Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model
The combination of SARIMA and neural network models are a common approach for forecasting nonlinear time series. While the SARIMA methodology is used to capture the linear components in the time series, artifi cial neural networks are applied to forecast the remaining nonlinearities in the shocks of...
- Autores:
-
Velásquez Henao, Juan David
Rueda Mejía, Viviana María
Franco Cardona, Carlos Jaime
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73049
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73049
http://bdigital.unal.edu.co/37524/
- Palabra clave:
- energy demand
energy markets
nonlinear models
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_2642fdd304df4bd82cb581c06581b968 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73049 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velásquez Henao, Juan David6e2af894-3c59-45bb-95d4-43331c36572d300Rueda Mejía, Viviana María903942fd-0ab8-4ee8-b0e3-2dff49a26a71300Franco Cardona, Carlos Jaime070ee56f-5115-438d-ab21-4368f0109d593002019-07-03T15:50:12Z2019-07-03T15:50:12Z2013https://repositorio.unal.edu.co/handle/unal/73049http://bdigital.unal.edu.co/37524/The combination of SARIMA and neural network models are a common approach for forecasting nonlinear time series. While the SARIMA methodology is used to capture the linear components in the time series, artifi cial neural networks are applied to forecast the remaining nonlinearities in the shocks of the SARIMA model. In this paper, we propose a simple nonlinear time series forecasting model by combining the SARIMA model with a multiplicative single neuron using the same inputs as the SARIMA model. To evaluate the capacity of the new approach, the monthly electricity demand in the Colombian energy market is forecasted and compared with the SARIMA and multiplicative single neuron models.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/39344Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353Velásquez Henao, Juan David and Rueda Mejía, Viviana María and Franco Cardona, Carlos Jaime (2013) Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model. DYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353 .Electricity demand forecasting using a sarimamultiplicative single neuron hybrid modelArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTenergy demandenergy marketsnonlinear modelsORIGINAL39344-175072-1-PB.pdfapplication/pdf446549https://repositorio.unal.edu.co/bitstream/unal/73049/1/39344-175072-1-PB.pdfbf840a0e8fa6adc8076a97b7ef44adb5MD5139344-208456-1-PB.htmltext/html22053https://repositorio.unal.edu.co/bitstream/unal/73049/2/39344-208456-1-PB.html2211c7a03d0b8e37bb5cf1c3251ff1b0MD52THUMBNAIL39344-175072-1-PB.pdf.jpg39344-175072-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9088https://repositorio.unal.edu.co/bitstream/unal/73049/3/39344-175072-1-PB.pdf.jpg5c510899774fe1455256f799760afef7MD53unal/73049oai:repositorio.unal.edu.co:unal/730492023-06-26 23:21:37.705Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
title |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
spellingShingle |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model energy demand energy markets nonlinear models |
title_short |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
title_full |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
title_fullStr |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
title_full_unstemmed |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
title_sort |
Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model |
dc.creator.fl_str_mv |
Velásquez Henao, Juan David Rueda Mejía, Viviana María Franco Cardona, Carlos Jaime |
dc.contributor.author.spa.fl_str_mv |
Velásquez Henao, Juan David Rueda Mejía, Viviana María Franco Cardona, Carlos Jaime |
dc.subject.proposal.spa.fl_str_mv |
energy demand energy markets nonlinear models |
topic |
energy demand energy markets nonlinear models |
description |
The combination of SARIMA and neural network models are a common approach for forecasting nonlinear time series. While the SARIMA methodology is used to capture the linear components in the time series, artifi cial neural networks are applied to forecast the remaining nonlinearities in the shocks of the SARIMA model. In this paper, we propose a simple nonlinear time series forecasting model by combining the SARIMA model with a multiplicative single neuron using the same inputs as the SARIMA model. To evaluate the capacity of the new approach, the monthly electricity demand in the Colombian energy market is forecasted and compared with the SARIMA and multiplicative single neuron models. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T15:50:12Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T15:50:12Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73049 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/37524/ |
url |
https://repositorio.unal.edu.co/handle/unal/73049 http://bdigital.unal.edu.co/37524/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/dyna/article/view/39344 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Dyna Dyna |
dc.relation.ispartofseries.none.fl_str_mv |
DYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353 |
dc.relation.references.spa.fl_str_mv |
Velásquez Henao, Juan David and Rueda Mejía, Viviana María and Franco Cardona, Carlos Jaime (2013) Electricity demand forecasting using a sarimamultiplicative single neuron hybrid model. DYNA; Vol. 80, núm. 180 (2013); 4-8 Dyna; Vol. 80, núm. 180 (2013); 4-8 2346-2183 0012-7353 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73049/1/39344-175072-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73049/2/39344-208456-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/73049/3/39344-175072-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
bf840a0e8fa6adc8076a97b7ef44adb5 2211c7a03d0b8e37bb5cf1c3251ff1b0 5c510899774fe1455256f799760afef7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089457158062080 |