Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas
gráficas, ilustraciones,tablas
- Autores:
-
Hernandez Buelvas, Lauren Dayam
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82256
- Palabra clave:
- Women - diseases
Salud de la mujer
Mujeres enfermedades
Women's health
Trichomonas vaginalis
Persistencia
Depuración
Infección de trasmisión sexual
Epidemiología
Factores de Riesgo
Trichomonas vaginalis
Persistence
sexually-transmitted infection
Clearance
Risk factors
Epidemiology
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_2526c2a0b74b9dbf25f5d78178760729 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82256 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
dc.title.translated.eng.fl_str_mv |
Persistence and clearance of Trichomonas vaginalis in a cohort of Colombian women |
title |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
spellingShingle |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas Women - diseases Salud de la mujer Mujeres enfermedades Women's health Trichomonas vaginalis Persistencia Depuración Infección de trasmisión sexual Epidemiología Factores de Riesgo Trichomonas vaginalis Persistence sexually-transmitted infection Clearance Risk factors Epidemiology |
title_short |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
title_full |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
title_fullStr |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
title_full_unstemmed |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
title_sort |
Persistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianas |
dc.creator.fl_str_mv |
Hernandez Buelvas, Lauren Dayam |
dc.contributor.advisor.none.fl_str_mv |
Camargo, Sandra Milena Patarroyo Gutierrez, Manuel Alfonso |
dc.contributor.author.none.fl_str_mv |
Hernandez Buelvas, Lauren Dayam |
dc.contributor.researchgroup.spa.fl_str_mv |
Biología Molecular e InmunologíaFundación Instituto de Inmunología de Colombia |
dc.subject.armarc.eng.fl_str_mv |
Women - diseases |
topic |
Women - diseases Salud de la mujer Mujeres enfermedades Women's health Trichomonas vaginalis Persistencia Depuración Infección de trasmisión sexual Epidemiología Factores de Riesgo Trichomonas vaginalis Persistence sexually-transmitted infection Clearance Risk factors Epidemiology |
dc.subject.lemb.spa.fl_str_mv |
Salud de la mujer Mujeres enfermedades |
dc.subject.lemb.eng.fl_str_mv |
Women's health |
dc.subject.proposal.spa.fl_str_mv |
Trichomonas vaginalis Persistencia Depuración Infección de trasmisión sexual Epidemiología Factores de Riesgo |
dc.subject.proposal.eng.fl_str_mv |
Trichomonas vaginalis Persistence sexually-transmitted infection Clearance Risk factors Epidemiology |
description |
gráficas, ilustraciones,tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-09-06T14:37:57Z |
dc.date.available.none.fl_str_mv |
2022-09-06T14:37:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82256 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82256 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.relation.references.spa.fl_str_mv |
Adjei, Collins, Boateng, Richard, Dompreh, A., Okyere, B., & Owiredu, E. W. (2019). Prevalence and the evaluation of culture, wet mount, and ELISA methods for the diagnosis of Trichomonas vaginalis infection among Ghanaian women using urine and vaginal specimens. Tropical Medicine and Health, 47(1). https://doi.org/10.1186/s41182-019-0162-9. Aiyar, A., Quayle, A. J., Buckner, L. R., Sherchand, S. P., Chang, T. L., Zea, A. H., Belland, R. J. (2014). Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: Role of vaginal co-infections. Frontiers in Cellular and Infection Microbiology, 4(JUN). https://doi.org/10.3389/fcimb.2014.00072. Alessio, C., & Nyirjesy, P. (2019). Management of Resistant Trichomoniasis. Current Infectious Disease Reports, 21(9). https://doi.org/10.1007/s11908-019-0687-4. Ambrozio, Lima, C., Nagel, Saggin, Andréia, Jeske, S., Villela, M. M. (2016). Trichomonas vaginalis prevalence and risk factors for women in southern Brazil. Revista Do Instituto de Medicina Tropical de Sao Paulo, 58(1). https://doi.org/10.1590/S1678-9946201658061. Amin, Aziza, Bilic, Ivana, Liebhart, Dieter, & Hess, M. (2014). Trichomonads in birds-a review. Parasitology, 141(6), 733–747. https://doi.org/10.1017/S0031182013002096. Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., & Bray, F. (2020). Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health, 8(2), e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6. Arroyo, R., Cárdenas-Guerra, R. E., Figueroa-Angulo, E. E., Puente-Rivera, J., Zamudio-Prieto, O., & Ortega-López, J. (2015). Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. BioMed Research International, 2015. https://doi.org/10.1155/2015/946787. Asmah, R. H., Agyeman, R. O., Obeng-Nkrumah, N., Blankson, H., Awuah-Mensah, G., Cham, M., Ayeh-Kumi, P. F. (2018). Trichomonas vaginalis infection and the diagnostic significance of detection tests among Ghanaian outpatients. BMC Women’s Health, 18(1). https://doi.org/10.1186/s12905-018-0699-5. Balkus, J. E., Richardson, B. A., Rabe, L. K., Taha, T. E., Mgodi, N., Kasaro, M. P., Abdool Karim, S. S. (2014). Bacterial vaginosis and the risk of trichomonas vaginalis acquisition among HIV-1-negative women. Sexually Transmitted Diseases, 41(2), 123–128. https://doi.org/10.1097/OLQ.0000000000000075. Benabdelkader, S., Andreani, J., Gillet, A., Terrer, E., Pignoly, M., Chaudet, H., Scola, B. La. (2019). Specific clones of Trichomonas tenax are associated with periodontitis. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0213338. Benchimol, M. (2004, October). Trichomonads under microscopy. Microscopy and Microanalysis, Vol. 10, pp. 528–550. https://doi.org/10.1017/S1431927604040905. Bernier, A., Rumyantseva, T., Reques, L., Volkova, N., Kyburz, Y., Maximov, O., Pataut, D. (2020). HIV and other sexually transmitted infections among female sex workers in Moscow (Russia): Prevalence and associated risk factors. Sexually Transmitted Infections, 96(8), 601–607. https://doi.org/10.1136/sextrans-2019-054299. Bhakta, S. B., Moran, J. A., & Mercer, F. (2020). Neutrophil interactions with the sexually transmitted parasite Trichomonas vaginalis: implications for immunity and pathogenesis: Neutrophils in Trichomoniasis. Open Biology, 10(9). https://doi.org/10.1098/rsob.200192. Bouchemal, K., Bories, C., & Loiseau, P. M. (2017, July 1). Strategies for prevention and treatment of Trichomonas vaginalis infections. Clinical Microbiology Reviews, Vol. 30, pp. 811–825. https://doi.org/10.1128/CMR.00109-16. Boulet, G. A. V., Benoy, I. H., Depuydt, C. E., Horvath, C. A. J., Aerts, M., Hens, N., Bogers, J. J. (2009). Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: Biomarkers for cervical intraepithelial neoplasia ≥2 in a liquid-based cytology setting? Cancer Epidemiology Biomarkers and Prevention, 18(11), 2992–2999. https://doi.org/10.1158/1055-9965.EPI-09-0025. Bremer, Viviane, Haar, Karin, Gassowski, Martyna., Nielsen, S. (2016). STI tests and proportion of positive tests in female sex workers attending local public health departments in Germany in 2010/11. BMC Public Health, 16(1), 1–9. https://doi.org/10.1186/s12889-016-3847-6. Campbell, L., Woods, V., Lloyd, T., Church, D. L. (2008). Evaluation of the OSOM Trichomonas rapid test versus wet preparation examination for detection of Trichomonas vaginalis vaginitis in specimens from women with a low prevalence of infection. Journal of Clinical Microbiology, 46(10), 3467–3469. https://doi.org/10.1128/JCM.00671-08. Cárdenas, R., Guerraa, R., Arroyo, R., Andradec, I., Benchimolc, M., & Ortega, L. (2013). The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis. Microbes and Infection, 15(13), 958–968. https://doi.org/10.1016/j.micinf.2013.09.002. Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207–212. https://doi.org/10.1126/science.1132894. Carrillo-Ávila, J. A., Serrano-Garcóa, M. L., Fernández-Parra, J., Sorlózano-Puerto, A., Navarro-Maró, J. M., Stensvold, C. R., & Gutiérrez-Fernández, J. (2017). Prevalence and genetic diversity of Trichomonas vaginalis in the general population of Granada and co-infections with Gardnerella vaginalis and Candida species. Journal of Medical Microbiology, 66(10), 1436–1442. https://doi.org/10.1099/jmm.0.000603. CDC. (2009). Morbidity and Mortality Weekly Report Sexually Transmitted Diseases Treatment Guidelines, 2010. Retrieved from www.cdc.gov/mmwr. Chemaitelly, H., Weiss, H. A., Smolak, A., Majed, E., & Abu-Raddad, L. J. (2019). Epidemiology of Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics. Journal of Global Health, 9(2). https://doi.org/10.7189/jogh.09.020408. Chen, Pei, Y., Riestra, M., A., Rai, Kumar, A., & Johnson, P. J. (2019). A novel cadherin-like protein mediates adherence to and killing of host cells by the parasite trichomonas vaginalis. MBio, 10(3). https://doi.org/10.1128/mBio.00720-19. Collántes-Fernández, Esther, Fort, C., M., Ortega-Mora, M., L., & Schares, G. (2018). Trichomonas. Parasitic Protozoa of Farm Animals and Pets, 313–388. https://doi.org/10.1007/978-3-319-70132-5_14. Conrad, D., M., Bradic, Martina, Warring, D., S., Carlton, J. M. (2013). Getting trichy: Tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends in Parasitology, 29(1), 17–25. https://doi.org/10.1016/j.pt.2012.10.004. Conrad, M. D., Gorman, A. W., Schillinger, J. A., Fiori, P. L., Arroyo, R., Malla, N., Carlton, J. M. (2012). Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Neglected Tropical Diseases, 6(3). https://doi.org/10.1371/journal.pntd.0001573. Cornelius, D. C., Robinson, D. A., Muzny, C. A., Mena, L. A., Aanensen, D. M., Lushbaugh, W. B., & Meade, J. C. (2012). Genetic characterization of Trichomonas vaginalis isolates by use of multilocus sequence typing. Journal of Clinical Microbiology, 50(10), 3293–3300. https://doi.org/10.1128/JCM.00643-12. Costa-Lira, E., Jacinto, A. H. V. L., Silva, L. M., Napoleão, P. F. R., Barbosa-Filho, R. A. A., Cruz, G. J. S., Borborema-Santos, C. M. (2017). Prevalence of human papillomavirus, Chlamydia trachomatis, and Trichomonas vaginalis infections in Amazonian women with normal and abnormal cytology. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029626. Crucitti, T., Jespers, V., Mulenga, C., Khondowe, S., Vandepitte, J., & Buvé, A. (2011). Non-sexual transmission of Trichomonas vaginalis in adolescent girls attending school in Ndola, Zambia. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016310. De, M., Von Glehn, P., Cristina, L., Ferreira Sá, E., Ferreira Da Silva, H. D., & Rodrigues Machado, E. (2017). Prevalence of Trichomonas vaginalis in women of reproductive age at a family health clinic. The Journal of Infection In Developing Countries, 11(3), 269–276. https://doi.org/10.3855/jidc.8143. De Waaij, D. J., Dubbink, J. H., Ouburg, S., Peters, R. P. H., & Morré, S. A. (2017). Prevalence of Trichomonas vaginalis infection and protozoan load in South African women: A cross-sectional study. BMJ Open, 7(10). https://doi.org/10.1136/bmjopen-2017-016959. Depuydt, C. E., Leuridan, E., Van Damme, P., Bogers, J., Vereecken, A. J., & Donders, G. (2010). Epidemiology of Trichomonas vaginalis and Human Papillomavirus Infection Detected by Real-Time PCR in Flanders. Gynecologic and Obstetric Investigation, 70(4), 273–280. https://doi.org/10.1159/000314017. Dessì, D., Margarita, V., Cocco, A. R., Marongiu, A., Fiori, P. L., & Rappelli, P. (2019). Trichomonas vaginalis and Mycoplasma hominis: New tales of two old friends. Parasitology, 146(9), 1150–1155. https://doi.org/10.1017/S0031182018002135. Dharma, Vijaya, M. N., Umashankar, M., K., Sudha, Nagure, G., Kavitha, G. (2013). Prevalence of the Trichomonas vaginalis infection in a tertiary care hospital in rural Bangalore, Southern India. Journal of Clinical and Diagnostic Research, 7(7), 1401–1403. https://doi.org/10.7860/JCDR/2013/5375.3140. Dheilly, M., N., Ewald, W., P., Brindley, J., P., Thomas, F. (2019). Parasite-microbe-host interactions and cancer risk. PLoS Pathogens, 15(8). https://doi.org/10.1371/journal.ppat.1007912. Edwards, T., Burke, P., Smalley, H., & and Hobbs, G. (2014). Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Critical Reviews in Microbiology, 42(3), 406–417. https://doi.org/10.3109/1040841X.2014.958050. Feng, R. M., Z.Wang, M., Smith, J. S., Dong, L., Chen, F., Pan, Q. J., Zhao, F. H. (2018). Risk of high-risk human papillomavirus infection and cervical precancerous lesions with past or current trichomonas infection: a pooled analysis of 25,054 women in rural China. Journal of Clinical Virology, 99–100, 84–90. https://doi.org/10.1016/j.jcv.2017.12.015. Figueroa-Angulo, E. E., Rendón-Gandarilla, F. J., Puente-Rivera, J., Calla-Choque, J. S., Cárdenas-Guerra, R. E., Ortega-López, J., Arroyo, R. (2012). The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14(15), 1411–1427. https://doi.org/10.1016/j.micinf.2012.09.004. Fisher, C., Mikolajczak, G., Ezer, P., Kerr, L., Bellamy, R., Brown, G., Lucke, J. (2019). Study Protocol: 6th National Survey of Australian Secondary Students and Adolescent Sexual Health, 2018. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00217. Gaitán-Duarte, H. (2017). Sexually transmitted infections: A public health problem that Colombia needs to face. Revista Colombiana de Obstetricia y Ginecologia, 68(3), 164–167. https://doi.org/10.18597/rcog.3080. Gimenes, F., Souza, R. P., Bento, J. C., Teixeira, J. J. V., Maria-Engler, S. S., Bonini, M. G., & Consolaro, M. E. L. (2014). Male infertility: A public health issue caused by sexually transmitted pathogens. Nature Reviews Urology, 11(12), 672–687. https://doi.org/10.1038/nrurol.2014.285. Ginocchio, C. C., Chapin, K., Smith, J. S., Aslanzadeh, J., Snook, J., Hill, C. S., & Gaydos, C. A. (2012). Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the aptima Trichomonas vaginalis nucleic acid amplification assay. Journal of Clinical Microbiology, 50(8), 2601–2608. https://doi.org/10.1128/JCM.00748-12. Gómez-, Carmen, Del, L., Campo-, Luz, M., Ortega-Ariza., Parody-Muñoz, A. (2019). Prevalence of potentially pathogenic microbiological agents in vaginal exudates of asymptomatic pregnant women, Barranquilla, Colombia, 2014-2015. Revista Colombiana de Obstetricia y Ginecologia, 70(1), 49–56. https://doi.org/10.18597/rcog.3183. Goo, Y. K., Shin, W. S., Yang, H. W., Joo, S. Y., Song, S. M., Ryu, J. S., Hong, Y. (2016). Prevalence of trichomonas vaginalis in women c, South Korea. Korean Journal of Parasitology, 54(1), 75–80. https://doi.org/10.3347/kjp.2016.54.1.75. Goodman, R. P., Freret, T. S., Kula, T., Geller, A. M., Talkington, M. W. T., Tang-Fernandez, V., Nibert, M. L. (2011). Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae). Journal of Virology, 85(9), 4258–4270. https://doi.org/10.1128/jvi.00220-11. Goodman, Russell P., Ghabrial, S. A., Fichorova, R. N., & Nibert, M. L. (2011). Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Archives of Virology, 156(1), 171–179. https://doi.org/10.1007/s00705-010-0832-8 Gould, B., S., Woehle, Christian, Kusdian, Gary., Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International Journal for Parasitology, 43(9), 707–719. https://doi.org/10.1016/j.ijpara.2013.04.002 Grabowski, M. K., Gray, R. H., Serwadda, D., Kigozi, G., Gravitt, P. E., Nalugoda, F., Tobian, A. A. R. (2014). High-risk human papillomavirus viral load and persistence among heterosexual HIV-negative and HIV-positive men. Sexually Transmitted Infections, 90(4), 337–343. https://doi.org/10.1136/sextrans-2013-051230 Grama, D. F., Casarotti, L. da S., Morato, M. G. V. de A., Silva, L. S., Mendonça, D. F., Limongi, J. E., Cury, M. C. (2013). Prevalence of Trichomonas vaginalis and risk factors in women treated at public health units in Brazil: A transversal study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(9), 584–591. https://doi.org/10.1093/trstmh/trt063 Graves, K. J., Ghosh, A. P., Schmidt, N., Augostini, P., Evan Secor, W., Schwebke, J. R., Muzny, C. A. (2019). Trichomonas vaginalis Virus among Women with Trichomoniasis and Associations with Demographics, Clinical Outcomes, and Metronidazole Resistance. Clinical Infectious Diseases, 69(12), 2170–2176. https://doi.org/10.1093/cid/ciz146 Haltas, H., Bayrak, R., & Yenidunya, S. (2012). To determine of the prevalence of bacterial vaginosis, Candida sp, mixed infections (bacterial vaginosis +candida sp), trichomonas vaginalis, actinomyces sp in Turkish women from Ankara, Turkey. Ginekologia Polska, 83(10), 744–748. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23383559/ Helms, D. J., Mosure, D. J., Metcalf, C. A., Douglas, J. M., Malotte, C. K., Paul, S. M., & Peterman, T. A. (2008). Risk factors for prevalent and incident Trichomonas vaginalis among women attending three sexually transmitted disease clinics. Sexually Transmitted Diseases, 35(5), 484–488. https://doi.org/10.1097/OLQ.0b013e3181644b9c Hernández, H. M., Marcet, R., & Sarracent, J. (2014). Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite, 21. https://doi.org/10.1051/parasite/2014054 Hinderfeld, S., Annabel, Simoes-Barbosa, & Augusto. (2020). Vaginal dysbiotic bacteria act as pathobionts of the protozoal pathogen Trichomonas vaginalis. Microbial Pathogenesis, 138. https://doi.org/10.1016/j.micpath.2019.103820 Hirt, R. P. (2013). Trichomonas vaginalis virulence factors: An integrative overview. Sexually Transmitted Infections, 89(6), 439–443. https://doi.org/10.1136/sextrans-2013-051105 Hoots, B. E., Peterman, T. A., Torrone, E. A., Weinstock, H., Meites, E., & Bolan, G. A. (2013). A Trich-y question: Should trichomonas vaginalis infection be reportable? Sexually Transmitted Diseases, 40(2), 113–116. https://doi.org/10.1097/OLQ.0b013e31827c08c3 Huneeus, A., Schilling, A., & Fernandez, M. I. (2018). Prevalence of Chlamydia Trachomatis, Neisseria Gonorrhoeae, and Trichomonas Vaginalis Infection in Chilean Adolescents and Young Adults. Journal of Pediatric and Adolescent Gynecology, 31(4), 411–415. https://doi.org/10.1016/j.jpag.2018.01.003 Jike, Cui, Das, Suchismita, Smith, T. F., & Samuelson, J. (2010). Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Neglected Tropical Diseases, 4(8). https://doi.org/10.1371/journal.pntd.0000782 Johnson, B. K. (2013). Sexually transmitted infections and older adults. Journal of Gerontological Nursing, 39(11), 53–60. https://doi.org/10.3928/00989134-20130918-01 Kenyon, C. R., & Hamilton, D. T. (2016). Correlation between Trichomonas vaginalis and Concurrency: An Ecological Study. Interdisciplinary Perspectives on Infectious Diseases, 2016. https://doi.org/10.1155/2016/5052802 Kirkcaldy, D., R., Augostini, Peter, Asbel, Len., Weinstock, H. S. (2012). Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009-2010. Emerging Infectious Diseases, 18(6), 939–943. https://doi.org/10.3201/eid1806.111590 Kissinger, P., & Adamski, A. (2013, September). Trichomoniasis and HIV interactions: A review. Sexually Transmitted Infections, Vol. 89, pp. 426–433. https://doi.org/10.1136/sextrans-2012-051005 Kissinger, P., Muzny, C. A., Mena, L. A., Lillis, R. A., Schwebke, J. R., Beauchamps, L., Martin, D. H. (2018). Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: an open-label, randomised controlled trial. The Lancet Infectious Diseases, 18(11), 1251–1259. https://doi.org/10.1016/S1473-3099(18)30423-7 Kovachev, S. M. (2019). Cervical cancer and vaginal microbiota changes. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01747-4 Krüger, T., & Engstler, M. (2015). Flagellar motility in eukaryotic human parasites. Seminars in Cell and Developmental Biology, 46, 113–127. https://doi.org/10.1016/j.semcdb.2015.10.034 Kusdian, G., & Gould, S. B. (2014). The biology of Trichomonas vaginalis in the light of urogenital tract infection. Molecular and Biochemical Parasitology, Vol. 198, pp. 92–99. https://doi.org/10.1016/j.molbiopara.2015.01.004 Kusdian, G., Woehle, C., Martin, W. F., & Gould, S. B. (2013). The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cellular Microbiology, 1707–1721. https://doi.org/10.1111/cmi.12144 Lazenby, B., Gweneth, Taylor, T., Peyton., Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009 Lazenby, G. B., Taylor, P. T., Badman, B. S., McHaki, E., Korte, J. E., Soper, D. E., & Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009 Leitsch, D. (2016). Recent Advances in the Trichomonas vaginalis Field. F1000Research, 5(162), 1–7. https://doi.org/10.12688/f1000research.7594.1 Leli, C., Castronari, R., Levorato, L., Luciano, E., Pistoni, E., Perito, S., Mencacci, A. (2016). Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women - PubMed. Infez Med, 112(6), 1–24. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27367320/ León, Soto-DeC, S., Río-Ospina Del, L., Camargo, M., Sánchez, R., Moreno-Pérez, D. A., Pérez-Prados, A., Patarroyo, M. A. (2014). Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC Infectious Diseases, 14(395). Retrieved from http://www.biomedcentral.com/1471-2334/14/395 Leon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009a). Trichomonas vaginalis infection and associated risk factors in a socially-Marginalized female population in coastal peru. Infectious Diseases in Obstetrics and Gynecology, 2009. https://doi.org/10.1155/2009/752437 Leon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009b). Trichomonas vaginalis Infection and Associated Risk Factors in a Socially-Marginalized Female Population in Coastal Peru. Infectious Diseases in Obstetrics and Gynecology, 6, 6. https://doi.org/10.1155/2009/752437 Ling, M., & Murali, M. (2019). Analysis of the Complement System in the Clinical Immunology Laboratory. Clinics in Laboratory Medicine, 39(4), 579–590. https://doi.org/10.1016/j.cll.2019.07.006 López de Munain, J. (2019). Epidemiology and current control of sexually transmitted infections. The role of STI clinics. Enfermedades Infecciosas y Microbiologia Clinica, 37(1), 45–49. https://doi.org/10.1016/j.eimc.2018.10.015 Lustig, G, Ryan, C, Secor, E, & Johnson, P. (2013). Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infection and Immunity, 81(5), 1411–1419. https://doi.org/10.1128/IAI.01244-12 Mahto, M., Evans-Jones, J., Zia, S., Robinson, T. I., Rothburn, M. M., & Mallinson, H. (2011). Finding cases of Trichomonas vaginalis infection in England. International Journal of STD and AIDS, 22(8), 471–473. https://doi.org/10.1258/ijsa.2011.011102 Malagón, T., Louvanto, K., Ramanakumar, A. V., Koushik, A., Coutlée, F., & Franco, E. L. (2019). Viral load of human papillomavirus types 16/18/31/33/45 as a predictor of cervical intraepithelial neoplasia and cancer by age. Gynecologic Oncology, 155(2), 245–253. https://doi.org/10.1016/j.ygyno.2019.09.010 Margarita, V., Fiori, P. L., & Rappelli, P. (2020). Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00179 Margarita, V., Rappelli, P., Dessì, D., Pintus, G., Hirt, R. P., & Fiori, P. L. (2016). Symbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00953 Martínez-Herrero, Carmen, M. Del, Garijo-Toledo, Magdalena, M., González, Fernando., Gómez-Muñoz, M. T. (2019). Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0224032 Masha, S. C., Cools, P., Descheemaeker, P., Reynders, M., Sanders, E. J., & Vaneechoutte, M. (2018). Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: A nested case-control study 11 Medical and Health Sciences 1108 Medical Microbiology. BMC Infectious Diseases, 18(1). https://doi.org/10.1186/s12879-018-3455-4 Matlung, H. L., Babes, L., Zhao, X. W., van Houdt, M., Treffers, L. W., van Rees, D. J., van den Berg, T. K. (2018). Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Reports, 23(13), 3946-3959.e6. https://doi.org/10.1016/j.celrep.2018.05.082 Meade, J. C., & Carlton, J. M. (2013). Genetic diversity in Trichomonas vaginalis. Sexually Transmitted Infections, 89(6), 444–448. https://doi.org/10.1136/sextrans-2013-051098 Meade, J. C., De Mestral, J., Stiles, J. K., Secor, W. E., Finley, R. W., Cleary, J. D., & Lushbaugh, W. B. (2009). Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes. American Journal of Tropical Medicine and Hygiene, 80(2), 245–251. https://doi.org/10.4269/ajtmh.2009.80.245 Menezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016a). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526 Menezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016b). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526 Menezes, C. B., & Tasca, T. (2016). Trichomoniasis immunity and the involvement of the purinergic signaling. Biomedical Journal, 39(4), 234–243. https://doi.org/10.1016/j.bj.2016.06.007 Menon, S., Broeck, D. Vanden, Rossi, R., Ogbe, E., Harmon, S., & Mabeya, H. (2016). Associations Between Vaginal Infections and Potential High-risk and High-risk Human Papillomavirus Genotypes in Female Sex Workers in Western Kenya. Clinical Therapeutics, 38(12), 2567–2577. https://doi.org/10.1016/j.clinthera.2016.10.005 Mercer, F. and, & Johnson, P. J. (2018). Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends in Parasitology, xx. https://doi.org/10.1016/j.pt.2018.05.006 Mercer, Frances, Ng, S., Hang, H., Brown, T. M., Boatman, G., & Johnson, P. J. (2018). Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biology, 16(2). https://doi.org/10.1371/journal.pbio.2003885 Mielczarek, E., & Blaszkowska, J. (2015). Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Springer, 44(4), 447–458. https://doi.org/10.1007/s15010-015-0860-0 Ministerio de Protección Social. (2007). Recomendaciones para la tamización de neoplasias del cuello uterino en mujeres sin antecedentes de patología cervical (preinvasora o invasora) en Colombia. Retrieved January 17, 2021, from http://www.cancer.gov.co/files/libros/archivos/1b244b0cbac755bffb2b14154a3effc0_Guia N3 tamización de cuello uterino.pdf Ministerio de Salud. (2012). Situación de las Infecciones de Transmisión Sexual diferentes al VIH, Colombia 2009 - 2011. Retrieved from https://www.minsalud.gov.co/salud/Documents/observatorio_vih/documentos/monitoreo_evaluacion/1_vigilancia_salud_publica/a_situacion_epidimiologica/SITUACION DE LAS INFECCIONES DE TRANSMISION1.pdf Morada, M., Manzur, M., Lam, B., Tan, C., Tachezy, J., Rappelli, P., Yarlett, N. (2010). Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology, 156(12), 3734–3743. https://doi.org/10.1099/mic.0.042192-0 Muñoz, , Ramírez, A., López, Monteon, A., Ramos, Ligonio, A., … Guapillo-Vargas, M. R. B. (2018). Prevalence of Trichomonas vaginalis and Human papillomavirus in female sex workers in Central Veracruz, Mexico. Revista Argentina de Microbiologia, 50(4), 351–358. https://doi.org/10.1016/j.ram.2017.11.004 Nemati, M., Malla, N., Yadav, M., … Jafarzadeh, A. (2018). Humoral and T cell–mediated immune response against trichomoniasis. Parasite Immunology, 40(3), 36. https://doi.org/10.1111/pim.12510 Noël, J., C., Diaz, Nicia, Sicheritz, -Ponten, T., Hirt, R. P. (2010). Trichomonas vaginalis vast BspA-like gene family: Evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics, 11(1), 99. https://doi.org/10.1186/1471-2164-11-99 Noël, Jean-Christophe, Fayt, Isabelle, Romero, Munoz, M. R., Engohan-Aloghe, C. (2010). High prevalence of high-risk human papillomavirus infection among women with Trichomonas vaginalis infection on monolayer cytology. Archives of Gynecology and Obstetrics, 282(5), 503–505. https://doi.org/10.1007/s00404-009-1291-x Nu, P. A. T., Nguyen, V. Q. H., Cao, N. T., DessÌ, D., Rappelli, P., & Fiori, P. L. (2015). Prevalence of trichomonas vaginalis infection in symptomatic and asymptomatic women in central vietnam. Journal of Infection in Developing Countries, 9(6), 655–660. https://doi.org/10.3855/jidc.7190 Nu Ton, Anh, P., Rapp, elli, Paola, Dessì., Fiori, P. L. (2015). Kinetics of circulating antibody response to Trichomonas vaginalis: Clinical and diagnostic implications. Sexually Transmitted Infections, 91(8), 561–563. https://doi.org/10.1136/sextrans-2014-051839 Okumura, C. Y. M., Baum, L. G., & Johnson, P. J. (2008). Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cellular Microbiology, 10(10), 2078–2090. https://doi.org/10.1111/j.1462-5822.2008.01190.x Onderdonk, A. B., Delaney, M. L., & Fichorova, R. N. (2016). The human microbiome during bacterial vaginosis. Clinical Microbiology Reviews, 29(2), 223–238. https://doi.org/10.1128/CMR.00075-15 Pardo, C., & de Vries, E. (2018). Breast and cervical cancer survival at instituto nacional de cancerología, Colombia. Colombia Medica, 49(1), 102–108. https://doi.org/10.25100/cm.v49i1.2840 Patel, Eshan, Gaydos, Charlotte, Packman, R., Z., A.R., A. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079 Patel, U., Eshan, Gaydos, A., C., Harlotte., Tobian, A. A. R. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079 Pekmezovic, Marina, Mogavero, Selene, Naglik, J., R., U., & Hube, B. (2019). Host–Pathogen Interactions during Female Genital Tract Infections. Trends in Microbiology, 15. https://doi.org/10.1016/j.tim.2019.07.006 Pellrud, H., Golparian, D., Nilsson, C. S., Falk, M., Fredlund, H., & Unemo, M. (2015). Trichomonas vaginalis infections are rare among young patients attending an STI clinic in Sweden. Acta Dermato-Venereologica, Vol. 95, pp. 343–344. https://doi.org/10.2340/00015555-1946 Perazzi, B. E., Menghi, C. I., Coppolillo, E. F., Gatta, C., Eliseth, M. C., De Torres, R. A., Famiglietti, A. M. R. (2010). Prevalence and comparison of diagnostic methods for Trichomonas vaginalis infection in pregnant women in Argentina. Korean Journal of Parasitology, 48(1), 61–65. https://doi.org/10.3347/kjp.2010.48.1.61 Pereyre, S., Laurier Nadalié, C., Bébéar, C., Arfeuille, C., Beby-Defaux, A., Berçot, B., Verhoeven, P. (2017). Mycoplasma genitalium and Trichomonas vaginalis in France: a point prevalence study in people screened for sexually transmitted diseases. Clinical Microbiology and Infection, 23(2), 122.e1-122.e7. https://doi.org/10.1016/j.cmi.2016.10.028 Peterman, T. A., Lin, L. S., Newman, D. R., Kamb, M. L., Bolan, G., Zenilman, J., Malotte, C. K. (2000). Does measured behavior reflect STD risk?: An analysis of data from a randomized controlled behavioral intervention study. Sexually Transmitted Diseases, 27(8), 446–451. https://doi.org/10.1097/00007435-200009000-00004 Peters, A., Das, S., & Raidal, S. R. (2020). Diverse Trichomonas lineages in Australasian pigeons and doves support a columbid origin for the genus Trichomonas. Molecular Phylogenetics and Evolution, 143. https://doi.org/10.1016/j.ympev.2019.106674 Quinónez-Calvache, E. M., Ríos-Chaparro, D. I., Ramírez, J. D., Soto-De León, S. C., Camargo, M., Río-Ospina, L., Patarroyo, M. A. (2016). Chlamydia trachomatis Frequency in a Cohort of HPV-infected colombian women. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147504 Rai, A. K., & Johnson, P. J. (2019). Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proceedings of the National Academy of Sciences, 201912356. https://doi.org/10.1073/pnas.1912356116 Reighard, S. D., Sweet, R. L., Vicetti Miguel, C., Vicetti Miguel, R. D., Chivukula, M., Krishnamurti, U., & Cherpes, T. L. (2011). Endometrial leukocyte subpopulations associated with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis genital tract infection. American Journal of Obstetrics and Gynecology, 205(4), 324.e1-324.e7. https://doi.org/10.1016/j.ajog.2011.05.031 Río-Ospina, L. Del, Cecilia, S., León, S.-D., Camargo, M., Andrés Moreno-Pérez, D., Sánchez, R., Patarroyo, M. A. (2015). The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer, 15(100), 11. https://doi.org/10.1186/s12885-015-1126-z Río-Ospina, L. Del, León, S. C. S. De, Camargo, M., Sánchez, R., Mancilla, C. L., Patarroyo, M. E., & Patarroyo, M. A. (2016). The prevalence of high-risk HPV types and factors determining infection in female colombian adolescents. PLoS ONE, 11(11). https://doi.org/10.1371/journal.pone.0166502 Rodriguez-Cerdeira, C., Sanchez-Blanco, E., & Alba, A. (2012). Evaluation of Association between Vaginal Infections and High-Risk Human Papillomavirus Types in Female Sex Workers in Spain. ISRN Obstetrics and Gynecology, 2012, 1–7. https://doi.org/10.5402/2012/240190 Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 108(1), 377–396. https://doi.org/10.1002/JLB.4MIR0220-574RR Rowley, J., Vander Hoorn, S., Korenromp, E., Low, N., Unemo, M., Abu-Raddad, L. J., Taylor, M. M. (2019). Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bulletin of the World Health Organization, 97(8), 548-562P. https://doi.org/10.2471/blt.18.228486 Ryan, C., De Miguel, N., & Johnson, P. (2011). Trichomonas vaginalis: Current understanding of host-parasite interactions. Essays in Biochemistry, 51(1), 161–175. https://doi.org/10.1042/BSE0510161 Salas, N., Ramirez, J., Ruiz, B., Torres, E., Nevio, L., & Gómez, J. (2009). Prevalencia de microorganismos asociados a infecciones vaginales en 230 mujeres gestantes y no gestantes sintomáticas del Centro de Salud La Milagrosa en el municipio de Armenia (Colombia). Revista Colombiana de Obstetricia y Ginecología, 60(0034–7434), 135–142. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0034-74342009000200003&script=sci_abstract&tlng=es Salfa, M. C., Suligoi, B., Latino, M. A., Sacchi, A., Dapiran, L., Crotti, G., Bruno, A. R. (2016). Prevalence of Chlamydia trachomatis, trichomonas vaginalis and Neisseria gonorrhoeae based on data collected by a network of clinical microbiology laboratories, in Italy. Advances in Experimental Medicine and Biology, 901, 47–57. https://doi.org/10.1007/5584_2015_5015 Scott, M. L., Woodby, B. L., Ulicny, J., Raaikhy, G., Orr, A. W., K., W., & Songock, and J. M. B. (2019). Human papillomavirus type 16 E5 inhibits interferon signaling and supports episomal viral maintenance. Journal of Virology, (October). https://doi.org/10.1128/JVI.01582-19 Secor, W. E., Meites, E., Starr, M. C., & Workowski, K. A. (2014). Neglected parasitic infections in the United States: Trichomoniasis. American Journal of Tropical Medicine and Hygiene, 90(5), 800–804. https://doi.org/10.4269/ajtmh.13-0723 Sehgal, R., Goyal, K., & Sehgal, A. (2012). Trichomoniasis and lactoferrin: Future prospects. Infectious Diseases in Obstetrics and Gynecology, 2012. https://doi.org/10.1155/2012/536037 Seña, A., Bachmann, L., & Hobbs, M. (2014). Persistent and recurrent Trichomonas vaginalis infections: Epidemiology, treatment and management considerations. Expert Review of Anti-Infective Therapy, 12(6), 673–685. https://doi.org/10.1586/14787210.2014.887440 Serwin, A. B., Bulhak-Koziol, Violetta, Sokolowska, M., Golparian, D., & Unemo, M. (2017). Trichomonas vaginalis is very rare among women with vaginal discharge in Podlaskie province, Poland. APMIS, 125(9), 840–843. https://doi.org/10.1111/apm.12713 Silver, B. J., Guy, R. J., Kaldor, J. M., Jamil, M. S., & Rumbold, A. R. (2014). Trichomonas vaginalis as a cause of perinatal morbidity: A systematic review and Meta-analysis. Sexually Transmitted Diseases, 41(6), 369–376. https://doi.org/10.1097/OLQ.0000000000000134 Smith, J. D., & Garber, G. E. (2015). Trichomonas vaginalis Infection Induces Vaginal CD4 + T-Cell Infiltration in a Mouse Model: A Vaccine Strategy to Reduce Vaginal Infection and HIV Transmission. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiv036 Snipes, L. J., Gamard, P. M., Narcisi, E. M., Beard, C. B., Lehmann, T., & Secor, W. E. (2000). Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. Journal of Clinical Microbiology, 38(8), 3004–3009. https://doi.org/10.1128/jcm.38.8.3004-3009.2000 Sodhani, P., Gupta, S., Gupta, R., & Mehrotra, R. (2017). Bacterial vaginosis and cervical intraepithelial neoplasia: Is there an association or is co-existence incidental? Asian Pacific Journal of Cancer Prevention, 18(5), 1289–1292. https://doi.org/10.22034/APJCP.2017.18.5.1289 Soto-De Leon, S., Camargo, M., Sanchez, R., Munoz, M., Perez-Prados, A., Purroy, A., Patarroyo, M. A. (2011). Distribution patterns of infection with multiple types of human papillomaviruses and their association with risk factors. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0014705 Stemmer, S. M., Mordechai, E., Adelson, M. E., Gygax, S. E., & Hilbert, D. W. (2018). Trichomonas vaginalis is most frequently detected in women at the age of peri-/premenopause: an unusual pattern for a sexually transmitted pathogen. American Journal of Obstetrics and Gynecology, 218(3), 328.e1-328.e13. https://doi.org/10.1016/j.ajog.2017.12.006 Storti-Filho, A., Souza, P. C., Chassot, F., Pereira, M. W., Souza, R. J. S., Mello, I. C. J., Consolaro, M. E. L. (2009). Association of public versus private health care utilization and prevalence of Trichomonas vaginalis in Maringá, Paraná, Brazil. Archives of Gynecology and Obstetrics, 280(4), 593–597. https://doi.org/10.1007/s00404-009-0971-x Sutcliffe, S. (2010, August). Sexually transmitted infections and risk of prostate cancer: Review of historical and emerging hypotheses. Future Oncology, Vol. 6, pp. 1289–1311. https://doi.org/10.2217/fon.10.95 Tao, L., Han, L., Li, X., Gao, Q., Pan, L., Wu, L., Guo, X. (2014). Prevalence and risk factors for cervical neoplasia: A cervical cancer screening program in Beijing. BMC Public Health, 14(1). https://doi.org/10.1186/1471-2458-14-1185 Taylor, S. N. (2014, September 15). Trichomonas vaginalis testing and screening in a high-risk population: Is this a glimpse into the future? Clinical Infectious Diseases, Vol. 59, pp. 842–844. https://doi.org/10.1093/cid/ciu448 Tine, R. C., Sylla, K., Ka, R., Dia, L., Sow, D., Lelo, S., Sow, A. Y. (2019). A Study of Trichomonas vaginalis Infection and Correlates in Women with Vaginal Discharge Referred at Fann Teaching Hospital in Senegal. Journal of Parasitology Research, 2019. https://doi.org/10.1155/2019/2069672 Twu, O., de Miguel, N., Lustig, G., Stevens, G. C., Vashisht, A. A., Wohlschlegel, J. A., & Johnson, P. J. (2013). Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions. PLoS Pathogens, 9(7), e1003482. https://doi.org/10.1371/journal.ppat.1003482 Valencia-, Arredondo, M., Yepes-, & López, W. A. (2018). Prevalence of bacterial vaginosis, candidiasis, trichomoniasis, and associated factors in two hospitals of Apartadó and Rionegro – Antioquia, 2014. Iatreia, 31(2), 133–144. https://doi.org/10.17533/udea.iatreia.v31n2a02 Van, B., & Pol, D. (2015). Clinical and Laboratory Testing for Trichomonas vaginalis Infection. Journal Of C, 54(1). https://doi.org/10.1128/JCM.02025-15 Van Der Veer, C., Himschoot, M., & Bruisten, S. M. (2016). Multilocus sequence typing of Trichomonas vaginalis clinical samples from Amsterdam, the Netherlands. BMJ Open, 6(10). https://doi.org/10.1136/bmjopen-2016-013997 Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, 1666. https://doi.org/10.12688/f1000research.19972.1 Van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788. https://doi.org/10.1007/s00018-008-8281-1 Vorobjeva, N. V., & Chernyak, B. V. (2020). NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Moscow), 85(10), 1178–1190. https://doi.org/10.1134/S0006297920100065 Watts, D. H., Fazarri, M., Minkoff, H., Hillier, S. L., Sha, B., Glesby, M., … Strickler, H. D. (2005). Effects of Bacterial Vaginosis and Other Genital Infections on the Natural History of Human Papillomavirus Infection in HIV‐1–Infected and High‐Risk HIV‐1–Uninfected Women. The Journal of Infectious Diseases, 191(7), 1129–1139. https://doi.org/10.1086/427777 Wei, Yanxia, Gao, Jing, Kou, Yanbo., Wanga, Y. (2020). Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Applied and Environmental Microbiology, 86(11). https://doi.org/10.1128/AEM.00303-20 WHO. (2012). Global incidence and prevalence of selected curable sexually transmitted infections-2008. WHO. (2016). Global Helth Sector Strategy on sexually trasmitted infections 2016-2021 towards ending STIs. WHO. (2018). 2018 Report on global sexually transmitted infection surveillance. Retrieved from http://apps.who.int/bookorders. WHO. (2020). Colombia. Retrieved from https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf Wiringa, E, A., Ness, B, R., Darville, Toni., Haggerty, C. L. (2019). Trichomonas vaginalis , endometritis and sequelae among women with clinically suspected pelvic inflammatory disease. Sexually Transmitted Infections, sextrans-2019-054079. https://doi.org/10.1136/sextrans-2019-054079 Workowski, K. A., & Bolan, G. A. (2015). Sexually Transmitted Diseases Treatment Guidelines, 2015. Retrieved from www.cdc.gov/std/treatment/resources.htm Yusof, A., & Kumar, S. (2012). Ultrastructural changes during asexual multiple reproduction in Trichomonas vaginalis. Parasitology Research, 110(5), 1823–1828. https://doi.org/10.1007/s00436-011-2705-9 Zhang, Z., Kang, L., Wang, W., Zhao, X., Li, Y., Xie, Q., Li, X. (2018). Prevalence and genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in Xinxiang City, Henan Province, China. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-2753-4 Zhou, F.-Y., Zhou, Q., Zhu, Z.-Y., Hua, K.-Q., Chen, L.-M., & Ding, J.-X. (2020). Types and viral load of human papillomavirus, and vaginal microbiota in vaginal intraepithelial neoplasia: a cross-sectional study. Annals of Translational Medicine, 8(21), 1408–1408. https://doi.org/10.21037/atm-20-622 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
102 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Microbiología |
dc.publisher.department.spa.fl_str_mv |
Instituto de Biotecnología (IBUN) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82256/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82256/2/1032447029.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/82256/3/1032447029.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 7513fa6f01205b837d88cb0659311deb f9ebbb801e0b3610689cbb4b82c978a0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089286676381696 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Camargo, Sandra Milena89efe562c30de2244a70715c755e8a3ePatarroyo Gutierrez, Manuel Alfonsocce2b8f8feac0f52ceb2af8d7e6db7e0Hernandez Buelvas, Lauren Dayame0e3afbae976750e72b27f12597a8b50Biología Molecular e InmunologíaFundación Instituto de Inmunología de Colombia2022-09-06T14:37:57Z2022-09-06T14:37:57Z2021https://repositorio.unal.edu.co/handle/unal/82256Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficas, ilustraciones,tablasLas Infecciones de Transmisión Sexual (ITS) son una causa importante de morbilidad, generando gran impacto por las secuelas a las que conllevan. Trichomonas vaginalis (T. vaginalis), es la ITS parasitaria de mayor distribución, siendo sugerida su asociación con el desarrollo de Cáncer de Cérvix (CC). En la actualidad es considerada como una infección desatendida, por lo que estudios dirigidos a determinar su distribución e impacto en la población resultan relevantes. El objetivo de este estudio fue determinar la dinámica de infección, depuración y persistencia de T. vaginalis en una cohorte retrospectiva de mujeres provenientes de tres ciudades de Colombia y la evolución de asociaciones longitudinales de diversos factores de riesgo en relación con el curso clínico de las infecciones parasitarias. Este estudio hace parte de una cohorte bidireccional (componente prospectivo y retrospectivo); en el análisis prospectivo, se realizó la toma de muestras cervicales entre abril de 2007 y marzo de 2010 en tres centros hospitalarios de Colombia: Hospital San Juan Bautista – Chaparral, el Nuevo Hospital San Rafael – Girardot, y el Hospital de Engativá Nivel II; en el componente prospectivo, se determinó la historia natural de la infección por VPH y C. trachomatis. En el componente retrospectivo (correspondiente a este estudio), se realizó la identificación de T. vaginalis por PCR convencional con el uso de dos juegos de cebadores: TVK1/7 y BTUB2/9 y Mycoplasma hominis (M. hominis) usando el juego de cebadores RNAH1/2. Se empelaron modelos de riesgo proporcional de Cox para evaluar la relación entre el desenlace de las infecciones por T. vaginalis y los factores de riesgo (como ITS activas, factores sociodemográficos y comportamentales). Un total de 264 mujeres fueron incluidas en el estudio retrospectivo; la media de edad fue 41,8 años (DE= 10,9); un 26,1% (n= 64) presentaron T. vaginalis al inicio 6 del estudio, un 40,9% (n= 108) tuvieron al menos un episodio de infección incidente y el 13,0% (n= 23) presentó más de un episodio de T. vaginalis; las tasas de infección y depuración fueron 3,4 y 15,0 por cada 100 personas en un mes, respectivamente. En cuanto a los factores de riesgo asociados con el desenlace de T. vaginalis, mujeres con VPH tuvieron mayor riesgo (aHR= 1,59; IC 95%= 1,08-2,35) de infección parasitaria, siendo la carga viral (CV) alta (>102) para VPH-16 relacionada con un mayor riesgo de infección parasitaria y para VPH-18 y -33 una menor probabilidad de depuración de T. vaginalis, la etnia (afrodescendiente/indígena) y más de dos compañeros sexuales fueron factores relacionados con un mayor riesgo (aHR= 5,11 and aHR=1,94, respectivamente) de infección parasitaria; en contraste, aquellas con antecedentes de abortos presentaron menor probabilidad (aHR= 0,50; IC 95%= 0,27-0,94) de presentar T. vaginalis. En cuanto a los factores relacionados con la persistencia parasitaria, los resultados mostraron que mujeres entre los 35 a 49 años (aHR= 2,08; IC 95%= 1,12-3,88), el incremento en el número de años desde el inicio de la vida sexual (aHR= 1,10; IC 95%= 1,02-1,19), múltiples parejas sexuales (aHR= 8,86; IC 95%= 1, ,13-12,33) y mujeres multíparas (aHR= 3,85; IC 95%= 1,16-12,81), fueron características que aumentaron la probabilidad de tener infecciones persistentes. Finalmente, mujeres con empeoramiento del hallazgo cervical (diagnosticado por colposcopia) a través del tiempo, presentaron 9,99 veces más probabilidad de persistencia de T. vaginalis. Se sabe que la mayor parte de las infecciones por T. vaginalis cursan asintomáticas, por lo que la epidemiología y la verdadera carga de éstas en términos de la salud pública, aún son desconocidos. Nuestros resultados mostraron que la distribución del parásito es elevada en la población analizada; la coexistencia con VPH y otros factores riesgo, influyen en la dinámica de las infecciones de T. vaginalis y la progresión de lesiones a nivel cervical; estos datos sugieren la relevancia de la detección rutinaria de esta parasitosis, principalmente en población en riesgo. 7 Este estudio aporta información sobre la epidemiología, depuración y persistencia de las infecciones causadas por esta parasitosis en población colombiana; la comprensión de los factores relacionados con la dinámica de T. vaginalis y la influencia de factores de riesgo es relevante y plantea nuevos retos en el abordaje e implementación de estrategias acertadas que mejoren la calidad de vida en la población femenina. (Texto tomado de la fuente)Trichomonas vaginalis (TV), the most common non-viral sexually-transmitted infection is considered a neglected infection and its epidemiology is not well known. This study determined TV-infection dynamics in a retrospective cohort of Colombian women and evaluated associations between risk factors and TV-outcome. TV was identifed by PCR. Cox proportional risk models were used for evaluating the relationship between TV-outcome (infection, clearance and persistence) and risk factors (sexually-transmitted infections and sociodemographic characteristics). Two hundred and sixty-four women were included in the study; 26.1% had TV at the start of the study, 40.9% sufered at least one episode of infection and 13.0% sufered more than one episode of TV during the study. Women sufering HPV had a greater risk of TV-infection (aHR 1.59), high viral-load (> 102 ) for HPV16 being related to a greater risk of persistent parasite infection; a high viral load (> 102 ) for HPV-18 and -33 was related to a lower probability of TV-clearance. Ethnicity (afrodescendent/indigenous people: aHR 5.11) and having had more than two sexual partners (aHR 1.94) were related to greater risk of infection, contrasting with women having a background of abortions and lower probability of having TV (aHR 0.50). Women aged 35- to 49-years-old (aHR 2.08), increased years of sexual activity (aHR 1.10), multiple sexual partners (aHR 8.86) and multiparous women (aHR 3.85) led to a greater probability of persistence. Women whose cervical fndings worsened had a 9.99 greater probability of TVpersistence. TV distribution was high in the study population; its coexistence with HPV and other risk factors infuenced parasite infection dynamics. The results suggested that routine TV detection should be considered regarding populations at risk of infection.MaestríaMagíster en Ciencias - MicrobiologíaEpidemiología Molecular102 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáPersistencia y depuración de Trichomonas vaginalis en una cohorte de mujeres colombianasPersistence and clearance of Trichomonas vaginalis in a cohort of Colombian womenTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAdjei, Collins, Boateng, Richard, Dompreh, A., Okyere, B., & Owiredu, E. W. (2019). Prevalence and the evaluation of culture, wet mount, and ELISA methods for the diagnosis of Trichomonas vaginalis infection among Ghanaian women using urine and vaginal specimens. Tropical Medicine and Health, 47(1). https://doi.org/10.1186/s41182-019-0162-9.Aiyar, A., Quayle, A. J., Buckner, L. R., Sherchand, S. P., Chang, T. L., Zea, A. H., Belland, R. J. (2014). Influence of the tryptophan-indole-IFNγ axis on human genital Chlamydia trachomatis infection: Role of vaginal co-infections. Frontiers in Cellular and Infection Microbiology, 4(JUN). https://doi.org/10.3389/fcimb.2014.00072.Alessio, C., & Nyirjesy, P. (2019). Management of Resistant Trichomoniasis. Current Infectious Disease Reports, 21(9). https://doi.org/10.1007/s11908-019-0687-4.Ambrozio, Lima, C., Nagel, Saggin, Andréia, Jeske, S., Villela, M. M. (2016). Trichomonas vaginalis prevalence and risk factors for women in southern Brazil. Revista Do Instituto de Medicina Tropical de Sao Paulo, 58(1). https://doi.org/10.1590/S1678-9946201658061.Amin, Aziza, Bilic, Ivana, Liebhart, Dieter, & Hess, M. (2014). Trichomonads in birds-a review. Parasitology, 141(6), 733–747. https://doi.org/10.1017/S0031182013002096.Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., & Bray, F. (2020). Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health, 8(2), e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6.Arroyo, R., Cárdenas-Guerra, R. E., Figueroa-Angulo, E. E., Puente-Rivera, J., Zamudio-Prieto, O., & Ortega-López, J. (2015). Trichomonas vaginalis cysteine proteinases: Iron response in gene expression and proteolytic activity. BioMed Research International, 2015. https://doi.org/10.1155/2015/946787.Asmah, R. H., Agyeman, R. O., Obeng-Nkrumah, N., Blankson, H., Awuah-Mensah, G., Cham, M., Ayeh-Kumi, P. F. (2018). Trichomonas vaginalis infection and the diagnostic significance of detection tests among Ghanaian outpatients. BMC Women’s Health, 18(1). https://doi.org/10.1186/s12905-018-0699-5.Balkus, J. E., Richardson, B. A., Rabe, L. K., Taha, T. E., Mgodi, N., Kasaro, M. P., Abdool Karim, S. S. (2014). Bacterial vaginosis and the risk of trichomonas vaginalis acquisition among HIV-1-negative women. Sexually Transmitted Diseases, 41(2), 123–128. https://doi.org/10.1097/OLQ.0000000000000075.Benabdelkader, S., Andreani, J., Gillet, A., Terrer, E., Pignoly, M., Chaudet, H., Scola, B. La. (2019). Specific clones of Trichomonas tenax are associated with periodontitis. PLoS ONE, 14(3). https://doi.org/10.1371/journal.pone.0213338.Benchimol, M. (2004, October). Trichomonads under microscopy. Microscopy and Microanalysis, Vol. 10, pp. 528–550. https://doi.org/10.1017/S1431927604040905.Bernier, A., Rumyantseva, T., Reques, L., Volkova, N., Kyburz, Y., Maximov, O., Pataut, D. (2020). HIV and other sexually transmitted infections among female sex workers in Moscow (Russia): Prevalence and associated risk factors. Sexually Transmitted Infections, 96(8), 601–607. https://doi.org/10.1136/sextrans-2019-054299.Bhakta, S. B., Moran, J. A., & Mercer, F. (2020). Neutrophil interactions with the sexually transmitted parasite Trichomonas vaginalis: implications for immunity and pathogenesis: Neutrophils in Trichomoniasis. Open Biology, 10(9). https://doi.org/10.1098/rsob.200192.Bouchemal, K., Bories, C., & Loiseau, P. M. (2017, July 1). Strategies for prevention and treatment of Trichomonas vaginalis infections. Clinical Microbiology Reviews, Vol. 30, pp. 811–825. https://doi.org/10.1128/CMR.00109-16.Boulet, G. A. V., Benoy, I. H., Depuydt, C. E., Horvath, C. A. J., Aerts, M., Hens, N., Bogers, J. J. (2009). Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: Biomarkers for cervical intraepithelial neoplasia ≥2 in a liquid-based cytology setting? Cancer Epidemiology Biomarkers and Prevention, 18(11), 2992–2999. https://doi.org/10.1158/1055-9965.EPI-09-0025.Bremer, Viviane, Haar, Karin, Gassowski, Martyna., Nielsen, S. (2016). STI tests and proportion of positive tests in female sex workers attending local public health departments in Germany in 2010/11. BMC Public Health, 16(1), 1–9. https://doi.org/10.1186/s12889-016-3847-6.Campbell, L., Woods, V., Lloyd, T., Church, D. L. (2008). Evaluation of the OSOM Trichomonas rapid test versus wet preparation examination for detection of Trichomonas vaginalis vaginitis in specimens from women with a low prevalence of infection. Journal of Clinical Microbiology, 46(10), 3467–3469. https://doi.org/10.1128/JCM.00671-08.Cárdenas, R., Guerraa, R., Arroyo, R., Andradec, I., Benchimolc, M., & Ortega, L. (2013). The iron-induced cysteine proteinase TvCP4 plays a key role in Trichomonas vaginalis haemolysis. Microbes and Infection, 15(13), 958–968. https://doi.org/10.1016/j.micinf.2013.09.002.Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Johnson, P. J. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science, 315(5809), 207–212. https://doi.org/10.1126/science.1132894.Carrillo-Ávila, J. A., Serrano-Garcóa, M. L., Fernández-Parra, J., Sorlózano-Puerto, A., Navarro-Maró, J. M., Stensvold, C. R., & Gutiérrez-Fernández, J. (2017). Prevalence and genetic diversity of Trichomonas vaginalis in the general population of Granada and co-infections with Gardnerella vaginalis and Candida species. Journal of Medical Microbiology, 66(10), 1436–1442. https://doi.org/10.1099/jmm.0.000603.CDC. (2009). Morbidity and Mortality Weekly Report Sexually Transmitted Diseases Treatment Guidelines, 2010. Retrieved from www.cdc.gov/mmwr.Chemaitelly, H., Weiss, H. A., Smolak, A., Majed, E., & Abu-Raddad, L. J. (2019). Epidemiology of Treponema pallidum, Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and herpes simplex virus type 2 among female sex workers in the Middle East and North Africa: systematic review and meta-analytics. Journal of Global Health, 9(2). https://doi.org/10.7189/jogh.09.020408.Chen, Pei, Y., Riestra, M., A., Rai, Kumar, A., & Johnson, P. J. (2019). A novel cadherin-like protein mediates adherence to and killing of host cells by the parasite trichomonas vaginalis. MBio, 10(3). https://doi.org/10.1128/mBio.00720-19.Collántes-Fernández, Esther, Fort, C., M., Ortega-Mora, M., L., & Schares, G. (2018). Trichomonas. Parasitic Protozoa of Farm Animals and Pets, 313–388. https://doi.org/10.1007/978-3-319-70132-5_14.Conrad, D., M., Bradic, Martina, Warring, D., S., Carlton, J. M. (2013). Getting trichy: Tools and approaches to interrogating Trichomonas vaginalis in a post-genome world. Trends in Parasitology, 29(1), 17–25. https://doi.org/10.1016/j.pt.2012.10.004.Conrad, M. D., Gorman, A. W., Schillinger, J. A., Fiori, P. L., Arroyo, R., Malla, N., Carlton, J. M. (2012). Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Neglected Tropical Diseases, 6(3). https://doi.org/10.1371/journal.pntd.0001573.Cornelius, D. C., Robinson, D. A., Muzny, C. A., Mena, L. A., Aanensen, D. M., Lushbaugh, W. B., & Meade, J. C. (2012). Genetic characterization of Trichomonas vaginalis isolates by use of multilocus sequence typing. Journal of Clinical Microbiology, 50(10), 3293–3300. https://doi.org/10.1128/JCM.00643-12.Costa-Lira, E., Jacinto, A. H. V. L., Silva, L. M., Napoleão, P. F. R., Barbosa-Filho, R. A. A., Cruz, G. J. S., Borborema-Santos, C. M. (2017). Prevalence of human papillomavirus, Chlamydia trachomatis, and Trichomonas vaginalis infections in Amazonian women with normal and abnormal cytology. Genetics and Molecular Research, 16(2). https://doi.org/10.4238/gmr16029626.Crucitti, T., Jespers, V., Mulenga, C., Khondowe, S., Vandepitte, J., & Buvé, A. (2011). Non-sexual transmission of Trichomonas vaginalis in adolescent girls attending school in Ndola, Zambia. PLoS ONE, 6(1). https://doi.org/10.1371/journal.pone.0016310.De, M., Von Glehn, P., Cristina, L., Ferreira Sá, E., Ferreira Da Silva, H. D., & Rodrigues Machado, E. (2017). Prevalence of Trichomonas vaginalis in women of reproductive age at a family health clinic. The Journal of Infection In Developing Countries, 11(3), 269–276. https://doi.org/10.3855/jidc.8143.De Waaij, D. J., Dubbink, J. H., Ouburg, S., Peters, R. P. H., & Morré, S. A. (2017). Prevalence of Trichomonas vaginalis infection and protozoan load in South African women: A cross-sectional study. BMJ Open, 7(10). https://doi.org/10.1136/bmjopen-2017-016959.Depuydt, C. E., Leuridan, E., Van Damme, P., Bogers, J., Vereecken, A. J., & Donders, G. (2010). Epidemiology of Trichomonas vaginalis and Human Papillomavirus Infection Detected by Real-Time PCR in Flanders. Gynecologic and Obstetric Investigation, 70(4), 273–280. https://doi.org/10.1159/000314017.Dessì, D., Margarita, V., Cocco, A. R., Marongiu, A., Fiori, P. L., & Rappelli, P. (2019). Trichomonas vaginalis and Mycoplasma hominis: New tales of two old friends. Parasitology, 146(9), 1150–1155. https://doi.org/10.1017/S0031182018002135.Dharma, Vijaya, M. N., Umashankar, M., K., Sudha, Nagure, G., Kavitha, G. (2013). Prevalence of the Trichomonas vaginalis infection in a tertiary care hospital in rural Bangalore, Southern India. Journal of Clinical and Diagnostic Research, 7(7), 1401–1403. https://doi.org/10.7860/JCDR/2013/5375.3140.Dheilly, M., N., Ewald, W., P., Brindley, J., P., Thomas, F. (2019). Parasite-microbe-host interactions and cancer risk. PLoS Pathogens, 15(8). https://doi.org/10.1371/journal.ppat.1007912.Edwards, T., Burke, P., Smalley, H., & and Hobbs, G. (2014). Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Critical Reviews in Microbiology, 42(3), 406–417. https://doi.org/10.3109/1040841X.2014.958050.Feng, R. M., Z.Wang, M., Smith, J. S., Dong, L., Chen, F., Pan, Q. J., Zhao, F. H. (2018). Risk of high-risk human papillomavirus infection and cervical precancerous lesions with past or current trichomonas infection: a pooled analysis of 25,054 women in rural China. Journal of Clinical Virology, 99–100, 84–90. https://doi.org/10.1016/j.jcv.2017.12.015.Figueroa-Angulo, E. E., Rendón-Gandarilla, F. J., Puente-Rivera, J., Calla-Choque, J. S., Cárdenas-Guerra, R. E., Ortega-López, J., Arroyo, R. (2012). The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14(15), 1411–1427. https://doi.org/10.1016/j.micinf.2012.09.004.Fisher, C., Mikolajczak, G., Ezer, P., Kerr, L., Bellamy, R., Brown, G., Lucke, J. (2019). Study Protocol: 6th National Survey of Australian Secondary Students and Adolescent Sexual Health, 2018. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00217.Gaitán-Duarte, H. (2017). Sexually transmitted infections: A public health problem that Colombia needs to face. Revista Colombiana de Obstetricia y Ginecologia, 68(3), 164–167. https://doi.org/10.18597/rcog.3080.Gimenes, F., Souza, R. P., Bento, J. C., Teixeira, J. J. V., Maria-Engler, S. S., Bonini, M. G., & Consolaro, M. E. L. (2014). Male infertility: A public health issue caused by sexually transmitted pathogens. Nature Reviews Urology, 11(12), 672–687. https://doi.org/10.1038/nrurol.2014.285.Ginocchio, C. C., Chapin, K., Smith, J. S., Aslanzadeh, J., Snook, J., Hill, C. S., & Gaydos, C. A. (2012). Prevalence of Trichomonas vaginalis and coinfection with Chlamydia trachomatis and Neisseria gonorrhoeae in the United States as determined by the aptima Trichomonas vaginalis nucleic acid amplification assay. Journal of Clinical Microbiology, 50(8), 2601–2608. https://doi.org/10.1128/JCM.00748-12.Gómez-, Carmen, Del, L., Campo-, Luz, M., Ortega-Ariza., Parody-Muñoz, A. (2019). Prevalence of potentially pathogenic microbiological agents in vaginal exudates of asymptomatic pregnant women, Barranquilla, Colombia, 2014-2015. Revista Colombiana de Obstetricia y Ginecologia, 70(1), 49–56. https://doi.org/10.18597/rcog.3183.Goo, Y. K., Shin, W. S., Yang, H. W., Joo, S. Y., Song, S. M., Ryu, J. S., Hong, Y. (2016). Prevalence of trichomonas vaginalis in women c, South Korea. Korean Journal of Parasitology, 54(1), 75–80. https://doi.org/10.3347/kjp.2016.54.1.75.Goodman, R. P., Freret, T. S., Kula, T., Geller, A. M., Talkington, M. W. T., Tang-Fernandez, V., Nibert, M. L. (2011). Clinical Isolates of Trichomonas vaginalis Concurrently Infected by Strains of Up to Four Trichomonasvirus Species (Family Totiviridae). Journal of Virology, 85(9), 4258–4270. https://doi.org/10.1128/jvi.00220-11.Goodman, Russell P., Ghabrial, S. A., Fichorova, R. N., & Nibert, M. L. (2011). Trichomonasvirus: A new genus of protozoan viruses in the family Totiviridae. Archives of Virology, 156(1), 171–179. https://doi.org/10.1007/s00705-010-0832-8Gould, B., S., Woehle, Christian, Kusdian, Gary., Martin, W. F. (2013). Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. International Journal for Parasitology, 43(9), 707–719. https://doi.org/10.1016/j.ijpara.2013.04.002Grabowski, M. K., Gray, R. H., Serwadda, D., Kigozi, G., Gravitt, P. E., Nalugoda, F., Tobian, A. A. R. (2014). High-risk human papillomavirus viral load and persistence among heterosexual HIV-negative and HIV-positive men. Sexually Transmitted Infections, 90(4), 337–343. https://doi.org/10.1136/sextrans-2013-051230Grama, D. F., Casarotti, L. da S., Morato, M. G. V. de A., Silva, L. S., Mendonça, D. F., Limongi, J. E., Cury, M. C. (2013). Prevalence of Trichomonas vaginalis and risk factors in women treated at public health units in Brazil: A transversal study. Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(9), 584–591. https://doi.org/10.1093/trstmh/trt063Graves, K. J., Ghosh, A. P., Schmidt, N., Augostini, P., Evan Secor, W., Schwebke, J. R., Muzny, C. A. (2019). Trichomonas vaginalis Virus among Women with Trichomoniasis and Associations with Demographics, Clinical Outcomes, and Metronidazole Resistance. Clinical Infectious Diseases, 69(12), 2170–2176. https://doi.org/10.1093/cid/ciz146Haltas, H., Bayrak, R., & Yenidunya, S. (2012). To determine of the prevalence of bacterial vaginosis, Candida sp, mixed infections (bacterial vaginosis +candida sp), trichomonas vaginalis, actinomyces sp in Turkish women from Ankara, Turkey. Ginekologia Polska, 83(10), 744–748. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23383559/Helms, D. J., Mosure, D. J., Metcalf, C. A., Douglas, J. M., Malotte, C. K., Paul, S. M., & Peterman, T. A. (2008). Risk factors for prevalent and incident Trichomonas vaginalis among women attending three sexually transmitted disease clinics. Sexually Transmitted Diseases, 35(5), 484–488. https://doi.org/10.1097/OLQ.0b013e3181644b9cHernández, H. M., Marcet, R., & Sarracent, J. (2014). Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite, 21. https://doi.org/10.1051/parasite/2014054Hinderfeld, S., Annabel, Simoes-Barbosa, & Augusto. (2020). Vaginal dysbiotic bacteria act as pathobionts of the protozoal pathogen Trichomonas vaginalis. Microbial Pathogenesis, 138. https://doi.org/10.1016/j.micpath.2019.103820Hirt, R. P. (2013). Trichomonas vaginalis virulence factors: An integrative overview. Sexually Transmitted Infections, 89(6), 439–443. https://doi.org/10.1136/sextrans-2013-051105Hoots, B. E., Peterman, T. A., Torrone, E. A., Weinstock, H., Meites, E., & Bolan, G. A. (2013). A Trich-y question: Should trichomonas vaginalis infection be reportable? Sexually Transmitted Diseases, 40(2), 113–116. https://doi.org/10.1097/OLQ.0b013e31827c08c3Huneeus, A., Schilling, A., & Fernandez, M. I. (2018). Prevalence of Chlamydia Trachomatis, Neisseria Gonorrhoeae, and Trichomonas Vaginalis Infection in Chilean Adolescents and Young Adults. Journal of Pediatric and Adolescent Gynecology, 31(4), 411–415. https://doi.org/10.1016/j.jpag.2018.01.003Jike, Cui, Das, Suchismita, Smith, T. F., & Samuelson, J. (2010). Trichomonas transmembrane cyclases result from massive gene duplication and concomitant development of pseudogenes. PLoS Neglected Tropical Diseases, 4(8). https://doi.org/10.1371/journal.pntd.0000782Johnson, B. K. (2013). Sexually transmitted infections and older adults. Journal of Gerontological Nursing, 39(11), 53–60. https://doi.org/10.3928/00989134-20130918-01Kenyon, C. R., & Hamilton, D. T. (2016). Correlation between Trichomonas vaginalis and Concurrency: An Ecological Study. Interdisciplinary Perspectives on Infectious Diseases, 2016. https://doi.org/10.1155/2016/5052802Kirkcaldy, D., R., Augostini, Peter, Asbel, Len., Weinstock, H. S. (2012). Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD surveillance network, 2009-2010. Emerging Infectious Diseases, 18(6), 939–943. https://doi.org/10.3201/eid1806.111590Kissinger, P., & Adamski, A. (2013, September). Trichomoniasis and HIV interactions: A review. Sexually Transmitted Infections, Vol. 89, pp. 426–433. https://doi.org/10.1136/sextrans-2012-051005Kissinger, P., Muzny, C. A., Mena, L. A., Lillis, R. A., Schwebke, J. R., Beauchamps, L., Martin, D. H. (2018). Single-dose versus 7-day-dose metronidazole for the treatment of trichomoniasis in women: an open-label, randomised controlled trial. The Lancet Infectious Diseases, 18(11), 1251–1259. https://doi.org/10.1016/S1473-3099(18)30423-7Kovachev, S. M. (2019). Cervical cancer and vaginal microbiota changes. Archives of Microbiology. https://doi.org/10.1007/s00203-019-01747-4Krüger, T., & Engstler, M. (2015). Flagellar motility in eukaryotic human parasites. Seminars in Cell and Developmental Biology, 46, 113–127. https://doi.org/10.1016/j.semcdb.2015.10.034Kusdian, G., & Gould, S. B. (2014). The biology of Trichomonas vaginalis in the light of urogenital tract infection. Molecular and Biochemical Parasitology, Vol. 198, pp. 92–99. https://doi.org/10.1016/j.molbiopara.2015.01.004Kusdian, G., Woehle, C., Martin, W. F., & Gould, S. B. (2013). The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cellular Microbiology, 1707–1721. https://doi.org/10.1111/cmi.12144Lazenby, B., Gweneth, Taylor, T., Peyton., Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009Lazenby, G. B., Taylor, P. T., Badman, B. S., McHaki, E., Korte, J. E., Soper, D. E., & Young Pierce, J. (2014). An association between trichomonas vaginalis and high-risk human papillomavirus in rural tanzanian women undergoing cervical cancer screening. Clinical Therapeutics, 36(1), 38–45. https://doi.org/10.1016/j.clinthera.2013.11.009Leitsch, D. (2016). Recent Advances in the Trichomonas vaginalis Field. F1000Research, 5(162), 1–7. https://doi.org/10.12688/f1000research.7594.1Leli, C., Castronari, R., Levorato, L., Luciano, E., Pistoni, E., Perito, S., Mencacci, A. (2016). Molecular sensitivity threshold of wet mount and an immunochromatographic assay evaluated by quantitative real-time PCR for diagnosis of Trichomonas vaginalis infection in a low-risk population of childbearing women - PubMed. Infez Med, 112(6), 1–24. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27367320/León, Soto-DeC, S., Río-Ospina Del, L., Camargo, M., Sánchez, R., Moreno-Pérez, D. A., Pérez-Prados, A., Patarroyo, M. A. (2014). Persistence, clearance and reinfection regarding six high risk human papillomavirus types in Colombian women: a follow-up study. BMC Infectious Diseases, 14(395). Retrieved from http://www.biomedcentral.com/1471-2334/14/395Leon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009a). Trichomonas vaginalis infection and associated risk factors in a socially-Marginalized female population in coastal peru. Infectious Diseases in Obstetrics and Gynecology, 2009. https://doi.org/10.1155/2009/752437Leon, S. R., Konda, K. A., Bernstein, K. T., Pajuelo, J. B., Rosasco, A. M., Caceres, C. F., Klausner, J. D. (2009b). Trichomonas vaginalis Infection and Associated Risk Factors in a Socially-Marginalized Female Population in Coastal Peru. Infectious Diseases in Obstetrics and Gynecology, 6, 6. https://doi.org/10.1155/2009/752437Ling, M., & Murali, M. (2019). Analysis of the Complement System in the Clinical Immunology Laboratory. Clinics in Laboratory Medicine, 39(4), 579–590. https://doi.org/10.1016/j.cll.2019.07.006López de Munain, J. (2019). Epidemiology and current control of sexually transmitted infections. The role of STI clinics. Enfermedades Infecciosas y Microbiologia Clinica, 37(1), 45–49. https://doi.org/10.1016/j.eimc.2018.10.015Lustig, G, Ryan, C, Secor, E, & Johnson, P. (2013). Trichomonas vaginalis contact-dependent cytolysis of epithelial cells. Infection and Immunity, 81(5), 1411–1419. https://doi.org/10.1128/IAI.01244-12Mahto, M., Evans-Jones, J., Zia, S., Robinson, T. I., Rothburn, M. M., & Mallinson, H. (2011). Finding cases of Trichomonas vaginalis infection in England. International Journal of STD and AIDS, 22(8), 471–473. https://doi.org/10.1258/ijsa.2011.011102Malagón, T., Louvanto, K., Ramanakumar, A. V., Koushik, A., Coutlée, F., & Franco, E. L. (2019). Viral load of human papillomavirus types 16/18/31/33/45 as a predictor of cervical intraepithelial neoplasia and cancer by age. Gynecologic Oncology, 155(2), 245–253. https://doi.org/10.1016/j.ygyno.2019.09.010Margarita, V., Fiori, P. L., & Rappelli, P. (2020). Impact of Symbiosis Between Trichomonas vaginalis and Mycoplasma hominis on Vaginal Dysbiosis: A Mini Review. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00179Margarita, V., Rappelli, P., Dessì, D., Pintus, G., Hirt, R. P., & Fiori, P. L. (2016). Symbiotic Association with Mycoplasma hominis Can Influence Growth Rate, ATP Production, Cytolysis and Inflammatory Response of Trichomonas vaginalis. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00953Martínez-Herrero, Carmen, M. Del, Garijo-Toledo, Magdalena, M., González, Fernando., Gómez-Muñoz, M. T. (2019). Membrane associated proteins of two Trichomonas gallinae clones vary with the virulence. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0224032Masha, S. C., Cools, P., Descheemaeker, P., Reynders, M., Sanders, E. J., & Vaneechoutte, M. (2018). Urogenital pathogens, associated with Trichomonas vaginalis, among pregnant women in Kilifi, Kenya: A nested case-control study 11 Medical and Health Sciences 1108 Medical Microbiology. BMC Infectious Diseases, 18(1). https://doi.org/10.1186/s12879-018-3455-4Matlung, H. L., Babes, L., Zhao, X. W., van Houdt, M., Treffers, L. W., van Rees, D. J., van den Berg, T. K. (2018). Neutrophils Kill Antibody-Opsonized Cancer Cells by Trogoptosis. Cell Reports, 23(13), 3946-3959.e6. https://doi.org/10.1016/j.celrep.2018.05.082Meade, J. C., & Carlton, J. M. (2013). Genetic diversity in Trichomonas vaginalis. Sexually Transmitted Infections, 89(6), 444–448. https://doi.org/10.1136/sextrans-2013-051098Meade, J. C., De Mestral, J., Stiles, J. K., Secor, W. E., Finley, R. W., Cleary, J. D., & Lushbaugh, W. B. (2009). Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes. American Journal of Tropical Medicine and Hygiene, 80(2), 245–251. https://doi.org/10.4269/ajtmh.2009.80.245Menezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016a). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526Menezes, C. B., Amanda Piccoli Frasson, A. P., & Tasca, T. (2016b). Trichomoniasis – are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide? Microbial Cell, 3(9), 404–418. https://doi.org/10.15698/mic2016.09.526Menezes, C. B., & Tasca, T. (2016). Trichomoniasis immunity and the involvement of the purinergic signaling. Biomedical Journal, 39(4), 234–243. https://doi.org/10.1016/j.bj.2016.06.007Menon, S., Broeck, D. Vanden, Rossi, R., Ogbe, E., Harmon, S., & Mabeya, H. (2016). Associations Between Vaginal Infections and Potential High-risk and High-risk Human Papillomavirus Genotypes in Female Sex Workers in Western Kenya. Clinical Therapeutics, 38(12), 2567–2577. https://doi.org/10.1016/j.clinthera.2016.10.005Mercer, F. and, & Johnson, P. J. (2018). Trichomonas vaginalis: Pathogenesis, Symbiont Interactions, and Host Cell Immune Responses. Trends in Parasitology, xx. https://doi.org/10.1016/j.pt.2018.05.006Mercer, Frances, Ng, S., Hang, H., Brown, T. M., Boatman, G., & Johnson, P. J. (2018). Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biology, 16(2). https://doi.org/10.1371/journal.pbio.2003885Mielczarek, E., & Blaszkowska, J. (2015). Trichomonas vaginalis: pathogenicity and potential role in human reproductive failure. Springer, 44(4), 447–458. https://doi.org/10.1007/s15010-015-0860-0Ministerio de Protección Social. (2007). Recomendaciones para la tamización de neoplasias del cuello uterino en mujeres sin antecedentes de patología cervical (preinvasora o invasora) en Colombia. Retrieved January 17, 2021, from http://www.cancer.gov.co/files/libros/archivos/1b244b0cbac755bffb2b14154a3effc0_Guia N3 tamización de cuello uterino.pdfMinisterio de Salud. (2012). Situación de las Infecciones de Transmisión Sexual diferentes al VIH, Colombia 2009 - 2011. Retrieved from https://www.minsalud.gov.co/salud/Documents/observatorio_vih/documentos/monitoreo_evaluacion/1_vigilancia_salud_publica/a_situacion_epidimiologica/SITUACION DE LAS INFECCIONES DE TRANSMISION1.pdfMorada, M., Manzur, M., Lam, B., Tan, C., Tachezy, J., Rappelli, P., Yarlett, N. (2010). Arginine metabolism in Trichomonas vaginalis infected with Mycoplasma hominis. Microbiology, 156(12), 3734–3743. https://doi.org/10.1099/mic.0.042192-0Muñoz, , Ramírez, A., López, Monteon, A., Ramos, Ligonio, A., … Guapillo-Vargas, M. R. B. (2018). Prevalence of Trichomonas vaginalis and Human papillomavirus in female sex workers in Central Veracruz, Mexico. Revista Argentina de Microbiologia, 50(4), 351–358. https://doi.org/10.1016/j.ram.2017.11.004Nemati, M., Malla, N., Yadav, M., … Jafarzadeh, A. (2018). Humoral and T cell–mediated immune response against trichomoniasis. Parasite Immunology, 40(3), 36. https://doi.org/10.1111/pim.12510Noël, J., C., Diaz, Nicia, Sicheritz, -Ponten, T., Hirt, R. P. (2010). Trichomonas vaginalis vast BspA-like gene family: Evidence for functional diversity from structural organisation and transcriptomics. BMC Genomics, 11(1), 99. https://doi.org/10.1186/1471-2164-11-99Noël, Jean-Christophe, Fayt, Isabelle, Romero, Munoz, M. R., Engohan-Aloghe, C. (2010). High prevalence of high-risk human papillomavirus infection among women with Trichomonas vaginalis infection on monolayer cytology. Archives of Gynecology and Obstetrics, 282(5), 503–505. https://doi.org/10.1007/s00404-009-1291-xNu, P. A. T., Nguyen, V. Q. H., Cao, N. T., DessÌ, D., Rappelli, P., & Fiori, P. L. (2015). Prevalence of trichomonas vaginalis infection in symptomatic and asymptomatic women in central vietnam. Journal of Infection in Developing Countries, 9(6), 655–660. https://doi.org/10.3855/jidc.7190Nu Ton, Anh, P., Rapp, elli, Paola, Dessì., Fiori, P. L. (2015). Kinetics of circulating antibody response to Trichomonas vaginalis: Clinical and diagnostic implications. Sexually Transmitted Infections, 91(8), 561–563. https://doi.org/10.1136/sextrans-2014-051839Okumura, C. Y. M., Baum, L. G., & Johnson, P. J. (2008). Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cellular Microbiology, 10(10), 2078–2090. https://doi.org/10.1111/j.1462-5822.2008.01190.xOnderdonk, A. B., Delaney, M. L., & Fichorova, R. N. (2016). The human microbiome during bacterial vaginosis. Clinical Microbiology Reviews, 29(2), 223–238. https://doi.org/10.1128/CMR.00075-15Pardo, C., & de Vries, E. (2018). Breast and cervical cancer survival at instituto nacional de cancerología, Colombia. Colombia Medica, 49(1), 102–108. https://doi.org/10.25100/cm.v49i1.2840Patel, Eshan, Gaydos, Charlotte, Packman, R., Z., A.R., A. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079Patel, U., Eshan, Gaydos, A., C., Harlotte., Tobian, A. A. R. (2018). Prevalence and correlates of trichomonas vaginalis infection among men and women in the United States. Clinical Infectious Diseases, 67(2), 211–217. https://doi.org/10.1093/cid/ciy079Pekmezovic, Marina, Mogavero, Selene, Naglik, J., R., U., & Hube, B. (2019). Host–Pathogen Interactions during Female Genital Tract Infections. Trends in Microbiology, 15. https://doi.org/10.1016/j.tim.2019.07.006Pellrud, H., Golparian, D., Nilsson, C. S., Falk, M., Fredlund, H., & Unemo, M. (2015). Trichomonas vaginalis infections are rare among young patients attending an STI clinic in Sweden. Acta Dermato-Venereologica, Vol. 95, pp. 343–344. https://doi.org/10.2340/00015555-1946Perazzi, B. E., Menghi, C. I., Coppolillo, E. F., Gatta, C., Eliseth, M. C., De Torres, R. A., Famiglietti, A. M. R. (2010). Prevalence and comparison of diagnostic methods for Trichomonas vaginalis infection in pregnant women in Argentina. Korean Journal of Parasitology, 48(1), 61–65. https://doi.org/10.3347/kjp.2010.48.1.61Pereyre, S., Laurier Nadalié, C., Bébéar, C., Arfeuille, C., Beby-Defaux, A., Berçot, B., Verhoeven, P. (2017). Mycoplasma genitalium and Trichomonas vaginalis in France: a point prevalence study in people screened for sexually transmitted diseases. Clinical Microbiology and Infection, 23(2), 122.e1-122.e7. https://doi.org/10.1016/j.cmi.2016.10.028Peterman, T. A., Lin, L. S., Newman, D. R., Kamb, M. L., Bolan, G., Zenilman, J., Malotte, C. K. (2000). Does measured behavior reflect STD risk?: An analysis of data from a randomized controlled behavioral intervention study. Sexually Transmitted Diseases, 27(8), 446–451. https://doi.org/10.1097/00007435-200009000-00004Peters, A., Das, S., & Raidal, S. R. (2020). Diverse Trichomonas lineages in Australasian pigeons and doves support a columbid origin for the genus Trichomonas. Molecular Phylogenetics and Evolution, 143. https://doi.org/10.1016/j.ympev.2019.106674Quinónez-Calvache, E. M., Ríos-Chaparro, D. I., Ramírez, J. D., Soto-De León, S. C., Camargo, M., Río-Ospina, L., Patarroyo, M. A. (2016). Chlamydia trachomatis Frequency in a Cohort of HPV-infected colombian women. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0147504Rai, A. K., & Johnson, P. J. (2019). Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis. Proceedings of the National Academy of Sciences, 201912356. https://doi.org/10.1073/pnas.1912356116Reighard, S. D., Sweet, R. L., Vicetti Miguel, C., Vicetti Miguel, R. D., Chivukula, M., Krishnamurti, U., & Cherpes, T. L. (2011). Endometrial leukocyte subpopulations associated with Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis genital tract infection. American Journal of Obstetrics and Gynecology, 205(4), 324.e1-324.e7. https://doi.org/10.1016/j.ajog.2011.05.031Río-Ospina, L. Del, Cecilia, S., León, S.-D., Camargo, M., Andrés Moreno-Pérez, D., Sánchez, R., Patarroyo, M. A. (2015). The DNA load of six high-risk human papillomavirus types and its association with cervical lesions. BMC Cancer, 15(100), 11. https://doi.org/10.1186/s12885-015-1126-zRío-Ospina, L. Del, León, S. C. S. De, Camargo, M., Sánchez, R., Mancilla, C. L., Patarroyo, M. E., & Patarroyo, M. A. (2016). The prevalence of high-risk HPV types and factors determining infection in female colombian adolescents. PLoS ONE, 11(11). https://doi.org/10.1371/journal.pone.0166502Rodriguez-Cerdeira, C., Sanchez-Blanco, E., & Alba, A. (2012). Evaluation of Association between Vaginal Infections and High-Risk Human Papillomavirus Types in Female Sex Workers in Spain. ISRN Obstetrics and Gynecology, 2012, 1–7. https://doi.org/10.5402/2012/240190Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 108(1), 377–396. https://doi.org/10.1002/JLB.4MIR0220-574RRRowley, J., Vander Hoorn, S., Korenromp, E., Low, N., Unemo, M., Abu-Raddad, L. J., Taylor, M. M. (2019). Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bulletin of the World Health Organization, 97(8), 548-562P. https://doi.org/10.2471/blt.18.228486Ryan, C., De Miguel, N., & Johnson, P. (2011). Trichomonas vaginalis: Current understanding of host-parasite interactions. Essays in Biochemistry, 51(1), 161–175. https://doi.org/10.1042/BSE0510161Salas, N., Ramirez, J., Ruiz, B., Torres, E., Nevio, L., & Gómez, J. (2009). Prevalencia de microorganismos asociados a infecciones vaginales en 230 mujeres gestantes y no gestantes sintomáticas del Centro de Salud La Milagrosa en el municipio de Armenia (Colombia). Revista Colombiana de Obstetricia y Ginecología, 60(0034–7434), 135–142. Retrieved from http://www.scielo.org.co/scielo.php?pid=S0034-74342009000200003&script=sci_abstract&tlng=esSalfa, M. C., Suligoi, B., Latino, M. A., Sacchi, A., Dapiran, L., Crotti, G., Bruno, A. R. (2016). Prevalence of Chlamydia trachomatis, trichomonas vaginalis and Neisseria gonorrhoeae based on data collected by a network of clinical microbiology laboratories, in Italy. Advances in Experimental Medicine and Biology, 901, 47–57. https://doi.org/10.1007/5584_2015_5015Scott, M. L., Woodby, B. L., Ulicny, J., Raaikhy, G., Orr, A. W., K., W., & Songock, and J. M. B. (2019). Human papillomavirus type 16 E5 inhibits interferon signaling and supports episomal viral maintenance. Journal of Virology, (October). https://doi.org/10.1128/JVI.01582-19Secor, W. E., Meites, E., Starr, M. C., & Workowski, K. A. (2014). Neglected parasitic infections in the United States: Trichomoniasis. American Journal of Tropical Medicine and Hygiene, 90(5), 800–804. https://doi.org/10.4269/ajtmh.13-0723Sehgal, R., Goyal, K., & Sehgal, A. (2012). Trichomoniasis and lactoferrin: Future prospects. Infectious Diseases in Obstetrics and Gynecology, 2012. https://doi.org/10.1155/2012/536037Seña, A., Bachmann, L., & Hobbs, M. (2014). Persistent and recurrent Trichomonas vaginalis infections: Epidemiology, treatment and management considerations. Expert Review of Anti-Infective Therapy, 12(6), 673–685. https://doi.org/10.1586/14787210.2014.887440Serwin, A. B., Bulhak-Koziol, Violetta, Sokolowska, M., Golparian, D., & Unemo, M. (2017). Trichomonas vaginalis is very rare among women with vaginal discharge in Podlaskie province, Poland. APMIS, 125(9), 840–843. https://doi.org/10.1111/apm.12713Silver, B. J., Guy, R. J., Kaldor, J. M., Jamil, M. S., & Rumbold, A. R. (2014). Trichomonas vaginalis as a cause of perinatal morbidity: A systematic review and Meta-analysis. Sexually Transmitted Diseases, 41(6), 369–376. https://doi.org/10.1097/OLQ.0000000000000134Smith, J. D., & Garber, G. E. (2015). Trichomonas vaginalis Infection Induces Vaginal CD4 + T-Cell Infiltration in a Mouse Model: A Vaccine Strategy to Reduce Vaginal Infection and HIV Transmission. The Journal of Infectious Diseases. https://doi.org/10.1093/infdis/jiv036Snipes, L. J., Gamard, P. M., Narcisi, E. M., Beard, C. B., Lehmann, T., & Secor, W. E. (2000). Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. Journal of Clinical Microbiology, 38(8), 3004–3009. https://doi.org/10.1128/jcm.38.8.3004-3009.2000Sodhani, P., Gupta, S., Gupta, R., & Mehrotra, R. (2017). Bacterial vaginosis and cervical intraepithelial neoplasia: Is there an association or is co-existence incidental? Asian Pacific Journal of Cancer Prevention, 18(5), 1289–1292. https://doi.org/10.22034/APJCP.2017.18.5.1289Soto-De Leon, S., Camargo, M., Sanchez, R., Munoz, M., Perez-Prados, A., Purroy, A., Patarroyo, M. A. (2011). Distribution patterns of infection with multiple types of human papillomaviruses and their association with risk factors. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0014705Stemmer, S. M., Mordechai, E., Adelson, M. E., Gygax, S. E., & Hilbert, D. W. (2018). Trichomonas vaginalis is most frequently detected in women at the age of peri-/premenopause: an unusual pattern for a sexually transmitted pathogen. American Journal of Obstetrics and Gynecology, 218(3), 328.e1-328.e13. https://doi.org/10.1016/j.ajog.2017.12.006Storti-Filho, A., Souza, P. C., Chassot, F., Pereira, M. W., Souza, R. J. S., Mello, I. C. J., Consolaro, M. E. L. (2009). Association of public versus private health care utilization and prevalence of Trichomonas vaginalis in Maringá, Paraná, Brazil. Archives of Gynecology and Obstetrics, 280(4), 593–597. https://doi.org/10.1007/s00404-009-0971-xSutcliffe, S. (2010, August). Sexually transmitted infections and risk of prostate cancer: Review of historical and emerging hypotheses. Future Oncology, Vol. 6, pp. 1289–1311. https://doi.org/10.2217/fon.10.95Tao, L., Han, L., Li, X., Gao, Q., Pan, L., Wu, L., Guo, X. (2014). Prevalence and risk factors for cervical neoplasia: A cervical cancer screening program in Beijing. BMC Public Health, 14(1). https://doi.org/10.1186/1471-2458-14-1185Taylor, S. N. (2014, September 15). Trichomonas vaginalis testing and screening in a high-risk population: Is this a glimpse into the future? Clinical Infectious Diseases, Vol. 59, pp. 842–844. https://doi.org/10.1093/cid/ciu448Tine, R. C., Sylla, K., Ka, R., Dia, L., Sow, D., Lelo, S., Sow, A. Y. (2019). A Study of Trichomonas vaginalis Infection and Correlates in Women with Vaginal Discharge Referred at Fann Teaching Hospital in Senegal. Journal of Parasitology Research, 2019. https://doi.org/10.1155/2019/2069672Twu, O., de Miguel, N., Lustig, G., Stevens, G. C., Vashisht, A. A., Wohlschlegel, J. A., & Johnson, P. J. (2013). Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions. PLoS Pathogens, 9(7), e1003482. https://doi.org/10.1371/journal.ppat.1003482Valencia-, Arredondo, M., Yepes-, & López, W. A. (2018). Prevalence of bacterial vaginosis, candidiasis, trichomoniasis, and associated factors in two hospitals of Apartadó and Rionegro – Antioquia, 2014. Iatreia, 31(2), 133–144. https://doi.org/10.17533/udea.iatreia.v31n2a02Van, B., & Pol, D. (2015). Clinical and Laboratory Testing for Trichomonas vaginalis Infection. Journal Of C, 54(1). https://doi.org/10.1128/JCM.02025-15Van Der Veer, C., Himschoot, M., & Bruisten, S. M. (2016). Multilocus sequence typing of Trichomonas vaginalis clinical samples from Amsterdam, the Netherlands. BMJ Open, 6(10). https://doi.org/10.1136/bmjopen-2016-013997Van Gerwen, O. T., & Muzny, C. A. (2019). Recent advances in the epidemiology, diagnosis, and management of Trichomonas vaginalis infection. F1000Research, 8, 1666. https://doi.org/10.12688/f1000research.19972.1Van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788. https://doi.org/10.1007/s00018-008-8281-1Vorobjeva, N. V., & Chernyak, B. V. (2020). NETosis: Molecular Mechanisms, Role in Physiology and Pathology. Biochemistry (Moscow), 85(10), 1178–1190. https://doi.org/10.1134/S0006297920100065Watts, D. H., Fazarri, M., Minkoff, H., Hillier, S. L., Sha, B., Glesby, M., … Strickler, H. D. (2005). Effects of Bacterial Vaginosis and Other Genital Infections on the Natural History of Human Papillomavirus Infection in HIV‐1–Infected and High‐Risk HIV‐1–Uninfected Women. The Journal of Infectious Diseases, 191(7), 1129–1139. https://doi.org/10.1086/427777Wei, Yanxia, Gao, Jing, Kou, Yanbo., Wanga, Y. (2020). Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Applied and Environmental Microbiology, 86(11). https://doi.org/10.1128/AEM.00303-20WHO. (2012). Global incidence and prevalence of selected curable sexually transmitted infections-2008.WHO. (2016). Global Helth Sector Strategy on sexually trasmitted infections 2016-2021 towards ending STIs.WHO. (2018). 2018 Report on global sexually transmitted infection surveillance. Retrieved from http://apps.who.int/bookorders.WHO. (2020). Colombia. Retrieved from https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdfWiringa, E, A., Ness, B, R., Darville, Toni., Haggerty, C. L. (2019). Trichomonas vaginalis , endometritis and sequelae among women with clinically suspected pelvic inflammatory disease. Sexually Transmitted Infections, sextrans-2019-054079. https://doi.org/10.1136/sextrans-2019-054079Workowski, K. A., & Bolan, G. A. (2015). Sexually Transmitted Diseases Treatment Guidelines, 2015. Retrieved from www.cdc.gov/std/treatment/resources.htmYusof, A., & Kumar, S. (2012). Ultrastructural changes during asexual multiple reproduction in Trichomonas vaginalis. Parasitology Research, 110(5), 1823–1828. https://doi.org/10.1007/s00436-011-2705-9Zhang, Z., Kang, L., Wang, W., Zhao, X., Li, Y., Xie, Q., Li, X. (2018). Prevalence and genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in Xinxiang City, Henan Province, China. Parasites and Vectors, 11(1). https://doi.org/10.1186/s13071-018-2753-4Zhou, F.-Y., Zhou, Q., Zhu, Z.-Y., Hua, K.-Q., Chen, L.-M., & Ding, J.-X. (2020). Types and viral load of human papillomavirus, and vaginal microbiota in vaginal intraepithelial neoplasia: a cross-sectional study. Annals of Translational Medicine, 8(21), 1408–1408. https://doi.org/10.21037/atm-20-622Women - diseasesSalud de la mujerMujeres enfermedadesWomen's healthTrichomonas vaginalisPersistenciaDepuraciónInfección de trasmisión sexualEpidemiologíaFactores de RiesgoTrichomonas vaginalisPersistencesexually-transmitted infectionClearanceRisk factorsEpidemiologyEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82256/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINAL1032447029.2021.pdf1032447029.2021.pdfTesis de maestría en Ciencias - Microbiologíaapplication/pdf1999967https://repositorio.unal.edu.co/bitstream/unal/82256/2/1032447029.2021.pdf7513fa6f01205b837d88cb0659311debMD52THUMBNAIL1032447029.2021.pdf.jpg1032447029.2021.pdf.jpgGenerated Thumbnailimage/jpeg4420https://repositorio.unal.edu.co/bitstream/unal/82256/3/1032447029.2021.pdf.jpgf9ebbb801e0b3610689cbb4b82c978a0MD53unal/82256oai:repositorio.unal.edu.co:unal/822562023-08-05 23:04:05.959Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |