Inter-Battery Factor Analysis via PLS: The Missing Data Case

In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we t...

Full description

Autores:
Gonzalez Rojas, Victor Manuel
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66513
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66513
http://bdigital.unal.edu.co/67541/
Palabra clave:
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Interbattery
IBA
PLS2
NIPALS
algorithm
convergence
missing data.
Algoritmo
Convergencia
Datos faltantes
Regresión con mínimos cuadrados parciales.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_25e37c82fa7ea1425f14f167eb3bee06
oai_identifier_str oai:repositorio.unal.edu.co:unal/66513
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Inter-Battery Factor Analysis via PLS: The Missing Data Case
title Inter-Battery Factor Analysis via PLS: The Missing Data Case
spellingShingle Inter-Battery Factor Analysis via PLS: The Missing Data Case
51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Interbattery
IBA
PLS2
NIPALS
algorithm
convergence
missing data.
Algoritmo
Convergencia
Datos faltantes
Regresión con mínimos cuadrados parciales.
title_short Inter-Battery Factor Analysis via PLS: The Missing Data Case
title_full Inter-Battery Factor Analysis via PLS: The Missing Data Case
title_fullStr Inter-Battery Factor Analysis via PLS: The Missing Data Case
title_full_unstemmed Inter-Battery Factor Analysis via PLS: The Missing Data Case
title_sort Inter-Battery Factor Analysis via PLS: The Missing Data Case
dc.creator.fl_str_mv Gonzalez Rojas, Victor Manuel
dc.contributor.author.spa.fl_str_mv Gonzalez Rojas, Victor Manuel
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
topic 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Interbattery
IBA
PLS2
NIPALS
algorithm
convergence
missing data.
Algoritmo
Convergencia
Datos faltantes
Regresión con mínimos cuadrados parciales.
dc.subject.proposal.spa.fl_str_mv Interbattery
IBA
PLS2
NIPALS
algorithm
convergence
missing data.
Algoritmo
Convergencia
Datos faltantes
Regresión con mínimos cuadrados parciales.
description In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we take the iterative stage of the PLS regression and implement the "available data'' principle from the NIPALS (Non-linear estimation by Iterative Partial Least Squares) algorithm to allow the algorithmic development of the IBA with missing data. We provide the basic elements to correctly analyse and interpret the results. This new algorithm for IBA, developed under the R programming environment, fundamentally executes iterative convergent sequences of orthogonal projections of vectors coupled with the available data, and works adequately in bases with or without missing data.To present the basic concepts of the IBA and to cross-reference the results derived from the algorithmic application, we use the complete Linnerud database for the classical analysis; then we contaminate this database with a random sample that represents approximately 7\% of the \textit{non-available} (NA) data for the analysis with missing data. We ascertain that the results obtained from the algorithm running with complete data are exactly the same as those obtained from the classic method for IBA, and that the results with missing data are similar. However, this might not always be the case, as it depends on how much the 'original' factorial covariance structure is affected by the absence of information. As such, the interpretation is only valid in relation to the available data.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:16:39Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:16:39Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2389-8976
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66513
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67541/
identifier_str_mv ISSN: 2389-8976
url https://repositorio.unal.edu.co/handle/unal/66513
http://bdigital.unal.edu.co/67541/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/estad/article/view/52724
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.references.spa.fl_str_mv Gonzalez Rojas, Victor Manuel (2016) Inter-Battery Factor Analysis via PLS: The Missing Data Case. Revista Colombiana de Estadística, 39 (2). pp. 247-266. ISSN 2389-8976
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66513/1/52724-300682-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/66513/2/52724-300682-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 1fa557b275914dadb377376c014598a4
b0609040ba7e4782d8cb57f81892a0cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089635970678784
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Rojas, Victor Manuelfc8b7fc1-7f43-471b-9d79-fd2e5d5c9baf3002019-07-03T02:16:39Z2019-07-03T02:16:39Z2016-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66513http://bdigital.unal.edu.co/67541/In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we take the iterative stage of the PLS regression and implement the "available data'' principle from the NIPALS (Non-linear estimation by Iterative Partial Least Squares) algorithm to allow the algorithmic development of the IBA with missing data. We provide the basic elements to correctly analyse and interpret the results. This new algorithm for IBA, developed under the R programming environment, fundamentally executes iterative convergent sequences of orthogonal projections of vectors coupled with the available data, and works adequately in bases with or without missing data.To present the basic concepts of the IBA and to cross-reference the results derived from the algorithmic application, we use the complete Linnerud database for the classical analysis; then we contaminate this database with a random sample that represents approximately 7\% of the \textit{non-available} (NA) data for the analysis with missing data. We ascertain that the results obtained from the algorithm running with complete data are exactly the same as those obtained from the classic method for IBA, and that the results with missing data are similar. However, this might not always be the case, as it depends on how much the 'original' factorial covariance structure is affected by the absence of information. As such, the interpretation is only valid in relation to the available data.En este artículo se desarrolla el Análisis Factorial Interbaterías (AIB)mediante el uso de métodos PLS (Partial Least Squares). Ya que los métodos PLS son algoritmos que iteran hasta la convergencia, permiten ser intervenidos adecuadamente en algunas de sus etapas para tratar problemas tales como datos faltantes. Específicamente se toma la fase iterativa de la regresión PLS y se implementa el principio de “datos disponibles” del algoritmo NIPALS (Non-linear estimation by Iterative Partial Least Squares) para permitir el desarrollo algorítmico del AIB con datos faltantes, proporcionando los elementos básicos para el análisis e interpretación de los resultados. Este nuevo algoritmo para AIB elaborado bajo el entorno de programación R, fundamentalmente realiza secuencias iterativas convergentes de proyecciones ortogonales de vectores emparejados con los datos disponibles y funciona adecuadamente en bases con y sin datos faltantes.Para efectos de presentar los conceptos básicos del AIB y cotejar los resultados derivados de la aplicación algorítmica, se toma la base de datos completa de Linnerud para el análisis clásico; y luego esta base es contaminada con una muestra aleatoria que representa aproximadamente el 7% de los datos no disponibles (NA) para el análisis con datos faltantes. Se comprueba que con datos completos los resultados derivados del algoritmo son idénticos a los obtenidos mediante el desarrollo del método clásico para AIB, y que los resultados con datos faltantes son similares, aunque esto nosiempre será así porque ello dependerá de que tanto se afecta la estructura de covarianza factorial ‘original’ ante la cantidad de información ausente; por tanto la interpretación será valida solo en relación con los datos disponibles.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/52724Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaGonzalez Rojas, Victor Manuel (2016) Inter-Battery Factor Analysis via PLS: The Missing Data Case. Revista Colombiana de Estadística, 39 (2). pp. 247-266. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsInterbatteryIBAPLS2NIPALSalgorithmconvergencemissing data.AlgoritmoConvergenciaDatos faltantesRegresión con mínimos cuadrados parciales.Inter-Battery Factor Analysis via PLS: The Missing Data CaseArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL52724-300682-2-PB.pdfapplication/pdf691636https://repositorio.unal.edu.co/bitstream/unal/66513/1/52724-300682-2-PB.pdf1fa557b275914dadb377376c014598a4MD51THUMBNAIL52724-300682-2-PB.pdf.jpg52724-300682-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg5524https://repositorio.unal.edu.co/bitstream/unal/66513/2/52724-300682-2-PB.pdf.jpgb0609040ba7e4782d8cb57f81892a0ccMD52unal/66513oai:repositorio.unal.edu.co:unal/665132024-05-16 23:09:36.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co