Calabi-Yau property for graded skew PBW extensions

Graded skew PBW extensions were defined by the first author as a generalization of graded iterated Ore extensions [36]. The purpose of this paper is to study the Artin-Schelter regularity and the (skew) Calabi-Yau condition for this kind of extensions. We prove that every graded quasi-commutative sk...

Full description

Autores:
Suárez, Héctor
Lezama, Oswaldo
Reyes, Armando
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66432
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66432
http://bdigital.unal.edu.co/67460/
Palabra clave:
51 Matemáticas / Mathematics
Graded skew PBW extensions
AS-regular algebras
skew Calabi-Yau algebras
Extensiones PBW torcidas graduadas
álgebras AS-regular
álgebras Calabi-Yau torcidas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_23b3653f1fff3f658094a4cae75d164c
oai_identifier_str oai:repositorio.unal.edu.co:unal/66432
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Suárez, Héctora5b7e570-63c2-45e9-87f2-3ed7bd0feb96300Lezama, Oswaldo2e25c62e-8ac3-4185-a1cb-da04b4c2fea4300Reyes, Armando5ef6c88d-b616-4fe2-a14f-8496d7801ed53002019-07-03T02:07:01Z2019-07-03T02:07:01Z2017-07-01ISSN: 2357-4100https://repositorio.unal.edu.co/handle/unal/66432http://bdigital.unal.edu.co/67460/Graded skew PBW extensions were defined by the first author as a generalization of graded iterated Ore extensions [36]. The purpose of this paper is to study the Artin-Schelter regularity and the (skew) Calabi-Yau condition for this kind of extensions. We prove that every graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra is also an Artin-Schelter regular algebra and, as a consequence, every graded quasi-commutative skew PBW extension of a connected skew Calabi-Yau algebra is skew Calabi-Yau. Finally, we prove that graded skew PBW extensions of a finitely presented connected Auslander-regular algebra are skew Calabi-Yau.Las extensiones PBW torcidas graduadas fueron definidas por el primer autor como una generalización de las extensiones de Ore iteradas graduadas [36]. El propósito de este artículo es estudiar las condiciones Artin-Schelter regular y Calabi-Yau (torcida) para esta clase de extensiones. Demostramos que cada extensión PBW torcida cuasi-conmutativa graduada de un álgebra Artin-Schelter regular también es Artin-Schelter regular, y, como consecuencia, que cada extensión PBW torcida cuasi-conmutativa graduada de un álgebra conexa Calabi-Yau torcida es Calabi-Yau torcida. Finalmente, mostramos que las extensiones PBW torcidas graduadas de álgebras Auslander-regular finitamente presentadas y conexas son Calabi-Yau torcidas.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticashttps://revistas.unal.edu.co/index.php/recolma/article/view/70902Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasSuárez, Héctor and Lezama, Oswaldo and Reyes, Armando (2017) Calabi-Yau property for graded skew PBW extensions. Revista Colombiana de Matemáticas, 51 (2). pp. 221-239. ISSN 2357-410051 Matemáticas / MathematicsGraded skew PBW extensionsAS-regular algebrasskew Calabi-Yau algebrasExtensiones PBW torcidas graduadasálgebras AS-regularálgebras Calabi-Yau torcidasCalabi-Yau property for graded skew PBW extensionsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL70902-375020-1-SM.pdfapplication/pdf428477https://repositorio.unal.edu.co/bitstream/unal/66432/1/70902-375020-1-SM.pdf65d4af20bc2d7a5072c569d80224970cMD51THUMBNAIL70902-375020-1-SM.pdf.jpg70902-375020-1-SM.pdf.jpgGenerated Thumbnailimage/jpeg5609https://repositorio.unal.edu.co/bitstream/unal/66432/2/70902-375020-1-SM.pdf.jpgb11356fac849d45054da12309f624722MD52unal/66432oai:repositorio.unal.edu.co:unal/664322023-05-24 23:03:22.502Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Calabi-Yau property for graded skew PBW extensions
title Calabi-Yau property for graded skew PBW extensions
spellingShingle Calabi-Yau property for graded skew PBW extensions
51 Matemáticas / Mathematics
Graded skew PBW extensions
AS-regular algebras
skew Calabi-Yau algebras
Extensiones PBW torcidas graduadas
álgebras AS-regular
álgebras Calabi-Yau torcidas
title_short Calabi-Yau property for graded skew PBW extensions
title_full Calabi-Yau property for graded skew PBW extensions
title_fullStr Calabi-Yau property for graded skew PBW extensions
title_full_unstemmed Calabi-Yau property for graded skew PBW extensions
title_sort Calabi-Yau property for graded skew PBW extensions
dc.creator.fl_str_mv Suárez, Héctor
Lezama, Oswaldo
Reyes, Armando
dc.contributor.author.spa.fl_str_mv Suárez, Héctor
Lezama, Oswaldo
Reyes, Armando
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Graded skew PBW extensions
AS-regular algebras
skew Calabi-Yau algebras
Extensiones PBW torcidas graduadas
álgebras AS-regular
álgebras Calabi-Yau torcidas
dc.subject.proposal.spa.fl_str_mv Graded skew PBW extensions
AS-regular algebras
skew Calabi-Yau algebras
Extensiones PBW torcidas graduadas
álgebras AS-regular
álgebras Calabi-Yau torcidas
description Graded skew PBW extensions were defined by the first author as a generalization of graded iterated Ore extensions [36]. The purpose of this paper is to study the Artin-Schelter regularity and the (skew) Calabi-Yau condition for this kind of extensions. We prove that every graded quasi-commutative skew PBW extension of an Artin-Schelter regular algebra is also an Artin-Schelter regular algebra and, as a consequence, every graded quasi-commutative skew PBW extension of a connected skew Calabi-Yau algebra is skew Calabi-Yau. Finally, we prove that graded skew PBW extensions of a finitely presented connected Auslander-regular algebra are skew Calabi-Yau.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-07-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T02:07:01Z
dc.date.available.spa.fl_str_mv 2019-07-03T02:07:01Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2357-4100
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/66432
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/67460/
identifier_str_mv ISSN: 2357-4100
url https://repositorio.unal.edu.co/handle/unal/66432
http://bdigital.unal.edu.co/67460/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/recolma/article/view/70902
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.references.spa.fl_str_mv Suárez, Héctor and Lezama, Oswaldo and Reyes, Armando (2017) Calabi-Yau property for graded skew PBW extensions. Revista Colombiana de Matemáticas, 51 (2). pp. 221-239. ISSN 2357-4100
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Matemáticas - Sociedad Colombiana de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/66432/1/70902-375020-1-SM.pdf
https://repositorio.unal.edu.co/bitstream/unal/66432/2/70902-375020-1-SM.pdf.jpg
bitstream.checksum.fl_str_mv 65d4af20bc2d7a5072c569d80224970c
b11356fac849d45054da12309f624722
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089670010601472