Identification of natural fractures using resistive image logs, fractal dimension and support vector machines

The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks...

Full description

Autores:
Leal, Jorge Alberto
Ochoa, Luis Hernán
García, Jerson Andres
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67607
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67607
http://bdigital.unal.edu.co/68636/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Fractal dimension
resistive image logs
box counting method
natural fractures
hydrocarbon reservoir
Catatumbo basin
support vector machines (svms)
Dimensión fractal
registros de imágenes resistivas
método del conteo de cajas
fracturas naturales
yacimiento de hidrocarburos
cuenca del Catatumbo
máquinas de soporte vectorial
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_236f81b1685442118566764d3731101b
oai_identifier_str oai:repositorio.unal.edu.co:unal/67607
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
title Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
spellingShingle Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
62 Ingeniería y operaciones afines / Engineering
Fractal dimension
resistive image logs
box counting method
natural fractures
hydrocarbon reservoir
Catatumbo basin
support vector machines (svms)
Dimensión fractal
registros de imágenes resistivas
método del conteo de cajas
fracturas naturales
yacimiento de hidrocarburos
cuenca del Catatumbo
máquinas de soporte vectorial
title_short Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
title_full Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
title_fullStr Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
title_full_unstemmed Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
title_sort Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
dc.creator.fl_str_mv Leal, Jorge Alberto
Ochoa, Luis Hernán
García, Jerson Andres
dc.contributor.author.spa.fl_str_mv Leal, Jorge Alberto
Ochoa, Luis Hernán
García, Jerson Andres
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Fractal dimension
resistive image logs
box counting method
natural fractures
hydrocarbon reservoir
Catatumbo basin
support vector machines (svms)
Dimensión fractal
registros de imágenes resistivas
método del conteo de cajas
fracturas naturales
yacimiento de hidrocarburos
cuenca del Catatumbo
máquinas de soporte vectorial
dc.subject.proposal.spa.fl_str_mv Fractal dimension
resistive image logs
box counting method
natural fractures
hydrocarbon reservoir
Catatumbo basin
support vector machines (svms)
Dimensión fractal
registros de imágenes resistivas
método del conteo de cajas
fracturas naturales
yacimiento de hidrocarburos
cuenca del Catatumbo
máquinas de soporte vectorial
description The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks from the Catatumbo Basin, Colombia. The box counting method was applied to image logs in order to generate a curve representing variations of fractal dimension in these images throughout each well. The arithmetic mean of fractal dimension showed values ranging from 1,70 to 1,72 at the mineralized fracture intervals, and from 1,72 to 1,76 at the open fracture intervals. Morphological classification between open and mineralized natural fractures is performed using corelogs integration in a pilot well. Fractal dimension of images along with gamma rays and resistivity logs were employed as the input dataset of a SVM model identifying intervals with natural open fractures automatically, shortly after logs acquisition and previous to its interpretation by specialists. Although final results were affected by borehole conditions and logs quality, the SVM model showedaccuracy between 72,3% and 82,2% in 5 wells evaluated in the studied field.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-09-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T04:39:49Z
dc.date.available.spa.fl_str_mv 2019-07-03T04:39:49Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/67607
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/68636/
identifier_str_mv ISSN: 2248-8723
url https://repositorio.unal.edu.co/handle/unal/67607
http://bdigital.unal.edu.co/68636/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/56198
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Leal, Jorge Alberto and Ochoa, Luis Hernán and García, Jerson Andres (2016) Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36 (3). pp. 125-132. ISSN 2248-8723
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/67607/1/56198-313308-2-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/67607/2/56198-313308-2-PB.pdf.jpg
bitstream.checksum.fl_str_mv 58fcb9d36d781fda56de61b818e35438
8d818b50eb1bd23b97f7f3443c830883
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089337785024512
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Leal, Jorge Albertobaac4c70-301a-4bb2-b3ed-f239c17d46b0300Ochoa, Luis Hernán53ce16f1-21b4-443d-ae12-07b5578fc2a5300García, Jerson Andres880b7302-4818-497b-815a-58f54edca50c3002019-07-03T04:39:49Z2019-07-03T04:39:49Z2016-09-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67607http://bdigital.unal.edu.co/68636/The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks from the Catatumbo Basin, Colombia. The box counting method was applied to image logs in order to generate a curve representing variations of fractal dimension in these images throughout each well. The arithmetic mean of fractal dimension showed values ranging from 1,70 to 1,72 at the mineralized fracture intervals, and from 1,72 to 1,76 at the open fracture intervals. Morphological classification between open and mineralized natural fractures is performed using corelogs integration in a pilot well. Fractal dimension of images along with gamma rays and resistivity logs were employed as the input dataset of a SVM model identifying intervals with natural open fractures automatically, shortly after logs acquisition and previous to its interpretation by specialists. Although final results were affected by borehole conditions and logs quality, the SVM model showedaccuracy between 72,3% and 82,2% in 5 wells evaluated in the studied field.El propósito de esta investigación es aplicar un nuevo enfoque para identificar fracturas naturales en pozos de un yacimiento de hidrocarburo utilizando registros de imágenes resistivas, dimensión fractal y máquinas de soporte vectorial (MSV). La secuencia estratigráfica alcanzada por cada pozo está compuesta por rocas calcáreas cretácicas de la Cuenca del Catatumbo, Colombia. El método del conteo de cajas se aplicó a registros de imágenes, generando una curva que representa variaciones de dimensión fractal en las imágenes a lo largo de cada pozo. La media aritmética de dimensión fractal mostró valores desde 1,70 a 1,72 en intervalos con fracturas mineralizadas y desde 1,72 a 1,76 en intervalos con fracturas abiertas. La clasificación morfológica entre fracturas naturales abiertas y mineralizadas es realizada utilizando integración núcleo-registro de un pozo piloto. La dimensión fractal de las imágenes junto con registros de rayos gamma y resistividad son empleados como datos de entrada a un modelo de MSV identificando intervalos con fracturas naturales abiertas automáticamente, poco después de adquirir los registros y previo a su interpretación por especialistas. Aunque los resultados finales están afectados por condiciones del hoyo y calidad de registros, el modelo de MSV mostró exactitud entre 72,3% y 82,2% en 5 pozos evaluados del campo estudiado.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/56198Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónLeal, Jorge Alberto and Ochoa, Luis Hernán and García, Jerson Andres (2016) Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36 (3). pp. 125-132. ISSN 2248-872362 Ingeniería y operaciones afines / EngineeringFractal dimensionresistive image logsbox counting methodnatural fractureshydrocarbon reservoirCatatumbo basinsupport vector machines (svms)Dimensión fractalregistros de imágenes resistivasmétodo del conteo de cajasfracturas naturalesyacimiento de hidrocarburoscuenca del Catatumbomáquinas de soporte vectorialIdentification of natural fractures using resistive image logs, fractal dimension and support vector machinesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL56198-313308-2-PB.pdfapplication/pdf1906345https://repositorio.unal.edu.co/bitstream/unal/67607/1/56198-313308-2-PB.pdf58fcb9d36d781fda56de61b818e35438MD51THUMBNAIL56198-313308-2-PB.pdf.jpg56198-313308-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg8801https://repositorio.unal.edu.co/bitstream/unal/67607/2/56198-313308-2-PB.pdf.jpg8d818b50eb1bd23b97f7f3443c830883MD52unal/67607oai:repositorio.unal.edu.co:unal/676072023-05-30 23:03:20.197Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co