Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X

ilustraciones, tablas

Autores:
Daniel Guillermo, Martínez Gómez
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82360
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82360
https://repositorio.unal.edu.co/
Palabra clave:
Magnetic fields
Magnetics
Campos magnéticos
Magnética
Momento magnético anómalo del muón
g − 2
correcciones radiativas
The anomalous magnetic moment of the muon
g − 2,
Radiative corrections
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_2558afec610c19eb41c3b0a16dfa576a
oai_identifier_str oai:repositorio.unal.edu.co:unal/82360
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
dc.title.translated.eng.fl_str_mv Contribution to the anomalous magnetic moment of the muon from the non-universal extension U(1)X
title Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
spellingShingle Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
Magnetic fields
Magnetics
Campos magnéticos
Magnética
Momento magnético anómalo del muón
g − 2
correcciones radiativas
The anomalous magnetic moment of the muon
g − 2,
Radiative corrections
title_short Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
title_full Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
title_fullStr Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
title_full_unstemmed Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
title_sort Contribución al momento magnético anómalo del muón de la extensión no-universal U (1)X
dc.creator.fl_str_mv Daniel Guillermo, Martínez Gómez
dc.contributor.advisor.none.fl_str_mv Roberto Enrique, Martínez Martínez
dc.contributor.author.none.fl_str_mv Daniel Guillermo, Martínez Gómez
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física Teórica de Altas Energías
dc.subject.lemb.eng.fl_str_mv Magnetic fields
Magnetics
topic Magnetic fields
Magnetics
Campos magnéticos
Magnética
Momento magnético anómalo del muón
g − 2
correcciones radiativas
The anomalous magnetic moment of the muon
g − 2,
Radiative corrections
dc.subject.lemb.spa.fl_str_mv Campos magnéticos
Magnética
dc.subject.proposal.spa.fl_str_mv Momento magnético anómalo del muón
g − 2
correcciones radiativas
dc.subject.proposal.eng.fl_str_mv The anomalous magnetic moment of the muon
g − 2,
Radiative corrections
description ilustraciones, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T05:33:15Z
dc.date.available.none.fl_str_mv 2022-10-11T05:33:15Z
dc.date.issued.none.fl_str_mv 2022-09-26
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82360
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82360
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Gerald W Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman, GT Danby, PT Debevec, M Deile, H Deng, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Physical Review D, 73(7):072003,2006
Babak Abi, T Albahri, S Al-Kilani, D Allspach, LP Alonzi, A Anastasi, A Anisenkov, F Azfar, K Badgley, S Baeßler, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Physical Review Letters, 126(14):141801, 2021.
Tatsumi Aoyama, Nils Asmussen, Maurice Benayoun, Johan Bijnens, T Blum, M Bruno, I Caprini, CM Carloni Calame, M Ce, Gilberto Colangelo, et al. The anomalous magnetic moment of the muon in the Standard Model. Physics reports, 887:1–166, 2020.
SF Mantilla, R Martinez, and F Ochoa. Neutrino and C P-even Higgs boson masses in a non-universal U(1)’ extension. Physical Review D, 95(9):095037, 2017.
Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961.
A Salam. Elementary particle theory, Nobel symposium No. 8. ed. N. Svartholm, Almqvist and Wiksell, 1969.
Steven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.
Peter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.
Hanneke, S Fogwell, and G Gabrielse. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100(12):120801, 2008.
Julian Schwinger. On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73(4):416, 1948.
Julian Schwinger. Quantum electrodynamics. III. the electromagnetic properties of the electron-radiative corrections to scattering. Physical Review, 76(6):790, 1949.
P Kusch and HM Foley. The magnetic moment of the electron. Physical Review, 74(3):250, 1948.
Richard L Garwin, DP Hutchinson, S Penman, and G Shapiro. Accurate Determination of the μ+Magnetic Moment. Physical Review, 118(1):271, 1960.
Andrzej Czarnecki and William J Marciano. Muon anomalous magnetic moment: A harbinger for “new physics”. Physical Review D, 64(1):013014, 2001.
James P Miller, Eduardo de Rafael, and B Lee Roberts. Muon (g-2): experiment and theory. Reports on Progress in Physics, 70(5):795, 2007.
Gustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-Higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.
Tanmoy Mondal and Hiroshi Okada. Inverse seesaw and (g-2) anomalies in B-L extended two Higgs doublet model. Nuclear Physics B, page 115716, 2022.
Luigi Delle Rose, Shaaban Khalil, and Stefano Moretti. Explaining electron and muon g-2 anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos. Physics Letters B, 816:136216, 2021.
Tomohiro Abe, Ryosuke Sato, and Kei Yagyu. Lepton-specific two Higgs doublet model as a solution of muon g-2 anomaly. Journal of High Energy Physics, 2015(7):64, 2015.
Eung Jin Chun The muon g-2 in two-Higgs-doublet models Pramana, 87(3):41, 2016.
S Gabriel and S Nandi. A new two Higgs doublet model. Physics Letters B, 655(3-4):141–147, 2007.
G De Conto and V Pleitez. Electron and muon anomalous magnetic dipole moment in a 331 model. Journal of High Energy Physics, 2017(5):1–32, 2017.
Tianjun Li, Junle Pei, and Wenxing Zhang. Muon anomalous magnetic moment and Higgs potential stability in the 331 model from SU(6) The European Physical Journal C, 81(7):1–10, 2021.
Chris Kelso, HN Long, R Martinez, and Farinaldo S Queiroz.Connection of g−2μ electroweak, dark matter, and collider constraints on 331 models. Physical Review D, 90(11):113011, 2014.
Manfred Lindner, Moritz Platscher, and Farinaldo S Queiroz. A call for new physics: the muon anomalous magnetic moment and lepton flavor violation. Physics Reports, 731:1–82, 2018.
Mario Reig, José WF Valle, and CA1397 Vaquera-Araujo. Unifying left–right symmetry and 331 electroweak theories. Physics Letters B, 766:35–40, 2017.
Dominik Stöckinger. The muon magnetic moment and supersymmetry. Journal of Physics G: Nuclear and Particle Physics, 34(2):R45, 2006.
B Paul Padley, Kuver Sinha, and Kechen Wang. Natural supersymmetry, muon g−2, and the last crevices for the top squark. Physical Review D, 92(5):055025, 2015
Jonathan L Feng and Konstantin T Matchev. Supersymmetry and the anomalous anomalous magnetic moment of the muon. Physical Review Letters, 86(16):3480, 2001.
Heerak Banerjee, Pritibhajan Byakti, and Sourov Roy. Supersymmetric gauged u(1)Lμ−Lτ model for neutrinos and the muonn (g−2) anomaly. Physical Review D, 98(7):075022, 2018.
R Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1) model. Physical Review D, 89(5):056008, 2014.
Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.
Harald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.
TP Cheng and Marc Sher. Mass-matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Physical Review D, 35(11):3484, 1987.
A Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type III. The European Physical Journal C, 50(4):935–948, 2007.
Matthew D Schwartz. Quantum field theory and the standard model. Cambridge University Press, 2014.
Walter Grimus and Luís Lavoura. The seesaw mechanism at arbitrary order: disentangling the small scale from the large scale. Journal of High Energy Physics, 2000(11):042, 2001.
Shaaban Khalil. TeV-scale gauged B- L symmetry with inverse seesaw mechanism. Physical Review D, 82(7):077702, 2010.
Nouredine Zettili. Quantum mechanics: concepts and applications, 2003
Fred Jegerlehner.The anomalous magnetic moment of the muon. Springer.
Kevin J Kelly, Pedro AN Machado, Stephen J Parke, Yuber F Perez-Gonzalez, and Renata Zukanovich Funchal. Neutrino mass ordering in light of recent data. Physical Review D, 103(1):013004, 2021.
Stefano Gariazzo, Maria Archidiacono, PF de Salas, O Mena, CA Ternes, and M Tórtola. Neutrino masses and their ordering: Global Data, Priors and Models. Journal of Cosmology and Astroparticle Physics, 2018(03):011, 2018.
Maria Concepción Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908:199–217, 2016.
Maria Concepcion Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Nu-FIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe, 7(12):459, 2021
Ivan Esteban, Maria Conceptión González-Garc’aa, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. Journal of High Energy Physics, 2020(9):1–22, 2020.
MC Gonzalez-Garcia and M Yokoyama. 14. Neutrino Masses, Mixing, and Oscillations. M. Tanabashi et al.(Particle Data Group), Phys. Rev. D, 98:030001, 2018.
Florian Kaether, Wolfgang Hampel, Gerd Heusser, Juergen Kiko, and Till Kirsten. Reanalysis of the GALLEX solar neutrino flux and source experiments. Physics Letters B, 685(1):47–54, 2010.
JN Abdurashitov, VN Gavrin, VV Gorbachev, PP Gurkina, TV Ibragimova, AV Kalikhov, NG Khairnasov, TV Knodel, IN Mirmov, AA Shikhin, et al. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Physical Review C, 80(1):015807, 2009.
J Hosaka, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in Super-Kamiokande-I.Physical Review D 73(11):112001, 2006.
JP Cravens, K Abe, T Iida, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Solar neutrino measurements in Super-Kamiokande-II. Physical Review D, 78(3):032002, 2008.
K Abe, Y Hayato, T Iida, M Ikeda, C Ishihara, K Iyogi, J Kameda, K Kobayashi, Y Koshio, Y Kozuma, et al. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83(5):052010, 2011.
Gianpaolo Bellini, J Benziger, D Bick, G Bonfini, D Bravo, B Caccianiga, L Cadonati, Frank Calaprice, A Caminata, P Cavalcante, et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature, 512(7515):383, 2014.
MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 91(7):072004, 2015.
Azusa Gando, Y Gando, H Hanakago, H Ikeda, K Inoue, K Ishidoshiro, H Ishikawa, M Koga, R Matsuda, S Matsuda, et al. Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88(3):033001, 2013.
P Adamson, I Anghel, C Backhouse, G Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, D Cherdack, et al. Electron neutrino and antineutrino appearance in the full MINOS data sample. Physical review letters, 110(17):171801, 2013.
George Leibbrandt. Introduction to the technique of dimensional regularization. Reviews of Modern Physics, 47(4):849, 1975.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 70 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82360/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82360/3/1024525623.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82360/4/1024525623.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5cfe818c39fdf690c15d3d84e908ff80
cdc319c5a360eaf75890b691609e6063
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089227583881216
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Roberto Enrique, Martínez Martínez5b999a1ac37f332f476ce56e2e1e82f2Daniel Guillermo, Martínez Gómezfa70801a8dbbb2948b6c2b47f16b5987Grupo de Física Teórica de Altas Energías2022-10-11T05:33:15Z2022-10-11T05:33:15Z2022-09-26https://repositorio.unal.edu.co/handle/unal/82360Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasEl momento magnético anómalo del muón es una cantidad que ha sido medida con alta precisión que depende de parámetros fundamentales de la Física de partículas que permiten poner a prueba la exactitud del Modelo Estándar (SM). El experimento Muon g − 2, realizado por el laboratorio Fermilab, encontró una diferencia de 4.2σ respecto del valor teórico del SM. Este resultado abre la puerta para considerar física más allá del SM. Por lo tanto, el modelo no-universal U(1)X puede explicar la distancia entre estos dos resultados. En el marco de esta teoría se estudiaron los diagramas adicionales de Feynman a 1-loop que contribuyen al g − 2 del muón. En este sentido, se tuvo en cuenta que el modelo proporciona un conjunto diferente de acoples de Yukawa cuando se consideran las masas de los neutrinos en Ordenamiento Normal u Ordenamiento Inverso. Al realizar un análisis de Montecarlo de los parámetros relacionados a las correcciones radiativas, se encontró que la contribución adicional resultante de dichos diagramas ajusta el valor teórico dentro la incertidumbre del promedio experimental. (Texto tomado de la fuente)The anomalous magnetic moment of the muon is a quantity measured with a high precision which depends on the fundamental parameters of the particle physics that allows for testing the accuracy of the Standard Model (SM). The Muon g − 2 experiment, executed by the Fermilab laboratory, obtained a difference of 4.2σ concerning the theoretical value of SM. This discrepancy opens the door to physics beyond the SM. Hence, the Non-Universal U(1)X model could explain the distance between those two results. Under this framework, the additional 1-loop Feynman diagrams that contribute to the g − 2 of the muon were studied. In this regard, it was taken into account that the model provides a different set of Yukawa couplings for the Normal Ordering and Inverse Ordering of the neutrino masses. Performing a Montecarlo analysis for the model parameters related to the radiative corrections, it was found that the contribution made by such diagrams fit the theoretical value into the experimental average’s uncertainty.MaestríaMagister en Ciencias - FísicaFísica de Altas Energíasxiv, 70 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáContribución al momento magnético anómalo del muón de la extensión no-universal U (1)XContribution to the anomalous magnetic moment of the muon from the non-universal extension U(1)XTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaGerald W Bennett, B Bousquet, HN Brown, G Bunce, RM Carey, P Cushman, GT Danby, PT Debevec, M Deile, H Deng, et al. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Physical Review D, 73(7):072003,2006Babak Abi, T Albahri, S Al-Kilani, D Allspach, LP Alonzi, A Anastasi, A Anisenkov, F Azfar, K Badgley, S Baeßler, et al. Measurement of the positive muon anomalous magnetic moment to 0.46 ppm. Physical Review Letters, 126(14):141801, 2021.Tatsumi Aoyama, Nils Asmussen, Maurice Benayoun, Johan Bijnens, T Blum, M Bruno, I Caprini, CM Carloni Calame, M Ce, Gilberto Colangelo, et al. The anomalous magnetic moment of the muon in the Standard Model. Physics reports, 887:1–166, 2020.SF Mantilla, R Martinez, and F Ochoa. Neutrino and C P-even Higgs boson masses in a non-universal U(1)’ extension. Physical Review D, 95(9):095037, 2017.Sheldon L Glashow. Partial-symmetries of weak interactions. Nuclear physics, 22(4):579–588, 1961.A Salam. Elementary particle theory, Nobel symposium No. 8. ed. N. Svartholm, Almqvist and Wiksell, 1969.Steven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967.Peter W Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.Hanneke, S Fogwell, and G Gabrielse. New measurement of the electron magnetic moment and the fine structure constant. Physical Review Letters, 100(12):120801, 2008.Julian Schwinger. On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73(4):416, 1948.Julian Schwinger. Quantum electrodynamics. III. the electromagnetic properties of the electron-radiative corrections to scattering. Physical Review, 76(6):790, 1949.P Kusch and HM Foley. The magnetic moment of the electron. Physical Review, 74(3):250, 1948.Richard L Garwin, DP Hutchinson, S Penman, and G Shapiro. Accurate Determination of the μ+Magnetic Moment. Physical Review, 118(1):271, 1960.Andrzej Czarnecki and William J Marciano. Muon anomalous magnetic moment: A harbinger for “new physics”. Physical Review D, 64(1):013014, 2001.James P Miller, Eduardo de Rafael, and B Lee Roberts. Muon (g-2): experiment and theory. Reports on Progress in Physics, 70(5):795, 2007.Gustavo Castelo Branco, PM Ferreira, L Lavoura, MN Rebelo, Marc Sher, and Joao P Silva. Theory and phenomenology of two-Higgs-doublet models. Physics reports, 516(1-2):1–102, 2012.Tanmoy Mondal and Hiroshi Okada. Inverse seesaw and (g-2) anomalies in B-L extended two Higgs doublet model. Nuclear Physics B, page 115716, 2022.Luigi Delle Rose, Shaaban Khalil, and Stefano Moretti. Explaining electron and muon g-2 anomalies in an Aligned 2-Higgs Doublet Model with right-handed neutrinos. Physics Letters B, 816:136216, 2021.Tomohiro Abe, Ryosuke Sato, and Kei Yagyu. Lepton-specific two Higgs doublet model as a solution of muon g-2 anomaly. Journal of High Energy Physics, 2015(7):64, 2015.Eung Jin Chun The muon g-2 in two-Higgs-doublet models Pramana, 87(3):41, 2016.S Gabriel and S Nandi. A new two Higgs doublet model. Physics Letters B, 655(3-4):141–147, 2007.G De Conto and V Pleitez. Electron and muon anomalous magnetic dipole moment in a 331 model. Journal of High Energy Physics, 2017(5):1–32, 2017.Tianjun Li, Junle Pei, and Wenxing Zhang. Muon anomalous magnetic moment and Higgs potential stability in the 331 model from SU(6) The European Physical Journal C, 81(7):1–10, 2021.Chris Kelso, HN Long, R Martinez, and Farinaldo S Queiroz.Connection of g−2μ electroweak, dark matter, and collider constraints on 331 models. Physical Review D, 90(11):113011, 2014.Manfred Lindner, Moritz Platscher, and Farinaldo S Queiroz. A call for new physics: the muon anomalous magnetic moment and lepton flavor violation. Physics Reports, 731:1–82, 2018.Mario Reig, José WF Valle, and CA1397 Vaquera-Araujo. Unifying left–right symmetry and 331 electroweak theories. Physics Letters B, 766:35–40, 2017.Dominik Stöckinger. The muon magnetic moment and supersymmetry. Journal of Physics G: Nuclear and Particle Physics, 34(2):R45, 2006.B Paul Padley, Kuver Sinha, and Kechen Wang. Natural supersymmetry, muon g−2, and the last crevices for the top squark. Physical Review D, 92(5):055025, 2015Jonathan L Feng and Konstantin T Matchev. Supersymmetry and the anomalous anomalous magnetic moment of the muon. Physical Review Letters, 86(16):3480, 2001.Heerak Banerjee, Pritibhajan Byakti, and Sourov Roy. Supersymmetric gauged u(1)Lμ−Lτ model for neutrinos and the muonn (g−2) anomaly. Physical Review D, 98(7):075022, 2018.R Martinez, J Nisperuza, F Ochoa, and JP Rubio. Some phenomenological aspects of a new u(1) model. Physical Review D, 89(5):056008, 2014.Harald Fritzsch and Zhi-Zhong Xing. Flavor symmetries and the description of flavor mixing. Physics Letters B, 413(3-4):396–404, 1997.Harald Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B, 73(3):317–322, 1978.TP Cheng and Marc Sher. Mass-matrix ansatz and flavor nonconservation in models with multiple Higgs doublets. Physical Review D, 35(11):3484, 1987.A Carcamo, R Martinez, and J-A Rodriguez. Different kind of textures of Yukawa coupling matrices in the two Higgs doublet model type III. The European Physical Journal C, 50(4):935–948, 2007.Matthew D Schwartz. Quantum field theory and the standard model. Cambridge University Press, 2014.Walter Grimus and Luís Lavoura. The seesaw mechanism at arbitrary order: disentangling the small scale from the large scale. Journal of High Energy Physics, 2000(11):042, 2001.Shaaban Khalil. TeV-scale gauged B- L symmetry with inverse seesaw mechanism. Physical Review D, 82(7):077702, 2010.Nouredine Zettili. Quantum mechanics: concepts and applications, 2003Fred Jegerlehner.The anomalous magnetic moment of the muon. Springer.Kevin J Kelly, Pedro AN Machado, Stephen J Parke, Yuber F Perez-Gonzalez, and Renata Zukanovich