Identification of natural fractures using resistive image logs, fractal dimension and support vector machines
The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks...
- Autores:
-
Leal, Jorge Alberto
Ochoa, Luis Hernán
García, Jerson Andres
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/67607
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/67607
http://bdigital.unal.edu.co/68636/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
Fractal dimension
resistive image logs
box counting method
natural fractures
hydrocarbon reservoir
Catatumbo basin
support vector machines (svms)
Dimensión fractal
registros de imágenes resistivas
método del conteo de cajas
fracturas naturales
yacimiento de hidrocarburos
cuenca del Catatumbo
máquinas de soporte vectorial
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_236f81b1685442118566764d3731101b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/67607 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
title |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
spellingShingle |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines 62 Ingeniería y operaciones afines / Engineering Fractal dimension resistive image logs box counting method natural fractures hydrocarbon reservoir Catatumbo basin support vector machines (svms) Dimensión fractal registros de imágenes resistivas método del conteo de cajas fracturas naturales yacimiento de hidrocarburos cuenca del Catatumbo máquinas de soporte vectorial |
title_short |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
title_full |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
title_fullStr |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
title_full_unstemmed |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
title_sort |
Identification of natural fractures using resistive image logs, fractal dimension and support vector machines |
dc.creator.fl_str_mv |
Leal, Jorge Alberto Ochoa, Luis Hernán García, Jerson Andres |
dc.contributor.author.spa.fl_str_mv |
Leal, Jorge Alberto Ochoa, Luis Hernán García, Jerson Andres |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering Fractal dimension resistive image logs box counting method natural fractures hydrocarbon reservoir Catatumbo basin support vector machines (svms) Dimensión fractal registros de imágenes resistivas método del conteo de cajas fracturas naturales yacimiento de hidrocarburos cuenca del Catatumbo máquinas de soporte vectorial |
dc.subject.proposal.spa.fl_str_mv |
Fractal dimension resistive image logs box counting method natural fractures hydrocarbon reservoir Catatumbo basin support vector machines (svms) Dimensión fractal registros de imágenes resistivas método del conteo de cajas fracturas naturales yacimiento de hidrocarburos cuenca del Catatumbo máquinas de soporte vectorial |
description |
The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks from the Catatumbo Basin, Colombia. The box counting method was applied to image logs in order to generate a curve representing variations of fractal dimension in these images throughout each well. The arithmetic mean of fractal dimension showed values ranging from 1,70 to 1,72 at the mineralized fracture intervals, and from 1,72 to 1,76 at the open fracture intervals. Morphological classification between open and mineralized natural fractures is performed using corelogs integration in a pilot well. Fractal dimension of images along with gamma rays and resistivity logs were employed as the input dataset of a SVM model identifying intervals with natural open fractures automatically, shortly after logs acquisition and previous to its interpretation by specialists. Although final results were affected by borehole conditions and logs quality, the SVM model showedaccuracy between 72,3% and 82,2% in 5 wells evaluated in the studied field. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-09-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T04:39:49Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T04:39:49Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2248-8723 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/67607 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/68636/ |
identifier_str_mv |
ISSN: 2248-8723 |
url |
https://repositorio.unal.edu.co/handle/unal/67607 http://bdigital.unal.edu.co/68636/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/ingeinv/article/view/56198 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación Ingeniería e Investigación |
dc.relation.references.spa.fl_str_mv |
Leal, Jorge Alberto and Ochoa, Luis Hernán and García, Jerson Andres (2016) Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36 (3). pp. 125-132. ISSN 2248-8723 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/67607/1/56198-313308-2-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/67607/2/56198-313308-2-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
58fcb9d36d781fda56de61b818e35438 8d818b50eb1bd23b97f7f3443c830883 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089337785024512 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Leal, Jorge Albertobaac4c70-301a-4bb2-b3ed-f239c17d46b0300Ochoa, Luis Hernán53ce16f1-21b4-443d-ae12-07b5578fc2a5300García, Jerson Andres880b7302-4818-497b-815a-58f54edca50c3002019-07-03T04:39:49Z2019-07-03T04:39:49Z2016-09-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67607http://bdigital.unal.edu.co/68636/The purpose of this research is to apply a new approach to identify natural fractures in wells in a hydrocarbon reservoir using resistive image logs, fractal dimension and support vector machines (SVMs). The stratigraphic sequence investigated by each well is composed of Cretaceous calcareous rocks from the Catatumbo Basin, Colombia. The box counting method was applied to image logs in order to generate a curve representing variations of fractal dimension in these images throughout each well. The arithmetic mean of fractal dimension showed values ranging from 1,70 to 1,72 at the mineralized fracture intervals, and from 1,72 to 1,76 at the open fracture intervals. Morphological classification between open and mineralized natural fractures is performed using corelogs integration in a pilot well. Fractal dimension of images along with gamma rays and resistivity logs were employed as the input dataset of a SVM model identifying intervals with natural open fractures automatically, shortly after logs acquisition and previous to its interpretation by specialists. Although final results were affected by borehole conditions and logs quality, the SVM model showedaccuracy between 72,3% and 82,2% in 5 wells evaluated in the studied field.El propósito de esta investigación es aplicar un nuevo enfoque para identificar fracturas naturales en pozos de un yacimiento de hidrocarburo utilizando registros de imágenes resistivas, dimensión fractal y máquinas de soporte vectorial (MSV). La secuencia estratigráfica alcanzada por cada pozo está compuesta por rocas calcáreas cretácicas de la Cuenca del Catatumbo, Colombia. El método del conteo de cajas se aplicó a registros de imágenes, generando una curva que representa variaciones de dimensión fractal en las imágenes a lo largo de cada pozo. La media aritmética de dimensión fractal mostró valores desde 1,70 a 1,72 en intervalos con fracturas mineralizadas y desde 1,72 a 1,76 en intervalos con fracturas abiertas. La clasificación morfológica entre fracturas naturales abiertas y mineralizadas es realizada utilizando integración núcleo-registro de un pozo piloto. La dimensión fractal de las imágenes junto con registros de rayos gamma y resistividad son empleados como datos de entrada a un modelo de MSV identificando intervalos con fracturas naturales abiertas automáticamente, poco después de adquirir los registros y previo a su interpretación por especialistas. Aunque los resultados finales están afectados por condiciones del hoyo y calidad de registros, el modelo de MSV mostró exactitud entre 72,3% y 82,2% en 5 pozos evaluados del campo estudiado.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/56198Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónLeal, Jorge Alberto and Ochoa, Luis Hernán and García, Jerson Andres (2016) Identification of natural fractures using resistive image logs, fractal dimension and support vector machines. Ingeniería e Investigación, 36 (3). pp. 125-132. ISSN 2248-872362 Ingeniería y operaciones afines / EngineeringFractal dimensionresistive image logsbox counting methodnatural fractureshydrocarbon reservoirCatatumbo basinsupport vector machines (svms)Dimensión fractalregistros de imágenes resistivasmétodo del conteo de cajasfracturas naturalesyacimiento de hidrocarburoscuenca del Catatumbomáquinas de soporte vectorialIdentification of natural fractures using resistive image logs, fractal dimension and support vector machinesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL56198-313308-2-PB.pdfapplication/pdf1906345https://repositorio.unal.edu.co/bitstream/unal/67607/1/56198-313308-2-PB.pdf58fcb9d36d781fda56de61b818e35438MD51THUMBNAIL56198-313308-2-PB.pdf.jpg56198-313308-2-PB.pdf.jpgGenerated Thumbnailimage/jpeg8801https://repositorio.unal.edu.co/bitstream/unal/67607/2/56198-313308-2-PB.pdf.jpg8d818b50eb1bd23b97f7f3443c830883MD52unal/67607oai:repositorio.unal.edu.co:unal/676072023-05-30 23:03:20.197Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |