Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica
ilustraciones, gráficas, tablas
- Autores:
-
Botero Buitrago, Jenny Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84357
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Antígenos Nucleares del Virus de Epstein-Barr
Ensayos de Selección de Medicamentos Antitumorales
Epstein-Barr Virus Nuclear Antigens
Drug Screening Assays, Antitumor
Citoquinas
Péptidos
Perfil de expresión
Inflamación
Cytokines
Peptides
Expression profile
Inflammation
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_254dc12022c2967e20345f8398dc6427 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84357 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
dc.title.translated.eng.fl_str_mv |
Effect of peptides derived from the Epstein-Barr virus gp85 protein on the expression of cytokines in peripheral blood mononuclear cells |
title |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
spellingShingle |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica 570 - Biología::572 - Bioquímica Antígenos Nucleares del Virus de Epstein-Barr Ensayos de Selección de Medicamentos Antitumorales Epstein-Barr Virus Nuclear Antigens Drug Screening Assays, Antitumor Citoquinas Péptidos Perfil de expresión Inflamación Cytokines Peptides Expression profile Inflammation |
title_short |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
title_full |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
title_fullStr |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
title_full_unstemmed |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
title_sort |
Efecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periférica |
dc.creator.fl_str_mv |
Botero Buitrago, Jenny Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Urquiza Martínez, Mauricio |
dc.contributor.author.none.fl_str_mv |
Botero Buitrago, Jenny Alejandra |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Hormonas |
dc.contributor.orcid.spa.fl_str_mv |
Botero Buitrago, Jenny [0000000199904648] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Antígenos Nucleares del Virus de Epstein-Barr Ensayos de Selección de Medicamentos Antitumorales Epstein-Barr Virus Nuclear Antigens Drug Screening Assays, Antitumor Citoquinas Péptidos Perfil de expresión Inflamación Cytokines Peptides Expression profile Inflammation |
dc.subject.decs.spa.fl_str_mv |
Antígenos Nucleares del Virus de Epstein-Barr Ensayos de Selección de Medicamentos Antitumorales |
dc.subject.decs.eng.fl_str_mv |
Epstein-Barr Virus Nuclear Antigens Drug Screening Assays, Antitumor |
dc.subject.proposal.spa.fl_str_mv |
Citoquinas Péptidos Perfil de expresión Inflamación |
dc.subject.proposal.eng.fl_str_mv |
Cytokines Peptides Expression profile Inflammation |
description |
ilustraciones, gráficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-28T16:21:51Z |
dc.date.available.none.fl_str_mv |
2023-07-28T16:21:51Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84357 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84357 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Shaw DM, Merien F, Braakhuis A, Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine. 2018;104(September 2017):136–42. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Vol. 120, British Journal of Cancer. 2019. p. 6–15. Young LS, Yap LF, Murray PG. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat Rev Cancer [Internet]. 2016;16(12):789–802. Available from: https://www.nature.com/articles/nrc.2016.92 Heineman T, Gong M, Sample J, Kieff E. Identification of the Epstein-Barr virus gp85 gene. J Virol [Internet]. 1988;62(4):1101–7. Available from: https://jvi.asm.org/content/62/4/1101.long Chen J, Rowe CL, Jardetzky TS, Longnecker R. The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio [Internet]. 2012;3(1):1–9. Available from: https://mbio.asm.org/content/3/1/e00290-11.long Frappier L. Epstein-Barr virus: Current Questions and Challenges. Tumour Virus Res [Internet]. 2021;12:200218. Available from: https://doi.org/10.1016/j.tvr.2021.200218 Edson CM, Thorley-Lawson1 DA. Synthesis and Processing of the Three Major Envelope Glycoproteins of Epstein-Barr Virus. Vol. 46, Journal of Virology. 1983. Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med. 2002;8(6):594–9. Kirschner AN, Omerović J, Popov B, Longnecker R, Jardetzky TS. Soluble Epstein-Barr Virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion. J Virol. 2006;80(19):9444–54. Li Q, Turk SM, Hutt-Fletcher LM. The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol. 1995;69(7):3987–94. Wang X, Kenyon WJ, Li Q, Müllberg J, Hutt-Fletcher LM. Epstein-Barr Virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol. 1998;72(7):5552–8. Chesnokova LS, Ahuja MK, Hutt-Fletcher LM. Epstein-Barr Virus Glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. J Virol. 2014;88(21):12193–201. Chesnokova LS, Hutt-Fletcher LM. Fusion of Epstein-Barr Virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol. 2011;85(24):13214–23. Urquiza M, Suarez J, Lopez R, Vega E, Patino H, Garcia J, et al. Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochem Biophys Res Commun. 2004 Jun 18;319(1):221–9. Plata S LM, Oviedo L JF, Rincón Orozco B. Revisión sistemática: estrategias virales para la inducción de cáncer “virus de Epstein-Barr: latencia y mecanismos asociados a la oncogénesis viral.” Salud UIS. 2018;50(3):257–68. Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol [Internet]. 2018;3(2):172–80. Available from: http://dx.doi.org/10.1038/s41564-017-0081-7 Zhang H, Li Y, Wang HB, Zhang A, Chen ML, Fang ZX, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol. 2018;3(2):164–71. Borza CM, Morgan AJ, Turk SM, Hutt-Fletcher LM. Use of gHgL for Attachment of Epstein-Barr Virus to Epithelial Cells Compromises Infection. J Virol. 2004;78(10):5007–14. Hutt-Fletcher LM. Epstein-Barr Virus Entry. J Virol. 2007;81(15):7825–32. Masy E, Adriaenssens E, Montpellier C, Crépieux P, Mougel A, Quatannens B, et al. Human Monocytic Cell Lines Transformed In Vitro by Epstein-Barr Virus Display a Type II Latency and LMP-1-Dependent Proliferation. J Virol. 2002;76(13):6460–72. Savard M, Bélanger C, Tardif M, Gourde P, Flamand L, Gosselin J. Infection of primary human monocytes by Epstein-Barr Virus. J Virol. 2000;74(6):2612–9. Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg R, Tsokos GC, et al. Human complement receptor Type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3(2):1–23. Torii Y, Kawada J, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS One. 2017;1–16. Saveria M, Montani G, Gonnella R, Vitillo M, Faggioni A, Santarelli R, et al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol. 2018;1–12. Oda T, Imai S, Chiba S, Takada K. Epstein – Barr Virus Lacking Glycoprotein gp85 Cannot Infect B Cells and Epithelial Cells. 2000;58:52–8. Möhl BS, Schröter C, Klupp BG, Fuchs W, Mettenleiter TC, Jardetzky TS, et al. Comparative mutagenesis of Pseudorabies virus and Epstein-Barr Virus gH identifies a structural determinant within Domain III of gH required for surface expression and entry function. J Virol. 2016;90(5):2285–93. Guerreiro-Cacais AO, Li LQ, Donati D, Bejarano MT, Morgan A, Masucci MG, et al. Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol. 2004;85(10):2767–78. Li LQ, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V. Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood. 2002;99(10):3725–34. Parra López CA, Marchena DA, Urquiza Martínez M, Melo Cárdenas J, Vanegas M, Patarroyo Murillo ME. Abstracts for the 25th Annual Scientific Meeting of the International Society for Biological Therapy of Cancer. In: Journal of Immunotherapy [Internet]. 2010. p. 879. Available from: https://journals.lww.com/immunotherapy-journal/Citation/2010/10000/Abstracts_for_the_25th_Annual_Scientific_Meeting.13.aspx Urquiza M, Melo-Cardenas J, Guevara T, Echeverria I, Rodriguez IC, Vanegas M, et al. α-Helix peptides designed from EBV-gH protein display higher antigenicity and induction of monocyte apoptosis than the native peptide. Amino Acids. 2010;39(5):1507–19. Abbas AK, Lichtman AH, Pillai S. Inmunología Celular y Molecular. Octava Edi. Inc E, editor. Barcelona: Saunders; 2015. 537 p. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol [Internet]. 2018;14(s2):1–10. Available from: https://doi.org/10.1186/s13223-018-0278-1 McDonald DR, Levy O. Innate Immunity. In: Clinical Immunology [Internet]. Fifth Edit. Elsevier Ltd; 2019. p. 39-53.e1. Available from: https://doi.org/10.1016/B978-0-7020-6896-6.00003-X Stunnenberg HG, Netea MG, Latz E, Xavier RJ, ONeill LAJ, Natoli G, et al. Trained immunity: A program of innate immune memory in health and disease. Science (80). 2016;352(6284):aaf1098–aaf1098. Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines - A review. Anal Chim Acta [Internet]. 2015;853(1):95–115. Available from: http://dx.doi.org/10.1016/j.aca.2014.10.009 Schirmer M, Kumar V, Netea MG, Xavier RJ. The causes and consequences of variation in human cytokine production in health. Curr Opin Immunol [Internet]. 2018;54:50–8. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L2000858704%0Ahttp://dx.doi.org/10.1016/j.coi.2018.05.012 Zhang J-M, An J. Cytokines, Inflammation, and Pain. Int Anesthesiol Clin. 2007;45(2):27–37. Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Vol. 8, Nature Reviews Cancer. 2008. p. 887–99. O’Shea JJ, Murray PJ. Cytokine Signaling Modules in Inflammatory Responses. Immunity. 2008;28(4):477–87. Cytokines in the balance [Internet]. Vol. 20, Nature Immunology. 2019. Available from: https://doi.org/10.1038/s41590-019-0557-0 Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev [Internet]. 2012;76(1):16–32. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.05015-11 Dinarello CA. Proinflammatory cytokines. Chest [Internet]. 2000;118(2):503–8. Available from: http://dx.doi.org/10.1378/chest.118.2.503 Ray A. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016;4(2):1–9. Shaikh PZ. Cytokines & their physiologic and pharmacologic functions in inflammation. Int J Pharm Life Sci. 2011;2(11):1247–63. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Vol. 1843, Biochimica et Biophysica Acta - Molecular Cell Research. 2014. p. 2563–82. Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol. 2016;7(DEC):1–7. Spellberg B, Edwards JE. Type 1/type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32(1):76–102. Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest [Internet]. 2000;117(4):1162–72. Available from: http://dx.doi.org/10.1378/chest.117.4.1162 Wynn TA. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat Rev Immunol [Internet]. 2015;15(5):271–82. Available from: http://dx.doi.org/10.1038/nri3831 Deo SS, Mistry KJ, Kakade AM, Niphadkar P V. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010;27(2):66–71. Henry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Reports. 2017;3(6):346–59. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24(3):241–55. Mitra S, Leonard WJ. Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J Leukoc Biol. 2018;103(4):643–55. Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004;101(11):3880–5. Weaver LK, Behrens EM. Weathering the Storm: Improving Therapeutic Interventions for Cytokine Storm Syndromes by Targeting Disease Pathogenesis. Curr Treat Options Rheumatol. 2017;3(1):33–48. Yiu HH, Graham AL, Stengel RF. Dynamics of a Cytokine Storm. PLoS One. 2012;7(10). Riddell SR. Adrenaline fuels a cytokine storm during immunotherapy. Vol. 564, Nature. 2018. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol [Internet]. 2021;0123456789. Available from: http://dx.doi.org/10.1038/s41577-021-00547-6 Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med [Internet]. 2021;53(7):1116–23. Available from: http://dx.doi.org/10.1038/s12276-021-00649-0 Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther [Internet]. 2021;6(1):1–20. Available from: http://dx.doi.org/10.1038/s41392-021-00679-0 Behrens EM, Koretzky GA. Cytokine Storm Syndrome Looking Toward the Precision Medicine Era. Arthritis Rheumatol. 2017;69(6):1135–43. Xu HM. Th1 cytokine-based immunotherapy for cancer. Vol. 13, Hepatobiliary and Pancreatic Diseases International. Elsevier (Singapore) Pte Ltd; 2014. p. 482–94. Anusha A, Kumar S, Kaushik S, Jyoti A. Cancer immunotherapy. J Pharm Sci Res. 2017;9(5):662–6. Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. J Interf Cytokine Res. 2019;39(1):6–21. Chulpanova DS, Kitaeva K V., Green AR, Rizvanov AA, Solovyeva V V. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol. 2020;8(June). Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;0123456789. Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther. 2021;15:2269–87. McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J. 2022. Riddy DM, Goy E, Delerive P, Summers RJ, Sexton PM, Langmead CJ. Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS One. 2018;13(5):1–19. ATCC. U-937 (ATCC® CRL-1593.2TM) [Internet]. American Type Cell Collection. Available from: https://www.atcc.org/products/all/CRL-1593.2.aspx Tang B, Li Z, Huang D, Zheng L, Li Q. Screening of a Specific Peptide Binding to VPAC1 Receptor from a Phage Display Peptide Library. PLoS One. 2013;8(1). Invitrogen. Hoechst Stains [Internet]. Journal of Histochemistry and Cytochemistry. 2005. p. 9–12. Available from: https://www.thermofisher.com/order/catalog/product/H3570#/H3570https://www.thermofisher.com/order/catalog/product/H3570#/H3570 Chang H-Y, Huang H-C, Huang T-C, Yang P-C, Wang Y-C, Juan H-F. Flow Cytometric Detection of Mitochondrial Membrane Potential. Bio-protocol [Internet]. 2013;3(8):e430. Available from: https://doi.org/10.21769/BioProtoc.430 Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med. 2001;164(3):389–95. Invitrogen. TRIzol® Reagent User Guide [Internet]. ThermoFisher Scientific. 2020. p. 1–5. Available from: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdf Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1–11. Stothard P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques. 2000;28(6):1102–4. Bio-Rad Laboratories I. Real-Time PCR Applications Guide. 1st ed. 2006. 1–100 p. Sánchez-Barinas CD, Vergara-Vanegas V, Gamboa-Hernández CM, Ocampo M, Cuello-Oliveros A, Patarroyo MA, et al. Peptide-pulsed dendritic cells’ immunomodulating effect regarding Mycobacterium tuberculosis growth in macrophages. Immunobiology. 2023;228(2). Hajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial ghosts of Escherichia coli drive efficient maturation of bovine monocyte-derived dendritic cells. PLoS One. 2015;10(12):1–15. Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–23. Zaro JL, Vekich JE, Tran T, Shen W-C. Nuclear localization of Cell-Penetrating Peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Mol Pharm [Internet]. 2009;6(2):337–44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther. 2002;9(3):157–67. Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Irina B, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9. Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Vol. 5, Future Medicinal Chemistry. Future Science Ltd London, UK ; 2013. p. 53–67. Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A. 2011;79 A(6):405–25. Özgen Ü, Savaşan S, Buck S, Ravindranath Y. Comparison of DiOC6(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Commun Clin Cytom. 2000;42(1):74–8. Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126–38. Nagy G, Koncz A, Perl A. T Cell Activation-Induced Mitochondrial Hyperpolarization Is Mediated by Ca 2+ - and Redox-Dependent Production of Nitric Oxide . J Immunol. 2003;171(10):5188–97. Marek N, Myśliwska J, Raczyńska K, Trzonkowski P. Membrane potential of CD4+ T cells is a subset specific feature that depends on the direct cell-to-cell contacts with monocytes. Hum Immunol. 2010;71(7):666–75. Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl Res [Internet]. 2010;156(1):15–25. Available from: http://dx.doi.org/10.1016/j.trsl.2010.04.001 Chen J, Chernatynskaya A V., Li JW, Kimbrell MR, Cassidy RJ, Perry DJ, et al. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep [Internet]. 2017;7(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-017-11056-9 Jones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mol Aspects Med. 2020;71(1):1–27. Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol [Internet]. 2017;18(5):488–98. Available from: https://doi.org/10.1038/ni.3704 Erndt-Marino J, Hahn MS. Membrane potential controls macrophage activation. In: 10th World Biomaterials Congress [Internet]. Montreal: Frontiers in Bioengineering and Biotechnology; 2016. Available from: https://www.frontiersin.org/10.3389/conf.fbioe.2016.01.00360/event_abstract Gergely P, Niland B, Gonchoroff N, Pullman R, Phillips PE, Perl A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus 1. J Immunol [Internet]. 2002;169(2):1092–101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf Stanilova SA, Miteva LD. Dynamics in expression of the IL-12 related cytokine transcripts of IL-12A, IL-12B and IL-23 after stimulation of human PBMC. Trakia J Sci. 2008;6(1):7–11. Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 2015;75(2):249–55. Hochrein H, O’Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med. 2000;192(6):823–33. Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25. Gadani, Sachin P; Cronk J. Interleukin-4: A Cytokine to Remember. J Immunol. 2013;189(9):4213–9. Smiley ST, Grusby MJ. Interleukin 4. In: Encyclopedia of Immunology. 1998. p. 1451–3. Kriegel MA, Tretter T, Blank N, Schiller M, Gabler C, Winkler S, et al. Interleukin-4 supports interleukin-12-induced proliferation and interferon-γ secretion in human activated lymphoblasts and T helper type 1 cells. Immunology. 2006;119(1):43–53. Gor DO, Rose NR, Greenspan NS. Th1-Th2: A Procrustean paradigm. Nat Immunol. 2003;4(6):503–5. Kaliński P, Smits HH, Schuitemaker JHN, Vieira PL, van Eijk M, de Jong EC, et al. IL-4 Is a Mediator of IL-12p70 Induction by Human Th2 Cells: Reversal of Polarized Th2 Phenotype by Dendritic Cells. J Immunol. 2000;165(4):1877–81. Jeannin P, Delneste Y, Life P, Gauchat J ‐F, Kaiserlian D, Bonnefoy J ‐Y. Interleukin‐12 increases interleukin‐4 production by established human ThO and Th2‐like T cell clones. Eur J Immunol. 1995;25(8):2247–52. Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and G iα dependent PI-3kinase signalling. J Inflamm. 2012;9:2–8. Janský L, Reymanová P, Kopecký J. Dynamics of Cytokine Production in Human Peripheral Blood Mononuclear Cells Stimulated by LPS or Infected by Borrelia. Physiol Res. 2003;52(5):593–8. Wu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep. 2016;14(6):5281–7. Saraiva M, Saraiva M, Vieira P, Vieira P, Vieira P, O’Garra A, et al. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):1–19. Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, et al. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors. J Clin Oncol [Internet]. 2016 Aug 15;34(29):3562–9. Available from: https://doi.org/10.1200/JCO.2016.68.1106 Lauw FN, Pajkrt D, Hack E, Kurimoto M, Van Deventer S, Van der Poll T. Proinflammatory Efects of IL-10 During Human Endotoxemia. J Immunol. 2000;165(5):2783–9. Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol [Internet]. 2015;16(5):448–57. Available from: http://dx.doi.org/10.1038/ni.3153 Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1(6):510–4. Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. 2014;6(Kishimoto 1989):1–16. Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Vol. 140, Cell. 2010. p. 883–99. Grivennikov SI, Karin M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. In: Annals of the Rheumatic Diseases. 2011. Scott KA, Arnott CH, Robinson SC, Moore RJ, Thompson RG, Marshall JF, et al. TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion. A role for TNF-α in keratinocyte migration? Oncogene. 2004;23(41):6954–66. Bigatto V, De Bacco F, Casanova E, Reato G, Lanzetti L, Isella C, et al. TNF-α promotes invasive growth through the MET signaling pathway. Mol Oncol. 2015;9(2):377–88. Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116(32):16046–55. Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: Proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9(MAR). Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. IL-4: An important cytokine in determining the fate of T cells. Biophys Rev. 2014;6(1):111–8. Hamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci. 2010;11(3):789–806. Hashimoto M, Im SJ, Araki K, Ahmed R. Cytokine-mediated regulation of CD8 T-cell responses during acute and chronic viral infection. Cold Spring Harb Perspect Biol. 2019;11(1):1–17 Yi H-J, Lu G-X. Adherent and non-adherent dendritic cells are equivalently qualified in GM-CSF, IL-4 and TNF-α culture system. Cell Immunol. 2012;277(1–2):44–8. O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci [Internet]. 2015;72(22):4309–25. Available from: https://doi.org/10.1007/s00018-015-2005-0 Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev [Internet]. 2008;19(1):41–52. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf Patente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10(JAN):1–18. Kuhn S, Yang J, Ronchese F. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front Immunol. 2015;6(NOV):1–14. Stephens TA, Nikoopour E, Rider BJ, Leon-ponte M, Chau TA, Chaturvedi P, et al. Dendritic cell differentiation induced by a self-peptide derived from Apolipoprotein E. jo. 2008;181(10):6859–71. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados al autor, 2023 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 78 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84357/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84357/2/1026297033.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84357/3/1026297033.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 2db99db9c6e3197e36083bddff728e42 9821ea68f09e2800d8155d804e86075e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090079218434048 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urquiza Martínez, Mauricioe587bea6b995ab20cfac09ef61d49a2fBotero Buitrago, Jenny Alejandra99039ff504a8958962ab3a2b7bb84fa1Grupo de Investigación en HormonasBotero Buitrago, Jenny [0000000199904648]2023-07-28T16:21:51Z2023-07-28T16:21:51Z2023https://repositorio.unal.edu.co/handle/unal/84357Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas citoquinas son proteínas involucradas principalmente en la comunicación intercelular durante la respuesta inmune. Algunas citoquinas pueden inhibir el desarrollo y progresión de tumores, y estos efectos parecen estar relacionados con la modulación de la respuesta antitumoral. Estudios previos han identificado moléculas capaces de regular su expresión, entre ellas, un péptido derivado del sitio de unión de la glicoproteína gp85 del virus de Epstein-Barr a leucocitos humanos, denominado 11438. En este trabajo, se evaluó el efecto de este péptido y su análogo (33210) sobre la producción de citoquinas pro y antiinflamatorias, a nivel de ARNm y de proteína, en células mononucleares de sangre periférica (PBMCs) sanas, así como la inducción de cambios fenotípicos en esta población celular. Se determinó que los péptidos inducen un aumento en la expresión génica de citoquinas como IL-12B e IL-4, y que el péptido 33210 modificó el perfil de expresión de citoquinas a nivel de proteína al aumentar la producción de citoquinas inflamatorias como TNF-α, IL-8 e IL-6. Con relación a los marcadores de superficie de linfocitos y monocitos específicamente, se estableció una tendencia que indica que los péptidos modifican su expresión, indicando una regulación continua de la respuesta inmune. Estos resultados sugieren que los péptidos evaluados pueden actuar como moléculas promisorias para ayudar a la erradicación de células tumorales, en tanto inducen una activación de la respuesta inmune mediada por la expresión de citoquinas pro y antiinflamatorias. (Texto tomado de la fuente)Cytokines are proteins mainly involved in intercellular communication during the immune response. Some cytokines can inhibit the development and progression of tumors, and these effects seem to be related to the modulation of the antitumor response. Previous studies have identified molecules capable of regulating its expression, among them, a peptide derived from the binding site of the glycoprotein gp85 of the Epstein-Barr virus to human leukocytes, called 11438. In this work, the effect of this peptide was evaluated and its analogue (33210) on the production of pro- and anti-inflammatory cytokines, at the mRNA and protein level, in healthy peripheral blood mononuclear cells (PBMCs), as well as the induction of phenotypic changes in this cell population. It was determined that the peptides induce an increase in the gene expression of cytokines such as IL-12B and IL-4, and that peptide 33210 modified the cytokine expression profile at the protein level by increasing the production of inflammatory cytokines such as TNF-α, IL-8 and IL-6. Regarding the surface markers of lymphocytes and monocytes specifically, a trend was established indicating that the peptides modify their expression, indicating a continuous regulation of the immune response. These results suggest that the peptides evaluated may act as promising molecules to help eradicate tumor cells, while inducing an activation of the immune response mediated by the expression of pro- and anti-inflammatory cytokines.MaestríaMagíster en Ciencias - BioquímicaBioactividadxiv, 78 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaAntígenos Nucleares del Virus de Epstein-BarrEnsayos de Selección de Medicamentos AntitumoralesEpstein-Barr Virus Nuclear AntigensDrug Screening Assays, AntitumorCitoquinasPéptidosPerfil de expresiónInflamaciónCytokinesPeptidesExpression profileInflammationEfecto de péptidos derivados de la proteína gp85 del virus de Epstein-Barr sobre la expresión de citoquinas en células mononucleares de sangre periféricaEffect of peptides derived from the Epstein-Barr virus gp85 protein on the expression of cytokines in peripheral blood mononuclear cellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMShaw DM, Merien F, Braakhuis A, Dulson D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine. 2018;104(September 2017):136–42.Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Vol. 120, British Journal of Cancer. 2019. p. 6–15.Young LS, Yap LF, Murray PG. Epstein-Barr virus: More than 50 years old and still providing surprises. Nat Rev Cancer [Internet]. 2016;16(12):789–802. Available from: https://www.nature.com/articles/nrc.2016.92Heineman T, Gong M, Sample J, Kieff E. Identification of the Epstein-Barr virus gp85 gene. J Virol [Internet]. 1988;62(4):1101–7. Available from: https://jvi.asm.org/content/62/4/1101.longChen J, Rowe CL, Jardetzky TS, Longnecker R. The KGD motif of Epstein-Barr virus gH/gL is bifunctional, orchestrating infection of B cells and epithelial cells. MBio [Internet]. 2012;3(1):1–9. Available from: https://mbio.asm.org/content/3/1/e00290-11.longFrappier L. Epstein-Barr virus: Current Questions and Challenges. Tumour Virus Res [Internet]. 2021;12:200218. Available from: https://doi.org/10.1016/j.tvr.2021.200218Edson CM, Thorley-Lawson1 DA. Synthesis and Processing of the Three Major Envelope Glycoproteins of Epstein-Barr Virus. Vol. 46, Journal of Virology. 1983.Borza CM, Hutt-Fletcher LM. Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med. 2002;8(6):594–9.Kirschner AN, Omerović J, Popov B, Longnecker R, Jardetzky TS. Soluble Epstein-Barr Virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion. J Virol. 2006;80(19):9444–54.Li Q, Turk SM, Hutt-Fletcher LM. The Epstein-Barr virus (EBV) BZLF2 gene product associates with the gH and gL homologs of EBV and carries an epitope critical to infection of B cells but not of epithelial cells. J Virol. 1995;69(7):3987–94.Wang X, Kenyon WJ, Li Q, Müllberg J, Hutt-Fletcher LM. Epstein-Barr Virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol. 1998;72(7):5552–8.Chesnokova LS, Ahuja MK, Hutt-Fletcher LM. Epstein-Barr Virus Glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. J Virol. 2014;88(21):12193–201.Chesnokova LS, Hutt-Fletcher LM. Fusion of Epstein-Barr Virus with epithelial cells can be triggered by αvβ5 in addition to αvβ6 and αvβ8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol. 2011;85(24):13214–23.Urquiza M, Suarez J, Lopez R, Vega E, Patino H, Garcia J, et al. Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes. Biochem Biophys Res Commun. 2004 Jun 18;319(1):221–9.Plata S LM, Oviedo L JF, Rincón Orozco B. Revisión sistemática: estrategias virales para la inducción de cáncer “virus de Epstein-Barr: latencia y mecanismos asociados a la oncogénesis viral.” Salud UIS. 2018;50(3):257–68.Chen J, Sathiyamoorthy K, Zhang X, Schaller S, Perez White BE, Jardetzky TS, et al. Ephrin receptor A2 is a functional entry receptor for Epstein-Barr virus. Nat Microbiol [Internet]. 2018;3(2):172–80. Available from: http://dx.doi.org/10.1038/s41564-017-0081-7Zhang H, Li Y, Wang HB, Zhang A, Chen ML, Fang ZX, et al. Ephrin receptor A2 is an epithelial cell receptor for Epstein-Barr virus entry. Nat Microbiol. 2018;3(2):164–71.Borza CM, Morgan AJ, Turk SM, Hutt-Fletcher LM. Use of gHgL for Attachment of Epstein-Barr Virus to Epithelial Cells Compromises Infection. J Virol. 2004;78(10):5007–14.Hutt-Fletcher LM. Epstein-Barr Virus Entry. J Virol. 2007;81(15):7825–32.Masy E, Adriaenssens E, Montpellier C, Crépieux P, Mougel A, Quatannens B, et al. Human Monocytic Cell Lines Transformed In Vitro by Epstein-Barr Virus Display a Type II Latency and LMP-1-Dependent Proliferation. J Virol. 2002;76(13):6460–72.Savard M, Bélanger C, Tardif M, Gourde P, Flamand L, Gosselin J. Infection of primary human monocytes by Epstein-Barr Virus. J Virol. 2000;74(6):2612–9.Ogembo JG, Kannan L, Ghiran I, Nicholson-Weller A, Finberg R, Tsokos GC, et al. Human complement receptor Type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep. 2013;3(2):1–23.Torii Y, Kawada J, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS One. 2017;1–16.Saveria M, Montani G, Gonnella R, Vitillo M, Faggioni A, Santarelli R, et al. EBV up-regulates PD-L1 on the surface of primary monocytes by increasing ROS and activating TLR signaling and STAT3. J Leukoc Biol. 2018;1–12.Oda T, Imai S, Chiba S, Takada K. Epstein – Barr Virus Lacking Glycoprotein gp85 Cannot Infect B Cells and Epithelial Cells. 2000;58:52–8.Möhl BS, Schröter C, Klupp BG, Fuchs W, Mettenleiter TC, Jardetzky TS, et al. Comparative mutagenesis of Pseudorabies virus and Epstein-Barr Virus gH identifies a structural determinant within Domain III of gH required for surface expression and entry function. J Virol. 2016;90(5):2285–93.Guerreiro-Cacais AO, Li LQ, Donati D, Bejarano MT, Morgan A, Masucci MG, et al. Capacity of Epstein-Barr virus to infect monocytes and inhibit their development into dendritic cells is affected by the cell type supporting virus replication. J Gen Virol. 2004;85(10):2767–78.Li LQ, Liu D, Hutt-Fletcher L, Morgan A, Masucci MG, Levitsky V. Epstein-Barr virus inhibits the development of dendritic cells by promoting apoptosis of their monocyte precursors in the presence of granulocyte macrophage-colony-stimulating factor and interleukin-4. Blood. 2002;99(10):3725–34.Parra López CA, Marchena DA, Urquiza Martínez M, Melo Cárdenas J, Vanegas M, Patarroyo Murillo ME. Abstracts for the 25th Annual Scientific Meeting of the International Society for Biological Therapy of Cancer. In: Journal of Immunotherapy [Internet]. 2010. p. 879. Available from: https://journals.lww.com/immunotherapy-journal/Citation/2010/10000/Abstracts_for_the_25th_Annual_Scientific_Meeting.13.aspxUrquiza M, Melo-Cardenas J, Guevara T, Echeverria I, Rodriguez IC, Vanegas M, et al. α-Helix peptides designed from EBV-gH protein display higher antigenicity and induction of monocyte apoptosis than the native peptide. Amino Acids. 2010;39(5):1507–19.Abbas AK, Lichtman AH, Pillai S. Inmunología Celular y Molecular. Octava Edi. Inc E, editor. Barcelona: Saunders; 2015. 537 p.Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy, Asthma Clin Immunol [Internet]. 2018;14(s2):1–10. Available from: https://doi.org/10.1186/s13223-018-0278-1McDonald DR, Levy O. Innate Immunity. In: Clinical Immunology [Internet]. Fifth Edit. Elsevier Ltd; 2019. p. 39-53.e1. Available from: https://doi.org/10.1016/B978-0-7020-6896-6.00003-XStunnenberg HG, Netea MG, Latz E, Xavier RJ, ONeill LAJ, Natoli G, et al. Trained immunity: A program of innate immune memory in health and disease. Science (80). 2016;352(6284):aaf1098–aaf1098.Stenken JA, Poschenrieder AJ. Bioanalytical chemistry of cytokines - A review. Anal Chim Acta [Internet]. 2015;853(1):95–115. Available from: http://dx.doi.org/10.1016/j.aca.2014.10.009Schirmer M, Kumar V, Netea MG, Xavier RJ. The causes and consequences of variation in human cytokine production in health. Curr Opin Immunol [Internet]. 2018;54:50–8. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L2000858704%0Ahttp://dx.doi.org/10.1016/j.coi.2018.05.012Zhang J-M, An J. Cytokines, Inflammation, and Pain. Int Anesthesiol Clin. 2007;45(2):27–37.Seruga B, Zhang H, Bernstein LJ, Tannock IF. Cytokines and their relationship to the symptoms and outcome of cancer. Vol. 8, Nature Reviews Cancer. 2008. p. 887–99.O’Shea JJ, Murray PJ. Cytokine Signaling Modules in Inflammatory Responses. Immunity. 2008;28(4):477–87.Cytokines in the balance [Internet]. Vol. 20, Nature Immunology. 2019. Available from: https://doi.org/10.1038/s41590-019-0557-0Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the Eye of the Cytokine Storm. Microbiol Mol Biol Rev [Internet]. 2012;76(1):16–32. Available from: http://mmbr.asm.org/cgi/doi/10.1128/MMBR.05015-11Dinarello CA. Proinflammatory cytokines. Chest [Internet]. 2000;118(2):503–8. Available from: http://dx.doi.org/10.1378/chest.118.2.503Ray A. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016;4(2):1–9.Shaikh PZ. Cytokines & their physiologic and pharmacologic functions in inflammation. Int J Pharm Life Sci. 2011;2(11):1247–63.Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Vol. 1843, Biochimica et Biophysica Acta - Molecular Cell Research. 2014. p. 2563–82.Luo Y, Zheng SG. Hall of fame among pro-inflammatory cytokines: Interleukin-6 gene and its transcriptional regulation mechanisms. Front Immunol. 2016;7(DEC):1–7.Spellberg B, Edwards JE. Type 1/type 2 immunity in infectious diseases. Clin Infect Dis. 2001;32(1):76–102.Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest [Internet]. 2000;117(4):1162–72. Available from: http://dx.doi.org/10.1378/chest.117.4.1162Wynn TA. Type 2 cytokines: Mechanisms and therapeutic strategies. Nat Rev Immunol [Internet]. 2015;15(5):271–82. Available from: http://dx.doi.org/10.1038/nri3831Deo SS, Mistry KJ, Kakade AM, Niphadkar P V. Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India. 2010;27(2):66–71.Henry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Reports. 2017;3(6):346–59.Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010;24(3):241–55.Mitra S, Leonard WJ. Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J Leukoc Biol. 2018;103(4):643–55.Cote-Sierra J, Foucras G, Guo L, Chiodetti L, Young HA, Hu-Li J, et al. Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci U S A. 2004;101(11):3880–5.Weaver LK, Behrens EM. Weathering the Storm: Improving Therapeutic Interventions for Cytokine Storm Syndromes by Targeting Disease Pathogenesis. Curr Treat Options Rheumatol. 2017;3(1):33–48.Yiu HH, Graham AL, Stengel RF. Dynamics of a Cytokine Storm. PLoS One. 2012;7(10).Riddell SR. Adrenaline fuels a cytokine storm during immunotherapy. Vol. 564, Nature. 2018.Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol [Internet]. 2021;0123456789. Available from: http://dx.doi.org/10.1038/s41577-021-00547-6Kang S, Kishimoto T. Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. Exp Mol Med [Internet]. 2021;53(7):1116–23. Available from: http://dx.doi.org/10.1038/s12276-021-00649-0Yang L, Xie X, Tu Z, Fu J, Xu D, Zhou Y. The signal pathways and treatment of cytokine storm in COVID-19. Signal Transduct Target Ther [Internet]. 2021;6(1):1–20. Available from: http://dx.doi.org/10.1038/s41392-021-00679-0Behrens EM, Koretzky GA. Cytokine Storm Syndrome Looking Toward the Precision Medicine Era. Arthritis Rheumatol. 2017;69(6):1135–43.Xu HM. Th1 cytokine-based immunotherapy for cancer. Vol. 13, Hepatobiliary and Pancreatic Diseases International. Elsevier (Singapore) Pte Ltd; 2014. p. 482–94.Anusha A, Kumar S, Kaushik S, Jyoti A. Cancer immunotherapy. J Pharm Sci Res. 2017;9(5):662–6.Conlon KC, Miljkovic MD, Waldmann TA. Cytokines in the Treatment of Cancer. J Interf Cytokine Res. 2019;39(1):6–21.Chulpanova DS, Kitaeva K V., Green AR, Rizvanov AA, Solovyeva V V. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol. 2020;8(June).Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer. 2021;0123456789.Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther. 2021;15:2269–87.McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J. 2022.Riddy DM, Goy E, Delerive P, Summers RJ, Sexton PM, Langmead CJ. Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS One. 2018;13(5):1–19.ATCC. U-937 (ATCC® CRL-1593.2TM) [Internet]. American Type Cell Collection. Available from: https://www.atcc.org/products/all/CRL-1593.2.aspxTang B, Li Z, Huang D, Zheng L, Li Q. Screening of a Specific Peptide Binding to VPAC1 Receptor from a Phage Display Peptide Library. PLoS One. 2013;8(1).Invitrogen. Hoechst Stains [Internet]. Journal of Histochemistry and Cytochemistry. 2005. p. 9–12. Available from: https://www.thermofisher.com/order/catalog/product/H3570#/H3570https://www.thermofisher.com/order/catalog/product/H3570#/H3570Chang H-Y, Huang H-C, Huang T-C, Yang P-C, Wang Y-C, Juan H-F. Flow Cytometric Detection of Mitochondrial Membrane Potential. Bio-protocol [Internet]. 2013;3(8):e430. Available from: https://doi.org/10.21769/BioProtoc.430Adrie C, Bachelet M, Vayssier-Taussat M, Russo-Marie F, Bouchaert I, Adib-Conquy M, et al. Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med. 2001;164(3):389–95.Invitrogen. TRIzol® Reagent User Guide [Internet]. ThermoFisher Scientific. 2020. p. 1–5. Available from: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/trizol_reagent.pdfChomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–9.Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(134):1–11.Stothard P. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques. 2000;28(6):1102–4.Bio-Rad Laboratories I. Real-Time PCR Applications Guide. 1st ed. 2006. 1–100 p.Sánchez-Barinas CD, Vergara-Vanegas V, Gamboa-Hernández CM, Ocampo M, Cuello-Oliveros A, Patarroyo MA, et al. Peptide-pulsed dendritic cells’ immunomodulating effect regarding Mycobacterium tuberculosis growth in macrophages. Immunobiology. 2023;228(2).Hajam IA, Dar PA, Appavoo E, Kishore S, Bhanuprakash V, Ganesh K. Bacterial ghosts of Escherichia coli drive efficient maturation of bovine monocyte-derived dendritic cells. PLoS One. 2015;10(12):1–15.Ruseska I, Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J Nanotechnol. 2020;11:101–23.Zaro JL, Vekich JE, Tran T, Shen W-C. Nuclear localization of Cell-Penetrating Peptides is dependent on endocytosis rather than cytosolic delivery in CHO cells. Mol Pharm [Internet]. 2009;6(2):337–44. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfCartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther. 2002;9(3):157–67.Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Irina B, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9.Wen S, Zhu D, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Vol. 5, Future Medicinal Chemistry. Future Science Ltd London, UK ; 2013. p. 53–67.Cottet-Rousselle C, Ronot X, Leverve X, Mayol JF. Cytometric assessment of mitochondria using fluorescent probes. Cytom Part A. 2011;79 A(6):405–25.Özgen Ü, Savaşan S, Buck S, Ravindranath Y. Comparison of DiOC6(3) uptake and annexin V labeling for quantification of apoptosis in leukemia cells and non-malignant T lymphocytes from children. Commun Clin Cytom. 2000;42(1):74–8.Mathur A, Hong Y, Kemp BK, Barrientos AA, Erusalimsky JD. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000;46(1):126–38.Nagy G, Koncz A, Perl A. T Cell Activation-Induced Mitochondrial Hyperpolarization Is Mediated by Ca 2+ - and Redox-Dependent Production of Nitric Oxide . J Immunol. 2003;171(10):5188–97.Marek N, Myśliwska J, Raczyńska K, Trzonkowski P. Membrane potential of CD4+ T cells is a subset specific feature that depends on the direct cell-to-cell contacts with monocytes. Hum Immunol. 2010;71(7):666–75.Widlansky ME, Wang J, Shenouda SM, Hagen TM, Smith AR, Kizhakekuttu TJ, et al. Altered mitochondrial membrane potential, mass, and morphology in the mononuclear cells of humans with type 2 diabetes. Transl Res [Internet]. 2010;156(1):15–25. Available from: http://dx.doi.org/10.1016/j.trsl.2010.04.001Chen J, Chernatynskaya A V., Li JW, Kimbrell MR, Cassidy RJ, Perry DJ, et al. T cells display mitochondria hyperpolarization in human type 1 diabetes. Sci Rep [Internet]. 2017;7(1):1–11. Available from: http://dx.doi.org/10.1038/s41598-017-11056-9Jones AE, Divakaruni AS. Macrophage activation as an archetype of mitochondrial repurposing. Mol Aspects Med. 2020;71(1):1–27.Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol [Internet]. 2017;18(5):488–98. Available from: https://doi.org/10.1038/ni.3704Erndt-Marino J, Hahn MS. Membrane potential controls macrophage activation. In: 10th World Biomaterials Congress [Internet]. Montreal: Frontiers in Bioengineering and Biotechnology; 2016. Available from: https://www.frontiersin.org/10.3389/conf.fbioe.2016.01.00360/event_abstractGergely P, Niland B, Gonchoroff N, Pullman R, Phillips PE, Perl A. Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus 1. J Immunol [Internet]. 2002;169(2):1092–101. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfStanilova SA, Miteva LD. Dynamics in expression of the IL-12 related cytokine transcripts of IL-12A, IL-12B and IL-23 after stimulation of human PBMC. Trakia J Sci. 2008;6(1):7–11.Sun L, He C, Nair L, Yeung J, Egwuagu CE. Interleukin 12 (IL-12) family cytokines: Role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 2015;75(2):249–55.Hochrein H, O’Keeffe M, Luft T, Vandenabeele S, Grumont RJ, Maraskovsky E, et al. Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med. 2000;192(6):823–33.Oppmann B, Lesley R, Blom B, Timans JC, Xu Y, Hunte B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13(5):715–25.Gadani, Sachin P; Cronk J. Interleukin-4: A Cytokine to Remember. J Immunol. 2013;189(9):4213–9.Smiley ST, Grusby MJ. Interleukin 4. In: Encyclopedia of Immunology. 1998. p. 1451–3.Kriegel MA, Tretter T, Blank N, Schiller M, Gabler C, Winkler S, et al. Interleukin-4 supports interleukin-12-induced proliferation and interferon-γ secretion in human activated lymphoblasts and T helper type 1 cells. Immunology. 2006;119(1):43–53.Gor DO, Rose NR, Greenspan NS. Th1-Th2: A Procrustean paradigm. Nat Immunol. 2003;4(6):503–5.Kaliński P, Smits HH, Schuitemaker JHN, Vieira PL, van Eijk M, de Jong EC, et al. IL-4 Is a Mediator of IL-12p70 Induction by Human Th2 Cells: Reversal of Polarized Th2 Phenotype by Dendritic Cells. J Immunol. 2000;165(4):1877–81.Jeannin P, Delneste Y, Life P, Gauchat J ‐F, Kaiserlian D, Bonnefoy J ‐Y. Interleukin‐12 increases interleukin‐4 production by established human ThO and Th2‐like T cell clones. Eur J Immunol. 1995;25(8):2247–52.Ngkelo A, Meja K, Yeadon M, Adcock I, Kirkham PA. LPS induced inflammatory responses in human peripheral blood mononuclear cells is mediated through NOX4 and G iα dependent PI-3kinase signalling. J Inflamm. 2012;9:2–8.Janský L, Reymanová P, Kopecký J. Dynamics of Cytokine Production in Human Peripheral Blood Mononuclear Cells Stimulated by LPS or Infected by Borrelia. Physiol Res. 2003;52(5):593–8.Wu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep. 2016;14(6):5281–7.Saraiva M, Saraiva M, Vieira P, Vieira P, Vieira P, O’Garra A, et al. Biology and therapeutic potential of interleukin-10. J Exp Med. 2020;217(1):1–19.Naing A, Papadopoulos KP, Autio KA, Ott PA, Patel MR, Wong DJ, et al. Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10 (AM0010) in Patients With Advanced Solid Tumors. J Clin Oncol [Internet]. 2016 Aug 15;34(29):3562–9. Available from: https://doi.org/10.1200/JCO.2016.68.1106Lauw FN, Pajkrt D, Hack E, Kurimoto M, Van Deventer S, Van der Poll T. Proinflammatory Efects of IL-10 During Human Endotoxemia. J Immunol. 2000;165(5):2783–9.Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol [Internet]. 2015;16(5):448–57. Available from: http://dx.doi.org/10.1038/ni.3153Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1(6):510–4.Tanaka T, Narazaki M, Kishimoto T. IL-6 in Inflammation, Immunity, and Disease. 2014;6(Kishimoto 1989):1–16.Grivennikov SI, Greten FR, Karin M. Immunity, Inflammation, and Cancer. Vol. 140, Cell. 2010. p. 883–99.Grivennikov SI, Karin M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. In: Annals of the Rheumatic Diseases. 2011.Scott KA, Arnott CH, Robinson SC, Moore RJ, Thompson RG, Marshall JF, et al. TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion. A role for TNF-α in keratinocyte migration? Oncogene. 2004;23(41):6954–66.Bigatto V, De Bacco F, Casanova E, Reato G, Lanzetti L, Isella C, et al. TNF-α promotes invasive growth through the MET signaling pathway. Mol Oncol. 2015;9(2):377–88.Mrozek-Gorska P, Buschle A, Pich D, Schwarzmayr T, Fechtner R, Scialdone A, et al. Epstein–Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116(32):16046–55.Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of inflammation in the process of T lymphocyte differentiation: Proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9(MAR).Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. IL-4: An important cytokine in determining the fate of T cells. Biophys Rev. 2014;6(1):111–8.Hamza T, Barnett JB, Li B. Interleukin 12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci. 2010;11(3):789–806.Hashimoto M, Im SJ, Araki K, Ahmed R. Cytokine-mediated regulation of CD8 T-cell responses during acute and chronic viral infection. Cold Spring Harb Perspect Biol. 2019;11(1):1–17Yi H-J, Lu G-X. Adherent and non-adherent dendritic cells are equivalently qualified in GM-CSF, IL-4 and TNF-α culture system. Cell Immunol. 2012;277(1–2):44–8.O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci [Internet]. 2015;72(22):4309–25. Available from: https://doi.org/10.1007/s00018-015-2005-0Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev [Internet]. 2008;19(1):41–52. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfPatente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10(JAN):1–18.Kuhn S, Yang J, Ronchese F. Monocyte-derived dendritic cells are essential for CD8+ T cell activation and antitumor responses after local immunotherapy. Front Immunol. 2015;6(NOV):1–14.Stephens TA, Nikoopour E, Rider BJ, Leon-ponte M, Chau TA, Chaturvedi P, et al. Dendritic cell differentiation induced by a self-peptide derived from Apolipoprotein E. jo. 2008;181(10):6859–71.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84357/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1026297033.2023.pdf1026297033.2023.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf2976733https://repositorio.unal.edu.co/bitstream/unal/84357/2/1026297033.2023.pdf2db99db9c6e3197e36083bddff728e42MD52THUMBNAIL1026297033.2023.pdf.jpg1026297033.2023.pdf.jpgGenerated Thumbnailimage/jpeg6003https://repositorio.unal.edu.co/bitstream/unal/84357/3/1026297033.2023.pdf.jpg9821ea68f09e2800d8155d804e86075eMD53unal/84357oai:repositorio.unal.edu.co:unal/843572023-08-15 23:03:47.816Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |