Caracterización de células Stem Mesenquimales de médula ósea humana

En los últimos años las células stem han generado grandes expectativas como alternativa terapéutica en el tratamiento de múltiples enfermedades. Recientemente se ha presentado la posibilidad de obtener células stem de tejidos adultos. Aunque estos tipos de células son derivados del mesodermo se ha r...

Full description

Autores:
Quintero Martinez, Lida Osmarla
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79366
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79366
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Médula Ósea
Bone Marrow
Células Madre Mesenquimatosas
Mesenchymal Stem Cells
Médula Osea
Células
células stem mesenquimales
MCSs
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_25b67dbc6aba79797d70f5235d7e8da2
oai_identifier_str oai:repositorio.unal.edu.co:unal/79366
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de células Stem Mesenquimales de médula ósea humana
dc.title.translated.none.fl_str_mv Characterization of Human Bone Marrow Mesenchymal Stem Cells
title Caracterización de células Stem Mesenquimales de médula ósea humana
spellingShingle Caracterización de células Stem Mesenquimales de médula ósea humana
610 - Medicina y salud::615 - Farmacología y terapéutica
Médula Ósea
Bone Marrow
Células Madre Mesenquimatosas
Mesenchymal Stem Cells
Médula Osea
Células
células stem mesenquimales
MCSs
title_short Caracterización de células Stem Mesenquimales de médula ósea humana
title_full Caracterización de células Stem Mesenquimales de médula ósea humana
title_fullStr Caracterización de células Stem Mesenquimales de médula ósea humana
title_full_unstemmed Caracterización de células Stem Mesenquimales de médula ósea humana
title_sort Caracterización de células Stem Mesenquimales de médula ósea humana
dc.creator.fl_str_mv Quintero Martinez, Lida Osmarla
dc.contributor.advisor.none.fl_str_mv Chaparro, Orlando
dc.contributor.author.none.fl_str_mv Quintero Martinez, Lida Osmarla
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Médula Ósea
Bone Marrow
Células Madre Mesenquimatosas
Mesenchymal Stem Cells
Médula Osea
Células
células stem mesenquimales
MCSs
dc.subject.decs.none.fl_str_mv Médula Ósea
Bone Marrow
Células Madre Mesenquimatosas
Mesenchymal Stem Cells
dc.subject.proposal.spa.fl_str_mv Médula Osea
Células
células stem mesenquimales
MCSs
description En los últimos años las células stem han generado grandes expectativas como alternativa terapéutica en el tratamiento de múltiples enfermedades. Recientemente se ha presentado la posibilidad de obtener células stem de tejidos adultos. Aunque estos tipos de células son derivados del mesodermo se ha reportado que las células stem mesenquimales, pueden llegar a diferenciarse en tejidos no mesodérmicos como el tejido neuronal y hepático. Adicionalmente uno de los mecanismos por los cuales las MSCs podrían ejercer su acción terapéutica es el efecto paracrino que presentan a través de secreción de citoquinas y factores de crecimiento celular. El objetivo principal del presente trabajo es caracterizar las células stem mesenquimales obtenidas de medula ósea humana. Las muestras de médula ósea fueron obtenidas de donantes sanos voluntarios previo consentimiento informado. La caracterización de la población celular obtenida se realizó analizando la morfología celular y la presencia de marcadores de membrana específicos por citometría de flujo para diferenciar las MSCs (CD45, CD34, CD105, CD90, HLA I y HLA DR). El potencial de diferenciación fue evaluado para diferenciación osteogénica y adipogénica. Adicionalmente se analizó la expresión de genes de citoquinas y factores de crecimiento. El análisis por citometría de flujo y por RT-PCR mostró una población celular con características de MSCs, CD34-, CD105+. Los ensayos de diferenciación confirmaron la naturaleza de células stem, capaces de diferenciarse al linaje osteogénico y adipogénico. Las MSCs expresaron FGF- β y HIF1α, Ang-1 y TGF-β1 importantes para la maduración de los vasos sanguíneos y genes que inducen la expresión de actores proangiogénicos como IL 6. Este trabajo, nos proporciona por tanto una herramienta para futuros estudios sobre diferenciación, crecimiento, metabolismo y fisiología de las MSCs importantes para desarrollar ensayos clínicos, ya que las expectativas del beneficio terapéutico que nos brindan las MSCs son muy amplias.
publishDate 2007
dc.date.issued.none.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2021-03-19T20:38:03Z
dc.date.available.none.fl_str_mv 2021-03-19T20:38:03Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79366
url https://repositorio.unal.edu.co/handle/unal/79366
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Robey PG. Stem cells near the century mark. J. Clin. Inv. 2000;105:1489-1491.
Merchant AS and Flake AW. Surgeons and stem cells: A pragmatic perspective on shiftin paradigms. Surgery. 2004;136: 975-980.
Rosenthal N. Prometeuss vulture and stem-cell promise. N. Engl. J. Med. 2003; 349:570-582.
Weissman Il, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdiferentiations. Anu. Rev. Cel. Dev Biol. 2001;17:387-403.
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. 1981;78:7634-763.
Thomson JA, Itskavitz-Elor, Shapiro S. et al. Embrionic stem cells lines derved from human blastocysts. Science 1998;282:1145-1447.
Clarke D. and Frisen J. Differentiation potential of adult stem cells. Curr. Opin. Genet. Dev. 2001;11:575-580.
Terese Winslow. Scientific progress and future research directions. Stem Cells. 2001;23-25.
Alberts B, Johnson A, Lewis J, Raff M, Roberts K. Molecular Biology of the Cell. 4ed. New York: Garland Science. 2002;1262-4.
Verafille CM, Prosper F. Adult Stem Cells. Anu. Sist. Sanit. Navar. 2003;26:345-355.
Oscar KL, Tom K, Wei-Ming. et al. Isolation of multi-potent mesenchymal stem cells from umbilical cord. Blood. 2004;1031669.
Pieternella S. Anker, Sicco A. Scherjon,Carin Kleijburg-van der Keur,a, Godelieve M.J.S. de Groot-Swings et-al. Stem Cells of Fetal or Maternal Origin from Human Placenta. Stem Cells. 2004;22:1338–1345.
Nathan J, Zvaifler, Lilla Marinova-Mutafchieva, Gill Adams. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000; 2:477–488.
Singer JW, Keating A Cunttner J. et al. Evidence for a stem cell common to hematopoiesis and its in vitro microenviroment: Leuk Res. 1984;8:535-545
Brenton S, Natalie, Teresa O. et al. Mesenchymal stem cells. Achieves of Medical Research. 2003 ;34:565-571.
Travasoli M, Friedestein A. Hematopoyetic stromal microenviroment. Am. J. Hematol. 1983;15:195-203.
Pittenguer MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD. etal. Multilineage potential of adult human mesechymal stem cells. Science. 1999;284:143-147.
Sekiya I, Larson LB, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002;20;530-541.
Vats A, Bielby RC, Tolley NS, Nerem R, and Polak JM. Stem cells. Lancet. 2005; 366:592-602.
Barry FP and Murphy J M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 2004;36:568-584.
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, and Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418: 41-49.
James E, Dennis, Arnold I, Caplan. Advances in mesenchymal stem cell biology. Curr. Opin. Orthop. 2004;15:341-346.
Donovan PJ. and Gerarhart J. The end of the beginning for pluripotent stem cells. Nature. 2001; 414: 92-97.
Brazelton TR, Rossi FM, Keshet G. and Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science .2000;290:1775-1779
Mezey E, Chandross KJ, Harta G, Maki, R A, and McKercher S R. Turning blood into brain cells bearning neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779-1782.
Orlic, Kajsutra J, Chirneti s, Jakoniuk I, Anderson M, Li B, McKay R, NadalGinard B, Leri A, and anversa P. Bone Marrow cells regenerate infarcted myocardium. Nature. 2001;410:701-705.
Beltrán O, Quintero L, Chaparro O. Plasticidad y transdiferenciación en células stem adultas. Rev. 2005. Med UMNG;1310-1316
Wurnser AE. and Gage FH. Stem Cells: cell fusion causes confusion. Nature 2002; 416:485-487
Son L, and Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB (serial on line ); available from: URL http:/www.fasebj.org. 2004.
Jhonson L, Sander JE; Rugiero M, Chard RL, Thomas D. Bone marrow transplantation for the at men of acute nonlymphoblastic leukemia in children aged less than 2 years. Blood. 1988;71(5):1277-1280.
Lorenz E, Uphoff DE, Reid TR, et al. Modification of acute irradiation injury in mice and guinea pigs by bone marrow injection. Radiology. 1951;58:863.877.
Becker A, McCulloch, E Till J. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452-455.
Piersma AH, Brockbank KG, Ploemacher RE, and CP Ottenheim. Recovery of hemopoietic stromal progenitor cells after lethal total-body irradiation and bone marrow transplantation in mice. Transplantation. 1985;40(2):198-201.
Piersma AH, Brockbank KG, Ploemacher RE, E van Vliet, Brakel-van, and Visser Characterization of fibroblastic stromal cells from murine bone marrow. Exp Hematol. 1985;13(4): 237-43.
Penn PE, Jiang D, Fei R, et al. Dissecting the the hematopoietic microenviroment. ix. Further characterization of murine bone marrow stromal cells. Blood. 2000;81:1205-1213.
Friedenstein AJ, Chailakhjan RK, and Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet.1970;3(4):393-403.
Kopen GC, Prockop DJ, Phiney DG. Marrow stromal cells migrate througt forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Nal Acad Sci USA. 1999;96:10711-10716
DiGirolamo, Stokes D, Colter D, Phinney DG, Class R and Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Brit. J. of Haematol. 1999;107:2-275.
Pittenger MF, Mosca JD, Mcintosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Microbiol. Immunol. 2000;251:3-11.
Clarke E, Mesenchymal Cells. Mini Rev. Stem cell technologies. 2005. www.stemcell.com
Lodie TA, Blickarz CE, Devarakonda TJ; He C, Dash AB. et al. Systematic análysis of reportedly distinct populations of multipotent bone marrow derived stem cells reveals a lack of distinction. Tissue Eng. 2002;8:739-751.
Mark F, Pittenger MF, Bradley J. Mesenchymal stem cells and their potential as Cardiac Therapeutics. Circulation Research. 2004;95:9-20.
Morrison SJ, Wiessman I. The long term repopulating subset of hematopoietic stem cells is deterministic and isolated by phenotype. Immunity. 1994;1:661-673.
Dennis JE, Carbillet JP, Caplan AI, Charbord P. The stro-1 marrow cell population is multipotential. Advances in Mesenchymal stem cells. Current opin orthop. 2004;15:341-346
Russo E. The potential of human mesenchymal cells. The Scientist .2001. 15 (11):19-20.
Owen M and Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42-60.
Ecina, Billote, William G. Immunomagnetic isolation of osteoprogenitors fron human bone marrow stroma. Lab invest. 1999;79:449.
Eriches A, Conget P, Jose J. Mesenchymal progenitor cells in human umbilical cord blood. British J Hematology. 2000;109. 235.
Shu KT, Kim SW, Roh HL. et al. Decreased osteogenic diferentiation of mesenchymal stem cell in alcohol-induced osteonecrosis. Clinical Ort Res. 2005;431: 220-225.
Hung SC, Jung AD, Chen, Lliang, Li Hung. Isolation and Characterization of Size-Sieved Stem Cells from Human Bone Marrow. Stem Cells. 2002;20:249-258.
Kartsogiannis V, Wah NK. Cell lines and primary cell cultures in the study of bone cell biology. Molecular and Cellular Endocrinology. 2004;228 :79-102.
Tuli R, Tuli S, Nandi S, Wang LM. et al. Characterization of multipotential progenitor cells derived from human trabecular bone. Stem Cells. 2003;21:681- 693.
Pietternella S, Anker T, Willy A, Sico A. et.al. Mesenchymal stem cell in human second-trimester bone marrow, liver, lung and spleen exhibit a similar immunophenotype but heterogeneus multilineage differentiation potential. J of hematology. 2003;88:845-852.
Tropel P, Noel D, Platet N, Legrand P. et al. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Science. 2004;295:395-406.
Colter DC, Class R, DiGiloramo CM. et al. Rapid expansion of recyclin stem cells in cultures of plastic-adherents cells from human bone marrow. Proc Natl Acad. Sci. USA. 2000;97:3213-3218
Boquest AC, Shadafar AH, Fronsdal K. Isolation and transcription profiling uncultured human stromal stem cell. Alteration of gene espression after in vitro cell culture. Molecular Biology of the cell. 2005;16:1131-1141.
Moreno M.J, Martínez J.A. Adipose tissue: a strage and secretory organ. ANALES SIS San Navarra . 2002; 25: supl1. 29-39 58. Campagnoll C, Irene A, Roberts, Sallesh Kumar. et al. Identification of mesenchymal stem/progenitor cells first-trimester fetal blood, liver. and bone marrow. Blood. 2001; 98: 2396
Scavo LM, Karas M, Murray M and Leroith D. Insuline-Like Growth Factor-I Stimulates Both Cell Growth and Lipogenesis during Differenciation of Human Mesenquimal Stem Cell into Adipoctes. 2004 J Of Clin Endocrin. 89(7):3543-3553.
Cochran LD y Graves TD. Mesenchymal cell grow factors. O biology and medicine. 1990; 1:1 17-39.
Watt F, Hogan BL. Out of eden: stem cells and their niches. Science 2000;287:1427-1430.
Spradling A, Drummond BD, Kai T. Stem cells find their niche. Nature. 2001; 414: 98-104
Yig T, LI Linheng. The stem cell niches in bone. J Of Clinical Investigation. 2006;116 (5):1195-1201.
Heil M, Ziegelhoeffer T, Mees B, and Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res.2004;94:573-574.
Kinnaird T, Stabile E, Burnett M.S, Lee CW , Barr S, Fuchs S , and Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004a;94:678-685.
Kinnaird T, Stabile E, Burnett M.S, Shou M, Lee CW , Barr S, Fuchs S, and Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004b;109:1543-1549.
Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, and March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. 2004. Circulation:109:1292-1298.
Goldman JM, Schmitz N, Niethammer D, et al. Allogenic and utologus transplantation for haematological diseases, solid tumors and immune disorders. Bone Marrow Transplant. 1998;21(1):1-7.
Jaime Juan C, Dorticós E, Pavon V. Transplante de células progenitoras hematopoyeticas. Revista Cubana de Hematología 2004:20.
Maitra B, Szekely E, Gjini k. et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress t-cell activation. Bone Marrow Transplant 2004;33:597-604.
Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematology. 2003;31:890–896. B J Hematology. 2003;31(10):890–896.
Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stemcells. Cytotherapy. 2003;5:485–489.
Mac Dermott RP, Bragdon MJ. Fetal calf serum augmentation during cell separation procedures accounts for the majority of human autologous mixed leukocyte reactivity. Behring Inst Mitt. 1983;72:122–128.
Freedman SB. and Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001;33:379-393.
Freedman SB. and Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Med Intern. 2002;136:54-71.
Perin E.C, Geng YJ and Willerson JT. Adult stem cell therapy in perspective. Circulation. 2003;107:935-938.
Strauer BE. and Kornowski R. Stem cell therapy in perspective. Circulation. 2003. 107:929-934.
Al-Khald IA, Al-Sabti H, Galipeau J, and Lachapelle K. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg. 2003. 75,204-209.
Kinnaird T, Stabile E, Burnett MS, and Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004b;95:354-363.
Asahara T, and Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. A J Cell Physiol 2004;287:C572-C579.
Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, and Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest .2001;107:1395-1402.
Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K. Evidence of peripheral Blood derived, plastic-aadherent CD34-/low Hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cell. 2000;18:252-260
Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kogler G. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J A Coll Cardiol. 2005;46:1651-1658.
Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation. 2004a;109:2487-2491.
Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004b;109:2692- 2697.
Schumacher B, Pecher P, von Specht BU and Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97:645-650.
Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Losordo DW, Hendel RC, Bonow RO, Eppler SM, Zioncheck TF, Holmgren EB, and McCluskey ER. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. A Heart J. 2001;142:872-880.
Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, and Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000b;70:829-834.
Vale PR, Losordo DW, Symes JF, and Isner JM. Growth factors for therapeutic angiogenesis in cardiovascular diseases. Rev Esp Cardiol. 2001;54:1210-1224.
Schratzberger P, Schratzberger G, Silver, Curry C, Kearney M, Magner M, Alroy J, Adelman LS, Weinberg DH, Ropper AH, and Isner JM. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000;6:405-413.
Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, and Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435.
Kimura H and Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50: 49- 59.
Losordo DW, and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004b;109:2692-2697.
Dohmann HF, Perin EC, Takiya CM, Silva GV, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Pascarelli BM, Assis IM, Dutra HS, Assad JA, Castello-Branco RV, et al. Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation. 2005;112:521-526.
Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kogler G, Werne, Muller H W, and Kostering M. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol. 2005;46:1651-1658.
Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, and Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet .2003;361:45-46.
Baldiavas and Falange v. Treatment of chronic wounds with bone marrowderived cells. Dermatologic Surgery. 2003;139:510-516.
Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med.1999;1:121–133.
Horwitz EM, Prockop DJ, Fitzpatric LA. et al. trasplantability and therapeutic effects of bone marrow-derived mesenchymal cells children with osteogenesis imperfecta. Nature Medicine. 1999;5:309-313.
Gage FH. Mammalian Neural stem cells. Science. 2000;287: 1433-9 102. Black I, Woodbury D. Adult rat and human bone marrow stromal cells diferentiate into neurons. J Neur Res. 2000;61:364-70
Brazelton TR, Rossi MV, Keshet GJ, Blau HM, From marrow to brain: expresion of neuronal phenotipes in adult mice. Science. 2000;290:1775-9.
Azizi SA, Stokes D, Augelli BJ, DiGiloramo C, Prockop DJ. Engrafment and migration of human bone marrow stromal cells implanted in the brains of albino rats similarities to astrocyte grafts. Proc Nal Acad Sci. 1998;95:3908-13.
Schwarts EJ, Alexander GM, Prockcop DJ, Multipotential Marrow stromal cells transduced to produce L-dopa enfragment in a rat model of parkinson. Hum gene. 1999;10:2539-49.
Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, et al.
Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci. USA.2003;100:2397-402.
Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem cell Therapeutics. Hematology. 2003;1:398-418.
Colter, Sekiya I, and Prockop J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS. 2001;98:7841.
Mets, T. & Verdonk, G. In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev. 1981. 16, 81–89.
Fathke C, Wilson L, Hutter J, Kapoor V. Contribution of bone marrow-Derived Cells to Skin: Collagen deposition and wound repair. Stem Cells. 2004;22:812-822.
Farhadi J, Jaquiery CJ, Barbero A, et al. Differentiation-dependent upregulation of BMP-2, TGF-ß1, and VEGF expression by FGF-2 in human bone marrow stromal cells. Plast Reconstr Surg. 2005; 116: 1379-86.
Pittenger MF and Martin B J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004; 95:9-20.
Ryan J. Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. Journal Of Inflamation. 2005;2:8.1-11.
Hasan Q, Swe T, Gush J, Sue P, Davis P. Steroid therapy of a proliferating hemangioma: Histochemical and molecular changes. Pediatrica. 2000;105:117-120
Overberg L, Giulietti A, Valckx D, Decallone B, Bouillon R, Mathieu C. The use of real time reverse transcriptase PCR for the quantification of cytokine gene expression. Journal Biomolecular Techniques. 2003;14:33-43
Kerschenseteiner M, Gallmeier E, Behrens L, Vargas V, Misgled T, Wolfang E. et al. Activated human T cells, B cells and monocytes produce brain-derived neurotophic factor in vitro and inflamatorylessions: A Neuroprotective role of inflammation. J Exp Med. 1999;189(5):865-870.
Dunk C, Shams M, Nijjar S, Rhaman M, Qiu Y, Bussolati B, Ahmed A. Angiopoietin-1 and angiopoietin-2 activate triphoblat tie-2 to promote growt and migration during placental development. A J Patology. 2003;156:2185-2199.
Cerimele F, Lawrence F, Brow, Brabo F, Garret M, Kouadio P, Arbiser J. Infectious angiogenesis: Bartonella bacilliformis results in endotelial producction of angiopoietin-2 an epidermal production of vascular endotelial growth factor. A J Pathology. 2003;163:1321-1327.
Stopka T, Zivny J, Stopkova P, Prchal J, Prchhal JT. Human hematopoietic progenitors express erythropoietin. Blood. 1998;91 (10):3766-3772.
Marfella R, Esposito K, Nappo F, Siniscalchi F, Sasso C. et al. Expresion of agiogenic factors during acute coronary syndromes in human type 2 diabettes. Diabetes. 2004;53:2383-2391.
Timoty R, Regnault H, Vrijert B, Galan H, Davidsen ML, Trembler K, Battaglia. et al. The relationship between transplacental O2 diffusion and placental expression of PIGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J Physiology. 2003;550.2:641-656.
Kang H, Watkins G, Parr C, Jones D, Mansel R, Jian W. Stromal cell derived stromal factor-1 its influence on invasiveness and migration of breast cancer cells in vitro and in human breast cancer. Breast cancer res. 2005;7(4):402-410.
Joachim O, Boxberger S, Jorgensen B, Feldmann S, Enhinenge G, Bornhausser M. Mesenchymal stem cells can be diferentiated into endotelial Cells in vitro. Stem Cell. 2004;22:377-384.
Panepucci R, Siufi J, Silva W, Siquiera R, Neder L, Orellana M. et al. Comparison of gene expresion of umbilical cord vein and bone marrow- derived mesenchymal stem cells. Stem Cells. 2004;22:1263-1278.
Jaiswal N, Haynesworth S, Caplan A Bruder S. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J of Cellular Biochemistry. 1997;64:295-312.
Salasznyk R, Williams W, Boskey A, Batorsky an Ploper G. Adhesión to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal cells. J of Biomedicine and Biotechnology. 2004;1:24-34.
Schwartz RE, Reyes M, Koodie L. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte like cells. J Clin Invest. 2002;109:1291-1302.
Fuwang J, Juan Wang L, Fanwu Y. et al. Mesenchymal stem/progenitor cells in human cord blood as support for ex vivo expansion of CD34+ haematopoietic stem cells and chondrogenic differentiatión. Haematológica. 2004;89:837-844.
Fukichy Y, Nakajima H, Sugiyama D. et al. Human placenta derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22:649-658.
Prusa A and Hengstchager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):RA253-257.
Zhao RC, Liao L, Han Q. Mechanism of and perspectives on the mesenchymal stem cell in immunotherapy. J Lab Clin. Med. 2004;143(5):284-291.
Wiesmann A, Buhring HJ, Mentrup C, Wiesmann HP. Decreased CD 90 espressión in human mesenchymal stem cells by applying mechanical stimulation. Head and Face Medicin. 2006;2:8-16.
Roura S, Barré J, Botija C, Llach A, Mandsen L H. Effect of aging on the pluripotential capacity of human CD105 mesenchymal stem cells. J E Heart Faailture.2006;8:555-563.
Phinney DG, Kopen G, Isaacson RL. et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation. J Biochem. 1999;72:570-585 .
Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, M Klntosh K. Mesenchymal stem cell suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Haematol. 2002;30:42-8.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (103 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79366/1/CARACTERIZACI%c3%93N%20DE%20CELULAS%20STEM%20MESENQUIMALES%20DE%20MEDULA%20OSEA%20HUMANA_unlocked.pdf
https://repositorio.unal.edu.co/bitstream/unal/79366/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79366/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79366/4/Licencia%2c%20Lida%20Osmarla%20Quintero.pdf
https://repositorio.unal.edu.co/bitstream/unal/79366/5/CARACTERIZACI%c3%93N%20DE%20CELULAS%20STEM%20MESENQUIMALES%20DE%20MEDULA%20OSEA%20HUMANA_unlocked.pdf.jpg
bitstream.checksum.fl_str_mv 7ec7035ee72735af7c8a599035234cf8
4460e5956bc1d1639be9ae6146a50347
cccfe52f796b7c63423298c2d3365fc6
95d05367eb503da71a12dc7907e5dad8
63d04d0a61dc6defd2eab55c3f0dc50a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090042441728000
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chaparro, Orlando16708af86b656654f767e3137e1e4ca4Quintero Martinez, Lida Osmarla8b6cdf7badaffcc9124d401f1da78bf52021-03-19T20:38:03Z2021-03-19T20:38:03Z2007https://repositorio.unal.edu.co/handle/unal/79366En los últimos años las células stem han generado grandes expectativas como alternativa terapéutica en el tratamiento de múltiples enfermedades. Recientemente se ha presentado la posibilidad de obtener células stem de tejidos adultos. Aunque estos tipos de células son derivados del mesodermo se ha reportado que las células stem mesenquimales, pueden llegar a diferenciarse en tejidos no mesodérmicos como el tejido neuronal y hepático. Adicionalmente uno de los mecanismos por los cuales las MSCs podrían ejercer su acción terapéutica es el efecto paracrino que presentan a través de secreción de citoquinas y factores de crecimiento celular. El objetivo principal del presente trabajo es caracterizar las células stem mesenquimales obtenidas de medula ósea humana. Las muestras de médula ósea fueron obtenidas de donantes sanos voluntarios previo consentimiento informado. La caracterización de la población celular obtenida se realizó analizando la morfología celular y la presencia de marcadores de membrana específicos por citometría de flujo para diferenciar las MSCs (CD45, CD34, CD105, CD90, HLA I y HLA DR). El potencial de diferenciación fue evaluado para diferenciación osteogénica y adipogénica. Adicionalmente se analizó la expresión de genes de citoquinas y factores de crecimiento. El análisis por citometría de flujo y por RT-PCR mostró una población celular con características de MSCs, CD34-, CD105+. Los ensayos de diferenciación confirmaron la naturaleza de células stem, capaces de diferenciarse al linaje osteogénico y adipogénico. Las MSCs expresaron FGF- β y HIF1α, Ang-1 y TGF-β1 importantes para la maduración de los vasos sanguíneos y genes que inducen la expresión de actores proangiogénicos como IL 6. Este trabajo, nos proporciona por tanto una herramienta para futuros estudios sobre diferenciación, crecimiento, metabolismo y fisiología de las MSCs importantes para desarrollar ensayos clínicos, ya que las expectativas del beneficio terapéutico que nos brindan las MSCs son muy amplias.During last few years stem cells have created great expectative as a therapeutic alternative in the treatment of many diseases. Recently, it has become possible to obtain stem cells from adult tissues. Mesenchymal stem cells can be cultured in vitro and can be differentiated in several cell types. Although those cell types are derived from the mesodermic embryonic layer, recent reports have documented the potential of mesenchymal stem cells to differentiate into non-mesodermic cells like neurons and hepatic cells. One of the mechanisms of their therapeutic action, is probably a paracrine activity, by cytokines and cell growth factors secretion. Our main goal is the characterization of human bone marrow mesenchymal stem cells. Bone marrow samples were obtained from healthy volunteer donors, after informed consent. Characterization was done by analysis of cell morphology, specific membrane markers by flow cytometry (CD45, CD34, CD105, CD90, HLA I, HLA II). Differentiation potential was evaluated by osteogenic and adipogenic differentiation. Additionally, gene expression of some cytokines and growth by RT-PCR analysis was performed. Flow cytometry and RT-PCR showed a cellular population with mesenchymal tem cells characteristics, CD34-, CD105+. Differentiation assays showed cells with potential to differentiate to osteogenic and adipogenic lineages. MSCs expressed FGF-ß, HIF 1α, Ang 1 and TGF ß, important for capillary maturation and expression of genes inducing proangiogenic factors like IL6. Present work gives us a very useful tool for future studies about differentiation, growing, metabolism and physiology of MSCs, important for clinical studies regarding their huge therapeutical potential.bibliografía paginas 67-81Maestría1 recurso en línea (103 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en BioquímicaFacultad de MedicinaBogotáUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaMédula ÓseaBone MarrowCélulas Madre MesenquimatosasMesenchymal Stem CellsMédula OseaCélulascélulas stem mesenquimalesMCSsCaracterización de células Stem Mesenquimales de médula ósea humanaCharacterization of Human Bone Marrow Mesenchymal Stem CellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRobey PG. Stem cells near the century mark. J. Clin. Inv. 2000;105:1489-1491.Merchant AS and Flake AW. Surgeons and stem cells: A pragmatic perspective on shiftin paradigms. Surgery. 2004;136: 975-980.Rosenthal N. Prometeuss vulture and stem-cell promise. N. Engl. J. Med. 2003; 349:570-582.Weissman Il, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdiferentiations. Anu. Rev. Cel. Dev Biol. 2001;17:387-403.Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. 1981;78:7634-763.Thomson JA, Itskavitz-Elor, Shapiro S. et al. Embrionic stem cells lines derved from human blastocysts. Science 1998;282:1145-1447.Clarke D. and Frisen J. Differentiation potential of adult stem cells. Curr. Opin. Genet. Dev. 2001;11:575-580.Terese Winslow. Scientific progress and future research directions. Stem Cells. 2001;23-25.Alberts B, Johnson A, Lewis J, Raff M, Roberts K. Molecular Biology of the Cell. 4ed. New York: Garland Science. 2002;1262-4.Verafille CM, Prosper F. Adult Stem Cells. Anu. Sist. Sanit. Navar. 2003;26:345-355.Oscar KL, Tom K, Wei-Ming. et al. Isolation of multi-potent mesenchymal stem cells from umbilical cord. Blood. 2004;1031669.Pieternella S. Anker, Sicco A. Scherjon,Carin Kleijburg-van der Keur,a, Godelieve M.J.S. de Groot-Swings et-al. Stem Cells of Fetal or Maternal Origin from Human Placenta. Stem Cells. 2004;22:1338–1345.Nathan J, Zvaifler, Lilla Marinova-Mutafchieva, Gill Adams. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000; 2:477–488.Singer JW, Keating A Cunttner J. et al. Evidence for a stem cell common to hematopoiesis and its in vitro microenviroment: Leuk Res. 1984;8:535-545Brenton S, Natalie, Teresa O. et al. Mesenchymal stem cells. Achieves of Medical Research. 2003 ;34:565-571.Travasoli M, Friedestein A. Hematopoyetic stromal microenviroment. Am. J. Hematol. 1983;15:195-203.Pittenguer MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD. etal. Multilineage potential of adult human mesechymal stem cells. Science. 1999;284:143-147.Sekiya I, Larson LB, Pochampally R, Cui JG, Prockop DJ. Expansion of human adult stem cells from bone marrow stroma: Conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells. 2002;20;530-541.Vats A, Bielby RC, Tolley NS, Nerem R, and Polak JM. Stem cells. Lancet. 2005; 366:592-602.Barry FP and Murphy J M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 2004;36:568-584.Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, and Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418: 41-49.James E, Dennis, Arnold I, Caplan. Advances in mesenchymal stem cell biology. Curr. Opin. Orthop. 2004;15:341-346.Donovan PJ. and Gerarhart J. The end of the beginning for pluripotent stem cells. Nature. 2001; 414: 92-97.Brazelton TR, Rossi FM, Keshet G. and Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science .2000;290:1775-1779Mezey E, Chandross KJ, Harta G, Maki, R A, and McKercher S R. Turning blood into brain cells bearning neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779-1782.Orlic, Kajsutra J, Chirneti s, Jakoniuk I, Anderson M, Li B, McKay R, NadalGinard B, Leri A, and anversa P. Bone Marrow cells regenerate infarcted myocardium. Nature. 2001;410:701-705.Beltrán O, Quintero L, Chaparro O. Plasticidad y transdiferenciación en células stem adultas. Rev. 2005. Med UMNG;1310-1316Wurnser AE. and Gage FH. Stem Cells: cell fusion causes confusion. Nature 2002; 416:485-487Son L, and Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB (serial on line ); available from: URL http:/www.fasebj.org. 2004.Jhonson L, Sander JE; Rugiero M, Chard RL, Thomas D. Bone marrow transplantation for the at men of acute nonlymphoblastic leukemia in children aged less than 2 years. Blood. 1988;71(5):1277-1280.Lorenz E, Uphoff DE, Reid TR, et al. Modification of acute irradiation injury in mice and guinea pigs by bone marrow injection. Radiology. 1951;58:863.877.Becker A, McCulloch, E Till J. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963;197:452-455.Piersma AH, Brockbank KG, Ploemacher RE, and CP Ottenheim. Recovery of hemopoietic stromal progenitor cells after lethal total-body irradiation and bone marrow transplantation in mice. Transplantation. 1985;40(2):198-201.Piersma AH, Brockbank KG, Ploemacher RE, E van Vliet, Brakel-van, and Visser Characterization of fibroblastic stromal cells from murine bone marrow. Exp Hematol. 1985;13(4): 237-43.Penn PE, Jiang D, Fei R, et al. Dissecting the the hematopoietic microenviroment. ix. Further characterization of murine bone marrow stromal cells. Blood. 2000;81:1205-1213.Friedenstein AJ, Chailakhjan RK, and Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet.1970;3(4):393-403.Kopen GC, Prockop DJ, Phiney DG. Marrow stromal cells migrate througt forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Nal Acad Sci USA. 1999;96:10711-10716DiGirolamo, Stokes D, Colter D, Phinney DG, Class R and Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Brit. J. of Haematol. 1999;107:2-275.Pittenger MF, Mosca JD, Mcintosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr Microbiol. Immunol. 2000;251:3-11.Clarke E, Mesenchymal Cells. Mini Rev. Stem cell technologies. 2005. www.stemcell.comLodie TA, Blickarz CE, Devarakonda TJ; He C, Dash AB. et al. Systematic análysis of reportedly distinct populations of multipotent bone marrow derived stem cells reveals a lack of distinction. Tissue Eng. 2002;8:739-751.Mark F, Pittenger MF, Bradley J. Mesenchymal stem cells and their potential as Cardiac Therapeutics. Circulation Research. 2004;95:9-20.Morrison SJ, Wiessman I. The long term repopulating subset of hematopoietic stem cells is deterministic and isolated by phenotype. Immunity. 1994;1:661-673.Dennis JE, Carbillet JP, Caplan AI, Charbord P. The stro-1 marrow cell population is multipotential. Advances in Mesenchymal stem cells. Current opin orthop. 2004;15:341-346Russo E. The potential of human mesenchymal cells. The Scientist .2001. 15 (11):19-20.Owen M and Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42-60.Ecina, Billote, William G. Immunomagnetic isolation of osteoprogenitors fron human bone marrow stroma. Lab invest. 1999;79:449.Eriches A, Conget P, Jose J. Mesenchymal progenitor cells in human umbilical cord blood. British J Hematology. 2000;109. 235.Shu KT, Kim SW, Roh HL. et al. Decreased osteogenic diferentiation of mesenchymal stem cell in alcohol-induced osteonecrosis. Clinical Ort Res. 2005;431: 220-225.Hung SC, Jung AD, Chen, Lliang, Li Hung. Isolation and Characterization of Size-Sieved Stem Cells from Human Bone Marrow. Stem Cells. 2002;20:249-258.Kartsogiannis V, Wah NK. Cell lines and primary cell cultures in the study of bone cell biology. Molecular and Cellular Endocrinology. 2004;228 :79-102.Tuli R, Tuli S, Nandi S, Wang LM. et al. Characterization of multipotential progenitor cells derived from human trabecular bone. Stem Cells. 2003;21:681- 693.Pietternella S, Anker T, Willy A, Sico A. et.al. Mesenchymal stem cell in human second-trimester bone marrow, liver, lung and spleen exhibit a similar immunophenotype but heterogeneus multilineage differentiation potential. J of hematology. 2003;88:845-852.Tropel P, Noel D, Platet N, Legrand P. et al. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Science. 2004;295:395-406.Colter DC, Class R, DiGiloramo CM. et al. Rapid expansion of recyclin stem cells in cultures of plastic-adherents cells from human bone marrow. Proc Natl Acad. Sci. USA. 2000;97:3213-3218Boquest AC, Shadafar AH, Fronsdal K. Isolation and transcription profiling uncultured human stromal stem cell. Alteration of gene espression after in vitro cell culture. Molecular Biology of the cell. 2005;16:1131-1141.Moreno M.J, Martínez J.A. Adipose tissue: a strage and secretory organ. ANALES SIS San Navarra . 2002; 25: supl1. 29-39 58. Campagnoll C, Irene A, Roberts, Sallesh Kumar. et al. Identification of mesenchymal stem/progenitor cells first-trimester fetal blood, liver. and bone marrow. Blood. 2001; 98: 2396Scavo LM, Karas M, Murray M and Leroith D. Insuline-Like Growth Factor-I Stimulates Both Cell Growth and Lipogenesis during Differenciation of Human Mesenquimal Stem Cell into Adipoctes. 2004 J Of Clin Endocrin. 89(7):3543-3553.Cochran LD y Graves TD. Mesenchymal cell grow factors. O biology and medicine. 1990; 1:1 17-39.Watt F, Hogan BL. Out of eden: stem cells and their niches. Science 2000;287:1427-1430.Spradling A, Drummond BD, Kai T. Stem cells find their niche. Nature. 2001; 414: 98-104Yig T, LI Linheng. The stem cell niches in bone. J Of Clinical Investigation. 2006;116 (5):1195-1201.Heil M, Ziegelhoeffer T, Mees B, and Schaper W. A different outlook on the role of bone marrow stem cells in vascular growth: bone marrow delivers software not hardware. Circ Res.2004;94:573-574.Kinnaird T, Stabile E, Burnett M.S, Lee CW , Barr S, Fuchs S , and Epstein SE. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res. 2004a;94:678-685.Kinnaird T, Stabile E, Burnett M.S, Shou M, Lee CW , Barr S, Fuchs S, and Epstein SE. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation. 2004b;109:1543-1549.Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, and March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. 2004. Circulation:109:1292-1298.Goldman JM, Schmitz N, Niethammer D, et al. Allogenic and utologus transplantation for haematological diseases, solid tumors and immune disorders. Bone Marrow Transplant. 1998;21(1):1-7.Jaime Juan C, Dorticós E, Pavon V. Transplante de células progenitoras hematopoyeticas. Revista Cubana de Hematología 2004:20.Maitra B, Szekely E, Gjini k. et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress t-cell activation. Bone Marrow Transplant 2004;33:597-604.Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematology. 2003;31:890–896. B J Hematology. 2003;31(10):890–896.Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymal stemcells. Cytotherapy. 2003;5:485–489.Mac Dermott RP, Bragdon MJ. Fetal calf serum augmentation during cell separation procedures accounts for the majority of human autologous mixed leukocyte reactivity. Behring Inst Mitt. 1983;72:122–128.Freedman SB. and Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol. 2001;33:379-393.Freedman SB. and Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Med Intern. 2002;136:54-71.Perin E.C, Geng YJ and Willerson JT. Adult stem cell therapy in perspective. Circulation. 2003;107:935-938.Strauer BE. and Kornowski R. Stem cell therapy in perspective. Circulation. 2003. 107:929-934.Al-Khald IA, Al-Sabti H, Galipeau J, and Lachapelle K. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg. 2003. 75,204-209.Kinnaird T, Stabile E, Burnett MS, and Epstein SE. Bone-marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circ Res. 2004b;95:354-363.Asahara T, and Kawamoto A. Endothelial progenitor cells for postnatal vasculogenesis. A J Cell Physiol 2004;287:C572-C579.Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, and Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest .2001;107:1395-1402.Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K. Evidence of peripheral Blood derived, plastic-aadherent CD34-/low Hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cell. 2000;18:252-260Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kogler G. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J A Coll Cardiol. 2005;46:1651-1658.Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation. 2004a;109:2487-2491.Losordo DW and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004b;109:2692- 2697.Schumacher B, Pecher P, von Specht BU and Stegmann T. Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease. Circulation. 1998;97:645-650.Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Losordo DW, Hendel RC, Bonow RO, Eppler SM, Zioncheck TF, Holmgren EB, and McCluskey ER. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. A Heart J. 2001;142:872-880.Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, and Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg. 2000b;70:829-834.Vale PR, Losordo DW, Symes JF, and Isner JM. Growth factors for therapeutic angiogenesis in cardiovascular diseases. Rev Esp Cardiol. 2001;54:1210-1224.Schratzberger P, Schratzberger G, Silver, Curry C, Kearney M, Magner M, Alroy J, Adelman LS, Weinberg DH, Ropper AH, and Isner JM. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000;6:405-413.Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K, Kishimoto Y, Yoshimoto K, Akashi H, Shimada K, Iwasaka T, and Imaizumi T. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435.Kimura H and Esumi H. Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. Acta Biochim Pol. 2003;50: 49- 59.Losordo DW, and Dimmeler S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation. 2004b;109:2692-2697.Dohmann HF, Perin EC, Takiya CM, Silva GV, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Pascarelli BM, Assis IM, Dutra HS, Assad JA, Castello-Branco RV, et al. Transendocardial autologous bone marrow mononuclear cell injection in ischemic heart failure: postmortem anatomicopathologic and immunohistochemical findings. Circulation. 2005;112:521-526.Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C, Sorg RV, Kogler G, Werne, Muller H W, and Kostering M. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol. 2005;46:1651-1658.Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H, Schumichen C, Nienaber CA, Freund M, and Steinhoff G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet .2003;361:45-46.Baldiavas and Falange v. Treatment of chronic wounds with bone marrowderived cells. Dermatologic Surgery. 2003;139:510-516.Gazit D, Turgeman G, Kelley P, et al. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med.1999;1:121–133.Horwitz EM, Prockop DJ, Fitzpatric LA. et al. trasplantability and therapeutic effects of bone marrow-derived mesenchymal cells children with osteogenesis imperfecta. Nature Medicine. 1999;5:309-313.Gage FH. Mammalian Neural stem cells. Science. 2000;287: 1433-9 102. Black I, Woodbury D. Adult rat and human bone marrow stromal cells diferentiate into neurons. J Neur Res. 2000;61:364-70Brazelton TR, Rossi MV, Keshet GJ, Blau HM, From marrow to brain: expresion of neuronal phenotipes in adult mice. Science. 