A system approach to support a methodology for the design of formulated cosmetic products in the context of companies

ilustraciones

Autores:
Rivera Gil, Jose Luis
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83421
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83421
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Cosmética
Industria de cosméticos
Beauty culture
Cosmetics industry
Chemical product design
cosmetic products
systems analysis
organizational context
design methodology
Diseño de productos químicos
productos cosméticos
análisis de sistemas
contexto organizativo
metodología de diseño
Rights
closedAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_25f4f5347462fb0d59a332e994acd901
oai_identifier_str oai:repositorio.unal.edu.co:unal/83421
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
dc.title.translated.spa.fl_str_mv Un enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresas
title A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
spellingShingle A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
620 - Ingeniería y operaciones afines
Cosmética
Industria de cosméticos
Beauty culture
Cosmetics industry
Chemical product design
cosmetic products
systems analysis
organizational context
design methodology
Diseño de productos químicos
productos cosméticos
análisis de sistemas
contexto organizativo
metodología de diseño
title_short A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
title_full A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
title_fullStr A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
title_full_unstemmed A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
title_sort A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
dc.creator.fl_str_mv Rivera Gil, Jose Luis
dc.contributor.advisor.none.fl_str_mv Narváez Rincón, Paulo César
Boly, Vincent
Falk, Véronique
Serna Rodas, Juliana
dc.contributor.author.none.fl_str_mv Rivera Gil, Jose Luis
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0001-6237-8736
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Cosmética
Industria de cosméticos
Beauty culture
Cosmetics industry
Chemical product design
cosmetic products
systems analysis
organizational context
design methodology
Diseño de productos químicos
productos cosméticos
análisis de sistemas
contexto organizativo
metodología de diseño
dc.subject.lemb.spa.fl_str_mv Cosmética
Industria de cosméticos
dc.subject.lemb.eng.fl_str_mv Beauty culture
Cosmetics industry
dc.subject.proposal.eng.fl_str_mv Chemical product design
cosmetic products
systems analysis
organizational context
design methodology
dc.subject.proposal.spa.fl_str_mv Diseño de productos químicos
productos cosméticos
análisis de sistemas
contexto organizativo
metodología de diseño
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-14
dc.date.accessioned.none.fl_str_mv 2023-02-10T19:11:27Z
dc.date.available.none.fl_str_mv 2023-02-10T19:11:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83421
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83421
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027
Abildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036
Abildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218
Alshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005
Alvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9.
Ando, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1
Ariffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006
Arrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032
Arrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794.
Austin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014
Austin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142
Azmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34.
Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242
Bagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332
Bardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281w
Bergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480
Bernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9
Bernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8
Bernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681
Boly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès.
Bongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2
Bosschaert, T. (2019). Symbiosis in development Making new futures possible.
Brem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055
Brunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod.
Cardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008
CEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/
Chai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764
Chan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653
Chan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153
Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006
Chang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5
Chavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152
Chemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516v
Cheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861
Cheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010
Cheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554s
Cheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014
Cholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236.
Chong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006
Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5
Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013K
Cignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216
Cisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science.
Conte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582
Conte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031
Conte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458
Conte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2
Conte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-X
Cooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005
Costa, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9
Costa, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880
Cussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132
Dahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674
Dahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118
Derkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002
Dori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8
Elias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295
Ewoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508
Fatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346
Feng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025
Towards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal of
Filipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402
Frenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013
Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021
Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017.
Fung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512
Fung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009
Gani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013
Gertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007
Gong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558
Goodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJ
Grime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879
Hada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017
Hatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15.
Heintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009
Heintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010
Hill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293
Hill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013
Ho, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073
Holmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbd
Houssein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656
Jasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XML
Jebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEX
Jhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471
Jhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064
Jonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008
Jonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122
Jonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518
Kalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029
Kashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073
Kerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE).
Khor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006
Kimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9
Kind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0
Kiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030
König, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712
Kontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363
Krishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374
Kumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27.
Lai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2
Lee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004
Lee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5
Li, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4
Liang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769
Linehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833
Liu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006
Marques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672
Martín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012
Martín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792
Martín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019
Mattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030
Meyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035
Ministerio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-median
Morel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373
Morel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464
Muro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5
Mushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975
Narvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
Narvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false
Nelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002
Neoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005
Ng, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8
Ng, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029
Ng, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658
Ng, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217
Ng, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906a
Omidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196u
Omidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644f
Omidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441
Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers.
Papadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769
Parmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581
Pavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015
Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013
Picchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002
Qian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6
Rafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002
Rähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-Z
Rähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106
Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209
Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753
Rivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039
Rivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563
Rodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005
Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176
Samudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611v
Santos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460
Serna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7.
Serna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942
Šimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932
Smith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377e
Smith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039
Solvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9
Stelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006
Suárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956
Suaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química.
Sunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27
Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001
Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980
Tam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271
Tomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027
Torres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326
Uhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236
Ullmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering.
Victoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001
Victoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12
Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007
Wan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1
Wang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009
Warrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664v
Warrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063
Wassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041
Wibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214
Wibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609
Wu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420
Yang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166
Yin, R. K. (2018). Case study research and applications. Sage Publications, 352.
Yu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041
Yunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011
Zhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014
Zhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775
Zhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018
Zhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005
Zhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021
Zhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026
Zhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv xvii, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
Université de Lorraine
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83421/4/1032446331.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83421/6/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83421/7/U.FT.09.006.004%20Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4.doc%20%281%29.pdf
bitstream.checksum.fl_str_mv a3af6f4841586ae488a608bee320a60f
eb34b1cf90b7e1103fc9dfd26be24b4a
d5eb91648f6b166724785d9ddcbaef8b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886337241939968
spelling Reconocimiento 4.0 Internacionalinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbNarváez Rincón, Paulo César1424150a73b4193d8936a493fb231fd5Boly, Vincent261126c8862297bcf814ace430587f30Falk, Véronique770e1e15d1304c4f0eba514700216909Serna Rodas, Juliana5384f6c7707c99d5578d0ffa052741c6Rivera Gil, Jose Luisa5653ab0569daa38f2980f3c1502387fGrupo de Investigación en Procesos Químicos y Bioquímicoshttps://orcid.org/0000-0001-6237-87362023-02-10T19:11:27Z2023-02-10T19:11:27Z2022-12-14https://repositorio.unal.edu.co/handle/unal/83421Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesManaging a new chemical product design and development project is a complex task at different levels. In addition to the technical challenges of the formulation and the definition of process conditions, design teams should also consider the requirements of the organization where the product design is performed. Therefore, the organizational dimension and its importance in chemical product design are explored in this research. Through a bibliometric literature review, it was found that chemical product design methodologies integrating the organizational context have not been thoroughly analyzed and are highly required. In this research, through a systemic analysis based on information collected in semi-structured interviews with design experts of the cosmetic sector, the characteristics of the organizational context and its effects on the product design process of that sector were studied. Additionally, information captured during those interviews was formalized in an expert knowledge base of recommendations to support the cosmetic product design process. A tool to adapt those recommendations to the design process of specific companies was proposed. The tool is applied through collaborative workshops which enable the active participation of the design team in the evaluation of the design process in order to select and implement the most suitable recommendations. Finally, the tool is applied in a real organization showing how it can be used to evaluate and improve a real design process. In that case it was found that the tool proposes adapted improvement solutions aligned to the company's value concepts, where the design team has the role of evaluator and builder of its own design methodology. (Texto tomado de la fuente)Gestionar un proyecto de diseño y desarrollo de un nuevo producto químico es una tarea compleja a diferentes niveles. Además de los retos técnicos de la formulación y la definición de las condiciones del proceso, los equipos de diseño también deben tener en cuenta los requisitos de la organización donde se realiza el diseño del producto. Por lo tanto, en esta investigación se explora la dimensión organizativa y su importancia en el diseño de productos químicos. A través de una revisión bibliográfica, se encontró que las metodologías de diseño de productos químicos que integran el contexto organizacional no han sido analizadas a fondo y son altamente requeridas. En esta investigación, a través de un análisis sistémico basado en la información recopilada en entrevistas semiestructuradas con expertos en diseño del sector cosmético, se estudiaron las características del contexto organizacional y sus efectos en el proceso de diseño de productos de dicho sector. Además, la información capturada durante dichas entrevistas se formalizó en una base de conocimiento experto de recomendaciones para apoyar el proceso de diseño de productos cosméticos. Se propuso una herramienta para adaptar esas recomendaciones al proceso de diseño de empresas específicas. La herramienta se aplica a través de talleres colaborativos que permiten la participación activa del equipo de diseño en la evaluación del proceso de diseño para seleccionar e implementar las recomendaciones más adecuadas. Por último, la herramienta se aplica en una organización real mostrando cómo puede utilizarse para evaluar y mejorar un proceso de diseño real. En ese caso se comprobó que la herramienta propone soluciones de mejora adaptadas y alineadas con los conceptos de valor de la empresa, donde el equipo de diseño tiene el papel de evaluador y constructor de su propia metodología de diseño.DoctoradoDoctor en Ingenieríaxvii, 133 páginasapplication/pdfengUniversidad Nacional de ColombiaUniversité de LorraineBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesCosméticaIndustria de cosméticosBeauty cultureCosmetics industryChemical product designcosmetic productssystems analysisorganizational contextdesign methodologyDiseño de productos químicosproductos cosméticosanálisis de sistemascontexto organizativometodología de diseñoA system approach to support a methodology for the design of formulated cosmetic products in the context of companiesUn enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027Abildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036Abildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218Alshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005Alvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9.Ando, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1Ariffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006Arrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032Arrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794.Austin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014Austin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142Azmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34.Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242Bagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332Bardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281wBergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480Bernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9Bernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8Bernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681Boly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès.Bongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2Bosschaert, T. (2019). Symbiosis in development Making new futures possible.Brem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055Brunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod.Cardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008CEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/Chai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764Chan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653Chan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006Chang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5Chavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152Chemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516vCheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861Cheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010Cheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554sCheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014Cholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236.Chong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013KCignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216Cisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science.Conte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582Conte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031Conte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458Conte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2Conte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-XCooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005Costa, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9Costa, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880Cussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132Dahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674Dahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118Derkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002Dori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8Elias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295Ewoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508Fatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346Feng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025Towards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal ofFilipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402Frenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017.Fung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512Fung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009Gani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013Gertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007Gong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558Goodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJGrime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879Hada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017Hatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15.Heintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009Heintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010Hill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293Hill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013Ho, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073Holmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbdHoussein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656Jasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XMLJebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEXJhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471Jhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064Jonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008Jonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122Jonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518Kalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029Kashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073Kerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE).Khor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006Kimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9Kind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0Kiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030König, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712Kontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363Krishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374Kumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27.Lai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2Lee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004Lee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5Li, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4Liang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769Linehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833Liu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006Marques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672Martín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012Martín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792Martín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019Mattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030Meyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035Ministerio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-medianMorel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373Morel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464Muro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5Mushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975Narvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falseNarvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falseNelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002Neoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005Ng, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8Ng, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029Ng, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658Ng, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217Ng, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906aOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196uOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644fOmidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers.Papadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769Parmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581Pavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013Picchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002Qian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6Rafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002Rähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-ZRähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753Rivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039Rivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563Rodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176Samudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611vSantos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460Serna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7.Serna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942Šimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932Smith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377eSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039Solvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9Stelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006Suárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956Suaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química.Sunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980Tam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271Tomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027Torres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326Uhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236Ullmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering.Victoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001Victoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007Wan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1Wang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009Warrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664vWarrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063Wassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041Wibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214Wibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609Wu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420Yang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166Yin, R. K. (2018). Case study research and applications. Sage Publications, 352.Yu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041Yunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011Zhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014Zhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775Zhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018Zhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005Zhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021Zhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026Zhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462Público generalORIGINAL1032446331.2022.pdf1032446331.2022.pdfDocumento de Tesis de Doctoradoapplication/pdf4148812https://repositorio.unal.edu.co/bitstream/unal/83421/4/1032446331.2022.pdfa3af6f4841586ae488a608bee320a60fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83421/6/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD56U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.doc (1).pdfU.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.doc (1).pdfapplication/pdf345495https://repositorio.unal.edu.co/bitstream/unal/83421/7/U.FT.09.006.004%20Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4.doc%20%281%29.pdfd5eb91648f6b166724785d9ddcbaef8bMD57unal/83421oai:repositorio.unal.edu.co:unal/834212023-02-10 14:16:00.044Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=