Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station

Seismic event characterization is often accomplished using algorithms based only on information received at seismological stations located closest to the particular event, while ignoring historical data received at those stations. These historical data are stored and unseen at this stage. This chara...

Full description

Autores:
Ochoa Gutiérrez, Luis Hernán
Niño, Luis F
Vargas, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63665
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63665
http://bdigital.unal.edu.co/64111/
Palabra clave:
55 Ciencias de la tierra / Earth sciences and geology
Machine learning
seismology
single station
magnitude
distance.
Aprendizaje de máquina
sismología
una estación
magnitud
distancia.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_24079e4fe353741590dfc32bd5336001
oai_identifier_str oai:repositorio.unal.edu.co:unal/63665
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
title Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
spellingShingle Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
55 Ciencias de la tierra / Earth sciences and geology
Machine learning
seismology
single station
magnitude
distance.
Aprendizaje de máquina
sismología
una estación
magnitud
distancia.
title_short Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
title_full Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
title_fullStr Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
title_full_unstemmed Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
title_sort Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station
dc.creator.fl_str_mv Ochoa Gutiérrez, Luis Hernán
Niño, Luis F
Vargas, Carlos A.
dc.contributor.author.spa.fl_str_mv Ochoa Gutiérrez, Luis Hernán
Niño, Luis F
Vargas, Carlos A.
dc.subject.ddc.spa.fl_str_mv 55 Ciencias de la tierra / Earth sciences and geology
topic 55 Ciencias de la tierra / Earth sciences and geology
Machine learning
seismology
single station
magnitude
distance.
Aprendizaje de máquina
sismología
una estación
magnitud
distancia.
dc.subject.proposal.spa.fl_str_mv Machine learning
seismology
single station
magnitude
distance.
Aprendizaje de máquina
sismología
una estación
magnitud
distancia.
description Seismic event characterization is often accomplished using algorithms based only on information received at seismological stations located closest to the particular event, while ignoring historical data received at those stations. These historical data are stored and unseen at this stage. This characterization process can delay the emergency response, costing valuable time in the mitigation of the adverse effects on the affected population. Seismological stations have recorded data during many events that have been characterized by classical methods, and these data can be used as previous "knowledge" to train such stations to recognize patterns. This knowledge can be used to make faster characterizations using only one three-component broadband station by applying bio-inspired algorithms or recently developed stochastic methods, such as kernel methods. We trained a Support Vector Machine (SVM) algorithm with seismograph data recorded by INGEOMINAS's National Seismological Network at a three-component station located near Bogota, Colombia. As input model descriptors, we used the following: (1) the integral of the Fourier transform/power spectrum for each component, divided into 7 windows of 2 seconds and beginning at the P onset time, and (2) the ratio between the calculated logarithm of magnitude (Mb) and epicentral distance. We used 986 events with magnitudes greater than 3 recorded from late 2003 to 2008.The algorithm classifies events with magnitude-distance ratios (a measure of the severity of possible damage caused by an earthquake) greater than a background value. This value can be used to estimate the magnitude based on a known epicentral distance, which is calculated from the difference between P and S onset times. This rapid ( 20 seconds) magnitude estimate can be used for rapid response strategies.The results obtained in this work confirm that many hypocentral parameters and a rapid location of a seismic event can be obtained using a few seconds of signal registered at a single station. A cascade scheme of SVMs or other appropriate algorithms can be used to completely classify an event in a very short time with acceptable accuracy using data from only one station.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T22:00:37Z
dc.date.available.spa.fl_str_mv 2019-07-02T22:00:37Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2339-3459
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63665
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64111/
identifier_str_mv ISSN: 2339-3459
url https://repositorio.unal.edu.co/handle/unal/63665
http://bdigital.unal.edu.co/64111/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/esrj/article/view/41083
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal
Earth Sciences Research Journal
dc.relation.references.spa.fl_str_mv Ochoa Gutiérrez, Luis Hernán and Niño, Luis F and Vargas, Carlos A. (2014) Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station. Earth Sciences Research Journal, 18 (2). pp. 115-122. ISSN 2339-3459
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63665/1/41083-242186-4-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/63665/2/41083-242186-4-PB.pdf.jpg
bitstream.checksum.fl_str_mv 0b242762020916cbbc48cd8ed5f9a7c7
d1bc5a24e537f7adb89567464915a0b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090019730620416
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ochoa Gutiérrez, Luis Hernánb24853b9-35c2-487b-b147-e866ef9ee167300Niño, Luis Fb7b34ae9-9e5a-44cf-aa30-d8bc409e3e77300Vargas, Carlos A.991154f0-745f-432a-a7c1-298eccedfa6b3002019-07-02T22:00:37Z2019-07-02T22:00:37Z2014-07-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63665http://bdigital.unal.edu.co/64111/Seismic event characterization is often accomplished using algorithms based only on information received at seismological stations located closest to the particular event, while ignoring historical data received at those stations. These historical data are stored and unseen at this stage. This characterization process can delay the emergency response, costing valuable time in the mitigation of the adverse effects on the affected population. Seismological stations have recorded data during many events that have been characterized by classical methods, and these data can be used as previous "knowledge" to train such stations to recognize patterns. This knowledge can be used to make faster characterizations using only one three-component broadband station by applying bio-inspired algorithms or recently developed stochastic methods, such as kernel methods. We trained a Support Vector Machine (SVM) algorithm with seismograph data recorded by INGEOMINAS's National Seismological Network at a three-component station located near Bogota, Colombia. As input model descriptors, we used the following: (1) the integral of the Fourier transform/power spectrum for each component, divided into 7 windows of 2 seconds and beginning at the P onset time, and (2) the ratio between the calculated logarithm of magnitude (Mb) and epicentral distance. We used 986 events with magnitudes greater than 3 recorded from late 2003 to 2008.The algorithm classifies events with magnitude-distance ratios (a measure of the severity of possible damage caused by an earthquake) greater than a background value. This value can be used to estimate the magnitude based on a known epicentral distance, which is calculated from the difference between P and S onset times. This rapid ( 20 seconds) magnitude estimate can be used for rapid response strategies.The results obtained in this work confirm that many hypocentral parameters and a rapid location of a seismic event can be obtained using a few seconds of signal registered at a single station. A cascade scheme of SVMs or other appropriate algorithms can be used to completely classify an event in a very short time with acceptable accuracy using data from only one station.Los algoritmos de determinación de parámetros hipocentrales empleados en la actualidad, se basan específicamente en la información recibida en las estaciones de monitoreo mas cercanas al epicentro y no tienen en cuenta la valiosa información histórica registrada a lo largo del tiempo en dichas estaciones. Es por esto que los procesos de caracterización toman varios minutos, tiempo precioso que podría ser de gran utilidad en la generación de alertas tempranas que permitan una oportuna reacción ante el evento. El registro de información, a lo largo el tiempo, de sismos ocurridos en los alrededores de la estación, puede ser empleada para dotarla de algún grado de experiencia que le permita, mediante detección y clasificación de patrones, realizar una caracterización previa mucho mas rápida, mediante el empleo de técnicas modernas las cuales pueden ser algoritmos bio-inspirados o métodos estocásticos mas recientes conocidos como métodos Kernel. En el presente trabajo se emplea un método conocido como Maquinas de Soporte Vectorial (MSV), entrenando dicho algoritmo con información de la relación del área bajo la curva de la potencia de la transformada de Fourier de las componentes N-S, E-W y Vertical, calculada para 5 ventanas de 2 segundos, desde la onda p, de 123 sismos de magnitud superior a 3, desde 2004 hasta 2008, alrededor de la estación El Rosal, de la Red Sismológica Nacional de Ingeominas. El Algoritmo clasifica sismos que superen un umbral predeterminado de la relación entre el Logaritmo de la magnitud y la distancia, que refleja, de alguna manera, la intensidad del sismo. Con la obtención de este parámetroá posible conocer la magnitud del evento, debido a que la distancia puede ser calculada, con base en picado de la onda S, y de esta manera establecer una aproximación rápida de la magnitud en un tiempo aproximado de 20 segundos después del evento. Los resultados obtenidos permiten confirmar que con poco tiempo se señal en una sola estación sismológica es posible obtener información confiable para ser empleada en alertas tempranas.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/41083Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalOchoa Gutiérrez, Luis Hernán and Niño, Luis F and Vargas, Carlos A. (2014) Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological Station. Earth Sciences Research Journal, 18 (2). pp. 115-122. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyMachine learningseismologysingle stationmagnitudedistance.Aprendizaje de máquinasismologíauna estaciónmagnituddistancia.Severity Classification of a Seismic Event based on the Magnitude-Distance Ratio Using Only One Seismological StationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL41083-242186-4-PB.pdfapplication/pdf1172678https://repositorio.unal.edu.co/bitstream/unal/63665/1/41083-242186-4-PB.pdf0b242762020916cbbc48cd8ed5f9a7c7MD51THUMBNAIL41083-242186-4-PB.pdf.jpg41083-242186-4-PB.pdf.jpgGenerated Thumbnailimage/jpeg7802https://repositorio.unal.edu.co/bitstream/unal/63665/2/41083-242186-4-PB.pdf.jpgd1bc5a24e537f7adb89567464915a0b0MD52unal/63665oai:repositorio.unal.edu.co:unal/636652024-04-30 23:10:37.438Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co