A system approach to support a methodology for the design of formulated cosmetic products in the context of companies
ilustraciones
- Autores:
-
Rivera Gil, Jose Luis
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83421
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Cosmética
Industria de cosméticos
Beauty culture
Cosmetics industry
Chemical product design
cosmetic products
systems analysis
organizational context
design methodology
Diseño de productos químicos
productos cosméticos
análisis de sistemas
contexto organizativo
metodología de diseño
- Rights
- closedAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_25f4f5347462fb0d59a332e994acd901 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83421 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
dc.title.translated.spa.fl_str_mv |
Un enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresas |
title |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
spellingShingle |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies 620 - Ingeniería y operaciones afines Cosmética Industria de cosméticos Beauty culture Cosmetics industry Chemical product design cosmetic products systems analysis organizational context design methodology Diseño de productos químicos productos cosméticos análisis de sistemas contexto organizativo metodología de diseño |
title_short |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
title_full |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
title_fullStr |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
title_full_unstemmed |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
title_sort |
A system approach to support a methodology for the design of formulated cosmetic products in the context of companies |
dc.creator.fl_str_mv |
Rivera Gil, Jose Luis |
dc.contributor.advisor.none.fl_str_mv |
Narváez Rincón, Paulo César Boly, Vincent Falk, Véronique Serna Rodas, Juliana |
dc.contributor.author.none.fl_str_mv |
Rivera Gil, Jose Luis |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Procesos Químicos y Bioquímicos |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-6237-8736 |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Cosmética Industria de cosméticos Beauty culture Cosmetics industry Chemical product design cosmetic products systems analysis organizational context design methodology Diseño de productos químicos productos cosméticos análisis de sistemas contexto organizativo metodología de diseño |
dc.subject.lemb.spa.fl_str_mv |
Cosmética Industria de cosméticos |
dc.subject.lemb.eng.fl_str_mv |
Beauty culture Cosmetics industry |
dc.subject.proposal.eng.fl_str_mv |
Chemical product design cosmetic products systems analysis organizational context design methodology |
dc.subject.proposal.spa.fl_str_mv |
Diseño de productos químicos productos cosméticos análisis de sistemas contexto organizativo metodología de diseño |
description |
ilustraciones |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-14 |
dc.date.accessioned.none.fl_str_mv |
2023-02-10T19:11:27Z |
dc.date.available.none.fl_str_mv |
2023-02-10T19:11:27Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83421 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83421 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027 Abildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036 Abildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218 Alshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005 Alvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9. Ando, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1 Ariffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006 Arrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032 Arrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794. Austin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014 Austin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142 Azmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34. Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242 Bagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332 Bardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281w Bergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480 Bernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9 Bernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8 Bernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681 Boly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès. Bongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2 Bosschaert, T. (2019). Symbiosis in development Making new futures possible. Brem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055 Brunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod. Cardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008 CEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/ Chai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764 Chan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653 Chan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153 Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006 Chang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5 Chavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152 Chemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516v Cheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861 Cheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010 Cheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554s Cheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014 Cholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236. Chong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006 Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5 Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013K Cignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216 Cisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science. Conte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582 Conte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031 Conte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458 Conte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2 Conte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-X Cooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005 Costa, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9 Costa, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880 Cussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132 Dahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674 Dahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118 Derkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002 Dori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8 Elias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295 Ewoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508 Fatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346 Feng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025 Towards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal of Filipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402 Frenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013 Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021 Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017. Fung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512 Fung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009 Gani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013 Gertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007 Gong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558 Goodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJ Grime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879 Hada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017 Hatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15. Heintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009 Heintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010 Hill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293 Hill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013 Ho, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073 Holmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbd Houssein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656 Jasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XML Jebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEX Jhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471 Jhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064 Jonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008 Jonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122 Jonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518 Kalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029 Kashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073 Kerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE). Khor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006 Kimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9 Kind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0 Kiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030 König, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712 Kontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363 Krishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374 Kumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27. Lai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2 Lee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004 Lee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5 Li, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4 Liang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769 Linehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833 Liu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006 Marques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672 Martín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012 Martín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792 Martín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019 Mattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030 Meyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035 Ministerio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-median Morel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373 Morel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464 Muro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5 Mushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975 Narvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false Narvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false Nelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002 Neoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005 Ng, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8 Ng, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029 Ng, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658 Ng, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217 Ng, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906a Omidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196u Omidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644f Omidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441 Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers. Papadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769 Parmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581 Pavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015 Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013 Picchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002 Qian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6 Rafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002 Rähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-Z Rähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106 Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209 Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753 Rivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039 Rivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563 Rodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005 Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176 Samudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611v Santos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460 Serna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7. Serna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942 Šimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932 Smith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377e Smith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039 Solvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9 Stelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006 Suárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956 Suaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química. Sunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27 Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001 Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980 Tam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271 Tomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027 Torres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326 Uhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236 Ullmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering. Victoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001 Victoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12 Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007 Wan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1 Wang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009 Warrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664v Warrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063 Wassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041 Wibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214 Wibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609 Wu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420 Yang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166 Yin, R. K. (2018). Case study research and applications. Sage Publications, 352. Yu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041 Yunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011 Zhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014 Zhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775 Zhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018 Zhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005 Zhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021 Zhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026 Zhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Université de Lorraine |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83421/4/1032446331.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83421/6/license.txt https://repositorio.unal.edu.co/bitstream/unal/83421/7/U.FT.09.006.004%20Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4.doc%20%281%29.pdf https://repositorio.unal.edu.co/bitstream/unal/83421/8/1032446331.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
a3af6f4841586ae488a608bee320a60f eb34b1cf90b7e1103fc9dfd26be24b4a d5eb91648f6b166724785d9ddcbaef8b 56820cdb744a7f5cd9ab22b8cc452d3e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089725231759360 |
spelling |
Reconocimiento 4.0 Internacionalinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbNarváez Rincón, Paulo César1424150a73b4193d8936a493fb231fd5Boly, Vincent261126c8862297bcf814ace430587f30Falk, Véronique770e1e15d1304c4f0eba514700216909Serna Rodas, Juliana5384f6c7707c99d5578d0ffa052741c6Rivera Gil, Jose Luisa5653ab0569daa38f2980f3c1502387fGrupo de Investigación en Procesos Químicos y Bioquímicoshttps://orcid.org/0000-0001-6237-87362023-02-10T19:11:27Z2023-02-10T19:11:27Z2022-12-14https://repositorio.unal.edu.co/handle/unal/83421Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesManaging a new chemical product design and development project is a complex task at different levels. In addition to the technical challenges of the formulation and the definition of process conditions, design teams should also consider the requirements of the organization where the product design is performed. Therefore, the organizational dimension and its importance in chemical product design are explored in this research. Through a bibliometric literature review, it was found that chemical product design methodologies integrating the organizational context have not been thoroughly analyzed and are highly required. In this research, through a systemic analysis based on information collected in semi-structured interviews with design experts of the cosmetic sector, the characteristics of the organizational context and its effects on the product design process of that sector were studied. Additionally, information captured during those interviews was formalized in an expert knowledge base of recommendations to support the cosmetic product design process. A tool to adapt those recommendations to the design process of specific companies was proposed. The tool is applied through collaborative workshops which enable the active participation of the design team in the evaluation of the design process in order to select and implement the most suitable recommendations. Finally, the tool is applied in a real organization showing how it can be used to evaluate and improve a real design process. In that case it was found that the tool proposes adapted improvement solutions aligned to the company's value concepts, where the design team has the role of evaluator and builder of its own design methodology. (Texto tomado de la fuente)Gestionar un proyecto de diseño y desarrollo de un nuevo producto químico es una tarea compleja a diferentes niveles. Además de los retos técnicos de la formulación y la definición de las condiciones del proceso, los equipos de diseño también deben tener en cuenta los requisitos de la organización donde se realiza el diseño del producto. Por lo tanto, en esta investigación se explora la dimensión organizativa y su importancia en el diseño de productos químicos. A través de una revisión bibliográfica, se encontró que las metodologías de diseño de productos químicos que integran el contexto organizacional no han sido analizadas a fondo y son altamente requeridas. En esta investigación, a través de un análisis sistémico basado en la información recopilada en entrevistas semiestructuradas con expertos en diseño del sector cosmético, se estudiaron las características del contexto organizacional y sus efectos en el proceso de diseño de productos de dicho sector. Además, la información capturada durante dichas entrevistas se formalizó en una base de conocimiento experto de recomendaciones para apoyar el proceso de diseño de productos cosméticos. Se propuso una herramienta para adaptar esas recomendaciones al proceso de diseño de empresas específicas. La herramienta se aplica a través de talleres colaborativos que permiten la participación activa del equipo de diseño en la evaluación del proceso de diseño para seleccionar e implementar las recomendaciones más adecuadas. Por último, la herramienta se aplica en una organización real mostrando cómo puede utilizarse para evaluar y mejorar un proceso de diseño real. En ese caso se comprobó que la herramienta propone soluciones de mejora adaptadas y alineadas con los conceptos de valor de la empresa, donde el equipo de diseño tiene el papel de evaluador y constructor de su propia metodología de diseño.DoctoradoDoctor en Ingenieríaxvii, 133 páginasapplication/pdfengUniversidad Nacional de ColombiaUniversité de LorraineBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesCosméticaIndustria de cosméticosBeauty cultureCosmetics industryChemical product designcosmetic productssystems analysisorganizational contextdesign methodologyDiseño de productos químicosproductos cosméticosanálisis de sistemascontexto organizativometodología de diseñoA system approach to support a methodology for the design of formulated cosmetic products in the context of companiesUn enfoque de sistema para apoyar una metodología de diseño de productos cosméticos formulados en el contexto de las empresasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdul Rahim, Z., Lim Sing Sheng, I., & Nooh, A. B. (2015). TRIZ methodology for applied chemical engineering: A case study of new product development. Chemical Engineering Research and Design, 103, 11–24. https://doi.org/10.1016/j.cherd.2015.08.027Abildskov, J., & Kontogeorgis, G. M. (2004). Chemical Product Design: A new challenge of applied thermodynamics. Chemical Engineering Research and Design, 82(11), 1505–1510. https://doi.org/10.1205/cerd.82.11.1505.52036Abildskov, Jens, & O’Connell, J. P. (2011). Molecular Thermodynamic Modeling and Design of Microencapsulation Systems for Drug Delivery. Journal of Chemical & Engineering Data, 56(4), 1229–1237. https://doi.org/10.1021/je1011218Alshehri, A. S., Gani, R., & You, F. (2020). Deep learning and knowledge-based methods for computer-aided molecular design—toward a unified approach: State-of-the-art and future directions. Computers & Chemical Engineering, 141, 107005. https://doi.org/10.1016/j.compchemeng.2020.107005Alvarez, O. (2017). Integrating creativity in the design of chemical products. 2017 Research in Engineering Education Symposium, REES 2017, Armstrong 2006, 1–9.Ando, S. (2020). METHOD FOR PROVIDING COSMETIC PRODUCT CUSTOMIZED FOR CUSTOMER (Patent No. WO/2020/194365). https://patentscope.wipo.int/search/es/detail.jsf?docId=WO2020194365&tab=PCTBIBLIO&_cid=P22-KI778W-46975-1Ariffin Kashinath, S. A., Abdul Manan, Z., Hashim, H., & Wan Alwi, S. R. (2012). Design of green diesel from biofuels using computer aided technique. Computers & Chemical Engineering, 41, 88–92. https://doi.org/10.1016/j.compchemeng.2012.03.006Arrieta-Escobar, J. A., Bernardo, F. P., Orjuela, A., Camargo, M., & Morel, L. (2019). Incorporation of heuristic knowledge in the optimal design of formulated products: Application to a cosmetic emulsion. Computers and Chemical Engineering, 122, 265–274. https://doi.org/10.1016/j.compchemeng.2018.08.032Arrieta-Escobar, J. A., Camargo, M., Morel, L., & Orjuela, A. (2020). Current approaches on chemical product design: A study of opportunities identification for integrated methodologies. Towards the Digital World and Industry X.0 - Proceedings of the 29th International Conference of the International Association for Management of Technology, IAMOT 2020, 785–794.Austin, N. D., Sahinidis, N. V., & Trahan, D. W. (2016). Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques. Chemical Engineering Research and Design, 116, 2–26. https://doi.org/10.1016/j.cherd.2016.10.014Austin, N. D., Samudra, A. P., Sahinidis, N. V., & Trahan, D. W. (2016). Mixture design using derivative-free optimization in the space of individual component properties. AIChE Journal, 62(5), 1514–1530. https://doi.org/10.1002/aic.15142Azmin, S. N., Yunus, N. A., Mustaffa, A. A., Wan Alwi, S. R., & Chua, L. S. (2015). A framework for solvent selection based on herbal extraction process design. Journal of Engineering Science and Technology, 10(October 2017), 25–34.Bagajewicz, M., Hill, S., Robben, A., Lopez, H., Sanders, M., Sposato, E., Baade, C., Manora, S., & Hey Coradin, J. (2011). Product design in price-competitive markets: A case study of a skin moisturizing lotion. AIChE Journal, 57(1), 160–177. https://doi.org/10.1002/aic.12242Bagajewicz, M. J. (2007). On the role of microeconomics, planning, and finances in product design. AIChE Journal, 53(12), 3155–3170. https://doi.org/10.1002/aic.11332Bardow, A., Steur, K., & Gross, J. (2010). Continuous-Molecular Targeting for Integrated Solvent and Process Design. Industrial & Engineering Chemistry Research, 49(6), 2834–2840. https://doi.org/10.1021/ie901281wBergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., & Mouloungui, Z. (2014). From chemical platform molecules to new biosolvents: Design engineering as a substitution methodology. Biofuels, Bioproducts and Biorefining, 8(3), 438–451. https://doi.org/10.1002/bbb.1480Bernardo, F. P., & Saraiva, P. M. (2004). Value of information analysis in product/process design (pp. 151–156). https://doi.org/10.1016/S1570-7946(04)80091-9Bernardo, F. P., & Saraiva, P. M. (2005). Integrated process and product design optimization: a cosmetic emulsion application. Computer Aided Chemical Engineering, 20(C), 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8Bernardo, F. P., & Saraiva, P. M. (2015). A conceptual model for chemical product design. AIChE Journal, 61(3), 802–815. https://doi.org/10.1002/aic.14681Boly, V., Camargo-Pardo, M., & Morel, L. (2016). Ingénierie de l’innovation (H. Lavoisier (ed.); 3e édition). Lavoisier, Hermès.Bongers, P. M. M., & Almeida-Rivera, C. (2009). Product Driven Process Synthesis Methodology. In Computer Aided Chemical Engineering (Vol. 26). Elsevier B.V. https://doi.org/10.1016/S1570-7946(09)70039-2Bosschaert, T. (2019). Symbiosis in development Making new futures possible.Brem, A., Maier, M., & Wimschneider, C. (2016). Competitive advantage through innovation: the case of Nespresso. European Journal of Innovation Management, 19(1), 133–148. https://doi.org/10.1108/EJIM-05-2014-0055Brunet, E. (2019). La boîte à outils du design thinking. In Dunod (Ed.), La boîte à outils du design thinking : 67 outils clés en main + 4 vidéos d’approfondissement. Dunod.Cardona Jaramillo, J. E. C., Achenie, L. E., Álvarez, O. A., Carrillo Bautista, M. P., & González Barrios, A. F. (2020). The multiscale approach t o the design of bio-based emulsions. In Current Opinion in Chemical Engineering (Vol. 27, pp. 65–71). https://doi.org/10.1016/j.coche.2019.11.008CEFIC. (2022). 2022 Facts and figures of the European chemical industry. https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/Chai, S., Liu, Q., Liang, X., Guo, Y., Zhang, S., Xu, C., Du, J., Yuan, Z., Zhang, L., & Gani, R. (2020). A grand product design model for crystallization solvent design. Computers & Chemical Engineering, 135, 106764. https://doi.org/10.1016/j.compchemeng.2020.106764Chan, T. H., Mihm, J., & Sosa, M. E. (2018). On styles in product design: An analysis of U.S. Design patents. Management Science, 64(3), 1230–1249. https://doi.org/10.1287/mnsc.2016.2653Chan, Y. C., Fung, K. Y., & Ng, K. M. (2018). Product design: A pricing framework accounting for product quality and consumer awareness. AIChE Journal, 64(7), 2462–2471. https://doi.org/10.1002/aic.16153Chandrasegaran, S. K., Ramani, K., Sriram, R. D., Horváth, I., Bernard, A., Harik, R. F., & Gao, W. (2013). The evolution, challenges, and future of knowledge representation in product design systems. CAD Computer Aided Design, 45(2), 204–228. https://doi.org/10.1016/j.cad.2012.08.006Chang, S. S. L., Kong, Y. L., Lim, W. X., Ooi, J., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2018). Design of alternate solvent for recovery of residual palm oil: simultaneous optimization of process performance with environmental, health and safety aspects. Clean Technologies and Environmental Policy, 20(5), 949–968. https://doi.org/10.1007/s10098-018-1515-5Chavy-Macdonald, M. A., Oizumi, K., & Aoyama, K. (2019). Towards a generalized system dynamics model for product design & adoption. Advances in Transdisciplinary Engineering, 10(July), 455–464. https://doi.org/10.3233/ATDE190152Chemmangattuvalappil, N. G., & Eden, M. R. (2013). A Novel Methodology for Property-Based Molecular Design Using Multiple Topological Indices. Industrial & Engineering Chemistry Research, 52(22), 7090–7103. https://doi.org/10.1021/ie302516vCheng, K. C., Khoo, Z. S., Lo, N. W., Tan, W. J., & Chemmangattuvalappil, N. G. (2020). Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 6(5), e03861. https://doi.org/10.1016/j.heliyon.2020.e03861Cheng, Yuen S., Lam, K. W., Ng, K. M., Ko, R. K. M., & Wibowo, C. (2009). An integrative approach to product development—A skin-care cream. Computers & Chemical Engineering, 33(5), 1097–1113. https://doi.org/10.1016/j.compchemeng.2008.10.010Cheng, Yuen S., Ng, K. M., & Wibowo, C. (2010). Product Design: a Transdermal Patch Containing a Traditional Chinese Medicinal Tincture. Industrial & Engineering Chemistry Research, 49(10), 4904–4913. https://doi.org/10.1021/ie901554sCheng, Yuen Shan, Fung, K. Y., Ng, K. M., & Wibowo, C. (2016). Economic analysis in product design - A case study of a TCM dietary supplement. Chinese Journal of Chemical Engineering, 24(1), 202–214. https://doi.org/10.1016/j.cjche.2015.06.014Cholakov, G. S. (2011). Towards computer aided design of fuels and lubricants. Journal of the University of Chemical Technology and Metallurgy, 46(3), 217–236.Chong, F. K., Eljack, F. T., Atilhan, M., Foo, D. C. Y., & Chemmangattuvalappil, N. G. (2016). A systematic visual methodology to design ionic liquids and ionic liquid mixtures: Green solvent alternative for carbon capture. Computers & Chemical Engineering, 91, 219–232. https://doi.org/10.1016/j.compchemeng.2016.04.006Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2015). Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach. Clean Technologies and Environmental Policy, 17(5), 1301–1312. https://doi.org/10.1007/s10098-015-0938-5Chong, F. K., Foo, D. C. Y., Eljack, F. T., Atilhan, M., & Chemmangattuvalappil, N. G. (2016). A systematic approach to design task-specific ionic liquids and their optimal operating conditions. Molecular Systems Design & Engineering, 1(1), 109–121. https://doi.org/10.1039/C5ME00013KCignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product–Process Design Framework. Industrial & Engineering Chemistry Research, acs.iecr.7b04216. https://doi.org/10.1021/acs.iecr.7b04216Cisternas, L. A. (2006). Nature of Chemical Products. In Ka Ming Ng, R. Gani, & K. Dam-johansen (Eds.), Chemical Product Design: Towards a Perspective through Case Studies (First Edit, p. 459). Elsevier Science.Conte, E., Gani, R., Cheng, Y. S. Y. S., & Ng, K. M. K. M. (2012). Design of formulated products: Experimental component. AIChE Journal, 58(1), 173–189. https://doi.org/10.1002/aic.12582Conte, E., Gani, R., & Malik, T. I. (2011). The virtual Product-Process Design laboratory to manage the complexity in the verification of formulated products. Fluid Phase Equilibria, 302(1–2), 294–304. https://doi.org/10.1016/j.fluid.2010.09.031Conte, E., Gani, R., & Ng, K. M. (2011). Design of Formulated Products: A Systematic Methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458Conte, E., Morales-Rodriguez, R., & Gani, R. (2009a). The Virtual Product-Process Design Laboratory as a Tool for Product Development (pp. 249–254). https://doi.org/10.1016/S1570-7946(09)70042-2Conte, E., Morales-Rodriguez, R., & Gani, R. (2009b). The Virtual Product-Process Design Laboratory for Design and Analysis of Formulations (pp. 825–830). https://doi.org/10.1016/S1570-7946(09)70358-XCooper, R. G. (2019). The drivers of success in new-product development. Industrial Marketing Management, 76(January 2018), 36–47. https://doi.org/10.1016/j.indmarman.2018.07.005Costa, R., Elliott, P., Saraiva, P. M., Aldridge, D., & Moggridge, G. D. (2008). Development of Sustainable Solutions for Zebra Mussel Control Through Chemical Product Engineering. Chinese Journal of Chemical Engineering, 16(3), 435–440. https://doi.org/10.1016/S1004-9541(08)60101-9Costa, R., Moggridge, G. D., & Saraiva, P. M. (2006). Chemical product engineering: An emerging paradigm within chemical engineering. AIChE Journal, 52(6), 1976–1986. https://doi.org/10.1002/aic.10880Cussler, E. L., & Moggridge, G. D. (2011). Chemical product design. In Chemical Product Design, Second Edition (Second, Vol. 9780521168). https://doi.org/10.1017/CBO9781139035132Dahmen, M., & Marquardt, W. (2016). Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 30(2), 1109–1134. https://doi.org/10.1021/acs.energyfuels.5b02674Dahmen, M., & Marquardt, W. (2017). Model-Based Formulation of Biofuel Blends by Simultaneous Product and Pathway Design. Energy & Fuels, 31(4), 4096–4121. https://doi.org/10.1021/acs.energyfuels.7b00118Derkyi, N. S. A., Acheampong, M. A., Mwin, E. N., Tetteh, P., & Aidoo, S. C. (2018). Product design for a functional non-alcoholic drink. South African Journal of Chemical Engineering, 25, 85–90. https://doi.org/10.1016/j.sajce.2018.02.002Dori, D., & Shpitalni, M. (2005). Mapping knowledge about product lifecycle engineering for ontology construction via object-process methodology. CIRP Annals - Manufacturing Technology, 54(1), 117–122. https://doi.org/10.1016/S0007-8506(07)60063-8Elias, E., & Chaumon, M.-E. B. (2022). Les objets intermédiaires de conception comme instruments de l’activité : quels apports dans une démarche de conception inclusive et participative de technologies ambiantes à destination des personnes fragilisées ? Activites, 19–1. https://doi.org/10.4000/activites.7295Ewoldt, R. H. (2014). Extremely Soft: Design with Rheologically Complex Fluids. Soft Robotics, 1(1), 12–20. https://doi.org/10.1089/soro.2013.1508Fatoni, R., Elkamel, A., Simon, L., & Almansoori, A. (2015). A computer-aided framework for product design with application to wheat straw polypropylene composites. The Canadian Journal of Chemical Engineering, 93(12), 2141–2149. https://doi.org/10.1002/cjce.22346Feng, T.-J., Ma, L.-T., Ding, X.-Q., Yang, N., & Xiao, X. (2008). Intelligent techniques for cigarette formula design. Mathematics and Computers in Simulation, 77(5–6), 476–486. https://doi.org/10.1016/j.matcom.2007.11.025Towards satisfying performance of an O/W cosmetic emulsion: screening of reformulation factors on textural and rheological properties using general experimental design. International Journal ofFilipovic, M., Lukic, M., Djordjevic, S., Krstonosic, V., Pantelic, I., Vuleta, G., & Savic, S. (2017). Cosmetic Science, 39(5), 486–499. https://doi.org/10.1111/ics.12402Frenkel, M. (2011). Thermophysical and thermochemical properties on-demand for chemical process and product design. Computers & Chemical Engineering, 35(3), 393–402. https://doi.org/10.1016/j.compchemeng.2010.12.013Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2019). Computer-aided molecular product-process design under property uncertainties – A Monte Carlo based optimization strategy. Computers & Chemical Engineering, 122, 247–257. https://doi.org/10.1016/j.compchemeng.2018.08.021Frutiger, J., Cignitti, S., Abildskov, J., Woodley, J., & Sin, G. (2017). Computational working fluid design under property uncertainties: Application to organic rankine cycle. 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017.Fung, K. Y., & Ng, K. M. (2003). Product-centered processing: Pharmaceutical tablets and capsules. AIChE Journal, 49(5), 1193–1215. https://doi.org/10.1002/aic.690490512Fung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016). A grand model for chemical product design. Computers & Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009Gani, R., & Ng, K. M. (2015). Product design - Molecules, devices, functional products, and formulated products. Computers and Chemical Engineering, 81, 70–79. https://doi.org/10.1016/j.compchemeng.2015.04.013Gertig, C., Leonhard, K., & Bardow, A. (2020). Computer-aided molecular and processes design based on quantum chemistry: current status and future prospects. In Current Opinion in Chemical Engineering (Vol. 27, pp. 89–97). https://doi.org/10.1016/j.coche.2019.11.007Gong, H., Ding, X., & Ma, L. (2006). Genetic algorithm for optimization of tobacco-group formulas design. The Proceedings of the Multiconference on “Computational Engineering in Systems Applications,” 1532–1536. https://doi.org/10.1109/CESA.2006.313558Goodwin, K. (2009). Designing for the Digital Age - How to Create Human-Centered Products and Services. 739. https://books.google.fr/books?hl=es&lr=&id=yH6Aqr5zKJEC&oi=fnd&pg=PR23&dq=The+organizational+context+for+product+design+involves+the+interaction+of+multiple+actors+with+different+competencies+and+responsibilities+&ots=IIJB6_Kgmm&sig=b1FIHttXZ34GUUfi4ylqPJGrime, M. M., & Wright, G. (2016). Delphi Method. In Wiley StatsRef: Statistics Reference Online (pp. 1–6). https://doi.org/10.1002/9781118445112.stat07879Hada, S., Herring, R. H., & Eden, M. R. (2017). Mixture formulation through multivariate statistical analysis of process data in property cluster space. Computers and Chemical Engineering, 107, 26–36. https://doi.org/10.1016/j.compchemeng.2017.06.017Hatchuel, A., & Weil, B. (2003). A new approach of innovative design: An introduction to C-K theory. Proceedings of the International Conference on Engineering Design, ICED, DS 31, 1–15.Heintz, J., Belaud, J.-P., Pandya, N., Teles Dos Santos, M., & Gerbaud, V. (2014). Computer aided product design tool for sustainable product development. Computers & Chemical Engineering, 71, 362–376. https://doi.org/10.1016/j.compchemeng.2014.09.009Heintz, J., Belaud, J. P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010Hill, M. (2004). Product and process design for structured products. AIChE Journal, 50(8), 1656–1661. https://doi.org/10.1002/aic.10293Hill, M. (2009). Chemical Product Engineering-The third paradigm. Computers and Chemical Engineering, 33(5), 947–953. https://doi.org/10.1016/j.compchemeng.2008.11.013Ho, E. N., Fung, K. Y., Wibowo, C., Zhang, X., & Ng, K. M. (2020). Conceptual design of chemical devices. Journal of Advanced Manufacturing and Processing. https://doi.org/10.1002/amp2.10073Holmes, A. M., Charlton, A., Derby, B., Ewart, L., Scott, A., & Shu, W. (2017). Rising to the challenge: applying biofabrication approaches for better drug and chemical product development. Biofabrication, 9(3), 033001. https://doi.org/10.1088/1758-5090/aa7bbdHoussein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., & Hassaballah, M. (2020). A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Computers & Chemical Engineering, 133, 106656. https://doi.org/10.1016/j.compchemeng.2019.106656Jasimuddin, S. M. (2006). Disciplinary roots of knowledge management: A theoretical review. International Journal of Organizational Analysis, 14(2), 171–180. https://doi.org/10.1108/10553180610742782/FULL/XMLJebb, A. T., Ng, V., & Tay, L. (2021). A Review of Key Likert Scale Development Advances: 1995–2019. Frontiers in Psychology, 12, 1590. https://doi.org/10.3389/FPSYG.2021.637547/BIBTEXJhamb, S., Liang, X., Dam-Johansen, K., & Kontogeorgis, G. M. (2020). A model-based solvent selection and design framework for organic coating formulations. Progress in Organic Coatings, 140, 105471. https://doi.org/10.1016/j.porgcoat.2019.105471Jhamb, S., Liang, X., Gani, R., & Kontogeorgis, G. M. (2019). Systematic Model-Based Methodology for Substitution of Hazardous Chemicals. ACS Sustainable Chemistry & Engineering, 7(8), 7652–7666. https://doi.org/10.1021/acssuschemeng.8b06064Jonuzaj, S., & Adjiman, C. S. (2017). Designing optimal mixtures using generalized disjunctive programming: Hull relaxations. Chemical Engineering Science, 159, 106–130. https://doi.org/10.1016/j.ces.2016.08.008Jonuzaj, S., Akula, P. T., Kleniati, P., & Adjiman, C. S. (2016). The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study. AIChE Journal, 62(5), 1616–1633. https://doi.org/10.1002/aic.15122Jonuzaj, S., Cui, J., & Adjiman, C. S. (2019). Computer-aided design of optimal environmentally benign solvent-based adhesive products. Computers & Chemical Engineering, 130, 106518. https://doi.org/10.1016/j.compchemeng.2019.106518Kalakul, S., Zhang, L., Fang, Z., Choudhury, H. A. H. A., Intikhab, S., Elbashir, N., Eden, M. R., & Gani, R. (2018). Computer aided chemical product design – ProCAPD and tailor-made blended products. Computers & Chemical Engineering, 116, 37–55. https://doi.org/10.1016/j.compchemeng.2018.03.029Kashinath, S. A. A., Hashim, H., Yunus, N. A., & Mustaffa, A. A. (2018). Design of surfactant for water in diesel emulsion fuel for designing eco-friendly fuel. Chemical Engineering Transactions, 63(2006), 433–438. https://doi.org/10.3303/CET1863073Kerm, T. Van, Noël, L., & Vérilhac, I. (2012). Quand le design... s’investit dans l’entreprise: 10 entreprises témoignent de l’impact du design sur leur développement (CITE DU DE).Khor, S. Y., Liam, K. Y., Loh, W. X., Tan, C. Y., Ng, L. Y., Hassim, M. H., Ng, D. K. S., & Chemmangattuvalappil, N. G. (2017). Computer Aided Molecular Design for alternative sustainable solvent to extract oil from palm pressed fibre. Process Safety and Environmental Protection, 106, 211–223. https://doi.org/10.1016/j.psep.2017.01.006Kimura, F., Ariyoshi, H., Ishikawa, H., Naruko, Y., & Yamato, H. (2004). Capturing expert knowledge for supporting design and manufacturing of injection molds. CIRP Annals - Manufacturing Technology, 53(1), 147–150. https://doi.org/10.1016/S0007-8506(07)60665-9Kind, M. (1999). Product engineering. Chemical Engineering and Processing: Process Intensification, 38(4–6), 405–410. https://doi.org/10.1016/S0255-2701(99)00038-0Kiskini, A., Zondervan, E., Wierenga, P. A., Poiesz, E., & Gruppen, H. (2016). Using product driven process synthesis in the biorefinery. Computers & Chemical Engineering, 91, 257–268. https://doi.org/10.1016/j.compchemeng.2016.03.030König, A., Neidhardt, L., Viell, J., Mitsos, A., & Dahmen, M. (2020). Integrated design of processes and products: Optimal renewable fuels. Computers & Chemical Engineering, 134, 106712. https://doi.org/10.1016/j.compchemeng.2019.106712Kontogeorgis, G. M. G. M., Mattei, M., Ng, K. M. K. M., & Gani, R. (2019). An Integrated Approach for the Design of Emulsified Products. AIChE Journal, 65(1), 75–86. https://doi.org/10.1002/aic.16363Krishna, S. (1992). Introduction to Database and Knowledge-Base Systems. Introduction to Database and Knowledge-Base Systems. https://doi.org/10.1142/1374Kumar Mohajan, H. (2017). The Roles of Knowledge Management for the Development of Organizations. Journal of Scientific Achievements, 2(2), 1–27.Lai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., Chemmangattuvalappil, N. G., & Ng, L. Y. (2019). Enterprise Decision-making Framework for Chemical Product Design in Integrated Biorefineries. Process Integration and Optimization for Sustainability, 3(1), 25–42. https://doi.org/10.1007/s41660-018-0037-2Lee, C. K. H., Choy, K. L., & Chan, Y. N. (2014). A knowledge-based ingredient formulation system for chemical product development in the personal care industry. Computers and Chemical Engineering, 65, 40–53. https://doi.org/10.1016/j.compchemeng.2014.03.004Lee, C. K. H. K. H. (2017). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 1–16. https://doi.org/10.1007/s10845-017-1331-5Li, X., Chen, Y., & Qian, Y. (2009). Integration of chemical product development, process synthesis, and operation optimization. Computer Aided Chemical Engineering, 26, 37–42. https://doi.org/10.1016/S1570-7946(09)70009-4Liang, X., Zhang, X., Zhang, L., Liu, L., Du, J., Zhu, X., & Ng, K. M. (2019). Computer-Aided Polymer Design: Integrating Group Contribution and Molecular Dynamics. Industrial & Engineering Chemistry Research, 58(34), 15542–15552. https://doi.org/10.1021/acs.iecr.9b02769Linehan, S., Nizami, S. N., & Bagajewicz, M. (2010). On the Application of a Consumer Preference-Based Method for Designing Products To Wine Fermentation Monitoring Devices. Chemical Engineering Communications, 198(2), 255–272. https://doi.org/10.1080/00986445.2010.499833Liu, Q., Zhang, L., Liu, L., Du, J., Tula, A. K., Eden, M., & Gani, R. (2019). OptCAMD: An optimization-based framework and tool for molecular and mixture product design. Computers and Chemical Engineering, 124, 285–301. https://doi.org/10.1016/j.compchemeng.2019.01.006Marques, C. M., Moniz, S., de Sousa, J. P., Barbosa-Povoa, A. P., & Reklaitis, G. (2020). Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers & Chemical Engineering, 134, 106672. https://doi.org/10.1016/j.compchemeng.2019.106672Martín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012Martín, M., & Martínez, A. (2015). Addressing Uncertainty in Formulated Products and Process Design. Industrial & Engineering Chemistry Research, 54(22), 5990–6001. https://doi.org/10.1021/acs.iecr.5b00792Martín, M., & Martínez, A. (2018). On the effect of price policies in the design of formulated products. Computers & Chemical Engineering, 109, 299–310. https://doi.org/10.1016/j.compchemeng.2017.11.019Mattei, M., Kontogeorgis, G. M., & Gani, R. (2014). A comprehensive framework for surfactant selection and design for emulsion based chemical product design. Fluid Phase Equilibria, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030Meyer, T. H., & Keurentjes, J. T. F. (2004). Polymer Reaction Engineering, an Integrated Approach. Chemical Engineering Research and Design, 82(12), 1580–1582. https://doi.org/10.1205/cerd.82.12.1580.58035Ministerio de Comercio, I. y T. (n.d.). Definición Tamaño Empresarial Micro, Pequeña, Mediana o Grande | Mi Pymes. Retrieved October 13, 2022, from https://www.mipymes.gov.co/temas-de-interes/definicion-tamano-empresarial-micro-pequena-medianMorel, L., & Boly, V. (2006). New Product Development Process (NPDP): Updating the identification stage practices. International Journal of Product Development, 3(2), 232–251. https://doi.org/10.1504/IJPD.2006.009373Morel, L., Camargo, M., & Boly, V. (2013). Product Development, Business Concept, and Entrepreneurship. In Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship (pp. 1487–1492). Springer New York. https://doi.org/10.1007/978-1-4614-3858-8_464Muro-Suñé, N., Munir, A., Gani, R., Bell, G., & Shirley, I. (2005). A framework for product analysis: Modelling and design of release and uptake of pesticides (pp. 733–738). https://doi.org/10.1016/S1570-7946(05)80244-5Mushtaq, F., Zhang, X., Fung, K. Y., & Ng, K. M. (2020). Product design: An optimization-based approach for targeting of particulate composite microstructure. Computers & Chemical Engineering, 140, 106975. https://doi.org/10.1016/j.compchemeng.2020.106975Narvaez, P. C. (2014). Diseño conceptual de procesos químicos - Metodología con aplicaciones en esterificación. UNIVERSIDAD NACIONAL DE COLOMBIA. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falseNarvaez Rincon, P. C. (2014). Diseno conceptual de procesos quimicos: metodologia con aplicaciones en esterificaciones. Editorial Universidad Nacional de Colombia. https://books.google.fr/books/about/Diseño_conceptual_de_procesos_químicos.html?id=SJjGDwAAQBAJ&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=falseNelson, A. Z., Schweizer, K. S., Rauzan, B. M., Nuzzo, R. G., Vermant, J., & Ewoldt, R. H. (2019). Designing and transforming yield-stress fluids. Current Opinion in Solid State and Materials Science, 23(5), 100758. https://doi.org/10.1016/j.cossms.2019.06.002Neoh, J. Q., Chin, H. H., Mah, A. X. Y., Aboagwa, O. A., Thangalazhy-Gopakumar, S., & Chemmangattuvalappil, N. G. (2019). Design of bio-oil additives using mathematical optimisation tools considering blend functionality and sustainability aspects. Sustainable Production and Consumption, 19, 53–63. https://doi.org/10.1016/j.spc.2019.03.005Ng, Ka M. (2003). MOPSD: A framework linking business decision-making to product and process design (pp. 63–73). https://doi.org/10.1016/S1570-7946(03)80527-8Ng, Ka M. (2004). MOPSD: a framework linking business decision-making to product and process design. Computers & Chemical Engineering, 29(1), 51–56. https://doi.org/10.1016/j.compchemeng.2004.07.029Ng, Ka M., Li, J., & Kwauk, M. (2005). Process engineering research in China: A multiscale, market-driven approach. AIChE Journal, 51(10), 2620–2627. https://doi.org/10.1002/aic.10658Ng, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217Ng, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906aOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2010). Systematic statistical-based approach for product design: Application to disinfectant formulations. Industrial and Engineering Chemistry Research, 49(1), 204–209. https://doi.org/10.1021/ie900196uOmidbakhsh, N., Duever, T. A., Elkamel, A., & Reilly, P. M. (2012). A Systematic Computer-Aided Product Design and Development Procedure: Case of Disinfectant Formulations. Industrial & Engineering Chemistry Research, 51(45), 14925–14934. https://doi.org/10.1021/ie300644fOmidbakhsh, N., Elkamel, A., Duever, T. A., & Reilly, P. M. (2010). Combining Design of Experiments Techniques, Connectionist Models, and Optimization for the Efficient Design of New Product Formulations. Chemical Product and Process Modeling, 5(1). https://doi.org/10.2202/1934-2659.1441Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. In A handbook for visionaries, game changers, and challengers.Papadopoulos, A. I., Shavalieva, G., Papadokonstantakis, S., Seferlis, P., Perdomo, F. A., Galindo, A., Jackson, G., & Adjiman, C. S. (2020). An approach for simultaneous computer-aided molecular design with holistic sustainability assessment: Application to phase-change CO2 capture solvents. Computers & Chemical Engineering, 135, 106769. https://doi.org/10.1016/j.compchemeng.2020.106769Parmar, B. L., Freeman, R. E., Harrison, J. S., Wicks, A. C., Purnell, L., & de Colle, S. (2010). Stakeholder theory: The state of the art. Academy of Management Annals, 4(1), 403–445. https://doi.org/10.1080/19416520.2010.495581Pavurala, N., & Achenie, L. E. K. (2014). Identifying polymer structures for oral drug delivery – A molecular design approach. Computers & Chemical Engineering, 71, 734–744. https://doi.org/10.1016/j.compchemeng.2014.07.015Perrot, N., Ioannou, I., Allais, I., Curt, C., Hossenlopp, J., & Trystram, G. (2006). Fuzzy concepts applied to food product quality control: A review. Fuzzy Sets and Systems, 157(9), 1145–1154. https://doi.org/10.1016/j.fss.2005.12.013Picchioni, F., & Broekhuis, A. (2012). Material properties and processing in chemical product design. Current Opinion in Chemical Engineering, 1(4), 459–464. https://doi.org/10.1016/j.coche.2012.08.002Qian, Y., Wu, Z., Jiang, Y., Zhihui, W., & Yanbin, J. (2006). Integration of Process Design and Operation for Chemical Product Development with Implementation of a Kilo-plant. In Computer Aided Chemical Engineering (Vol. 21, Issue 6, pp. 600–606). Elsevier. https://doi.org/10.1016/S1570-7946(06)80175-6Rafeqah, R., Hassim, M. H., Denny, N. K. S., Nishanth, G. C., & Norafneeza, N. (2019). Safety and health index development for formulated product design: Paint formulation. E3S Web of Conferences, 90, 03002. https://doi.org/10.1051/e3sconf/20199003002Rähse, W., & Hoffmann, S. (2002). Produkt-Design – Zusammenwirken von Chemie, Technik und Marketing im Dienste des Kunden. Chemie Ingenieur Technik, 74(9), 1220–1229. https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-ZRähse, W., & Hoffmann, S. (2003). Product Design– The Interaction between Chemistry, Technology and Marketing to Meet Customer Needs. Chemical Engineering & Technology, 26(9), 931–940. https://doi.org/10.1002/ceat.200306106Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020a). Development of inherent safety and health index for formulated product design. Journal of Loss Prevention in the Process Industries, 66, 104209. https://doi.org/10.1016/j.jlp.2020.104209Raslan, R., Hassim, M. H., Chemmangattuvalappil, N. G., Ng, D. K. S., & Ten, J. Y. (2020b). Safety and health risk assessment methodology of dermal and inhalation exposure to formulated products ingredients. Regulatory Toxicology and Pharmacology, 116, 104753. https://doi.org/10.1016/j.yrtph.2020.104753Rivera-Gil, J.-L., Rodas, J. S., Narváez-Rincón, P. C., Boly, V., & Falk, V. (2021). Towards a systemic approach for cosmetics formulation within companies: modeling the design system. 30th Annual Conference of the International Association for Management of Technology (IAMOT 2021), 529–540. https://doi.org/10.52202/060557-0039Rivera Gil, J. L., Serna, J., Arrieta‐Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022). Triggers for Chemical Product Design: A Systematic Literature Review. AIChE Journal, December 2021, 1–16. https://doi.org/10.1002/aic.17563Rodriguez-Donis, I., Thiebaud-Roux, S., Lavoine, S., & Gerbaud, V. (2018). Computer-aided product design of alternative solvents based on phase equilibrium synergism in mixtures. Comptes Rendus Chimie, 21(6), 606–621. https://doi.org/10.1016/j.crci.2018.04.005Salim, H. K., Stewart, R. A., Sahin, O., & Dudley, M. (2020). Systems approach to end-of-life management of residential photovoltaic panels and battery energy storage system in Australia. Renewable and Sustainable Energy Reviews, 134(June), 110176. https://doi.org/10.1016/j.rser.2020.110176Samudra, A., & Sahinidis, N. V. (2013). Design of Heat-Transfer Media Components for Retail Food Refrigeration. Industrial & Engineering Chemistry Research, 52(25), 8518–8526. https://doi.org/10.1021/ie303611vSantos, J., Trujillo-Cayado, L. A., Calero, N., & Muñoz, J. (2014). Physical characterization of eco-friendly O/W emulsions developed through a strategy based on product engineering principles. AIChE Journal, 60(7), 2644–2653. https://doi.org/10.1002/aic.14460Serna, J., Boly, V., Rincon, P. C. N., & Falk, V. (2018). Improving knowledge capitalization in product formulation: A cosmetic industry study case. Towards Sustainable Technologies and Innovation - Proceedings of the 27th Annual Conference of the International Association for Management of Technology, IAMOT 2018, 1–7.Serna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). A Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 1: Conceptual Approach. Industrial & Engineering Chemistry Research, 60(7), 3210–3227. https://doi.org/10.1021/acs.iecr.0c04942Šimberová, I., & Kita, P. (2020). New business models based on multiple value creation for the customer: A case study in the chemical industry. Sustainability (Switzerland), 12(9), 1–18. https://doi.org/10.3390/su12093932Smith, B. V., & Ierapepritou, M. (2009). Framework for Consumer-Integrated Optimal Product Design. Industrial & Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377eSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039Solvason, C. C., Chemmangattuvalappil, N. G., & Eden, M. R. (2010). Multi-Scale Chemical Product Design using the Reverse Problem Formulation (pp. 1285–1290). https://doi.org/10.1016/S1570-7946(10)28215-9Stelzer, T., & Ulrich, J. (2010). Crystallization a tool for product design. Advanced Powder Technology, 21(3), 227–234. https://doi.org/10.1016/j.apt.2010.04.006Suárez Palacios, O. Y., Narváez Rincón, P. C., Camargo, M., Corriou, J.-P., Fonteix, C., Suárez-Palacios, O. Y., Narváez-Rincón, P. C., Camargo, M., Corriou, J.-P., & Fonteix, C. (2020). Chemical product design integrating MCDA: Performance prediction and human preferences modelling. Canadian Journal of Chemical Engineering, June 2020, 1–15. https://doi.org/10.1002/cjce.23956Suaza Montalvo, A. (2020). Desarrollo de una estrategia de escalamiento para procesos de producción de emulsiones. Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química.Sunkle, S., Saxena, K., Patil, A., Kulkarni, V., Jain, D., Chacko, R., & Rai, B. (2020). Information Extraction and Graph Representation for the Design of Formulated Products. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12127 LNCS, 433–448. https://doi.org/10.1007/978-3-030-49435-3_27Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020a). Challenges in the design of formulated products: multiscale process and product design. Current Opinion in Chemical Engineering, 27, 1–9. https://doi.org/10.1016/j.coche.2019.10.001Taifouris, M., Martín, M., Martínez, A., & Esquejo, N. (2020b). On the effect of the selection of suppliers on the design of formulated products. Computers & Chemical Engineering, 141, 106980. https://doi.org/10.1016/j.compchemeng.2020.106980Tam, S. K., Fung, K. Y., Poon, G. S. H., & Ng, K. M. (2016). Product design: Metal nanoparticle-based conductive inkjet inks. AIChE Journal, 62(8), 2740–2753. https://doi.org/10.1002/aic.15271Tomba, E., Barolo, M., & García-Muñoz, S. (2014). In-silico product formulation design through latent variable model inversion. Chemical Engineering Research and Design, 92(3), 534–544. https://doi.org/10.1016/j.cherd.2013.08.027Torres, J. J., Tinjaca, C. D., Alvarez, O. A., & Gómez, J. M. (2020). Optimization proposal for emulsions formulation considering a multiscale approach. Chemical Engineering Science, 212, 115326. https://doi.org/10.1016/j.ces.2019.115326Uhlemann, J., Costa, R., & Charpentier, J. C. (2019). Product Design and Engineering in Chemical Engineering: Past, Present State, and Future. Chemical Engineering and Technology, 42(11), 2258–2274. https://doi.org/10.1002/ceat.201900236Ullmann, F. (2005). Ullmann’s Chemical Engineering and Plant Design. In Engineering.Victoria Villeda, J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2012). Towards model-based design of biofuel value chains. Current Opinion in Chemical Engineering, 1(4), 465–471. https://doi.org/10.1016/j.coche.2012.08.001Victoria Villeda, J. J., Dahmen, M., Hechinger, M., Voll, A., & Marquardt, W. (2015). Towards model-based design of tailor-made fuels from biomass. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 129, 193–211. https://doi.org/10.1007/978-3-662-45425-1_12Voinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007Wan Qi, W., Lik Yin, N., Sivaneswaran, U., & Chemmangattuvalappil, N. G. (2017). A Novel Methodology for Molecular Design via Data Driven Techniques. Journal of Physical Science, 28(Suppl. 1), 1–24. https://doi.org/10.21315/jps2017.28.s1.1Wang, H., Chen, K., Zheng, H., Zhang, G., Wu, R., & Yu, X. (2021). Knowledge transfer methods for expressing product design information and organization. Journal of Manufacturing Systems, 58(PA), 1–15. https://doi.org/10.1016/j.jmsy.2020.11.009Warrier, P., Sathyanarayana, A., Bazdar, S., Joshi, Y., & Teja, A. S. (2012). Selection and Evaluation of Organosilicon Coolants for Direct Immersion Cooling of Electronic Systems. Industrial & Engineering Chemistry Research, 51(31), 10517–10523. https://doi.org/10.1021/ie300664vWarrier, P., Sathyanarayana, A., Patil, D. V., France, S., Joshi, Y., & Teja, A. S. (2012). Novel heat transfer fluids for direct immersion phase change cooling of electronic systems. International Journal of Heat and Mass Transfer, 55(13–14), 3379–3385. https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.063Wassick, J. M., Agarwal, A., Akiya, N., Ferrio, J., Bury, S., & You, F. (2012). Addressing the operational challenges in the development, manufacture, and supply of advanced materials and performance products. Computers & Chemical Engineering, 47, 157–169. https://doi.org/10.1016/j.compchemeng.2012.06.041Wibowo, C., & Ng, K. M. (2001). Product-oriented process synthesis and development: Creams and pastes. AIChE Journal, 47(12), 2746–2767. https://doi.org/10.1002/aic.690471214Wibowo, C., & Ng, K. M. (2002). Product-centered processing: Manufacture of chemical-based consumer products. AIChE Journal, 48(6), 1212–1230. https://doi.org/10.1002/aic.690480609Wu, Z., Lei Li, & Ming Pan. (2010). A experimental platform for process operation system based on data integration. 2010 2nd International Conference on Education Technology and Computer, V2-131-V2-135. https://doi.org/10.1109/ICETC.2010.5529420Yang, Y., Zou, X., Xiao, F., & Dong, H. (2017). Integrated product-process design approach for polyethylene production. Chemical Engineering Transactions, 61(2014), 1009–1014. https://doi.org/10.3303/CET1761166Yin, R. K. (2018). Case study research and applications. Sage Publications, 352.Yu, Q., Zhihui, W., & Yanbin, J. (2006). Integration of chemical product development, process design and operation based on a kilo-plant*. Progress in Natural Science, 16(6), 600–606. https://doi.org/10.1080/10020070612330041Yunus, N. A., Gernaey, K. V., Woodley, J. M., & Gani, R. (2014). A systematic methodology for design of tailor-made blended products. Computers & Chemical Engineering, 66, 201–213. https://doi.org/10.1016/j.compchemeng.2013.12.011Zhang, L., Fung, K. Y., Zhang, X., Fung, H. K., & Ng, K. M. (2017). An integrated framework for designing formulated products. Computers and Chemical Engineering, 107, 61–76. https://doi.org/10.1016/j.compchemeng.2017.05.014Zhang, L., Kalakul, S., Liu, L., Elbashir, N. O., Du, J., & Gani, R. (2018). A Computer-Aided Methodology for Mixture-Blend Design. Applications to Tailor-Made Design of Surrogate Fuels. Industrial & Engineering Chemistry Research, 57(20), 7008–7020. https://doi.org/10.1021/acs.iecr.8b00775Zhang, L., Mao, H., Liu, L., Du, J., & Gani, R. (2018). A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers and Chemical Engineering, 115, 295–308. https://doi.org/10.1016/j.compchemeng.2018.04.018Zhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. Current Opinion in Chemical Engineering, 27, 22–34. https://doi.org/10.1016/j.coche.2019.10.005Zhang, X., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Product design: Incorporating make-or-buy analysis and supplier selection. Chemical Engineering Science, 202, 357–372. https://doi.org/10.1016/j.ces.2019.03.021Zhang, Xiang, Zhang, L., Fung, K. Y., Rangaiah, G. P., & Ng, K. M. (2018). Product design: Impact of government policy and consumer preference on company profit and corporate social responsibility. Computers & Chemical Engineering, 118, 118–131. https://doi.org/10.1016/j.compchemeng.2018.06.026Zhang, Xiang, Zhou, T., Zhang, L., Fung, K. Y., & Ng, K. M. (2019). Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach [Research-article]. Industrial and Engineering Chemistry Research, 58(36), 16743–16752. https://doi.org/10.1021/acs.iecr.9b02462Público generalORIGINAL1032446331.2022.pdf1032446331.2022.pdfDocumento de Tesis de Doctoradoapplication/pdf4148812https://repositorio.unal.edu.co/bitstream/unal/83421/4/1032446331.2022.pdfa3af6f4841586ae488a608bee320a60fMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83421/6/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD56U.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.doc (1).pdfU.FT.09.006.004 Licencia para publicación de obras en el Repositorio Institucional UNAL v4.doc (1).pdfapplication/pdf345495https://repositorio.unal.edu.co/bitstream/unal/83421/7/U.FT.09.006.004%20Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4.doc%20%281%29.pdfd5eb91648f6b166724785d9ddcbaef8bMD57THUMBNAIL1032446331.2022.pdf.jpg1032446331.2022.pdf.jpgGenerated Thumbnailimage/jpeg6389https://repositorio.unal.edu.co/bitstream/unal/83421/8/1032446331.2022.pdf.jpg56820cdb744a7f5cd9ab22b8cc452d3eMD58unal/83421oai:repositorio.unal.edu.co:unal/834212024-08-14 23:42:32.89Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |