Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia
ilustraciones, graficas, mapas
- Autores:
-
Girón Angarita, Karla Johayra
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81533
- Palabra clave:
- 550 - Ciencias de la tierra
Tierras secas
Variabilidad espacial
Carbono orgánico
Suelo
Drylands
Spatial variability
Organic carbon
Soil
Degradación de suelos
Carbono
Soil degradation
Carbon
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_23b3e5014e47eebbd02cfc3ea9f7e508 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81533 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
dc.title.translated.eng.fl_str_mv |
Monitoring of the organic carbon stock in soils of sub-humid environments. Case Study Department of Magdalena, Colombia |
title |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
spellingShingle |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia 550 - Ciencias de la tierra Tierras secas Variabilidad espacial Carbono orgánico Suelo Drylands Spatial variability Organic carbon Soil Degradación de suelos Carbono Soil degradation Carbon |
title_short |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
title_full |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
title_fullStr |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
title_full_unstemmed |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
title_sort |
Monitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, Colombia |
dc.creator.fl_str_mv |
Girón Angarita, Karla Johayra |
dc.contributor.advisor.none.fl_str_mv |
Rubiano Sanabria, Yolanda Aguirre Forero, Sonia Esperanza |
dc.contributor.author.none.fl_str_mv |
Girón Angarita, Karla Johayra |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra |
topic |
550 - Ciencias de la tierra Tierras secas Variabilidad espacial Carbono orgánico Suelo Drylands Spatial variability Organic carbon Soil Degradación de suelos Carbono Soil degradation Carbon |
dc.subject.proposal.spa.fl_str_mv |
Tierras secas Variabilidad espacial Carbono orgánico Suelo |
dc.subject.proposal.eng.fl_str_mv |
Drylands Spatial variability Organic carbon Soil |
dc.subject.unesco.spa.fl_str_mv |
Degradación de suelos Carbono |
dc.subject.unesco.eng.fl_str_mv |
Soil degradation Carbon |
description |
ilustraciones, graficas, mapas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-06-08T16:58:18Z |
dc.date.available.none.fl_str_mv |
2022-06-08T16:58:18Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81533 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81533 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110319 Abella, S. R., & Zimmer, B. W. (2007). Estimating Organic Carbon from Loss-On-Ignition in Northern Arizona Forest Soils. Soil Science Society of America Journal, 71(2), 545–550. https://doi.org/10.2136/sssaj2006.0136 Akima, H., Gebhard, A., Petzold, T., & Maechler, M. (2020). Package ‘ akima .’ https://cran.r-project.org/web/packages/akima/akima.pdf Alvarez, C., Alvarez, C. R., Costantini, A., & Basanta, M. (2014). Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142, 25–31. https://doi.org/https://doi.org/10.1016/j.still.2014.04.005 Arbia, G. (2014). A Primer for Spatial Econometrics With Applications in R. https://doi.org/https://doi.org/10.1057/9781137317940 Ballabio, C., Panagos, P., & Montanarella, L. (2014). Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. Joint Research Centre, Institute for Environment and Sustainability, 9229. https://doi.org/10.1117/12.2066406 Batjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61–68. https://doi.org/10.1016/j.geoderma.2016.01.034 Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x Batjes, & Wesemael, B. (2014). Measuring and monitoring soil carbon. Soil Carbon: Science, Management and Policy for Multiple Benefits, December, 188–201. https://doi.org/10.1079/9781780645322.0188 Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248. https://doi.org/10.1038/nature04038 Bianchi, S. R., Miyazawa, M., De Oliveira, E. L., & Pavan, M. A. (2008). Relationship between the mass of organic matter and carbon in soil. Brazilian Archives of Biology and Technology, 51(2), 263–269. https://doi.org/10.1590/S1516-89132008000200005 Biswas, A., & Zhang, Y. (2018). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28(1), 1–15. https://doi.org/https://doi.org/10.1016/S1002-0160(18)60001-3 Blanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J., & Shaver, T. M. (2013). Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Science Society of America Journal, 77(3), 1026–1034. https://doi.org/https://doi.org/10.2136/sssaj2013.01.0006 Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. CATENA, 190, 104539. https://doi.org/https://doi.org/10.1016/j.catena.2020.104539 Bouma, J. (2014). Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. Journal of Soil Fertility and Soil Science, 177, 111–120. https://doi.org/10.1002/jpln.201300646 Bremner, J. M., & Tabatabai, M. A. (1970). Use of the Leco Automatic 70-Second Carbon Analyzer for Total Carbon Analysis of Soils. Soil Science, 34, 608–610. Bremner, J. M., & Tabatabai, M. A. (1971). Use of Automated Combustion Techniques for Total Carbon, Total Nitrogen, and Total Sulfur Analysis of Soils. Iowa Agriculture & Home Economics Experiment Station, 1835, 1–15. https://doi.org/10.2136/1971.instrumentalmethods.c1 Bronick, C. J., & Lal, R. (2005). Soil structure and management : a review. 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005 Carré, F., Hiederer, R., Blujdea, V., & Koeble, R. (2010). Background Guide for the Calculation of Land Carbon Stocks in the Biofuels Sustainability Scheme Drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53–58. https://doi.org/https://doi.org/10.1016/j.still.2018.11.001 Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/https://doi.org/10.1016/j.still.2018.04.011 Contreras Santos, J. L., Martinez Atencia, J., Cadena Torre, J., & Fallas Guzmán, C. K. (2020). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. 44, a. Corbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., Andrieu, N., Chirat, G., Schuler, J., Nyagumbo, I., Rusinamhodzi, L., Traore, K., Mzoba, H. D., & Adolwa, I. S. (2014). Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170. https://doi.org/https://doi.org/10.1016/j.agee.2013.10.011 De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma, 251–252, 33–46. https://doi.org/10.1016/j.geoderma.2015.03.008 Deng, L., Zhu, G. yu, Tang, Z. sheng, & Shangguan, Z. ping. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004 Ellili, Y., Walter, C., Michot, D., Pichelin, P., & Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(February), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005 Escosteguy, P. A. V., Galliassi, K., & Ceretta, C. A. (2007). Determinação de matéria orgânica do solo pela perda de massa por Ignição, em amostras do Rio Grande do Sul. Revista Brasileira de Ciência Do Solo, 31(2), 247–255. https://doi.org/10.1590/s0100-06832007000200007 Eyherabide, M., Saínz Rozas, H., Barbieri, P., & Eduardo Echeverría, H. (2014). Comparación De Métodos Para Determinar Carbono Orgánico En Suelo. Cienc Suelo (Argentina), 32(1), 13–19. FAO. (2007). Secuestro de Carbono en tierras áridas. Informes Sobre Recursos Mundiales, 138. https://doi.org/10.1016/S0169-555X(01)00072-1 FAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps. FAO. (2015). El suelo es un recurso no renovable. Fao, 2. fao.org/soils-2015 FAO. (2017). Carbono Organico del suelo potencial oculto. http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042482(1).pdf Flores-sánchez, B., Segura-castruita, M. Á., Fortis-hernández, M., & Martínez-corral, L. (2015). Enmiendas de estiércol solarizado en la estabilidad de agregados de un Aridisol cultivado de México. Revista Mexicana De Ciencias Agrícolas, 6, 1543–1555. Francaviglia, R., Coleman, K., Whitmore, A. P., Doro, L., Urracci, G., Rubino, M., & Ledda, L. (2012). Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agricultural Systems, 112, 48–54. https://doi.org/https://doi.org/10.1016/j.agsy.2012.07.001 Fu, C., Chen, Z., Wang, G., Yu, X., & Yu, G. (2021). A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Current Opinion in Environmental Sustainability, 48, 103–109. https://doi.org/https://doi.org/10.1016/j.cosust.2020.12.005 Galvez, J. (2010). El recurso suelo agua en medios áridos y semiáridos. 143–149. Ge, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., & Zhang, Q. (2019). Soil texture determines the distribution of aggregate-associated carbon , nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 172(October 2017), 148–157. https://doi.org/10.1016/j.catena.2018.08.021 Gessesse, T. A., Khamzina, A., Gebresamuel, G., & Amelung, W. (2020). Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. Catena, 190(September 2019), 104543. https://doi.org/10.1016/j.catena.2020.104543 Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577 Gray, J. M., Bishop, T. F. A., & Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741–1751. https://doi.org/https://doi.org/10.2136/sssaj2015.06.0224 Guevara, M., Olmedo, G., Stell, E., Yigini, Y., Aguilar, Y., Arellano Hernandez, C., Arevalo, G., Arroyo-Cruz, C., Bolivar, A., Bunning, S., Cañas, N., Cruz-Gaistardo, C., Davila, F., Acqua, M., Encina, A., Tacona, H., Fontes, F., Hernández Herrera, J., Navarro, A., & Vargas, R. (2018). No Silver Bullet for Digital Soil Mapping: Country-specific Soil Organic Carbon Estimates across Latin America. SOIL Discussions, 1–20. https://doi.org/10.5194/soil-2017-40 Hammad, H. M., Fasihuddin Nauman, H. M., Abbas, F., Ahmad, A., Bakhat, H. F.,Saeed, S., Shah, G. M., Ahmad, A., & Cerdà, A. (2020). Carbon sequestration potential and soil characteristics of various land use systems in arid region. Journal of Environmental Management, 264, 110254. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110254 Han, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023 Hiederer, R., & Köchy, M. (2011). Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. 79. https://doi.org/10.2788/13267 IGAC. (2009). Estudio general de suelos y zonificación de tierras Departamento del Magdalena. IGAC, instituto geografico agustin codazzi. (2006). Métodos analiticos del laboratorio de suelos (6 edición). IGAC. IGAC, instituto geografico agustin codazzi. (2015). Suelos y Tierras de Colombia. Imprenta Nacional de Colombia,. INGEOMINAS. (1996). Geología de las planchas 11 Santa Marta y 18 Ciénaga. Iranmanesh, M., & Sadeghi, H. (2019). The Effect of Soil Organic Matter, Electrical Conductivity and Acidity on the Soil’s Carbon Sequestration Ability Via Two Species of Tamarisk ( Tamarix Spp.). Environmental Progress & Sustainable Energy, 38. https://doi.org/10.1002/ep.13230 Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026 Jarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 22(6), 471–502. https://doi.org/10.1080/713608318 Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5–23. https://doi.org/10.1007/s10584-006-9178-3 Jha, P., Garg, N., Lakaria, B. L., Biswas, A. K., & Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. https://doi.org/https://doi.org/10.1016/j.still.2012.01.018 Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 Kaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146-6380(00)00046-2 Keskin, H., & Grunwald, S. (2018). Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 326, 22–41. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.04.004 Köhl, M., Lister, A., Scott, C. T., Baldauf, T., & Plugge, D. (2011). Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance and Management, 6(1), 10. https://doi.org/10.1186/1750-0680-6-10 Krol, B. G. C. M. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data BT - Digital Soil Mapping with Limited Data (A. E. Hartemink, A. McBratney, & M. de L. Mendonça-Santos (eds.); pp. 137–149). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8592-5_11 Lal, R. (2004). Carbon Sequestration in Dryland Ecosystems. May 2004. https://doi.org/10.1007/s00267-003-9110-9 Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185 Lal, R. (2009). Soil Carbon Sequestration: Land and water use options for climate change adaptation and mitigation in agriculture. SOLAW Background Thematic Report – TRO4B, 37. https://doi.org/10.1016/j.geoderma.2004.01.032 Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15(C), 79–86. https://doi.org/10.1016/j.cosust.2015.09.002 Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707 Lark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756. https://doi.org/https://doi.org/10.1111/j.1365-2389.2009.01156.x Lashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., & Houot, S. (2009). Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science, 60(2), 297–310. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01110.x Lavelle, P., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., Grimaldi, M., Jose, J., Velasquez, E., & Zangerlé, A. (2020). Soil aggregation , ecosystem engineers and the C cycle. Acta Oecologica, 105(December 2019), 103561. https://doi.org/10.1016/j.actao.2020.103561 Liu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions : A meta-analysis. Science of the Total Environment, 618(818), 1658–1664. https://doi.org/10.1016/j.scitotenv.2017.10.009 Lugato, E., Panagos, P., Bampa, F., Jones, A., & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20(1), 313–326. https://doi.org/https://doi.org/10.1111/gcb.12292 Luo, Z., Wang, E., Feng, W., Luo, Y., & Baldock, J. (2018). The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017). Global Change Biology, 24(2), e397–e398. https://doi.org/https://doi.org/10.1111/gcb.13949 Malagon, D., Pulido, C., & Llinas Ruben, Chamarro CLara, F. J. (1995). SUELOS DE COLOMBIA origen, evolucion, clasificación, distribución y uso (IGAC (ed.)). Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Progress in Soil Science Using R for Digital Soil Mapping. http://www.springer.com/series/8746 Martínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono Orgánico y Propiedades del Suelo. Scielo, Revista de, 68–96. https://doi.org/dx.doi.org/10.4067/S0718-27912008000100006 Masunga, R. H., Uzokwe, V. N., Mlay, P. D., Odeh, I., Singh, A., Buchan, D., & De Neve, S. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193. https://doi.org/10.1016/j.apsoil.2016.01.006 Mcbratney, A. B., Minasny, B., & Rossel, R. V. (2006). Spectral soil analysis and inference systems : A powerful combination for solving the soil data crisis. 136, 272–278. https://doi.org/10.1016/j.geoderma.2006.03.051 McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/https://doi.org/10.1016/j.geoderma.2013.08.013 Ministerio de Ambiente. (2005). Plan de acción Nacional: Lucha contra la desertificación y la sequía en Colombia. In Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT) (Vol. 1, Issue 1). www.minambiente.gov.co/images/.../5596_250510_plan_lucha_desertificacion.pdf Mondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., & Mukhopadhyay, A. (2017). Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 20(1), 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004 Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., & Troyo, E. (2016). ALMACENES Y FLUJOS DE CARBONO EN ECOSISTEMAS ÁRIDOS Y SEMIÁRIDOS DE MÉXICO : SÍNTESIS Y PERSPECTIVAS. 39–59. Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17 Nayak, A. K., Mahmudur, M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Ra, M., & Pathak, H. (2019). Current and emerging methodologies for estimating carbon sequestration in agricultural soils : A review. 665, 890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125 Nerger, R., Beylich, A., & Fohrer, N. (2016). Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional, 7(2), 239–249. https://doi.org/10.1016/j.geodrs.2016.04.004 Nieder, R., & Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5 Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Chapter Four - Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (D. L. B. T.-A. in A. Sparks (ed.); Vol. 132, pp. 139–159). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2015.02.002 O’Rourke, S., Angers, D., Holden, N., & Mcbratney, A. (2015). Soil organic carbon across scales. Global Change Biology, 21. https://doi.org/10.1111/gcb.12959 Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226. https://doi.org/https://doi.org/10.1016/0016-7061(95)00007-B Parras-Alcántara, L., Lozano-García, B., Brevik, E. C., & Cerdá, A. (2015). Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219–228. Pausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1–12. https://doi.org/https://doi.org/10.1111/gcb.13850 Pellat, F. P., Espinoza, J. A., Cruz Gaistardo, C. O., Etchevers, J. D. B., & de Jong, B. (2016). Spatial and temporal distribution of soil organic carbon in the terrestrial ecosystems of Mexico. Terra Latinoamericana, 34(3), 289–310. Plaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., & Álvaro-Fuentes, J. (2015). Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 35(4), 1319–1334. https://doi.org/10.1007/s13593-015-0326-x Plaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. (2018). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8(1), 13788. https://doi.org/10.1038/s41598-018-32229-0 Prăvălie, R. (2016). Drylands extent and environmental issues. A global approach. 161, 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003 Premrov, A., Cummins, T., & Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses, sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030 Rather, B. (1918). An accurate loss on ignition method for determination of organic matter in soils. Association of O8cial Agricultural Chemists, 448(1917), 1–4. Rodríguez Martín, J. A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J. J., Grau Corbí, J. M., & Boluda, R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117–125. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.10.010 Safriel, U., & Zafar, A. (2005). Dryland Systems. Sánchez, M., Prager M, M., Naranjo, R. E., & Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34. Schillaci, C., Saia, S., Lipani, A., Perego, A., Zaccone, C., & Acutis, M. (2021). Determination of minimum number of samples allowing to detect long term soil organic carbon changes in Mediterranean arable lands using paired-sites. 1–24. https://doi.org/10.21203/rs.3.rs-150726/v1 Schmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D., Nannipieri, P., Rasse, D., Weiner, S., & Trumbore, S. (2011). Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386 Segura, C., Jiménez, M. N., Nieto, O., Navarro, F. B., & Fernández-Ondoño, E. (2016). Changes in soil organic carbon over 20years after afforestation in semiarid SE Spain. Forest Ecology and Management, 381, 268–278. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2016.09.035 Shi, Z., Crowell, S., Luo, Y., & Moore, B. (2018). Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9(1), 2171. https://doi.org/10.1038/s41467-018-04526-9 Six, J, Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789 Six, Johan, & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4–A9. https://doi.org/10.1016/j.soilbio.2013.06.014 Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter Five - Visible and Near Infrared Spectroscopy in Soil Science (D. LB. T.-A. in A. Sparks (ed.); Vol. 107, pp. 163–215). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(10)07005-7 Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001 Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/https://doi.org/10.1111/ele.12453 Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451 USDA. (2014). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf USDA. (2017). Soil Survey Manual By Soil Science Division Staff. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue 18). https://doi.org/10.1007/978-3-319-53845-7_6 Ussiri, D. A. N., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue C, pp. 163–225). https://doi.org/10.1007/978-3-319-53845-7 Vasquez, J., Baena, D., & Menjivar, J. (2010). Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad de Magdalena (Santa Martha, Colombia). Acta Agronómica, 59(4), 449–456. https://doi.org/10.1017/CBO9781107415324.004 Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R., Reddy, M., Sunga, I., Von Unger, M., & Warnken, M. (2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1), 2–4. https://doi.org/10.1038/s41893-018-0212-z Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1), 59–75. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.03.007 Vitharana, U. W. A., Mishra, U., & Mapa, R. B. (2019). National soil organic carbon estimates can improve global estimates. Geoderma, 337(April 2018), 55–64. https://doi.org/10.1016/j.geoderma.2018.09.005 Wade, A. M., Richter, D. D., Medjibe, V. P., Bacon, A. R., Heine, P. R., White, L. J. T., & Poulsen, J. R. (2019). Geoderma Estimates and determinants of stocks of deep soil carbon in Gabon , Central Africa. Geoderma, August 2018, 1–13. https://doi.org/10.1016/j.geoderma.2019.01.004 Wadoux, A. M. J.-C., & Brus, D. J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/https://doi.org/10.1111/ejss.12962 Wang, X., Wang, J., & Zhang, J. (2012). Comparisons of Three Methods for Organic and Inorganic Carbon in Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. August 2015. https://doi.org/10.1371/journal.pone.0044334 Whitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131). Williams, J. N., Morandé, J. A., Vaghti, M. G., Medellín-Azuara, J., & Viers, J. H. (2020). Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance and Management, 15(1), 23. https://doi.org/10.1186/s13021-020-00158-z Wu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., & Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4 Xu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018). Carbon storage in China’s terrestrial ecosystems: A synthesis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20764-9 Yu, T., Fu, Y., Hou, Q., Xia, X., Yan, B., & Yang, Z. (2020). Soil organic carbon increase in semi-arid regions of China from 1980s to 2010s. Applied Geochemistry, 116, 104575. https://doi.org/https://doi.org/10.1016/j.apgeochem.2020.104575 Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.03.003 Zhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261–275. https://doi.org/https://doi.org/10.1016/j.geoderma.2003.08.004 Zhang, X., Zhao, Y., Zhu, L., Cui, H., Jia, L., Xie, X., Li, J., & Wei, Z. (2017). Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Management, 70, 30–36. https://doi.org/10.1016/j.wasman.2017.08.050 Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., & Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
72 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81533/1/KJGATesis2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81533/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81533/3/KJGATesis2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
d9b8b9f12a321f1d1378e5d93533295b 8153f7789df02f0a4c9e079953658ab2 1277e17b658d6e984149e80849e564b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090052982013952 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rubiano Sanabria, Yolanda019716440377435f3ee30eb40d6935daAguirre Forero, Sonia Esperanza22f6d6ed5433b23ab6293d2251309792600Girón Angarita, Karla Johayra3dc62b7f40874ecfa69db332f918cf342022-06-08T16:58:18Z2022-06-08T16:58:18Z2021https://repositorio.unal.edu.co/handle/unal/81533Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, mapasEl stock de carbono orgánico del suelo (SCOS) es reconocido como un indicador de la calidad del suelo y está estrechamente relacionado con el uso del suelo y las prácticas de manejo. En Colombia, aunque son numerosos los trabajos para estimar el tenor de Carbono Orgánico del Suelo (COS), son escasos aquellos que se enfocan en la determinación de su contenido a través del tiempo y los que involucran el cálculo del stock, particularmente en ambientes subhúmedos. En este contexto, este estudio tuvo como objetivo estimar el cambio en el stock de carbono orgánico de un suelo de la región subhúmeda de Colombia para el periodo 2008 – 2019, en el Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena. Partiendo de una base de datos colectada en 2008 de 184 puntos, se calculó el stock de carbono orgánico para esta fecha y se diseñó un sistema de muestreo a partir del cual determinó el número de muestras para estimar el COS en los 25 cm superficiales del suelo en 2019. El estudio muestra cómo es posible realizar monitoreos del SCOS partiendo de una línea base y disminuyendo sustancialmente el número de muestras a 50, valiéndose de modelos de regresión espacial que permiten preservar la estructura de los datos. En adición se estimaron las variaciones vertical y horizontal del COS y se espacializaron para mostrar los cambios ocurridos en el periodo analizado. Los cambios encontrados corresponden al carbón lábil dadas las condiciones de clima subhúmedo que determinarían su rápida evolución y permanencia en el sistema. (Texto tomado de la fuente)Soil Organic Carbon Stock (SOCS) is recognized as a soil quality indicator and it is related to soil use and management practices. In Colombia there are a lot of studies that estimate Soil Organic Carbon (SOC), but only a few focus on calculating its content through time and rarely estimate it in sub humid environments. In this context, this study determined SOCS variation from 2008 to 2019 in the Centro de Desarrollo Agrícola y Forestal de la Universidad del Magdalena, Colombia. Starting from legacy data, SOC stock was calculated. Then, a sampling system was built from a spatial regression allowing to define SOC sampling points in the first 30 cm for 2019. This study shows how it is possible to monitor SOCS from a baseline and substancially diminish the number of samples used while preserving data structure. In addition, horizontal and vertical COS variation was estimated and spatialized to show changes occurred in the time period studied. It is presumed that changes found correspond to labile carbon from typical conditions of sub humid weather that determine its fast evolution and permanence.MaestríaMagíster en Ciencias AgrariasSuelos72 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraTierras secasVariabilidad espacialCarbono orgánicoSueloDrylandsSpatial variabilityOrganic carbonSoilDegradación de suelosCarbonoSoil degradationCarbonMonitoreo del stock de carbono orgánico en suelos de ambientes subhúmedos. Estudio de caso departamento del Magdalena, ColombiaMonitoring of the organic carbon stock in soils of sub-humid environments. Case Study Department of Magdalena, ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbas, F., Hammad, H. M., Ishaq, W., Farooque, A. A., Bakhat, H. F., Zia, Z., Fahad, S., Farhad, W., & Cerdà, A. (2020). A review of soil carbon dynamics resulting from agricultural practices. Journal of Environmental Management, 268, 110319. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110319Abella, S. R., & Zimmer, B. W. (2007). Estimating Organic Carbon from Loss-On-Ignition in Northern Arizona Forest Soils. Soil Science Society of America Journal, 71(2), 545–550. https://doi.org/10.2136/sssaj2006.0136Akima, H., Gebhard, A., Petzold, T., & Maechler, M. (2020). Package ‘ akima .’ https://cran.r-project.org/web/packages/akima/akima.pdfAlvarez, C., Alvarez, C. R., Costantini, A., & Basanta, M. (2014). Carbon and nitrogen sequestration in soils under different management in the semi-arid Pampa (Argentina). Soil and Tillage Research, 142, 25–31. https://doi.org/https://doi.org/10.1016/j.still.2014.04.005Arbia, G. (2014). A Primer for Spatial Econometrics With Applications in R. https://doi.org/https://doi.org/10.1057/9781137317940Ballabio, C., Panagos, P., & Montanarella, L. (2014). Predicting soil organic carbon content in Cyprus using remote sensing and Earth observation data. Joint Research Centre, Institute for Environment and Sustainability, 9229. https://doi.org/10.1117/12.2066406Batjes, N. (2016). Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61–68. https://doi.org/10.1016/j.geoderma.2016.01.034Batjes, N. H. (1996). Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.xBatjes, & Wesemael, B. (2014). Measuring and monitoring soil carbon. Soil Carbon: Science, Management and Policy for Multiple Benefits, December, 188–201. https://doi.org/10.1079/9781780645322.0188Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses from all soils across England and Wales 1978–2003. Nature, 437(7056), 245–248. https://doi.org/10.1038/nature04038Bianchi, S. R., Miyazawa, M., De Oliveira, E. L., & Pavan, M. A. (2008). Relationship between the mass of organic matter and carbon in soil. Brazilian Archives of Biology and Technology, 51(2), 263–269. https://doi.org/10.1590/S1516-89132008000200005Biswas, A., & Zhang, Y. (2018). Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28(1), 1–15. https://doi.org/https://doi.org/10.1016/S1002-0160(18)60001-3Blanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J., & Shaver, T. M. (2013). Replacing Fallow with Cover Crops in a Semiarid Soil: Effects on Soil Properties. Soil Science Society of America Journal, 77(3), 1026–1034. https://doi.org/https://doi.org/10.2136/sssaj2013.01.0006Boubehziz, S., Khanchoul, K., Benslama, M., Benslama, A., Marchetti, A., Francaviglia, R., & Piccini, C. (2020). Predictive mapping of soil organic carbon in Northeast Algeria. CATENA, 190, 104539. https://doi.org/https://doi.org/10.1016/j.catena.2020.104539Bouma, J. (2014). Soil science contributions towards Sustainable Development Goals and their implementation: Linking soil functions with ecosystem services. Journal of Soil Fertility and Soil Science, 177, 111–120. https://doi.org/10.1002/jpln.201300646Bremner, J. M., & Tabatabai, M. A. (1970). Use of the Leco Automatic 70-Second Carbon Analyzer for Total Carbon Analysis of Soils. Soil Science, 34, 608–610.Bremner, J. M., & Tabatabai, M. A. (1971). Use of Automated Combustion Techniques for Total Carbon, Total Nitrogen, and Total Sulfur Analysis of Soils. Iowa Agriculture & Home Economics Experiment Station, 1835, 1–15. https://doi.org/10.2136/1971.instrumentalmethods.c1Bronick, C. J., & Lal, R. (2005). Soil structure and management : a review. 124, 3–22. https://doi.org/10.1016/j.geoderma.2004.03.005Carré, F., Hiederer, R., Blujdea, V., & Koeble, R. (2010). Background Guide for the Calculation of Land Carbon Stocks in the Biofuels Sustainability Scheme Drawing on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories.Chen, S., Arrouays, D., Angers, D. A., Martin, M. P., & Walter, C. (2019). Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil and Tillage Research, 188, 53–58. https://doi.org/https://doi.org/10.1016/j.still.2018.11.001Chenu, C., Angers, D. A., Barré, P., Derrien, D., Arrouays, D., & Balesdent, J. (2019). Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research, 188, 41–52. https://doi.org/https://doi.org/10.1016/j.still.2018.04.011Contreras Santos, J. L., Martinez Atencia, J., Cadena Torre, J., & Fallas Guzmán, C. K. (2020). Evaluación del carbono acumulado en suelo en sistemas silvopastoriles del Caribe Colombiano. 44, a.Corbeels, M., de Graaff, J., Ndah, T. H., Penot, E., Baudron, F., Naudin, K., Andrieu, N., Chirat, G., Schuler, J., Nyagumbo, I., Rusinamhodzi, L., Traore, K., Mzoba, H. D., & Adolwa, I. S. (2014). Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems & Environment, 187, 155–170. https://doi.org/https://doi.org/10.1016/j.agee.2013.10.011De Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., & Carnicelli, S. (2015). Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma, 251–252, 33–46. https://doi.org/10.1016/j.geoderma.2015.03.008Deng, L., Zhu, G. yu, Tang, Z. sheng, & Shangguan, Z. ping. (2016). Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation, 5, 127–138. https://doi.org/10.1016/j.gecco.2015.12.004Ellili, Y., Walter, C., Michot, D., Pichelin, P., & Lemercier, B. (2019). Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, 351(February), 1–8. https://doi.org/10.1016/j.geoderma.2019.03.005Escosteguy, P. A. V., Galliassi, K., & Ceretta, C. A. (2007). Determinação de matéria orgânica do solo pela perda de massa por Ignição, em amostras do Rio Grande do Sul. Revista Brasileira de Ciência Do Solo, 31(2), 247–255. https://doi.org/10.1590/s0100-06832007000200007Eyherabide, M., Saínz Rozas, H., Barbieri, P., & Eduardo Echeverría, H. (2014). Comparación De Métodos Para Determinar Carbono Orgánico En Suelo. Cienc Suelo (Argentina), 32(1), 13–19.FAO. (2007). Secuestro de Carbono en tierras áridas. Informes Sobre Recursos Mundiales, 138. https://doi.org/10.1016/S0169-555X(01)00072-1FAO. (2014). World reference base for soil resources 2014 international soil classification system for naming soils and creating legends for soil maps.FAO. (2015). El suelo es un recurso no renovable. Fao, 2. fao.org/soils-2015FAO. (2017). Carbono Organico del suelo potencial oculto. http://uni-sz.bg/truni11/wp-content/uploads/biblioteka/file/TUNI10042482(1).pdfFlores-sánchez, B., Segura-castruita, M. Á., Fortis-hernández, M., & Martínez-corral, L. (2015). Enmiendas de estiércol solarizado en la estabilidad de agregados de un Aridisol cultivado de México. Revista Mexicana De Ciencias Agrícolas, 6, 1543–1555.Francaviglia, R., Coleman, K., Whitmore, A. P., Doro, L., Urracci, G., Rubino, M., & Ledda, L. (2012). Changes in soil organic carbon and climate change – Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agricultural Systems, 112, 48–54. https://doi.org/https://doi.org/10.1016/j.agsy.2012.07.001Fu, C., Chen, Z., Wang, G., Yu, X., & Yu, G. (2021). A comprehensive framework for evaluating the impact of land use change and management on soil organic carbon stocks in global drylands. Current Opinion in Environmental Sustainability, 48, 103–109. https://doi.org/https://doi.org/10.1016/j.cosust.2020.12.005Galvez, J. (2010). El recurso suelo agua en medios áridos y semiáridos. 143–149.Ge, N., Wei, X., Wang, X., Liu, X., Shao, M., Jia, X., Li, X., & Zhang, Q. (2019). Soil texture determines the distribution of aggregate-associated carbon , nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. Catena, 172(October 2017), 148–157. https://doi.org/10.1016/j.catena.2018.08.021Gessesse, T. A., Khamzina, A., Gebresamuel, G., & Amelung, W. (2020). Terrestrial carbon stocks following 15 years of integrated watershed management intervention in semi-arid Ethiopia. Catena, 190(September 2019), 104543. https://doi.org/10.1016/j.catena.2020.104543Gougoulias, C., Clark, J. M., & Shaw, L. J. (2014). The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture, 94(12), 2362–2371. https://doi.org/10.1002/jsfa.6577Gray, J. M., Bishop, T. F. A., & Wilson, B. R. (2015). Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Science Society of America Journal, 79(6), 1741–1751. https://doi.org/https://doi.org/10.2136/sssaj2015.06.0224Guevara, M., Olmedo, G., Stell, E., Yigini, Y., Aguilar, Y., Arellano Hernandez, C., Arevalo, G., Arroyo-Cruz, C., Bolivar, A., Bunning, S., Cañas, N., Cruz-Gaistardo, C., Davila, F., Acqua, M., Encina, A., Tacona, H., Fontes, F., Hernández Herrera, J., Navarro, A., & Vargas, R. (2018). No Silver Bullet for Digital Soil Mapping: Country-specific Soil Organic Carbon Estimates across Latin America. SOIL Discussions, 1–20. https://doi.org/10.5194/soil-2017-40Hammad, H. M., Fasihuddin Nauman, H. M., Abbas, F., Ahmad, A., Bakhat, H. F.,Saeed, S., Shah, G. M., Ahmad, A., & Cerdà, A. (2020). Carbon sequestration potential and soil characteristics of various land use systems in arid region. Journal of Environmental Management, 264, 110254. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.110254Han, L., Sun, K., Jin, J., & Xing, B. (2016). Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature. Soil Biology and Biochemistry, 94, 107–121. https://doi.org/10.1016/j.soilbio.2015.11.023Hiederer, R., & Köchy, M. (2011). Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. 79. https://doi.org/10.2788/13267IGAC. (2009). Estudio general de suelos y zonificación de tierras Departamento del Magdalena.IGAC, instituto geografico agustin codazzi. (2006). Métodos analiticos del laboratorio de suelos (6 edición). IGAC.IGAC, instituto geografico agustin codazzi. (2015). Suelos y Tierras de Colombia. Imprenta Nacional de Colombia,.INGEOMINAS. (1996). Geología de las planchas 11 Santa Marta y 18 Ciénaga.Iranmanesh, M., & Sadeghi, H. (2019). The Effect of Soil Organic Matter, Electrical Conductivity and Acidity on the Soil’s Carbon Sequestration Ability Via Two Species of Tamarisk ( Tamarix Spp.). Environmental Progress & Sustainable Energy, 38. https://doi.org/10.1002/ep.13230Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., Harrison, R. B., Guerrini, I. A., Richter, D. de B., Rustad, L., Lorenz, K., Chabbi, A., & Miglietta, F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the Total Environment, 468–469, 376–383. https://doi.org/10.1016/j.scitotenv.2013.08.026Jarecki, M. K., & Lal, R. (2003). Crop Management for Soil Carbon Sequestration. Critical Reviews in Plant Sciences, 22(6), 471–502. https://doi.org/10.1080/713608318Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1), 5–23. https://doi.org/10.1007/s10584-006-9178-3Jha, P., Garg, N., Lakaria, B. L., Biswas, A. K., & Rao, A. S. (2012). Soil and residue carbon mineralization as affected by soil aggregate size. Soil and Tillage Research, 121, 57–62. https://doi.org/https://doi.org/10.1016/j.still.2012.01.018Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423–436. https://doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2Kaiser, K., & Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry, 31(7–8), 711–725. https://doi.org/10.1016/S0146-6380(00)00046-2Keskin, H., & Grunwald, S. (2018). Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma, 326, 22–41. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.04.004Köhl, M., Lister, A., Scott, C. T., Baldauf, T., & Plugge, D. (2011). Implications of sampling design and sample size for national carbon accounting systems. Carbon Balance and Management, 6(1), 10. https://doi.org/10.1186/1750-0680-6-10Krol, B. G. C. M. (2008). Towards a Data Quality Management Framework for Digital Soil Mapping with Limited Data BT - Digital Soil Mapping with Limited Data (A. E. Hartemink, A. McBratney, & M. de L. Mendonça-Santos (eds.); pp. 137–149). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8592-5_11Lal, R. (2004). Carbon Sequestration in Dryland Ecosystems. May 2004. https://doi.org/10.1007/s00267-003-9110-9Lal, R. (2008). Carbon sequestration. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 815–830. https://doi.org/10.1098/rstb.2007.2185Lal, R. (2009). Soil Carbon Sequestration: Land and water use options for climate change adaptation and mitigation in agriculture. SOLAW Background Thematic Report – TRO4B, 37. https://doi.org/10.1016/j.geoderma.2004.01.032Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15(C), 79–86. https://doi.org/10.1016/j.cosust.2015.09.002Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, 6. https://doi.org/10.1038/ncomms7707Lark, R. M. (2009). Estimating the regional mean status and change of soil properties: two distinct objectives for soil survey. European Journal of Soil Science, 60(5), 748–756. https://doi.org/https://doi.org/10.1111/j.1365-2389.2009.01156.xLashermes, G., Nicolardot, B., Parnaudeau, V., Thuriès, L., Chaussod, R., Guillotin, M. L., Linères, M., Mary, B., Metzger, L., Morvan, T., Tricaud, A., Villette, C., & Houot, S. (2009). Indicator of potential residual carbon in soils after exogenous organic matter application. European Journal of Soil Science, 60(2), 297–310. https://doi.org/https://doi.org/10.1111/j.1365-2389.2008.01110.xLavelle, P., Fonte, S., Bedano, J. C., Blanchart, E., Galindo, V., Grimaldi, M., Jose, J., Velasquez, E., & Zangerlé, A. (2020). Soil aggregation , ecosystem engineers and the C cycle. Acta Oecologica, 105(December 2019), 103561. https://doi.org/10.1016/j.actao.2020.103561Liu, X., Yang, T., Wang, Q., Huang, F., & Li, L. (2018). Dynamics of soil carbon and nitrogen stocks after afforestation in arid and semi-arid regions : A meta-analysis. Science of the Total Environment, 618(818), 1658–1664. https://doi.org/10.1016/j.scitotenv.2017.10.009Lugato, E., Panagos, P., Bampa, F., Jones, A., & Montanarella, L. (2014). A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20(1), 313–326. https://doi.org/https://doi.org/10.1111/gcb.12292Luo, Z., Wang, E., Feng, W., Luo, Y., & Baldock, J. (2018). The importance and requirement of belowground carbon inputs for robust estimation of soil organic carbon dynamics: Reply to Keel et al. (2017). Global Change Biology, 24(2), e397–e398. https://doi.org/https://doi.org/10.1111/gcb.13949Malagon, D., Pulido, C., & Llinas Ruben, Chamarro CLara, F. J. (1995). SUELOS DE COLOMBIA origen, evolucion, clasificación, distribución y uso (IGAC (ed.)).Malone, B., Minasny, B., & Mcbratney, A. B. (2017). Progress in Soil Science Using R for Digital Soil Mapping. http://www.springer.com/series/8746Martínez, E., Fuentes, J. P., & Acevedo, E. (2008). Carbono Orgánico y Propiedades del Suelo. Scielo, Revista de, 68–96. https://doi.org/dx.doi.org/10.4067/S0718-27912008000100006Masunga, R. H., Uzokwe, V. N., Mlay, P. D., Odeh, I., Singh, A., Buchan, D., & De Neve, S. (2016). Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology, 101, 185–193. https://doi.org/10.1016/j.apsoil.2016.01.006Mcbratney, A. B., Minasny, B., & Rossel, R. V. (2006). Spectral soil analysis and inference systems : A powerful combination for solving the soil data crisis. 136, 272–278. https://doi.org/10.1016/j.geoderma.2006.03.051McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. https://doi.org/https://doi.org/10.1016/j.geoderma.2013.08.013Ministerio de Ambiente. (2005). Plan de acción Nacional: Lucha contra la desertificación y la sequía en Colombia. In Ministerio de Ambiente, Vivienda y Desarrollo Territorial (MAVDT) (Vol. 1, Issue 1). www.minambiente.gov.co/images/.../5596_250510_plan_lucha_desertificacion.pdfMondal, A., Khare, D., Kundu, S., Mondal, S., Mukherjee, S., & Mukhopadhyay, A. (2017). Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egyptian Journal of Remote Sensing and Space Science, 20(1), 61–70. https://doi.org/10.1016/j.ejrs.2016.06.004Montaño, N. M., Ayala, F., Bullock, S. H., Briones, O., Oliva, F. G., Sánchez, R. G., Maya, Y., Perroni, Y., Siebe, C., Torres, Y. T., & Troyo, E. (2016). ALMACENES Y FLUJOS DE CARBONO EN ECOSISTEMAS ÁRIDOS Y SEMIÁRIDOS DE MÉXICO : SÍNTESIS Y PERSPECTIVAS. 39–59.Moran, P. A. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17Nayak, A. K., Mahmudur, M., Naidu, R., Dhal, B., Swain, C. K., Nayak, A. D., Tripathi, R., Shahid, M., Ra, M., & Pathak, H. (2019). Current and emerging methodologies for estimating carbon sequestration in agricultural soils : A review. 665, 890–912. https://doi.org/10.1016/j.scitotenv.2019.02.125Nerger, R., Beylich, A., & Fohrer, N. (2016). Long-term monitoring of soil quality changes in Northern Germany. Geoderma Regional, 7(2), 239–249. https://doi.org/10.1016/j.geodrs.2016.04.004Nieder, R., & Benbi, D. K. (2008). Carbon and Nitrogen Transformations in Soils. Carbon and Nitrogen in the Terrestrial Environment, 137–159. https://doi.org/10.1007/978-1-4020-8433-1_5Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., Ben Dor, E., Brown, D. J., Clairotte, M., Csorba, A., Dardenne, P., Demattê, J. A. M., Genot, V., Guerrero, C., Knadel, M., Montanarella, L., Noon, C., Ramirez-Lopez, L., Robertson, J., … Wetterlind, J. (2015). Chapter Four - Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring (D. L. B. T.-A. in A. Sparks (ed.); Vol. 132, pp. 139–159). Academic Press. https://doi.org/https://doi.org/10.1016/bs.agron.2015.02.002O’Rourke, S., Angers, D., Holden, N., & Mcbratney, A. (2015). Soil organic carbon across scales. Global Change Biology, 21. https://doi.org/10.1111/gcb.12959Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1995). Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma, 67(3), 215–226. https://doi.org/https://doi.org/10.1016/0016-7061(95)00007-BParras-Alcántara, L., Lozano-García, B., Brevik, E. C., & Cerdá, A. (2015). Soil organic carbon stocks assessment in Mediterranean natural areas: A comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155, 219–228.Pausch, J., & Kuzyakov, Y. (2018). Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24(1), 1–12. https://doi.org/https://doi.org/10.1111/gcb.13850Pellat, F. P., Espinoza, J. A., Cruz Gaistardo, C. O., Etchevers, J. D. B., & de Jong, B. (2016). Spatial and temporal distribution of soil organic carbon in the terrestrial ecosystems of Mexico. Terra Latinoamericana, 34(3), 289–310.Plaza-Bonilla, D., Arrúe, J. L., Cantero-Martínez, C., Fanlo, R., Iglesias, A., & Álvaro-Fuentes, J. (2015). Carbon management in dryland agricultural systems. A review. Agronomy for Sustainable Development, 35(4), 1319–1334. https://doi.org/10.1007/s13593-015-0326-xPlaza, C., Zaccone, C., Sawicka, K., Méndez, A. M., Tarquis, A., Gascó, G., Heuvelink, G. B. M., Schuur, E. A. G., & Maestre, F. T. (2018). Soil resources and element stocks in drylands to face global issues. Scientific Reports, 8(1), 13788. https://doi.org/10.1038/s41598-018-32229-0Prăvălie, R. (2016). Drylands extent and environmental issues. A global approach. 161, 259–278. https://doi.org/10.1016/j.earscirev.2016.08.003Premrov, A., Cummins, T., & Byrne, K. A. (2017). Assessing fixed depth carbon stocks in soils with varying horizon depths and thicknesses, sampled by horizon. Catena, 150, 291–301. https://doi.org/10.1016/j.catena.2016.11.030Rather, B. (1918). An accurate loss on ignition method for determination of organic matter in soils. Association of O8cial Agricultural Chemists, 448(1917), 1–4.Rodríguez Martín, J. A., Álvaro-Fuentes, J., Gonzalo, J., Gil, C., Ramos-Miras, J. J., Grau Corbí, J. M., & Boluda, R. (2016). Assessment of the soil organic carbon stock in Spain. Geoderma, 264, 117–125. https://doi.org/https://doi.org/10.1016/j.geoderma.2015.10.010Safriel, U., & Zafar, A. (2005). Dryland Systems.Sánchez, M., Prager M, M., Naranjo, R. E., & Sanclemente, O. E. (2012). El suelo, su metabolismo, ciclaje de nutrientes y prácticas agroecológicas. 19–34.Schillaci, C., Saia, S., Lipani, A., Perego, A., Zaccone, C., & Acutis, M. (2021). Determination of minimum number of samples allowing to detect long term soil organic carbon changes in Mediterranean arable lands using paired-sites. 1–24. https://doi.org/10.21203/rs.3.rs-150726/v1Schmidt, M., Torn, M., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D., Nannipieri, P., Rasse, D., Weiner, S., & Trumbore, S. (2011). Persistence of Soil Organic Matter as an Ecosystem Property. Nature, 478, 49–56. https://doi.org/10.1038/nature10386Segura, C., Jiménez, M. N., Nieto, O., Navarro, F. B., & Fernández-Ondoño, E. (2016). Changes in soil organic carbon over 20years after afforestation in semiarid SE Spain. Forest Ecology and Management, 381, 268–278. https://doi.org/http://dx.doi.org/10.1016/j.foreco.2016.09.035Shi, Z., Crowell, S., Luo, Y., & Moore, B. (2018). Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 9(1), 2171. https://doi.org/10.1038/s41467-018-04526-9Six, J, Conant, R. T., Paul, E. A., & Paustian, K. (2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155–176. https://doi.org/10.1023/A:1016125726789Six, Johan, & Paustian, K. (2014). Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 68, A4–A9. https://doi.org/10.1016/j.soilbio.2013.06.014Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter Five - Visible and Near Infrared Spectroscopy in Soil Science (D. LB. T.-A. in A. Sparks (ed.); Vol. 107, pp. 163–215). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2113(10)07005-7Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A. B., Courcelles, V. de R. de, Singh, K., Wheeler, I., Abbott, L., Angers, D. A., Baldock, J., Bird, M., Brookes, P. C., Chenu, C., Jastrow, J. D., Lal, R., … Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164(2013), 80–99. https://doi.org/10.1016/j.agee.2012.10.001Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E., & McDaniel, M. D. (2015). Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecology Letters, 18(8), 761–771. https://doi.org/https://doi.org/10.1111/ele.12453Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451USDA. (2014). Keys to soil taxonomy. In United States Department of Agriculture Natural Resources Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdfUSDA. (2017). Soil Survey Manual By Soil Science Division Staff. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue 18). https://doi.org/10.1007/978-3-319-53845-7_6Ussiri, D. A. N., & Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. In Carbon Sequestration for Climate Change Mitigation and Adaptation (Issue C, pp. 163–225). https://doi.org/10.1007/978-3-319-53845-7Vasquez, J., Baena, D., & Menjivar, J. (2010). Variabilidad espacial de propiedades físicas y químicas en suelos de la granja experimental de la Universidad de Magdalena (Santa Martha, Colombia). Acta Agronómica, 59(4), 449–456. https://doi.org/10.1017/CBO9781107415324.004Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., Augé, F., Bacudo, I., Baedeker, T., Havemann, T., Jones, C., King, R., Reddy, M., Sunga, I., Von Unger, M., & Warnken, M. (2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1), 2–4. https://doi.org/10.1038/s41893-018-0212-zViscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1), 59–75. https://doi.org/https://doi.org/10.1016/j.geoderma.2005.03.007Vitharana, U. W. A., Mishra, U., & Mapa, R. B. (2019). National soil organic carbon estimates can improve global estimates. Geoderma, 337(April 2018), 55–64. https://doi.org/10.1016/j.geoderma.2018.09.005Wade, A. M., Richter, D. D., Medjibe, V. P., Bacon, A. R., Heine, P. R., White, L. J. T., & Poulsen, J. R. (2019). Geoderma Estimates and determinants of stocks of deep soil carbon in Gabon , Central Africa. Geoderma, August 2018, 1–13. https://doi.org/10.1016/j.geoderma.2019.01.004Wadoux, A. M. J.-C., & Brus, D. J. (2021). How to compare sampling designs for mapping? European Journal of Soil Science, 72(1), 35–46. https://doi.org/https://doi.org/10.1111/ejss.12962Wang, X., Wang, J., & Zhang, J. (2012). Comparisons of Three Methods for Organic and Inorganic Carbon in Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China. August 2015. https://doi.org/10.1371/journal.pone.0044334Whitbread, A. . (1995). Soil Organic Matter: Its Fractionation and Role in Soil Structure. In Organic matter management for Sustainable Agriculture (Issue 56, pp. 124–131).Williams, J. N., Morandé, J. A., Vaghti, M. G., Medellín-Azuara, J., & Viers, J. H. (2020). Ecosystem services in vineyard landscapes: a focus on aboveground carbon storage and accumulation. Carbon Balance and Management, 15(1), 23. https://doi.org/10.1186/s13021-020-00158-zWu, H., Wiesmeier, M., Yu, Q., Steffens, M., Han, X., & Kögel-Knabner, I. (2011). Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 48, 305–313. https://doi.org/10.1007/s00374-011-0627-4Xu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., & Ge, J. (2018). Carbon storage in China’s terrestrial ecosystems: A synthesis. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-20764-9Yu, T., Fu, Y., Hou, Q., Xia, X., Yan, B., & Yang, Z. (2020). Soil organic carbon increase in semi-arid regions of China from 1980s to 2010s. Applied Geochemistry, 116, 104575. https://doi.org/https://doi.org/10.1016/j.apgeochem.2020.104575Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.03.003Zhang, C., & McGrath, D. (2004). Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods. Geoderma, 119(3), 261–275. https://doi.org/https://doi.org/10.1016/j.geoderma.2003.08.004Zhang, X., Zhao, Y., Zhu, L., Cui, H., Jia, L., Xie, X., Li, J., & Wei, Z. (2017). Assessing the use of composts from multiple sources based on the characteristics of carbon mineralization in soil. Waste Management, 70, 30–36. https://doi.org/10.1016/j.wasman.2017.08.050Ziegler, S. E., Billings, S. A., Lane, C. S., Li, J., & Fogel, M. L. (2013). Warming alters routing of labile and slower-turnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology and Biochemistry, 60, 23–32. https://doi.org/https://doi.org/10.1016/j.soilbio.2013.01.001Grupos comunitariosInvestigadoresPúblico generalORIGINALKJGATesis2021.pdfKJGATesis2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2248344https://repositorio.unal.edu.co/bitstream/unal/81533/1/KJGATesis2021.pdfd9b8b9f12a321f1d1378e5d93533295bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81533/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAILKJGATesis2021.pdf.jpgKJGATesis2021.pdf.jpgGenerated Thumbnailimage/jpeg5273https://repositorio.unal.edu.co/bitstream/unal/81533/3/KJGATesis2021.pdf.jpg1277e17b658d6e984149e80849e564b9MD53unal/81533oai:repositorio.unal.edu.co:unal/815332023-08-05 23:03:34.277Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |