.M. Yagi and M. E. Koshland, “Expression of the J chain gene during B cell differentiation is inversely correlated with DNA methylation,” 1981. doi: https://doi.org/10.1073/pnas.78.8.4907.C. D. Castro and M. F. Flajnik, “Putting J Chain Back on the Map: How Might Its Expression Define Plasma Cell Development?,” The Journal of Immunology, vol. 193, no. 7, pp. 3248–3255, Oct. 2014, doi: 10.4049/jimmunol.1400531.J. Y. Kim, S. K. Park, H. G. Kim, S. J. Cho, J. Kim, and C. J. Kang, “The HSS3/4 enhancer of Crlz1-IgJ locus is another target of EBF in the pre-B cell stage of B cell development,” Immunol Lett, vol. 107, no. 1, pp. 63–70, Sep. 2006, doi: 10.1016/J.IMLET.2006.07.007.J. H. Lim, H. G. Kim, S. K. Park, and C. J. Kang, “The Promoter of the Immunoglobulin J Chain Gene Receives Its Authentic Enhancer Activity through the Abutting MEF2 and PU.1 Sites in a DNA-Looping Interaction,” J Mol Biol, vol. 390, no. 3, pp. 339–352, Jul. 2009, doi: 10.1016/J.JMB.2009.05.040.Z. X. Chong, S. K. Yeap, and W. Y. Ho, “Transfection types, methods and strategies: A technical review,” PeerJ, vol. 9. PeerJ Inc., Apr. 21, 2021. doi: 10.7717/peerj.11165.M. E. Hystad et al., “Characterization of Early Stages of Human B Cell Development by Gene Expression Profiling,” The Journal of Immunology, vol. 179, no. 6, pp. 3662–3671, Sep. 2007, doi: 10.4049/jimmunol.179.6.3662.J. J. Wallin, J. L. Rinkenberger, S. Rao, E. R. Gackstetter, M. E. Koshland, and P. Zwollo, “B cell-specific activator protein prevents two activator factors from binding to the immunoglobulin J chain promoter until the antigen-driven stages of B cell development,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15959–15965, May 1999, doi: 10.1074/jbc.274.22.15959.W. E. Stansfield et al., “The Pathophysiology of Cardiac Hypertrophy and Heart Failure,” Cellular and Molecular Pathobiology of Cardiovascular Disease, pp. 51–78, Jan. 2014, doi: 10.1016/B978-0-12-405206-2.00004-1.S. L. Nutt, C. Thévenin, and M. Busslinger, “Essential Functions of Pax-5 (BSAP) in pro-B Cell Development,” Immunobiology, vol. 198, no. 1–3, pp. 227–235, Dec. 1997, doi: 10.1016/S0171-2985(97)80043-5.M. Wang, Y. Wu, X. Li, M. Dai, and S. Li, “IGJ suppresses breast cancer growth and metastasis by inhibiting EMT via the NF κB signaling pathway,” Int J Oncol, vol. 63, no. 3, Sep. 2023, doi: 10.3892/ijo.2023.5553.B. Sprangers, L. Cosmai, and C. Porta, “Conventional chemotherapy,” Onco-Nephrology, pp. 127-153.e11, Jan. 2020, doi: 10.1016/B978-0-323-54945-5.00025-4.Y. Cao et al., “Cyr61 decreases Cytarabine chemosensitivity in acute lymphoblastic leukemia cells via NF-κB pathway activation,” Int J Mol Med, vol. 43, no. 2, pp. 1011–1020, Feb. 2019, doi: 10.3892/ijmm.2018.4018.C. F. Thorn et al., “Doxorubicin pathways: Pharmacodynamics and adverse effects,” Pharmacogenet Genomics, vol. 21, no. 7, pp. 440–446, 2011, doi: 10.1097/FPC.0b013e32833ffb56.Y. Yang, W. Dai, Y. Sun, and Z. Zhao, “Long non coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells,” Oncol Rep, vol. 41, no. 4, pp. 2311–2320, Apr. 2019, doi: 10.3892/or.2019.6991.T. T. T. Vo et al., “mTORC1 inhibition induces resistance to methotrexate and 6-mercaptopurine in Ph+ and Ph-like B-ALL,” Mol Cancer Ther, vol. 16, no. 9, pp. 1942–1953, Sep. 2017, doi: 10.1158/1535-7163.MCT-17-0024.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86219/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026587046.2024.pdf1026587046.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3352146https://repositorio.unal.edu.co/bitstream/unal/86219/3/1026587046.2024.pdf65e9c1a775f72d331693ee229065e0e9MD53THUMBNAIL1026587046.2024.pdf.jpg1026587046.2024.pdf.jpgGenerated Thumbnailimage/jpeg5987https://repositorio.unal.edu.co/bitstream/unal/86219/4/1026587046.2024.pdf.jpg224dc8f74f9cac262fc9e587f70868d6MD54unal/86219oai:repositorio.unal.edu.co:unal/862192024-08-25 23:11:19.825Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=