Funchal. Neutrino mass ordering in light of recent data. Physical Review D, 103(1):013004, 2021.Stefano Gariazzo, Maria Archidiacono, PF de Salas, O Mena, CA Ternes, and M Tórtola. Neutrino masses and their ordering: Global Data, Priors and Models. Journal of Cosmology and Astroparticle Physics, 2018(03):011, 2018.Maria Concepción Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Global analyses of neutrino oscillation experiments. Nuclear Physics B, 908:199–217, 2016.Maria Concepcion Gonzalez-Garcia, Michele Maltoni, and Thomas Schwetz. Nu-FIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments. Universe, 7(12):459, 2021Ivan Esteban, Maria Conceptión González-Garc’aa, Michele Maltoni, Thomas Schwetz, and Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino oscillations. Journal of High Energy Physics, 2020(9):1–22, 2020.MC Gonzalez-Garcia and M Yokoyama. 14. Neutrino Masses, Mixing, and Oscillations. M. Tanabashi et al.(Particle Data Group), Phys. Rev. D, 98:030001, 2018.Florian Kaether, Wolfgang Hampel, Gerd Heusser, Juergen Kiko, and Till Kirsten. Reanalysis of the GALLEX solar neutrino flux and source experiments. Physics Letters B, 685(1):47–54, 2010.JN Abdurashitov, VN Gavrin, VV Gorbachev, PP Gurkina, TV Ibragimova, AV Kalikhov, NG Khairnasov, TV Knodel, IN Mirmov, AA Shikhin, et al. Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Physical Review C, 80(1):015807, 2009.J Hosaka, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, M Nakahata, T Namba, et al. Solar neutrino measurements in Super-Kamiokande-I.Physical Review D 73(11):112001, 2006.JP Cravens, K Abe, T Iida, K Ishihara, J Kameda, Y Koshio, A Minamino, C Mitsuda, M Miura, S Moriyama, et al. Solar neutrino measurements in Super-Kamiokande-II. Physical Review D, 78(3):032002, 2008.K Abe, Y Hayato, T Iida, M Ikeda, C Ishihara, K Iyogi, J Kameda, K Kobayashi, Y Koshio, Y Kozuma, et al. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83(5):052010, 2011.Gianpaolo Bellini, J Benziger, D Bick, G Bonfini, D Bravo, B Caccianiga, L Cadonati, Frank Calaprice, A Caminata, P Cavalcante, et al. Neutrinos from the primary proton-proton fusion process in the Sun. Nature, 512(7515):383, 2014.MG Aartsen, M Ackermann, J Adams, JA Aguilar, M Ahlers, Maryon Ahrens, D Altmann, T Anderson, C Arguelles, TC Arlen, et al. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D, 91(7):072004, 2015.Azusa Gando, Y Gando, H Hanakago, H Ikeda, K Inoue, K Ishidoshiro, H Ishikawa, M Koga, R Matsuda, S Matsuda, et al. Reactor on-off antineutrino measurement with KamLAND. Physical Review D, 88(3):033001, 2013.P Adamson, I Anghel, C Backhouse, G Barr, M Bishai, A Blake, GJ Bock, D Bogert, SV Cao, D Cherdack, et al. Electron neutrino and antineutrino appearance in the full MINOS data sample. Physical review letters, 110(17):171801, 2013.George Leibbrandt. Introduction to the technique of dimensional regularization. Reviews of Modern Physics, 47(4):849, 1975.Magnetic fieldsMagneticsCampos magnéticosMagnéticaMomento magnético anómalo del muóng − 2correcciones radiativasThe anomalous magnetic moment of the muong − 2,Radiative correctionsEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82360/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024525623.2022.pdf1024525623.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1109493https://repositorio.unal.edu.co/bitstream/unal/82360/3/1024525623.2022.pdf5cfe818c39fdf690c15d3d84e908ff80MD53THUMBNAIL1024525623.2022.pdf.jpg1024525623.2022.pdf.jpgGenerated Thumbnailimage/jpeg4376https://repositorio.unal.edu.co/bitstream/unal/82360/4/1024525623.2022.pdf.jpgcdc319c5a360eaf75890b691609e6063MD54unal/82360oai:repositorio.unal.edu.co:unal/823602023-08-09 23:04:33.041Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=