2000;290:1775-9.Azizi SA, Stokes D, Augelli BJ, DiGiloramo C, Prockop DJ. Engrafment and migration of human bone marrow stromal cells implanted in the brains of albino rats similarities to astrocyte grafts. Proc Nal Acad Sci. 1998;95:3908-13.Schwarts EJ, Alexander GM, Prockcop DJ, Multipotential Marrow stromal cells transduced to produce L-dopa enfragment in a rat model of parkinson. Hum gene. 1999;10:2539-49.Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, et al.Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci. USA.2003;100:2397-402.Daley GQ, Goodell MA, Snyder EY. Realistic prospects for stem cell Therapeutics. Hematology. 2003;1:398-418.Colter, Sekiya I, and Prockop J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. PNAS. 2001;98:7841.Mets, T. & Verdonk, G. In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev. 1981. 16, 81–89.Fathke C, Wilson L, Hutter J, Kapoor V. Contribution of bone marrow-Derived Cells to Skin: Collagen deposition and wound repair. Stem Cells. 2004;22:812-822.Farhadi J, Jaquiery CJ, Barbero A, et al. Differentiation-dependent upregulation of BMP-2, TGF-ß1, and VEGF expression by FGF-2 in human bone marrow stromal cells. Plast Reconstr Surg. 2005; 116: 1379-86.Pittenger MF and Martin B J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004; 95:9-20.Ryan J. Barry FP, Murphy JM, Mahon BP. Mesenchymal stem cells avoid allogeneic rejection. Journal Of Inflamation. 2005;2:8.1-11.Hasan Q, Swe T, Gush J, Sue P, Davis P. Steroid therapy of a proliferating hemangioma: Histochemical and molecular changes. Pediatrica. 2000;105:117-120Overberg L, Giulietti A, Valckx D, Decallone B, Bouillon R, Mathieu C. The use of real time reverse transcriptase PCR for the quantification of cytokine gene expression. Journal Biomolecular Techniques. 2003;14:33-43Kerschenseteiner M, Gallmeier E, Behrens L, Vargas V, Misgled T, Wolfang E. et al. Activated human T cells, B cells and monocytes produce brain-derived neurotophic factor in vitro and inflamatorylessions: A Neuroprotective role of inflammation. J Exp Med. 1999;189(5):865-870.Dunk C, Shams M, Nijjar S, Rhaman M, Qiu Y, Bussolati B, Ahmed A. Angiopoietin-1 and angiopoietin-2 activate triphoblat tie-2 to promote growt and migration during placental development. A J Patology. 2003;156:2185-2199.Cerimele F, Lawrence F, Brow, Brabo F, Garret M, Kouadio P, Arbiser J. Infectious angiogenesis: Bartonella bacilliformis results in endotelial producction of angiopoietin-2 an epidermal production of vascular endotelial growth factor. A J Pathology. 2003;163:1321-1327.Stopka T, Zivny J, Stopkova P, Prchal J, Prchhal JT. Human hematopoietic progenitors express erythropoietin. Blood. 1998;91 (10):3766-3772.Marfella R, Esposito K, Nappo F, Siniscalchi F, Sasso C. et al. Expresion of agiogenic factors during acute coronary syndromes in human type 2 diabettes. Diabetes. 2004;53:2383-2391.Timoty R, Regnault H, Vrijert B, Galan H, Davidsen ML, Trembler K, Battaglia. et al. The relationship between transplacental O2 diffusion and placental expression of PIGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J Physiology. 2003;550.2:641-656.Kang H, Watkins G, Parr C, Jones D, Mansel R, Jian W. Stromal cell derived stromal factor-1 its influence on invasiveness and migration of breast cancer cells in vitro and in human breast cancer. Breast cancer res. 2005;7(4):402-410.Joachim O, Boxberger S, Jorgensen B, Feldmann S, Enhinenge G, Bornhausser M. Mesenchymal stem cells can be diferentiated into endotelial Cells in vitro. Stem Cell. 2004;22:377-384.Panepucci R, Siufi J, Silva W, Siquiera R, Neder L, Orellana M. et al. Comparison of gene expresion of umbilical cord vein and bone marrow- derived mesenchymal stem cells. Stem Cells. 2004;22:1263-1278.Jaiswal N, Haynesworth S, Caplan A Bruder S. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J of Cellular Biochemistry. 1997;64:295-312.Salasznyk R, Williams W, Boskey A, Batorsky an Ploper G. Adhesión to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal cells. J of Biomedicine and Biotechnology. 2004;1:24-34.Schwartz RE, Reyes M, Koodie L. et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte like cells. J Clin Invest. 2002;109:1291-1302.Fuwang J, Juan Wang L, Fanwu Y. et al. Mesenchymal stem/progenitor cells in human cord blood as support for ex vivo expansion of CD34+ haematopoietic stem cells and chondrogenic differentiatión. Haematológica. 2004;89:837-844.Fukichy Y, Nakajima H, Sugiyama D. et al. Human placenta derived cells have mesenchymal stem/progenitor cell potential. Stem Cells. 2004;22:649-658.Prusa A and Hengstchager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):RA253-257.Zhao RC, Liao L, Han Q. Mechanism of and perspectives on the mesenchymal stem cell in immunotherapy. J Lab Clin. Med. 2004;143(5):284-291.Wiesmann A, Buhring HJ, Mentrup C, Wiesmann HP. Decreased CD 90 espressión in human mesenchymal stem cells by applying mechanical stimulation. Head and Face Medicin. 2006;2:8-16.Roura S, Barré J, Botija C, Llach A, Mandsen L H. Effect of aging on the pluripotential capacity of human CD105 mesenchymal stem cells. J E Heart Faailture.2006;8:555-563.Phinney DG, Kopen G, Isaacson RL. et al. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth and differentiation. J Biochem. 1999;72:570-585 .Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, M Klntosh K. Mesenchymal stem cell suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Haematol. 2002;30:42-8.ORIGINALCARACTERIZACIÓN DE CELULAS STEM MESENQUIMALES DE MEDULA OSEA HUMANA_unlocked.pdfCARACTERIZACIÓN DE CELULAS STEM MESENQUIMALES DE MEDULA OSEA HUMANA_unlocked.pdfapplication/pdf4332283https://repositorio.unal.edu.co/bitstream/unal/79366/1/CARACTERIZACI%c3%93N%20DE%20CELULAS%20STEM%20MESENQUIMALES%20DE%20MEDULA%20OSEA%20HUMANA_unlocked.pdf7ec7035ee72735af7c8a599035234cf8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79366/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79366/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52Licencia, Lida Osmarla Quintero.pdfLicencia, Lida Osmarla Quintero.pdfapplication/pdf336195https://repositorio.unal.edu.co/bitstream/unal/79366/4/Licencia%2c%20Lida%20Osmarla%20Quintero.pdf95d05367eb503da71a12dc7907e5dad8MD54THUMBNAILCARACTERIZACIÓN DE CELULAS STEM MESENQUIMALES DE MEDULA OSEA HUMANA_unlocked.pdf.jpgCARACTERIZACIÓN DE CELULAS STEM MESENQUIMALES DE MEDULA OSEA HUMANA_unlocked.pdf.jpgGenerated Thumbnailimage/jpeg4942https://repositorio.unal.edu.co/bitstream/unal/79366/5/CARACTERIZACI%c3%93N%20DE%20CELULAS%20STEM%20MESENQUIMALES%20DE%20MEDULA%20OSEA%20HUMANA_unlocked.pdf.jpg63d04d0a61dc6defd2eab55c3f0dc50aMD55unal/79366oai:repositorio.unal.edu.co:unal/793662023-07-27 23:03:51.828Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==