Inter-Battery Factor Analysis via PLS: The Missing Data Case
In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we t...
- Autores:
-
Gonzalez Rojas, Victor Manuel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66513
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66513
http://bdigital.unal.edu.co/67541/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Interbattery
IBA
PLS2
NIPALS
algorithm
convergence
missing data.
Algoritmo
Convergencia
Datos faltantes
Regresión con mínimos cuadrados parciales.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_25e37c82fa7ea1425f14f167eb3bee06 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/66513 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
title |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
spellingShingle |
Inter-Battery Factor Analysis via PLS: The Missing Data Case 51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Interbattery IBA PLS2 NIPALS algorithm convergence missing data. Algoritmo Convergencia Datos faltantes Regresión con mínimos cuadrados parciales. |
title_short |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
title_full |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
title_fullStr |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
title_full_unstemmed |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
title_sort |
Inter-Battery Factor Analysis via PLS: The Missing Data Case |
dc.creator.fl_str_mv |
Gonzalez Rojas, Victor Manuel |
dc.contributor.author.spa.fl_str_mv |
Gonzalez Rojas, Victor Manuel |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics |
topic |
51 Matemáticas / Mathematics 31 Colecciones de estadística general / Statistics Interbattery IBA PLS2 NIPALS algorithm convergence missing data. Algoritmo Convergencia Datos faltantes Regresión con mínimos cuadrados parciales. |
dc.subject.proposal.spa.fl_str_mv |
Interbattery IBA PLS2 NIPALS algorithm convergence missing data. Algoritmo Convergencia Datos faltantes Regresión con mínimos cuadrados parciales. |
description |
In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we take the iterative stage of the PLS regression and implement the "available data'' principle from the NIPALS (Non-linear estimation by Iterative Partial Least Squares) algorithm to allow the algorithmic development of the IBA with missing data. We provide the basic elements to correctly analyse and interpret the results. This new algorithm for IBA, developed under the R programming environment, fundamentally executes iterative convergent sequences of orthogonal projections of vectors coupled with the available data, and works adequately in bases with or without missing data.To present the basic concepts of the IBA and to cross-reference the results derived from the algorithmic application, we use the complete Linnerud database for the classical analysis; then we contaminate this database with a random sample that represents approximately 7\% of the \textit{non-available} (NA) data for the analysis with missing data. We ascertain that the results obtained from the algorithm running with complete data are exactly the same as those obtained from the classic method for IBA, and that the results with missing data are similar. However, this might not always be the case, as it depends on how much the 'original' factorial covariance structure is affected by the absence of information. As such, the interpretation is only valid in relation to the available data. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-07-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T02:16:39Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T02:16:39Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2389-8976 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/66513 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/67541/ |
identifier_str_mv |
ISSN: 2389-8976 |
url |
https://repositorio.unal.edu.co/handle/unal/66513 http://bdigital.unal.edu.co/67541/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/estad/article/view/52724 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística Revista Colombiana de Estadística |
dc.relation.references.spa.fl_str_mv |
Gonzalez Rojas, Victor Manuel (2016) Inter-Battery Factor Analysis via PLS: The Missing Data Case. Revista Colombiana de Estadística, 39 (2). pp. 247-266. ISSN 2389-8976 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadística |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/66513/1/52724-300682-2-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/66513/2/52724-300682-2-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
1fa557b275914dadb377376c014598a4 b0609040ba7e4782d8cb57f81892a0cc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089635970678784 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Rojas, Victor Manuelfc8b7fc1-7f43-471b-9d79-fd2e5d5c9baf3002019-07-03T02:16:39Z2019-07-03T02:16:39Z2016-07-01ISSN: 2389-8976https://repositorio.unal.edu.co/handle/unal/66513http://bdigital.unal.edu.co/67541/In this article we develop the Inter-battery Factor Analysis (IBA) by using PLS (Partial Least Squares) methods. As the PLS methods are algorithms that iterate until convergence, an adequate intervention in some of their stages provides a solution to problems such as missing data. Specifically, we take the iterative stage of the PLS regression and implement the "available data'' principle from the NIPALS (Non-linear estimation by Iterative Partial Least Squares) algorithm to allow the algorithmic development of the IBA with missing data. We provide the basic elements to correctly analyse and interpret the results. This new algorithm for IBA, developed under the R programming environment, fundamentally executes iterative convergent sequences of orthogonal projections of vectors coupled with the available data, and works adequately in bases with or without missing data.To present the basic concepts of the IBA and to cross-reference the results derived from the algorithmic application, we use the complete Linnerud database for the classical analysis; then we contaminate this database with a random sample that represents approximately 7\% of the \textit{non-available} (NA) data for the analysis with missing data. We ascertain that the results obtained from the algorithm running with complete data are exactly the same as those obtained from the classic method for IBA, and that the results with missing data are similar. However, this might not always be the case, as it depends on how much the 'original' factorial covariance structure is affected by the absence of information. As such, the interpretation is only valid in relation to the available data.En este artículo se desarrolla el Análisis Factorial Interbaterías (AIB)mediante el uso de métodos PLS (Partial Least Squares). Ya que los métodos PLS son algoritmos que iteran hasta la convergencia, permiten ser intervenidos adecuadamente en algunas de sus etapas para tratar problemas tales como datos faltantes. Específicamente se toma la fase iterativa de la regresión PLS y se implementa el principio de “datos disponibles” del algoritmo NIPALS (Non-linear estimation by Iterative Partial Least Squares) para permitir el desarrollo algorítmico del AIB con datos faltantes, proporcionando los elementos básicos para el análisis e interpretación de los resultados. Este nuevo algoritmo para AIB elaborado bajo el entorno de programación R, fundamentalmente realiza secuencias iterativas convergentes de proyecciones ortogonales de vectores emparejados con los datos disponibles y funciona adecuadamente en bases con y sin datos faltantes.Para efectos de presentar los conceptos básicos del AIB y cotejar los resultados derivados de la aplicación algorítmica, se toma la base de datos completa de Linnerud para el análisis clásico; y luego esta base es contaminada con una muestra aleatoria que representa aproximadamente el 7% de los datos no disponibles (NA) para el análisis con datos faltantes. Se comprueba que con datos completos los resultados derivados del algoritmo son idénticos a los obtenidos mediante el desarrollo del método clásico para AIB, y que los resultados con datos faltantes son similares, aunque esto nosiempre será así porque ello dependerá de que tanto se afecta la estructura de covarianza factorial ‘original’ ante la cantidad de información ausente; por tanto la interpretación será valida solo en relación con los datos disponibles.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Estadísticahttps://revistas.unal.edu.co/index.php/estad/article/view/52724Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaGonzalez Rojas, Victor Manuel (2016) Inter-Battery Factor Analysis via PLS: The Missing Data Case. Revista Colombiana de Estadística, 39 (2). pp. 247-266. ISSN 2389-897651 Matemáticas / Mathematics31 Colecciones de estadística general / StatisticsInterbatteryIBAPLS2NIPALSalgorithmconvergencemissing data.AlgoritmoConvergenciaDatos faltantesRegresión con mínimos cuadrados parciales.Inter-Battery Factor Analysis via PLS: The Missing Data CaseArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL52724-300682-2-PB.pdfapplication/pdf691636https://repositorio.unal.edu.co/bitstream/unal/66513/1/52724-300682-2-PB.pdf1fa557b275914dadb377376c014598a4MD51THUMBNAIL52724-300682-2-PB.pdf.jpg52724-300682-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg5524https://repositorio.unal.edu.co/bitstream/unal/66513/2/52724-300682-2-PB.pdf.jpgb0609040ba7e4782d8cb57f81892a0ccMD52unal/66513oai:repositorio.unal.edu.co:unal/665132024-05-16 23:09:36.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |