Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification
graficas, ilustraciones, tablas
- Autores:
-
Garcia Murillo, Daniel Guillermo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86921
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Functional connectivity
Deep learning
Kernel methods
Renyi’s entropy
BCI inefficiency
cross-spectral density
Bochner’s theorem
Conectividad funcional
Aprendizaje profundo
Métodos de kernel
Entropía de Renyi
Ineficiencia de BCI
Densidad espectral cruzada
Teorema de Bochner
Interfaces cerebro-computadora (BCI)
Conectividad funcional
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_233e260319a2319fb3be96732890e4e1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86921 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
dc.title.translated.spa.fl_str_mv |
Red de conectividad funcional Gaussiana regularizada con interpretación Post-Hoc para mejorar la clasificación de imaginación motora en BCI basado en EEG |
title |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
spellingShingle |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación Functional connectivity Deep learning Kernel methods Renyi’s entropy BCI inefficiency cross-spectral density Bochner’s theorem Conectividad funcional Aprendizaje profundo Métodos de kernel Entropía de Renyi Ineficiencia de BCI Densidad espectral cruzada Teorema de Bochner Interfaces cerebro-computadora (BCI) Conectividad funcional |
title_short |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
title_full |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
title_fullStr |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
title_full_unstemmed |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
title_sort |
Regularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classification |
dc.creator.fl_str_mv |
Garcia Murillo, Daniel Guillermo |
dc.contributor.advisor.none.fl_str_mv |
Álvarez Meza, Andrés Marino Castellanos Domínguez, César Germán |
dc.contributor.author.none.fl_str_mv |
Garcia Murillo, Daniel Guillermo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Control y Procesamiento Digital de Señales |
dc.contributor.googlescholar.spa.fl_str_mv |
DG García-Murillo |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación |
topic |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación Functional connectivity Deep learning Kernel methods Renyi’s entropy BCI inefficiency cross-spectral density Bochner’s theorem Conectividad funcional Aprendizaje profundo Métodos de kernel Entropía de Renyi Ineficiencia de BCI Densidad espectral cruzada Teorema de Bochner Interfaces cerebro-computadora (BCI) Conectividad funcional |
dc.subject.proposal.eng.fl_str_mv |
Functional connectivity Deep learning Kernel methods Renyi’s entropy BCI inefficiency cross-spectral density Bochner’s theorem |
dc.subject.proposal.spa.fl_str_mv |
Conectividad funcional Aprendizaje profundo Métodos de kernel Entropía de Renyi Ineficiencia de BCI Densidad espectral cruzada Teorema de Bochner |
dc.subject.unesco.none.fl_str_mv |
Interfaces cerebro-computadora (BCI) Conectividad funcional |
description |
graficas, ilustraciones, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-09T16:37:13Z |
dc.date.available.none.fl_str_mv |
2024-10-09T16:37:13Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86921 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86921 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[Abdulkarim & Al-Faiz, 2021] Abdulkarim, H. & Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026. [Abhang et al., 2016] Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038. [Abiri et al., 2019] Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of EEG-based brain–computer interface paradigms; Journal of Neural Engineering; 16 (1): 011001. [Ahani et al., 2014] Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11. [Ahirwal et al., 2014] Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172. [Ahn et al., 2014] Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633. [Ai et al., 2019] Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032. [Akella et al., 2021] Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9. [Akuthota et al., 2023] Akuthota, S.; Rajkumar, K. & Ravichander, J.: , 2023; Eeg based motor imagery bci using four class iterative filtering & four class filter bank common spatial pattern; en 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS); IEEE; págs. 429–434. [Al-Fahad et al., 2020] Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17 (1): 016045. [Al-Nafjan et al., 2017] Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239. [Al Nazi et al., 2021] Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13. [Al-Saegh et al., 2021] Al-Saegh, A.; Dawwd, S. A. & Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172. [Al-Shargie et al., 2020] Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956. [Alazrai et al., 2019] Alazrai, R.; Abuhijleh, M.; Alwanni, H. & Daoud, M. I.: , 2019; A deep learning framework for decoding motor imagery tasks of the same hand using eeg signals; IEEE Access; 7: 109612–109627. [Aldayel et al., 2020] Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525. [Ali et al., 2018] Ali, H. T.; Kammoun, A. & Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457. [Alizadeh et al., 2023] Alizadeh, N.; Afrakhteh, S. & Mosavi, M.: , 2023; Multi-task eeg signal classification using correlation-based imf selection and multi-class csp; IEEE Access. [Alsharif et al., 2020] Alsharif, A.; Salleh, N.; Baharun, R. & Safaei, M.: , 2020; Neuromarketing approach: An overview and future research directions; Journal of Theoretical and Applied Information Technology; 98 (7): 991–1001. [Altaheri et al., 2023] Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722. [Álvarez-Meza et al., 2014a] Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342. [Alvarez-Meza et al., 2017] Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550. [Álvarez-Meza et al., 2014b] Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342. [Alwasiti et al., 2020] Alwasiti, H.; Yusoff, M. Z. & Raza, K.: , 2020; Motor imagery classification for brain computer interface using deep metric learning; IEEE Access; 8: 109949–109963. [Amin et al., 2019] Amin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554. [Amir et al., 2020] Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings. [Ang et al., 2008] Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397. [Anowar et al., 2021] Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review ; 40: 100378. [Antonakakis et al., 2020] Antonakakis, M.; Schrader, S.; Aydin, Ü.; Khan, A.; Gross, J.; Zervakis, M.; Rampp, S. & Wolters, C. H.: , 2020; Inter-subject variability of skull conductivity and thickness in calibrated realistic head models; Neuroimage; 223: 117353. [Anupallavi & MohanBabu, 2020] Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11. [Apicella et al., 2021] Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9. [Apicella et al., 2022] Apicella, A.; Isgrò, F.; Pollastro, A. & Prevete, R.: , 2022; Toward the application of xai methods in eeg-based systems; arXiv preprint arXiv:2210.06554. [Arrieta et al., 2020] Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115. [Arvaneh et al., 2011] Arvaneh, M.; Guan, C.; Ang, K. K. & Quek, C.: , 2011; Optimizing the channel selection and classification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873. [Bakhshali et al., 2020] Bakhshali, M.; Khademi, M.; Ebrahimi, A. & Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899. [Bakhshayesh et al., 2019] Bakhshayesh, H.; Fitzgibbon, S. P.; Janani, A. S.; Grummett, T. S. & Pope, K. J.: , 2019; Detecting synchrony in eeg: A comparative study of functional connectivity measures; Computers in biology and medicine; 105: 1–15 [Bang & Lee, 2022] Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5. [Baniqued et al., 2021] Baniqued, P. D. E.; Stanyer, E. C.; Awais, M.; Alazmani, A.; Jackson, A. E.; Mon-Williams, M. A.; Mushtaq, F. & Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25. [Barachant et al., 2013] Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178. [Barios et al., 2019] Barios, J. A.; Ezquerro, S.; Bertomeu-Motos, A.; Nann, M.; Badesa, F. J.; Fernandez, E.; Soekadar, S. R. & Garcia-Aracil, N.: , 2019; Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control; International journal of neural systems; 29 (05): 1850045. [Bastos & Schoffelen, 2016] Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175. [Batres-Mendoza et al., 2016] Batres-Mendoza, P.; Montoro-Sanjose, C. R.; Guerra-Hernandez, E. I.; Almanza-Ojeda, D. L.; Rostro-Gonzalez, H.; Romero-Troncoso, R. J. & Ibarra-Manzano, M. A.: , 2016; Quaternion-based signal analysis for motor imagery classification from electroencephalographic signals; Sensors; 16 (3): 336. [Battaglia & Brovelli, 2020] Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences. [Belwafi et al., 2020] Belwafi, K.; Gannouni, S. & Aboalsamh, H.: , 2020; An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery eeg signals; IEEE Access; 8: 152669–152679. [Benzy et al., 2020] Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S. & Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062. [Betzel et al., 2019] Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990. [Billinger et al., 2013] Billinger, M.; Brunner, C. & Müller-Putz, G. R.: , 2013; Single-trial connectivity estimation for classification of motor imagery data; Journal of neural engineering; 10 (4): 046006. [Bishop, 2006] Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer. [Bochner, 2020] Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press. [Bonci et al., 2021] Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain–computer interfaces and their applications; Electronics; 10 (5): 560. [Borra et al., 2019] Borra, D.; Fantozzi, S. & Magosso, E.: , 2019; Eeg motor execution decoding via interpretable sinc-convolutional neural networks; en Mediterranean Conference on Medical and Biological Engineering and Computing; Springer; págs. 1113– 1122. [Borra et al., 2020] Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74. [Braga-Neto & Dougherty, 2004] Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380. [Bramhall et al., 2020] Bramhall, S.; Horn, H.; Tieu, M. & Lohia, N.: , 2020; Qlime-a quadratic local interpretable model-agnostic explanation approach; SMU Data Science Review ; 3 (1): 4. [Brockmeier et al., 2014] Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107. [Bromiley et al., 2004] Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and information; statistics and inf; Series (2004-004). [Brunner et al., 2008] Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A. & Pfurtscheller, G.: , 2008; Bci competition 2008–graz data set a; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology; 16: 1–6. [Brunner et al., 2015] Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10. [Brusini et al., 2021] Brusini, L.; Stival, F.; Setti, F.; Menegatti, E.; Menegaz, G. & Storti, S. F.: , 2021; A systematic review on motor-imagery brain-connectivity-based computer interfaces; IEEE Transactions on Human-Machine Systems; 51 (6): 725–733. [Buchanan et al., 2021] Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537. [Bullmore & Sporns, 2009] Bullmore, E. & Sporns, O.: , 2009; Complex brain networks: graph theoretical analysis of structural and functional systems; Nature reviews neuroscience; 10 (3): 186–198. [Cai et al., 2021] Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021. [Caicedo-Acosta et al., 2021] Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using EEG functional connectivity indicators; Sensors; 21 (6): 1932. [Cao et al., 2022a] Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022a; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human brain mapping; 43 (2): 860–879. [Cao et al., 2022b] Cao, L.; Wang, W.; Huang, C.; Xu, Z.; Wang, H.; Jia, J.; Chen, S.; Dong, Y.; Fan, C. & de Albuquerque, V. H. C.: , 2022b; An effective fusing approach by combining connectivity network pattern and temporal-spatial analysis for eeg-based bci rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2264–2274. [Cárdenas-Peña et al., 2017] Cárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413. [Carrara & Papadopoulo, 2023] Carrara, I. & Papadopoulo, T.: , 2023; Classification of bci-eeg based on augmented covariance matrix; arXiv preprint arXiv:2302.04508. [Casimo et al., 2017] Casimo, K.; Weaver, K. E.; Wander, J. & Ojemann, J. G.: , 2017; Bci use and its relation to adaptation in cortical networks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 25 (10): 1697–1704. [Cattai et al., 2021] Cattai, T.; Colonnese, S.; Corsi, M.-C.; Bassett, D. S.; Scarano, G. & Fallani, F. D. V.: , 2021; Phase/amplitude synchronization of brain signals during motor imagery bci tasks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1168–1177. [Cattan et al., 2018] Cattan, G.; Mendoza, C.; Andreev, A. & Congedo, M.: , 2018; Recommendations for integrating a p300-based brain computer interface in virtual reality environments for gaming; Computers; 7 (2): 34. [Chaddad et al., 2023] Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023; Survey of explainable ai techniques in healthcare; Sensors; 23 (2): 634. [Chakraborty et al., 2017] Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Srivastava, M.; Preece, A.; Julier, S.; Rao, R. M. et al.: , 2017; Interpretability of deep learning models: A sur- vey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCAL- COM/UIC/ATC/CBDcom/IOP/SCI); IEEE; págs. 1–6. [Chamola et al., 2020] Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620. [Chao & Liu, 2020] Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012. [Chattopadhay et al., 2018] Chattopadhay, A.; Sarkar, A.; Howlader, P. & Balasubramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE winter conference on applications of computer vision (WACV); IEEE; págs. 839–847. [Chen et al., 2020] Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14. [Chen et al., 2021] Chen, Y. Y.; Lambert, K. J.; Madan, C. R. & Singhal, A.: , 2021; Mu oscillations and motor imagery performance: A reflection of intra-individual success, not inter-individual ability; Human Movement Science; 78: 102819. [Chen et al., 2019] Chen, Z.; Ji, J. & Liang, Y.: , 2019; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646. [Chevallier et al., 2024] Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S. & Moreau, T.: , 2024; The largest eeg-based bci reproducibility study for open science: the moabb benchmark; arXiv preprint arXiv:2404.15319. [Chiarion et al., 2023] Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372. [Cho et al., 2017] Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S.: , 2017; EEG datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034. [Choi & Kim, 2021] Choi, I. & Kim, W. C.: , 2021; Detecting and analyzing politically-themed stocks using text mining techniques and transfer entropy—focus on the republic of korea’s case; Entropy; 23 (6): 734. [Clark et al., 2020] Clark, S. V.; King, T. Z. & Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review : 1–24. [Coelho et al., 2012] Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8. [Cohen, 1998] Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580. [Collazos-Huertas et al., 2020] Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13. [Collazos-Huertas et al., 2021] Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105. [Collazos-Huertas et al., 2023] Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750. [Congedo et al., 2017a] Congedo, M.; Barachant, A. & Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174. [Congedo et al., 2017b] Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220. [Congedo et al., 2017c] Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed-form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201. [Craik et al., 2019] Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classification tasks: a review; Journal of Neural Engineering; 16 (3): 031001. [Dai et al., 2020] Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274. [Dai et al., 2019] Dai, M.; Zheng, D.; Na, R.; Wang, S. & Zhang, S.: , 2019; Eeg classification of motor imagery using a novel deep learning framework; Sensors; 19 (3): 551. [Daly et al., 2012] Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136. [Darvish Ghanbar et al., 2021] Darvish Ghanbar, K.; Yousefi Rezaii, T.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; Plos one; 16 (3): e0248511. [De La Pava Panche et al., 2019] De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277. [Demir et al., 2022] Demir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35. [Deng et al., 2020] Deng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816. [Desbois et al., 2021] Desbois, A.; Cattai, T.; Corsi, M.-C. & de Vico Fallani, F.: , 2021; Functional connectivity for bci: Openvibe implementation; en JJC-ICON’2021-Journée Jeunes Chercheurs en Interfaces Cerveau-Ordinateur et Neurofeedback. [Ding et al., 2023] Ding, X.; Yang, L. & Li, C.: , 2023; Study of mi-bci classification method based on the riemannian transform of personalized eeg spatiotemporal features; Mathematical Biosciences and Engineering; 20 (7): 12454–12471. [Dose et al., 2018] Dose, H.; Møller, J. S.; Iversen, H. K. & Puthusserypady, S.: , 2018; An end-to-end deep learning approach to mi-eeg signal classification for bcis; Expert Systems with Applications; 114: 532–542. [Duan et al., 2014] Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483. [Duan et al., 2020] Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14. [Duan et al., 2021] Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems. [Duclos et al., 2021] Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171. [Eichert et al., 2021] Eichert, N.; Watkins, K. E.; Mars, R. B. & Petrides, M.: , 2021; Morphological and functional variability in central and subcentral motor cortex of the human brain; Brain Structure and Function; 226 (1): 263–279. [EPMoghaddam et al., 2022] EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029. [Fagerholm et al., 2020] Fagerholm, E. D.; Moran, R. J.; Violante, I. R.; Leech, R. & Friston, K. J.: , 2020; Dynamic causal modelling of phase-amplitude interactions; NeuroImage; 208: 116452. [Fahimi et al., 2020] Fahimi, F.; Dosen, S.; Ang, K. K.; Mrachacz-Kersting, N. & Guan, C.: , 2020; Generative adversarial networks-based data augmentation for brain–computer interface; IEEE transactions on neural networks and learning systems; 32 (9): 4039–4051. [Fan et al., 2021] Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760. [Fauzi et al., 2019] Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571. [Feng et al., 2020] Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682. [Fine & Scheinberg, 2001] Fine, S. & Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264. [Fogelson et al., 2013] Fogelson, N.; Li, L.; Li, Y.; Fernandez-del Olmo, M.; Santos-Garcia, D. & Peled, A.: , 2013; Functional connectivity abnormalities during contextual processing in schizophrenia and in parkinson’s disease; Brain and cognition; 82 (3): 243–253. [Fong & Vedaldi, 2017] Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437. [Frau-Pascual et al., 2019] Frau-Pascual, A.; Fogarty, M.; Fischl, B.; Yendiki, A.; Aganj, I.; Initiative, A. D. N. et al.: , 2019; Quantification of structural brain connectivity via a conductance model; NeuroImage; 189: 485–496. [Freer et al., 2019] Freer, D.; Deligianni, F. & Yang, G.-Z.: , 2019; Adaptive riemannian bci for enhanced motor imagery training protocols; en 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN); IEEE; págs. 1–4. [Friston, 2002] Friston, K.: , 2002; Functional integration and inference in the brain; Progress in neurobiology; 68 (2): 113–143. [Friston et al., 2013] Friston, K.; Moran, R. & Seth, A. K.: , 2013; Analysing connectivity with granger causality and dynamic causal modelling; Current opinion in neurobiology; 23 (2): 172–178. [Friston, 2011] Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36. [Frolov et al., 2019] Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101. [Fu et al., 2020] Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833. [Ganin et al., 2013] Ganin, I. P.; Shishkin, S. L. & Kaplan, A. Y.: , 2013; A p300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design; PloS one; 8 (10): e77755. [Gao et al., 2024] Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informatics. [Gao et al., 2022] Gao, S.; Yang, J.; Shen, T. & Jiang, W.: , 2022; A parallel feature fusion network combining gru and cnn for motor imagery eeg decoding; Brain Sciences; 12 (9): 1233. [Gao et al., 2021] Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388. [García-Murillo et al., 2021] García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750. [Garg et al., 2023] Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46. [Gaur et al., 2021a] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9. [Gaur et al., 2021b] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021b; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9. [Gaur et al., 2021c] Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021c; An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation; Biomedical Signal Processing and Control; 68: 102574. [Gaxiola-Tirado et al., 2017] Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783. [Georgiadis et al., 2018] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2018; Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery bcis; Journal of neuroengineering and rehabilitation; 15 (1): 1–18. [Georgiadis et al., 2019] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021. [Géron, 2022] Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow ; " O’Reilly Media, Inc.". [Ghanbar et al., 2021] Ghanbar, K. D.; Rezaii, T. Y.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; PLoS One; 16 (3): 1–18. [Ghane & Hossain, 2020] Ghane, P. & Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (BCI) design; arXiv preprint arXiv:2010.12066. [Giraldo et al., 2014] Giraldo, L. G. S.; Rao, M. & Principe, J. C.: , 2014; Measures of entropy from data using infinitely divisible kernels; IEEE Transactions on Information Theory; 61 (1): 535–548. [Golugula et al., 2011] Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimensional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952. [Gonuguntla et al., 2016] Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294. [Gonzalez-Astudillo et al., 2020] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineering. [Gonzalez-Astudillo et al., 2021] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001. [Gramfort & Clerc, 2007] Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172. [Graña & Morais-Quilez, 2023] Graña, M. & Morais-Quilez, I.: , 2023; A review of graph neural networks for electroencephalography data analysis; Neurocomputing: 126901. [Grigorev et al., 2021] Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B. & Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592. [Grilo et al., 2019] Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A. & Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4. [Gu et al., 2023] Gu, H.; Wang, J. & Han, Y.: , 2023; Decoding of brain functional connections underlying natural grasp task using time-frequency cross mutual information; IEEE Access. [Gu et al., 2021a] Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021a; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20. [Gu et al., 2020a] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109. [Gu et al., 2020b] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509. [Gu et al., 2021b] Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021b; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics; 18 (5): 1645–1666. [Guillot & Debarnot, 2019] Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396. [Gunawardena et al., 2023] Gunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neuroscience. [Guo et al., 2020] Guo, Y.; Zhang, Y.; Chen, Z.; Liu, Y. & Chen, W.: , 2020; Eeg classification by filter band component regularized common spatial pattern for motor imagery; Biomedical Signal Processing and Control; 59: 101917. [Gupta et al., 2015] Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812. [Haddad et al., 2019] Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand movement from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376. [Haghanifar et al., 2022] Haghanifar, A.; Majdabadi, M. M.; Choi, Y.; Deivalakshmi, S. & Ko, S.: , 2022; Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning; Multimedia Tools and Applications; 81 (21): 30615–30645. [Hamedi et al., 2014] Hamedi, M.; Salleh, S.-H.; Noor, A. M. & Mohammad-Rezazadeh, I.: , 2014; Neural network-based three-class motor imagery classification using time-domain features for bci applications; en 2014 IEEE region 10 symposium; IEEE; págs. 204–207. [Hamedi et al., 2016] Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connectivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041. [Han et al., 2023] Han, S.; Zhang, C.; Lei, J.; Han, Q.; Du, Y.; Wang, A.; Bai, S. & Zhang, M.: , 2023; Cepstral analysis based artifact detection, recognition and removal for prefrontal eeg; IEEE Transactions on Circuits and Systems II: Express Briefs. [Hang et al., 2020] Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466. [Hassanpour et al., 2019] Hassanpour, A.; Moradikia, M.; Adeli, H.; Khayami, S. R. & Shamsinejadbabaki, P.: , 2019; A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals; Expert Systems; 36 (6): e12494. [Hassija et al., 2023] Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M. & Hussain, A.: , 2023; Interpreting black-box models: a review on explainable artificial intelligence; Cognitive Computation: 1–30. [Hata et al., 2016] Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K. et al.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease–an eloreta study; Clinical Neurophysiology; 127 (2): 1269–1278. [He et al., 2019] He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137. [He et al., 2013] He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433. [Hejazi & Motie Nasrabadi, 2019] Hejazi, M. & Motie Nasrabadi, A.: , 2019; Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods; Cognitive neurodynamics; 13: 461–473. [Herranz-Gómez et al., 2020] Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews. [Hobson & Bishop, 2017] Hobson, H. M. & Bishop, D. V.: , 2017; The interpretation of mu suppression as an index of mirror neuron activity: past, present and future; Royal Society Open Science; 4 (3): 160662. [Hochberg et al., 2012] Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375. [Hossain et al., 2023] Hossain, K. M.; Islam, M. A.; Hossain, S.; Nijholt, A. & Ahad, M. A. R.: , 2023; Status of deep learning for eeg-based brain–computer interface applications; Frontiers in computational neuroscience; 16: 1006763. [Hosseini et al., 2020a] Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews. [Hosseini et al., 2020b] Hosseini, M.-P.; Hosseini, A. & Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering. [Hrisca-Eva & Lazar, 2021] Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2). [Hsu & Chen, 2020] Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208. [Huang et al., 2023] Huang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter-and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17: 1122661. [Huang et al., 2022] Huang, Q.; Yamada, M.; Tian, Y.; Singh, D. & Chang, Y.: , 2022; Graphlime: Local interpretable model explanations for graph neural networks; IEEE Transactions on Knowledge and Data Engineering. [Hurtado-Rincón et al., 2016] Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach; en International Conference on Brain Informatics; Springer; págs. 14–23. [Idowu et al., 2021] Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121. [Ismail & Karwowski, 2020] Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connectivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135. [Iturralde et al., 2012] Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558. [Jahromy et al., 2019] Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604. [Jain & Zongker, 1997] Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158. [Janapati et al., 2023] Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566. [Jiang et al., 2021a] Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021a; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888. [Jiang et al., 2021b] Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021b; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699. [Jin et al., 2021] Jin, J.; Sun, H.; Daly, I.; Li, S.; Liu, C.; Wang, X. & Cichocki, A.: , 2021; A novel classification framework using the graph representations of electroencephalogram for motor imagery based brain-computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 20–29. [Johnson et al., 2018] Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K. & He, B.: , 2018; Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke; Journal of neural engineering; 15 (1): 016009. [Ju & Guan, 2023] Ju, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systems. [Kant et al., 2020] Kant, P.; Laskar, S. H.; Hazarika, J. & Mahamune, R.: , 2020; Cwt based transfer learning for motor imagery classification for brain computer interfaces; Journal of Neuroscience Methods; 345: 108886. [Kaper et al., 2004] Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003-data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076. [Kawanabe et al., 2006] Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classification; Citeseer. [Khademi et al., 2023] Khademi, Z.; Ebrahimi, F. & Kordy, H. M.: , 2023; A review of critical challenges in mi-bci: From conventional to deep learning methods; Journal of Neuroscience Methods; 383: 109736. [Khan et al., 2021] Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808. [Khan et al., 2020] Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843. [Khosla et al., 2020] Khosla, A.; Khandnor, P. & Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690. [Kim et al., 2022] Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996. [Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143. [Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143. [Kingma, 2014] Kingma, D. P.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980. [Knapen, 2021] Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2). [Köllőd et al., 2023] Köllőd, C. M.; Adolf, A.; Iván, K.; Márton, G. & Ulbert, I.: , 2023; Deep comparisons of neural networks from the eegnet family; Electronics; 12 (12): 2743. [Kondratyev et al., 2020] Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fighting overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020). [Kostiukevych et al., 2021] Kostiukevych, K.; Stirenko, S.; Gordienko, N.; Rokovyi, O.; Alienin, O. & Gordienko, Y.: , 2021; Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface; en 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), tomo 2; IEEE; págs. 973–978. [Kotte & Dabbakuti, 2020] Kotte, S. & Dabbakuti, J. K.: , 2020; Methods for removal of artifacts from eeg signal: A review; en Journal of Physics: Conference Series, tomo 1706; IOP Publishing; pág. 012093. [Kraeutner et al., 2016] Kraeutner, S. N.; MacKenzie, L. A.; Westwood, D. A. & Boe, S. G.: , 2016; Characterizing skill acquisition through motor imagery with no prior physical practice.; Journal of Experimental Psychology: Human Perception and Performance; 42 (2): 257. [Kuang, 2021] Kuang, P.-C.: , 2021; Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales; Physica A: Statistical Mechanics and its Applications; 577: 126068. [Kübler, 2020] Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180. [Kulatilleke, 2023] Kulatilleke, G.: , 2023; Towards efficient graph neural networks for optimizing illicit dark web interventions. [Kulkarni et al., 2019] Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004. [Kumar et al., 2018] Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504. [Kumar et al., 2019] Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13. [Kumar et al., 2021] Kumar, S.; Sharma, R. & Sharma, A.: , 2021; Optical+: a frequency-based deep learning scheme for recognizing brain wave signals; Peerj Computer Science; 7: e375. [Kwon et al., 2021] Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851. [Kwon et al., 2019] Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31 (10): 3839–3852. [Ladda et al., 2021] Ladda, A. M.; Lebon, F. & Lotze, M.: , 2021; Using motor imagery practice for improving motor performance–a review; Brain and cognition; 150: 105705. [Lahane et al., 2019] Lahane, P.; Jagtap, J.; Inamdar, A.; Karne, N. & Dev, R.: , 2019; A review of recent trends in eeg based brain-computer interface; en 2019 International Conference on Computational Intelligence in Data Science (ICCIDS); IEEE; págs. 1–6. [Lakshmi et al., 2014] Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1). [Lawhern et al., 2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013. [Le et al., 2021] Le, N. Q. K.; Kha, Q. H.; Nguyen, V. H.; Chen, Y.-C.; Cheng, S.-J. & Chen, C.-Y.: , 2021; Machine learning-based radiomics signatures for egfr and kras mutations prediction in non-small-cell lung cancer; International journal of molecular sciences; 22 (17): 9254. [Lebedev & Nicolelis, 2006] Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546. [Ledoit & Wolf, 2004] Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411. [Lee et al., 2004] Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer. [Lee & Choi, 2019] Lee, H. K. & Choi, Y.-S.: , 2019; Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface; Entropy; 21 (12): 1199. [Lee et al., 2020] Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321. [Leeuwis et al., 2021] Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946. [Li et al., 2021a] Li, B.; Cheng, T. & Guo, Z.: , 2021a; A review of eeg acquisition, processing and application; en Journal of Physics: Conference Series, tomo 1907; IOP Publishing; pág. 012045. [Li et al., 2015] Li, J.; Struzik, Z.; Zhang, L. & Cichocki, A.: , 2015; Feature learning from incomplete eeg with denoising autoencoder; Neurocomputing; 165: 23–31. [Li et al., 2019a] Li, J. W.; Barma, S.; Mak, P. U.; Pun, S. H. & Vai, M. I.: , 2019a; Brain rhythm sequencing using eeg signals: A case study on seizure detection; IEEE Access; 7: 160112–160124. [Li & Principe, 2020] Li, K. & Principe, J. C.: , 2020; Fast estimation of information theoretic learning descriptors using explicit inner product spaces; arXiv preprint arXiv:2001.00265. [Li & Chen, 2021] Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492. [Li et al., 2016] Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016. [Li et al., 2019b] Li, M.-A.; Han, J.-F. & Duan, L.-J.: , 2019b; A novel mi-eeg imaging with the location information of electrodes; IEEE Access; 8: 3197–3211. [Li, 2022] Li, P.: , 2022; Bayesian networks for brain-computer interfaces: A survey; arXiv preprint arXiv:2206.07487. [Li et al., 2019c] Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019c; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372. [Li et al., 2019d] Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019d; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180. [Li et al., 2020] Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794. [Li et al., 2021b] Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021b; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101. [Lim et al., 2021] Lim, J.-S.; Lee, J.-J. & Woo, C.-W.: , 2021; Post-stroke cognitive impairment: pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques; Journal of Stroke; 23 (3): 297–311. [Lin et al., 2021] Lin, Y.-S.; Lee, W.-C. & Celik, Z. B.: , 2021; What do you see? evaluation of explainable artificial intelligence (xai) interpretability through neural backdoors; en Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; págs. 1027–1035. [Linderman & Steinerberger, 2019] Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332. [Liu & Gillies, 2016] Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86. [Liu & Yang, 2021] Liu, T. & Yang, D.: , 2021; A densely connected multi-branch 3d convolutional neural network for motor imagery eeg decoding; Brain Sciences; 11 (2): 197. [Liu et al., 2024] Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612. [Llanos et al., 2013] Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I. & Sabate, M.: , 2013; Mu-rhythm changes during the planning of motor and motor imagery actions; Neuropsychologia; 51 (6): 1019–1026. [Lopez et al., 2020] Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14. [Lotte et al., 2018] Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005. [Lu et al., 2011] Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579. [Luo et al., 2019] Luo, J.; Wang, J.; Xu, R. & Xu, K.: , 2019; Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification; Journal of neuroscience methods; 323: 98–107. [Luo et al., 2020] Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N. & Wang, J.: , 2020; Motor imagery eeg classification based on ensemble support vector learning; Computer methods and programs in biomedicine; 193: 105464. [Luo et al., 2018] Luo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network; BMC bioinformatics; 19 (1): 1–18. [Luo et al., 2021] Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021. [Ma et al., 2023] Ma, W.; Wang, C.; Sun, X.; Lin, X. & Wang, Y.: , 2023; A double-branch graph convolutional network based on individual differences weakening for motor imagery eeg classification; Biomedical Signal Processing and Control; 84: 104684. [Ma et al., 2020] Ma, X.; Wang, D.; Liu, D. & Yang, J.: , 2020; Dwt and cnn based multi-class motor imagery electroencephalo- graphic signal recognition; Journal of neural engineering; 17 (1): 016073. [Maiseli et al., 2023] Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20. [Maksimenko et al., 2017] Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E ; 96 (1): 012316. [Mammone et al., 2023] Mammone, N.; Ieracitano, C.; Adeli, H. & Morabito, F. C.: , 2023; Autoencoder filter bank common spatial patterns to decode motor imagery from eeg; IEEE Journal of Biomedical and Health Informatics. [Martínez-Cancino et al., 2020] Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Sotero, R. C. & Makeig, S.: , 2020; What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals?; Entropy; 22 (11): 1262. [Matemba et al., 2020] Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348. [McFarland & Wolpaw, 2011] McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM ; 54 (5): 60–66. [Meanti et al., 2020] Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350. [Meers et al., 2020] Meers, R.; Nuttall, H. E. & Vogt, S.: , 2020; Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery; Cortex ; 126: 322–333. [Meng et al., 2023] Meng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004. [Miah et al., 2020] Miah, A. S. M.; Rahim, M. A. & Shin, J.: , 2020; Motor-imagery classification using riemannian geometry with median absolute deviation; Electronics; 9 (10): 1584. [Miao et al., 2020] Miao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020. [Midha et al., 2021] Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580. [Miladinović et al., 2021] Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808. [Miljevic et al., 2022] Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554. [Millan & Mouriño, 2003] Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161. [Miotto et al., 2018] Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246. [Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584. [Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584. [Modares-Haghighi et al., 2021] Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840. [Mohammadi et al., 2021] Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detection in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15. [Molina-Giraldo et al., 2015] Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283. [Molnar et al., 2020] Molnar, C.; Casalicchio, G. & Bischl, B.: , 2020; Interpretable machine learning–a brief history, state-of-the- art and challenges; en Joint European conference on machine learning and knowledge discovery in databases; Springer; págs. 417–431. [Moran et al., 2012] Moran, A.; Guillot, A.; MacIntyre, T. & Collet, C.: , 2012; Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology; British Journal of Psychology; 103 (2): 224–247. [Mridha et al., 2021] Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746. [Mumtaz et al., 2018] Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89. [Musallam et al., 2021] Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826. [Naidu et al., 2020] Naidu, R.; Ghosh, A.; Maurya, Y.; Kundu, S. S. et al.: , 2020; Is-cam: Integrated score-cam for axiomatic- based explanations; arXiv preprint arXiv:2010.03023. [Nentwich et al., 2020] Nentwich, M.; Ai, L.; Madsen, J.; Telesford, Q. K.; Haufe, S.; Milham, M. P. & Parra, L. C.: , 2020; Functional connectivity of eeg is subject-specific, associated with phenotype, and different from fmri; NeuroImage; 218: 117001. [Nguyen et al., 2021] Nguyen, H. T. T.; Cao, H. Q.; Nguyen, K. V. T. & Pham, N. D. K.: , 2021; Evaluation of explainable artificial intelligence: Shap, lime, and cam; en Proceedings of the FPT AI Conference; págs. 1–6. [Nicolini et al., 2020] Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603. [Nisar et al., 2018] Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214. [Nkengfack et al., 2020] Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141. [Noshadi et al., 2014] Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168. [Nunnari et al., 2021] Nunnari, F.; Kadir, M. A. & Sonntag, D.: , 2021; On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images; en International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer; págs. 241–253. [Oikonomou et al., 2017] Oikonomou, V. P.; Georgiadis, K.; Liaros, G.; Nikolopoulos, S. & Kompatsiaris, I.: , 2017; A comparison study on eeg signal processing techniques using motor imagery eeg data; en 2017 IEEE 30th international symposium on computer-based medical systems (CBMS); IEEE; págs. 781–786. [Omeiza et al., 2019] Omeiza, D.; Speakman, S.; Cintas, C. & Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224. [O’Reilly & Chanmittakul, 2021] O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spectral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368. [Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C. J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J. & Gómez-Loenzo, R. A.: , 2019; A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network; Sensors; 19 (20): 4541. [Özdenizci et al., 2019] Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714. [Padfield et al., 2019] Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V. & Ren, J.: , 2019; Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges; Sensors; 19 (6): 1423. [Pandey & Miyapuram, 2021] Pandey, P. & Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688. [Parhi & Tewfik, 2021] Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199. [Park et al., 2023] Park, S.; Ha, J. & Kim, L.: , 2023; Improving performance of motor imagery-based brain–computer interface in poorly performing subjects using a hybrid-imagery method utilizing combined motor and somatosensory activity; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 31: 1064–1074. [Park et al., 2017] Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505. [Paz-Linares et al., 2017] Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635. [Perdikis et al., 2018] Perdikis, S.; Tonin, L.; Saeedi, S.; Schneider, C. & Millán, J. d. R.: , 2018; The cybathlon bci race: Successful longitudinal mutual learning with two tetraplegic users; PLoS biology; 16 (5): e2003787. [Peterson et al., 2019] Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019. [Philip et al., 2022] Philip, B. S.; Prasad, G. & Hemanth, D. J.: , 2022; Non-stationarity removal techniques in meg data: A review; Procedia Computer Science; 215: 824–833. [Phunruangsakao et al., 2023] Phunruangsakao, C.; Achanccaray, D.; Bhattacharyya, S.; Izumi, S.-I. & Hayashibe, M.: , 2023; Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice; Scientific Reports; 13 (1): 17752. [Pope et al., 2019] Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781. [Prakash et al., ] Prakash, E. I.; Shrikumar, A. & Kundaje, A.: , ; Towards more realistic simulated datasets for benchmarking deep learning models in regulatory genomics; en Machine Learning in Computational Biology; PMLR; págs. 58–77. [Principe, 2010] Principe, J. C.: , 2010; Information theoretic learning: Renyi’s entropy and kernel perspectives; Springer Science & Business Media. [Pulgarin-Giraldo et al., 2017] Pulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509. [Purves, 2001] Purves, W. K.: , c 2001.; Life, the science of biology / ; Sinauer Associates„ Sunderland, MA :; 6a edición; includes index. [Qian et al., 2018] Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C. et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149. [Qiao et al., 2023] Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758. [Qiumei et al., 2019] Qiumei, Z.; Dan, T. & Fenghua, W.: , 2019; Improved convolutional neural network based on fast exponentially linear unit activation function; Ieee Access; 7: 151359–151367. [Raeisi et al., 2020] Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596. [Raeisi et al., 2022] Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950. [Rahate et al., 2022] Rahate, A.; Walambe, R.; Ramanna, S. & Kotecha, K.: , 2022; Multimodal co-learning: challenges, applications with datasets, recent advances and future directions; Information Fusion; 81: 203–239. [Rahimi et al., 2007] Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5. [Ramadan & Vasilakos, 2017] Ramadan, R. A. & Vasilakos, A. V.: , 2017; Brain computer interface: control signals review; Neurocomputing; 223: 26–44. [Ramadan et al., 2015] Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50. [Ras et al., 2018] Ras, G.; van Gerven, M. & Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36. [Rashed-Al-Mahfuz et al., 2021] Rashed-Al-Mahfuz, M.; Moni, M. A.; Uddin, S.; Alyami, S. A.; Summers, M. A. & Eapen, V.: , 2021; A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (eeg) data; IEEE journal of translational engineering in health and medicine; 9: 1–12. [Rasheed et al., 2021] Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236. [Rashid et al., 2020] Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25. [Rashkov et al., 2019] Rashkov, G.; Bobe, A.; Fastovets, D. & Komarova, M.: , 2019; Natural image reconstruction from brain waves: a novel visual bci system with native feedback; BioRxiv : 787101. [Rathee et al., 2017] Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005. [Ravaioli et al., 2023] Ravaioli, G.; Domingos, T. & Teixeira, R. F.: , 2023; A framework for data-driven agent-based modelling of agricultural land use; Land; 12 (4): 756. [Rejer & Lorenz, 2013] Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82. [Rényi, 1961] Rényi, A.: , 1961; On measures of entropy and information; en Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, tomo 4; University of California Press; págs. 547–562. [Reuderink et al., 2011] Reuderink, B.; Farquhar, J.; Poel, M. & Nijholt, A.: , 2011; A subject-independent brain-computer interface based on smoothed, second-order baselining; en 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; págs. 4600–4604. [Rezaei & Shalbaf, 2023] Rezaei, E. & Shalbaf, A.: , 2023; Classification of right/left hand motor imagery by effective connectivity based on transfer entropy in electroencephalogram signal; Basic and Clinical Neuroscience; 14 (2): 213. [Riahi et al., 2020] Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868. [Rimbert et al., 2020] Rimbert, S.; Bougrain, L. & Fleck, S.: , 2020; Learning how to generate kinesthetic motor imagery using a bci-based learning environment: A comparative study based on guided or trial-and-error approaches; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2483–2498. [Rodrigues et al., 2019a] Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725. [Rodrigues et al., 2020] Rodrigues, P.; Fim-Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.: , 2020; Single-trial functional connectivity dynamics of event-related desynchronization for motor imagery eeg-based brain-computer interfaces; en Brazilian Congress on Biomedical Engineering; Springer; págs. 1887–1893. [Rodrigues et al., 2019b] Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725. [Rodrigues et al., 2022] Rodrigues, P. G.; Filho, C. A. S.; Takahata, A. K.; Suyama, R.; Attux, R.; Castellano, G.; Sato, J. R.; Nasuto, S. J. & Soriano, D. C.: , 2022; Can dynamic functional connectivity be used to distinguish between resting-state and motor imagery in eeg-bcis?; en Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10 ; Springer; págs. 688–699. [Rongrong et al., 2020] Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833. [Roweis & Ghahramani, 1999] Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345. [Roy et al., 2022] Roy, G.; Bhoi, A. & Bhaumik, S.: , 2022; A comparative approach for mi-based eeg signals classification using energy, power and entropy; IRBM ; 43 (5): 434–446. [Rubinov & Sporns, 2010] Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069. [Ruffino et al., 2017] Ruffino, C.; Papaxanthis, C. & Lebon, F.: , 2017; Neural plasticity during motor learning with motor imagery practice: Review and perspectives; Neuroscience; 341: 61–78. [Ruiz-Gómez et al., 2020] Ruiz-Gómez, S. J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-de Pablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Application of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33. [Saha & Baumert, 2020] Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87. [Said et al., 2017] Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170. [Sakkalis, 2011] Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117. [Samuel et al., 2017] Samuel, O. W.; Geng, Y.; Li, X. & Li, G.: , 2017; Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors; Journal of medical systems; 41: 1–13. [Sannelli et al., 2019] Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351. [Sarin et al., 2020] Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059. [Sarraf, 2017] Sarraf, S.: , 2017; Eeg-based movement imagery classification using machine learning techniques and welch’s power spectral density estimation; American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS); 33 (1): 124–145. [Schirrmeister et al., 2017] Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for EEG decoding and visualization; Human brain mapping; 38 (11): 5391–5420. [Seghier & Price, 2018] Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530. [Selvaraju et al., 2016] Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450. [Selvaraju et al., 2017] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2017; Grad-cam: Visual explanations from deep networks via gradient-based localization; en Proceedings of the IEEE international conference on computer vision; págs. 618–626. [Shali & Setarehdan, 2020] Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125. [Shamsi et al., 2020a] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering. [Shamsi et al., 2020b] Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functional connectivity graphs; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872. [Shamsi et al., 2021] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015. [Shao et al., 2020] Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020. [Sharma et al., 2023] Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access. [Shrikumar et al., 2017] Shrikumar, A.; Greenside, P. & Kundaje, A.: , 2017; Learning important features through propagating activation differences; en International conference on machine learning; PMLR; págs. 3145–3153. [Si et al., 2020] Si, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.; Biswal, B.; Li, P.; Yao, D. et al.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333. [Simon et al., 2013] Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computational and graphical statistics; 22 (2): 231–245. [Simonyan et al., 2013] Simonyan, K.; Vedaldi, A. & Zisserman, A.: , 2013; Deep inside convolutional networks: Visualising image classification models and saliency maps; arXiv preprint arXiv:1312.6034. [Singh et al., 2021] Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173. [Sisti et al., 2022] Sisti, H. M.; Beebe, A.; Bishop, M. & Gabrielsson, E.: , 2022; A brief review of motor imagery and bimanual coordination; Frontiers in Human Neuroscience; 16: 1037410. [Sitaram et al., 2017] Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100. [Siviero et al., 2023] Siviero, I.; Menegaz, G. & Storti, S. F.: , 2023; Functional connectivity and feature fusion enhance multiclass motor-imagery brain–computer interface performance; Sensors; 23 (17): 7520. [Smith et al., 2011] Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891. [Smola & Schölkopf, 2000] Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning. [Smuha, 2019] Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106. [Somers et al., 2018] Somers, B.; Francart, T. & Bertrand, A.: , 2018; A generic eeg artifact removal algorithm based on the multi-channel wiener filter; Journal of neural engineering; 15 (3): 036007. [Sorger & Goebel, 2020] Sorger, B. & Goebel, R.: , 2020; Real-time fmri for brain-computer interfacing; Handbook of clinical neurology; 168: 289–302. [Souto et al., 2020] Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63. [Speith, 2022] Speith, T.: , 2022; A review of taxonomies of explainable artificial intelligence (xai) methods; en 2022 ACM Conference on Fairness, Accountability, and Transparency; págs. 2239–2250. [Springenberg et al., 2014] Springenberg, J. T.; Dosovitskiy, A.; Brox, T. & Riedmiller, M.: , 2014; Striving for simplicity: The all convolutional net; arXiv preprint arXiv:1412.6806. [Stefano Filho et al., 2018] Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365. [Stefano Filho et al., 2021] Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372. [Stephan et al., 2009] Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity. [Stergiadis et al., 2022] Stergiadis, C.; Kostaridou, V.-D. & Klados, M. A.: , 2022; Which bss method separates better the eeg signals? a comparison of five different algorithms; Biomedical Signal Processing and Control; 72: 103292. [Sturm et al., 2016] Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145. [Subasi & Gursoy, 2010] Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666. [Subasi et al., 2021] Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648. [Sujatha Ravindran & Contreras-Vidal, 2023] Sujatha Ravindran, A. & Contreras-Vidal, J.: , 2023; An empirical comparison of deep learning explainability approaches for eeg using simulated ground truth; Scientific Reports; 13 (1): 17709. [Sun et al., 2020a] Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y. & Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv. [Sun et al., 2020b] Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089. [Suto & Oniga, 2018] Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elektrotechnika; 24 (4): 68–71. [Šverko et al., 2022] Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477. [Tabar & Halici, 2016] Tabar, Y. R. & Halici, U.: , 2016; A novel deep learning approach for classification of eeg motor imagery signals; Journal of neural engineering; 14 (1): 016003. [Tafreshi et al., 2019] Tafreshi, T. F.; Daliri, M. R. & Ghodousi, M.: , 2019; Functional and effective connectivity based features of eeg signals for object recognition; Cognitive neurodynamics; 13: 555–566. [Talukdar et al., 2019] Talukdar, U.; Hazarika, S. M. & Gan, J. Q.: , 2019; Motor imagery and mental fatigue: inter-relationship and eeg based estimation; Journal of computational neuroscience; 46: 55–76. [Tang et al., 2014] Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321. [Tang et al., 2020] Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285. [Tang et al., 2023] Tang, X.; Wang, S.; Deng, X.; Liu, K.; Tian, Y.; Wang, H. & Gao, X.: , 2023; Graph-based information separator and area convolutional network for eeg-based intention decoding; IEEE Transactions on Cognitive and Developmental Systems. [Tay et al., 2023] Tay, J. K.; Narasimhan, B. & Hastie, T.: , 2023; Elastic net regularization paths for all generalized linear models; Journal of statistical software; 106. [Tayeb et al., 2019] Tayeb, Z.; Fedjaev, J.; Ghaboosi, N.; Richter, C.; Everding, L.; Qu, X.; Wu, Y.; Cheng, G. & Conradt, J.: , 2019; Validating deep neural networks for online decoding of motor imagery movements from eeg signals; Sensors; 19 (1): 210. [Teo & Chew, 2014] Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728. [Thakur et al., 2016] Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders. [Thiebaut de Schotten et al., 2020] Thiebaut de Schotten, M.; Foulon, C. & Nachev, P.: , 2020; Brain disconnections link structural connectivity with function and behaviour; Nature communications; 11 (1): 5094. [Tibrewal et al., 2022] Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880. [Tibshirani, 1996] Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288. [Tjoa & Guan, 2020] Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813. [Tjoa & Guan, 2022] Tjoa, E. & Guan, C.: , 2022; Evaluating weakly supervised object localization methods right? a study on heatmap-based xai and neural backed decision tree; A Study on Heatmap-Based Xai and Neural Backed Decision Tree (November 27, 2022). [Tortora et al., 2020] Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011. [Tuncer et al., 2021] Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175. [Uribe et al., 2019] Uribe, L. F. S.; Stefano Filho, C. A.; de Oliveira, V. A.; da Silva Costa, T. B.; Rodrigues, P. G.; Soriano, D. C.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026. [Van der Lubbe et al., 2021] Van der Lubbe, R. H.; Sobierajewicz, J.; Jongsma, M. L.; Verwey, W. B. & Przekoracka- Krawczyk, A.: , 2021; Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence; International journal of psychophysiology; 164: 71–86. [Van der Maaten & Hinton, 2008] Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11). [Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13. [Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13. [Van Mierlo et al., 2014] Van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K. & Marinazzo, D.: , 2014; Functional brain connectivity from eeg in epilepsy: Seizure prediction and epileptogenic focus localization; Progress in neurobiology; 121: 19–35. [Vaquerizo-Villar et al., 2023] Vaquerizo-Villar, F.; Gutiérrez-Tobal, G. C.; Calvo, E.; Álvarez, D.; Kheirandish-Gozal, L.; Del Campo, F.; Gozal, D. & Hornero, R.: , 2023; An explainable deep-learning model to stage sleep states in children and propose novel eeg-related patterns in sleep apnea; Computers in Biology and Medicine; 165: 107419. [Värbu et al., 2022] Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applications; Sensors; 22 (9): 3331. [Varone et al., 2021] Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito, F. C. et al.: , 2021; A machine learning approach involving functional connectivity features to classify rest-eeg psychogenic non-epileptic seizures from healthy controls; Sensors; 22 (1): 129. [Varoquaux, 2018] Varoquaux, G.: , 2018; Cross-validation failure: small sample sizes lead to large error bars; Neuroimage; 180: 68–77. [Varsehi & Firoozabadi, 2021] Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206. [Veena & Anitha, 2020] Veena, N. & Anitha, N.: , 2020; A review of non-invasive bci devices; Int. J. Biomed. Eng. Technol; 34 (3): 205–233. [Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns; Entropy; 22 (6): 703. [Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714. [Velásquez-Martínez et al., 2013] Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374. [Velasquez-Martinez et al., 2020c] Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14. [Verleysen & François, 2005] Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770. [Vidaurre et al., 2020] Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R. & Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278. [Vidaurre et al., 2021] Vidaurre, C.; Jorajuría, T.; Ramos-Murguialday, A.; Müller, K. R.; Gómez, M. & Nikulin, V. V.: , 2021; Improving motor imagery classification during induced motor perturbations; Journal of neural engineering; 18 (4): 0460b1. [Vidaurre et al., 2023] Vidaurre, C.; Gurunandan, K.; Idaji, M. J.; Nolte, G.; Gómez, M.; Villringer, A.; Müller, K.-R. & Nikulin, V. V.: , 2023; Novel multivariate methods to track frequency shifts of neural oscillations in eeg/meg recordings; NeuroImage; 276: 120178. [Vilela & Hochberg, 2020] Vilela, M. & Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99. [Volosyak et al., 2020] Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034. [Wackernagel, 2003] Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media. [Wackernagel, 2013] Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media. [Wang et al., 2020a] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score-CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25. [Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601. [Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601. [Wang et al., 2021a] Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13. [Wang et al., 2019a] Wang, K.; Zhai, D.-H. & Xia, Y.: , 2019a; Motor imagination eeg recognition algorithm based on dwt, csp and extreme learning machine; en 2019 Chinese control conference (CCC); IEEE; págs. 4590–4595. [Wang et al., 2020c] Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L. & Ming, D.: , 2020c; Enhance decoding of pre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033. [Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26. [Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26. [Wang et al., 2014] Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004. [Wang et al., 2021b] Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139. [Warrens, 2015] Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1. [Wei & Luo, 2010] Wei, G. & Luo, J.: , 2010; Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills; Brain research; 1341: 52–62. [Wei et al., 2023] Wei, M.; Yang, R.; Huang, M.; Ni, J.; Wang, Z. & Liu, X.: , 2023; Sub-band cascaded csp-based deep transfer learning for cross-subject lower limb motor imagery classification; IEEE Transactions on Cognitive and Developmental Systems. [Willett et al., 2021] Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High-performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254. [Williams & Seeger, 2001] Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Proceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688. [Wilroth et al., 2023] Wilroth, J.; Bernhardsson, B.; Heskebeck, F.; Skoglund, M. A.; Bergeling, C. & Alickovic, E.: , 2023; Improving eeg-based decoding of the locus of auditory attention through domain adaptation; Journal of Neural Engineering; 20 (6): 066022. [Wriessnegger et al., 2020] Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra-individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241. [Wu & Mooney, 2018] Wu, J. & Mooney, R. J.: , 2018; Faithful multimodal explanation for visual question answering; arXiv preprint arXiv:1809.02805. [Wu et al., 2020a] Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140. [Wu et al., 2019] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238. [Wu et al., 2020b] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973. [Xiao et al., 2018] Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419–1428. [Xie et al., 2019] Xie, J.; Liu, F.; Wang, K. & Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660. [Xie et al., 2018] Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708. [Xie & Oniga, 2020] Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3). [Xiong et al., 2020] Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232. [Xu et al., 2018] Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D.; Xu, G.; Li, H. & Zeng, H.: , 2018; Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification; Ieee Access; 7: 6084–6093. [Xu et al., 2020a] Xu, J.; Grosse-Wentrup, M. & Jayaram, V.: , 2020a; Tangent space spatial filters for interpretable and efficient riemannian classification; Journal of Neural Engineering; 17 (2): 026043. [Xu et al., 2020b] Xu, J.; Zheng, H.; Wang, J.; Li, D. & Fang, X.: , 2020b; Recognition of eeg signal motor imagery intention based on deep multi-view feature learning; Sensors; 20 (12): 3496. [Xu et al., 2020c] Xu, M.; Yao, J.; Zhang, Z.; Li, R.; Yang, B.; Li, C.; Li, J. & Zhang, J.: , 2020c; Learning eeg topographical representation for classification via convolutional neural network; Pattern Recognition; 105: 107390. [Yang et al., 2021a] Yang, J.; Ma, Z. & Shen, T.: , 2021a; Multi-time and multi-band csp motor imagery eeg feature classification algorithm; Applied Sciences; 11 (21): 10294. [Yang et al., 2021b] Yang, J.; Yu, H.; Shen, T.; Song, Y. & Chen, Z.: , 2021b; 4-class mi-eeg signal generation and recognition with cvae-gan; Applied Sciences; 11 (4): 1798. [Yang et al., 2021c] Yang, L.; Song, Y.; Ma, K.; Su, E. & Xie, L.: , 2021c; A novel motor imagery eeg decoding method based on feature separation; Journal of Neural Engineering; 18 (3): 036022. [Yao et al., 2020] Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020. [Yeh et al., 2021] Yeh, C.-H.; Jones, D. K.; Liang, X.; Descoteaux, M. & Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682. [Yeh et al., 2012] Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574. [Yen et al., 2023] Yen, C.; Lin, C.-L. & Chiang, M.-C.: , 2023; Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders; Life; 13 (7): 1472. [Yilmaz et al., 2018] Yilmaz, C. M.; Kose, C. & Hatipoglu, B.: , 2018; A quasi-probabilistic distribution model for eeg signal classification by using 2-d signal representation; Computer methods and programs in biomedicine; 162: 187–196. [Yu & Yu, 2021] Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering. [Yu et al., 2019] Yu, S.; Giraldo, L. G. S.; Jenssen, R. & Principe, J. C.: , 2019; Multivariate extension of matrix-based rényi’s α-order entropy functional; IEEE transactions on pattern analysis and machine intelligence; 42 (11): 2960–2966. [Yu et al., 2020] Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882. [Yuan et al., 2021] Yuan, K.; Chen, C.; Wang, X.; Chu, W. C.-w. & Tong, R. K.-y.: , 2021; Bci training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent eeg and fmri study; Brain sciences; 11 (1): 56. [Yuksel & Olmez, 2015] Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039. [Zapała et al., 2020] Zapała, D.; Zabielska-Mendyk, E.; Augustynowicz, P.; Cudo, A.; Jaśkiewicz, M.; Szewczyk, M.; Kopiś, N. & Francuz, P.: , 2020; The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery bci control; Scientific reports; 10 (1): 2087. [Zeiler & Fergus, 2014] Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 ; Springer; págs. 818–833. [Zhang et al., 2021a] Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342. [Zhang et al., 2020a] Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229. [Zhang et al., 2021b] Zhang, C.; Kim, Y.-K. & Eskandarian, A.: , 2021b; Eeg-inception: an accurate and robust end-to-end neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 18 (4): 046014. [Zhang et al., 2020b] Zhang, D.; Chen, K.; Jian, D. & Yao, L.: , 2020b; Motor imagery classification via temporal attention cues of graph embedded eeg signals; IEEE journal of biomedical and health informatics; 24 (9): 2570–2579. [Zhang et al., 2020c] Zhang, K.; Xu, G.; Han, Z.; Ma, K.; Zheng, X.; Chen, L.; Duan, N. & Zhang, S.: , 2020c; Data augmentation for motor imagery signal classification based on a hybrid neural network; Sensors; 20 (16): 4485. [Zhang et al., 2021c] Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021c; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10. [Zhang et al., 2017] Zhang, L.; Chen, Y.; Tan, X.; He, C. & Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337. [Zhang et al., 2018a] Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950. [Zhang et al., 2019] Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499. [Zhang et al., 2021d] Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y. & Li, Z.: , 2021d; Hybrid deep neural network using transfer learning for eeg motor imagery decoding; Biomedical Signal Processing and Control; 63: 102144. [Zhang et al., 2021e] Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021e; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827. [Zhang et al., 2018b] Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167. [Zhang et al., 2021f] Zhang, W.; Liang, Z. & Liu, Z.: , 2021f; Combination of variational mode decomposition for feature extraction and deep belief network for feature classification in motor imagery electroencephalogram recognition.; Sensors & Materials; 33. [Zhang et al., 2020d] Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020d; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900. [Zhang et al., 2021g] Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2021g; A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers; Journal of neural engineering; 18 (3): 031002. [Zhang et al., 2018c] Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018c; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332. [Zhao et al., 2021a] Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuromodulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021. [Zhao et al., 2019a] Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S. & Sun, L.: , 2019a; A multi-branch 3d convolutional neural network for eeg-based motor imagery classification; IEEE transactions on neural systems and rehabilitation engineering; 27 (10): 2164–2177. [Zhao et al., 2019b] Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019b; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581. [Zhao et al., 2020] Zhao, Z.; Zhao, P. & Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181. [Zhao et al., 2021b] Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y. & Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552. [Zhu et al., 2020] Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191. [Zhuang et al., 2020] Zhuang, M.; Wu, Q.; Wan, F. & Hu, Y.: , 2020; State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review; Journal of Neurorestoratology; 8 (1): 12–25. [Zoumpourlis & Patras, 2022] Zoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7. [Zuk et al., 2020] Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
134 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86921/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86921/2/1053839441%202024.pdf https://repositorio.unal.edu.co/bitstream/unal/86921/3/1053839441%202024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a eff3df24235d9b0ef056bc845526e335 98f1a05f379d5e7b091cae20b523f4fb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090200793481216 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Álvarez Meza, Andrés Marino7fd52c5e946073a9aac3ed6f493759d7Castellanos Domínguez, César Germánae15fbaaab595270cf72416c27b8b987Garcia Murillo, Daniel Guillermo4a0231eba63219bba3f72766fe9f50a0Grupo de Control y Procesamiento Digital de SeñalesDG García-Murillo2024-10-09T16:37:13Z2024-10-09T16:37:13Z2024https://repositorio.unal.edu.co/handle/unal/86921Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, ilustraciones, tablasConditions such as amyotrophic lateral sclerosis, brain strokes, and spinal injuries can cause significant disruptions in the brain's communication pathways, affecting voluntary muscle control and interactions with one's environment. Brain-computer interfaces (BCIs) are computer-based systems utilized to address these challenges; they interpret brain signals and have seen extensive applications in medical technology, rehabilitation, and entertainment industries. Particularly in BCI studies, motor imagery (MI), a widely researched paradigm, holds the potential for reviving motor functionality. Integrating MI-BCIs with skilled therapists has yielded positive outcomes in sensory and motor rehabilitation processes, proving to be beneficial for individuals with neurological disorders. Additionally, MI-BCI systems are not limited to clinical applications; they also find relevance in non-clinical settings like virtual reality, gaming, and skill acquisition. Brain signals in MI-BCI systems are often analyzed using electroencephalography (EEG), which is advantageous due to its high temporal resolution, affordability, and portability. These features make it a viable method for capturing short-evolving events and temporal neuronal activity patterns. Nonetheless, decoding EEG signals is complex due to their high sampling rate and the high number of electrodes involved, which results in an overwhelming amount of data points. Several promising methodologies, leveraging the concept of event-related synchronization (ERS) and event-related desynchronization (ERD), have been developed to ease the extraction of relevant features for decoding EEG into sensorimotor rhythm (SMR) patterns. While noteworthy, single-channel features tend to oversimplify overall phenomena since they need to consider the interactions of different brain regions. Considering the complex activations and communications within multiple brain areas during the execution or imagination of simple motor tasks, multi-channel feature extraction approaches are more accurate. For instance, the Common Spatial Patterns (CSP) method has demonstrated its significance in MI-BCI, promoting the extraction of highly discriminative features by maximizing the separability of SMR features. Brain connectivity (BC), a key determinant in this approach, describes interactions within and between brain regions and correlates to synchronization mechanisms within oscillatory modulations. BC can be divided into structural/anatomical connectivity (SC), effective connectivity (EC), and functional connectivity (FC), each with distinct characteristics. SC focuses on physical connections and is context-independent, while EC and FC, suitable for EEG-based MI-BCI systems, decode fast-evolving cognitive states where FC is particularly suited to MI-BCI applications due to its simplicity, low computational demands, and lack of rigid prior assumptions. This thesis addresses three prevailing challenges experienced with FC EEG-based MI-BCI systems. Firstly, performance deficits in MI classification tasks are often a result of high noise levels present in EEG signals. Secondly, relying on expert knowledge for feature extraction often presents a barrier. Lastly, there is a necessity for increased transparency within these models. The study delivers key contributions toward a single-trial FC in MI-BCI systems in response to these challenges. This improvement is achieved by utilizing a novel approach grounded on the kernel cross-spectral approximation afforded by extending Bochner's theorem. This new single-trial kernel cross-spectral (KCS) FC estimator tackles noise issues, spurious connections, and inter-subject variability, significantly improving accuracy. Moreover, an end-to-end approach, KCS-FCnet, has been conceptualized to enhance automatic EEG representation for MI-BCI. This approach is pivotal in reducing artifacts and accurately identifying relevant connections. In addition, it assists in the extraction of critical spectral, temporal, and spatial EEG representations. Acknowledging the necessity for model transparency, this study proposed a strategy for improving model transparency and interpretability, named interpretable regularized KCS-FCnet (IRKCS-FCnet). Capitalizing on the potential of regularization, the model's interpretability is strengthened by minimizing nonrelevant connections. This is further made possible by maximizing the cross-information potential using Renyi's entropy measured at $\alpha=2$, alongside a cross-entropy function. To supplement these enhancements, Layer-CAM and last layer weight strategies have been employed to provide both post-hoc and intrinsic interpretability, respectively. The average drop concept further supports these strategies, enhancing the system's transparency and understanding. The results show that the proposed KCS-FC achieves higher performance accuracy than classical FC estimators and has competitive accuracy against more complex FC-based strategies, reaching the second place in DBI\footnote{BCI2a~\url{http://www.bbci.de/competition/iv/index.html}} with an accuracy of $81.92\%$ and first place with $74.12\%$ in DBIII\footnote{Giga Motor Imager~\url{http://gigadb.org/dataset/100295}}, both binary motor imagery classification tasks. Moreover, the KCS-FCnet shows $76.4\%$ on DBIII while keeping the architecture with $4245$ trainable parameters, making it the highest against the compared DL models. Lastly, the IRKCS-FCnet shows better performance, increasing $2$ percentage points for low-performing individuals, and showed better localization and interpretations, demonstrating that when removing $5\%$ of the most important features, the average accuracy drop score goes to $22.46$, $5$ percentage points higher than the version without the regularization. Furthermore, the contralateral pattern can be seen in the topoplot interpretation for both the right and left hand. This study opens the path for using more FC estimators within DL frameworks, and future work can extend and improve some of the existing issues, for instance, including multivariate measuring strategies and not relying only on pairwise measures, as well as implementing a time-lag method to reduce the impact of volume conduction problems. Finally, measuring FC matrices with more appropriate distances that account for the inner links between different channels, like in the Riemann geometry, could help to better decode MI signals hindered in the intricate EEG recordings (Texto tomado de la fuente)Condiciones como la esclerosis lateral amiotrófica, los derrames cerebrales y las lesiones de la médula espinal pueden causar interrupciones significativas en las vías de comunicación del cerebro, afectando el control muscular voluntario y la interacción con el entorno. Las interfaces cerebro-computadora (BCIs) son sistemas basados en computadoras que se utilizan para abordar estos desafíos; interpretan las señales cerebrales y han sido usadas en aplicaciones médicas, de rehabilitación y de entretenimiento. Particularmente en el campo de BCI, la Imaginación Motora (MI), un paradigma ampliamente investigado, posee un enorme potencial para la recuperación de la funcionalidad motora. La integración de MI-BCIs con terapeutas especializados ha dado resultados positivos en los procesos de rehabilitación sensorial y motora, demostrando ser beneficioso para las personas con trastornos neurológicos. Sin embargo, los sistemas MI-BCI no se limitan a aplicaciones clínicas; también son de gran relevancia en entornos no clínicos como la realidad virtual, los juegos y la adquisición de habilidades motoras. Usualmente, las señales cerebrales en los sistemas MI-BCI \changes{son} recolectada usando electroencefalografía (EEG) debido a su alta resolución temporal, asequibilidad y portabilidad. Estas características lo convierten en un método viable para capturar eventos de corta duración y patrones de actividad neuronal temporal. No obstante, la decodificación de las señales de EEG es compleja debido a su alta tasa de muestreo y al elevado número de electrodos involucrados, lo que resulta en una cantidad abrumadora de datos. Varias metodologías prometedoras, aprovechando el concepto de sincronización relacionada de eventos (ERS) y desincronización relacionada de eventos (ERD), se han desarrollado para facilitar la extracción de características pertinentes y así decodificar EEG en patrones del area sensoriomotora (SMR). Aunque son importantes, las características de un solo canal tienden a simplificar demasiado los fenómenos generales ya que no consideran las interacciones de las distintas regiones cerebrales. Teniendo en cuenta las activaciones y comunicaciones complejas dentro de varias áreas cerebrales durante la ejecución o la imaginación de tareas motoras sencillas, los enfoques de extracción de características de múltiples canales son más precisos. Por ejemplo, el método de Patrones Espaciales Comunes (CSP) ha demostrado su importancia en MI-BCI, promoviendo la extracción de características altamente discriminativas al maximizar la separabilidad de las características SMR. La conectividad cerebral (BC), un factor clave en estos enfoques, describe las interacciones dentro y entre las regiones cerebrales y se correlaciona con los mecanismos de sincronización dentro de las modulaciones oscilatorias. BC se puede dividir en conectividad estructural/anatómica (SC), conectividad efectiva (EC) y conectividad funcional (FC), cada una con características distintas. SC se centra en conexiones físicas y es independiente del contexto, mientras que EC y FC, adecuados para sistemas MI-BCI basados en EEG, decodifican estados cognitivos de evolución rápida donde FC es particularmente adecuado para aplicaciones de MI-BCI debido a su simplicidad, baja demanda computacional y falta de supuestos previos rígidos. Esta tesis aborda tres desafíos predominantes en los sistemas MI-BCI basados en FC EEG. En primer lugar, los déficits de rendimiento en las tareas de clasificación de MI son a menudo producto de los altos niveles de ruido presentes en las señales de EEG. En segundo lugar, depender del conocimiento experto para la extracción de características a menudo presenta una barrera. Por último, existe una necesidad de mayor transparencia de dichos modelos. El estudio aporta contribuciones hacia \changes{las FC single-trial} en los sistemas MI-BCI en respuesta a estos desafíos. Esta mejora se logra utilizando un enfoque novedoso basado en la aproximación espectral de kernel cruzado proporcionada por la extensión del teorema de Bochner. Este nuevo estimador de FC de kernel cruzado espectral (KCS) aborda problemas de ruido, conexiones espurias y variabilidad inter-sujeto, mejorando significativamente la precisión. Además, se ha conceptualizado un enfoque end-to-end, KCS-FCnet, para mejorar la representación automática del EEG para MI-BCI. Este enfoque es fundamental para reducir los artefactos e identificar con precisión las conexiones relevantes. Además, ayuda en la extracción de características espectrales, temporales y espaciales del EEG. Reconociendo la necesidad de transparencia del modelo, este estudio propuso una estrategia para mejorar la transparencia e interpretabilidad del modelo, denominada KCS-FCnet regularizada e interpretable (IRKCS-FCnet). Capitalizando el potencial de la regularización, la interpretabilidad del modelo se fortalece minimizando las conexiones no relevantes. Esto se realiza maximizando el potencial de información cruzada utilizando la entropía de Renyi medida en $\alpha=2$, junto con una función de entropía cruzada. Para complementar estas mejoras, se han empleado las estrategias de pesos en la última capa y Layer-CAM para proporcionar interpretabilidad intrínseca y post-hoc, respectivamente. El concepto de caída promedio respalda aún más esta estrategia, mejorando la transparencia y la comprensión del sistema. Los resultados muestran que el KCS-FC propuesto logra un incremento en el rendimiento que los estimadores clásicos de FC y tiene una precisión competitiva contra estrategias más complejas basadas en FC, alcanzando el segundo lugar en DBI\footnote{BCI2a~\url{http://www.bbci.de/competition/iv/index.html}} con una precisión del $81.92\%$ y el primer lugar con $74.12\%$ en DBIII\footnote{Giga Motor Imagery~\url{http://gigadb.org/dataset/100295}}, ambas tareas de clasificación binaria de MI. Además, el KCS-FCnet muestra un rendimiento $76.4\%$ en DBIII manteniendo la arquitectura con $4245$ parámetros entrenables, lo que lo convierte en el mejor en comparación con los modelos DL comparados. Por último, el IRKCS-FCnet muestra un mejor rendimiento, aumentando $2$ puntos porcentuales para individuos con bajo rendimiento, y muestra una mejor localización e interpretaciones, demostrando que al eliminar el $5\%$ de las características más importantes, la puntuación promedio de caída de precisión cae $22.46$, $5$ puntos porcentuales más alta que la versión sin regularización. Además, se puede ver el patrón contralateral en la interpretación de topoplot para ambas manos, la derecha y la izquierda. Este estudio abre el camino para usar más estimadores de FC dentro de los marcos de DL, y los trabajos futuros pueden extender y mejorar algunos de los problemas existentes, por ejemplo, incluyendo estrategias de medición multivariante y no dependiendo solo de medidas por pares, así como implementar un método de tiempo de retraso para reducir el impacto de los problemas de conducción de volumen. Finalmente, medir las matrices de FC con distancias más apropiadas que tengan en cuenta los enlaces internos entre diferentes canales, como en la geometría de Riemann, podría ayudar a decodificar mejor las señales de MI escondidas en las intrincadas grabaciones de EEG.“Alianza científica con enfoque comunitario para mitigar brechas de atención y manejo de trastornos mentales y epilepsia en Colombia (ACEMATE).” (Code 111091991908, Hermes Code 56118 ) funded by MINCIENCIAS, and “ Sistema de visión artificial para el monitoreo y seguimiento de efectos analgésicos y anestésicos administrados vía neuroaxial epidural en población obstétrica durante labores de parto para el fortalecimiento de servicios de salud materna del Hospital Universitario de Caldas - SES HUC.” (Hermes Code 57661 ), funded by Universidad Nacional de Colombia.DoctoradoDoctor en IngenieríaDeep learningEléctrica, Electrónica, Automatización Y Telecomunicaciones.Sede Manizales134 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónFunctional connectivityDeep learningKernel methodsRenyi’s entropyBCI inefficiencycross-spectral densityBochner’s theoremConectividad funcionalAprendizaje profundoMétodos de kernelEntropía de RenyiIneficiencia de BCIDensidad espectral cruzadaTeorema de BochnerInterfaces cerebro-computadora (BCI)Conectividad funcionalRegularized Gaussian functional connectivity network with Post-Hoc interpretation for improved EEG-based motor imagery-BCI classificationRed de conectividad funcional Gaussiana regularizada con interpretación Post-Hoc para mejorar la clasificación de imaginación motora en BCI basado en EEGTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Text[Abdulkarim & Al-Faiz, 2021] Abdulkarim, H. & Al-Faiz, M. Z.: , 2021; Online multiclass EEG feature extraction and recognition using modified convolutional neural network method; International Journal of Electrical and Computer Engineering (IJECE); 11 (5): 4016–4026.[Abhang et al., 2016] Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.: , 2016; Chapter 3 - technical aspects of brain rhythms and speech parameters; en Introduction to EEG- and Speech-Based Emotion Recognition (Editado por Abhang, P. A.; Gawali, B. W. & Mehrotra, S. C.); Academic Press; ISBN 978-0-12-804490-2; págs. 51–79; doi:https://doi.org/10.1016/ B978-0-12-804490-2.00003-8; URL https://www.sciencedirect.com/science/article/pii/B9780128044902000038.[Abiri et al., 2019] Abiri, R.; Borhani, S.; Sellers, E. W.; Jiang, Y. & Zhao, X.: , 2019; A comprehensive review of EEG-based brain–computer interface paradigms; Journal of Neural Engineering; 16 (1): 011001.[Ahani et al., 2014] Ahani, A.; Wahbeh, H.; Nezamfar, H.; Miller, M.; Erdogmus, D. & Oken, B.: , 2014; Quantitative change of EEG and respiration signals during mindfulness meditation; Journal of neuroengineering and rehabilitation; 11 (1): 1–11.[Ahirwal et al., 2014] Ahirwal, M. K.; Kumar, A. & Singh, G. K.: , 2014; Adaptive filtering of EEG/ERP through bounded range artificial bee colony (BR-ABC) algorithm; Digital Signal Processing; 25: 164–172.[Ahn et al., 2014] Ahn, M.; Lee, M.; Choi, J. & Jun, S. C.: , 2014; A review of brain-computer interface games and an opinion survey from researchers, developers and users; Sensors; 14 (8): 14601–14633.[Ai et al., 2019] Ai, Q.; Chen, A.; Chen, K.; Liu, Q.; Zhou, T.; Xin, S. & Ji, Z.: , 2019; Feature extraction of four-class motor imagery EEG signals based on functional brain network; Journal of Neural Engineering; 16 (2): 026032.[Akella et al., 2021] Akella, A.; Singh, A. K.; Leong, D.; Lal, S.; Newton, P.; Clifton-Bligh, R.; Mclachlan, C. S.; Gustin, S. M.; Maharaj, S.; Lees, T. et al.: , 2021; Classifying multi-level stress responses from brain cortical EEG in nurses and non-health professionals using machine learning auto encoder; IEEE Journal of Translational Engineering in Health and Medicine; 9: 1–9.[Akuthota et al., 2023] Akuthota, S.; Rajkumar, K. & Ravichander, J.: , 2023; Eeg based motor imagery bci using four class iterative filtering & four class filter bank common spatial pattern; en 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS); IEEE; págs. 429–434.[Al-Fahad et al., 2020] Al-Fahad, R.; Yeasin, M. & Bidelman, G. M.: , 2020; Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions; Journal of Neural Engineering; 17 (1): 016045.[Al-Nafjan et al., 2017] Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y. & Al-Wabil, A.: , 2017; Review and classification of emotion recognition based on EEG brain-computer interface system research: a systematic review; Applied Sciences; 7 (12): 1239.[Al Nazi et al., 2021] Al Nazi, Z.; Hossain, A. A. & Islam, M. M.: , 2021; Motor imagery EEG classification using random subspace ensemble network with variable length features; International Journal Bioautomation; 25 (1): 13.[Al-Saegh et al., 2021] Al-Saegh, A.; Dawwd, S. A. & Abdul-Jabbar, J. M.: , 2021; Deep learning for motor imagery EEG-based classification: A review; Biomedical Signal Processing and Control; 63: 102172.[Al-Shargie et al., 2020] Al-Shargie, F. M.; Hassanin, O.; Tariq, U. & Al-Nashash, H.: , 2020; EEG-based semantic vigilance level classification using directed connectivity patterns and graph theory analysis; IEEE Access; 8: 115941–115956.[Alazrai et al., 2019] Alazrai, R.; Abuhijleh, M.; Alwanni, H. & Daoud, M. I.: , 2019; A deep learning framework for decoding motor imagery tasks of the same hand using eeg signals; IEEE Access; 7: 109612–109627.[Aldayel et al., 2020] Aldayel, M.; Ykhlef, M. & Al-Nafjan, A.: , 2020; Deep learning for EEG-based preference classification in neuromarketing; Applied Sciences; 10 (4): 1525.[Ali et al., 2018] Ali, H. T.; Kammoun, A. & Couillet, R.: , 2018; Random matrix-improved kernels for large dimensional spectral clustering; en 2018 IEEE Statistical Signal Processing Workshop (SSP); IEEE; págs. 453–457.[Alizadeh et al., 2023] Alizadeh, N.; Afrakhteh, S. & Mosavi, M.: , 2023; Multi-task eeg signal classification using correlation-based imf selection and multi-class csp; IEEE Access.[Alsharif et al., 2020] Alsharif, A.; Salleh, N.; Baharun, R. & Safaei, M.: , 2020; Neuromarketing approach: An overview and future research directions; Journal of Theoretical and Applied Information Technology; 98 (7): 991–1001.[Altaheri et al., 2023] Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S. U.; Altuwaijri, G. A.; Abdul, W.; Bencherif, M. A. & Faisal, M.: , 2023; Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: A review; Neural Computing and Applications; 35 (20): 14681–14722.[Álvarez-Meza et al., 2014a] Álvarez-Meza, A.; Cárdenas-Peña, D. & Castellanos-Dominguez, G.: , 2014a; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.[Alvarez-Meza et al., 2017] Alvarez-Meza, A.; Orozco-Gutierrez, A. & Castellanos-Dominguez, G.: , 2017; Kernel-based relevance analysis with enhanced interpretability for detection of brain activity patterns; Frontiers in neuroscience; 11: 550.[Álvarez-Meza et al., 2014b] Álvarez-Meza, A. M.; Cárdenas-Pena, D. & Castellanos-Dominguez, G.: , 2014b; Unsupervised kernel function building using maximization of information potential variability; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 335–342.[Alwasiti et al., 2020] Alwasiti, H.; Yusoff, M. Z. & Raza, K.: , 2020; Motor imagery classification for brain computer interface using deep metric learning; IEEE Access; 8: 109949–109963.[Amin et al., 2019] Amin, S. U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M. A. & Hossain, M. S.: , 2019; Deep learning for eeg motor imagery classification based on multi-layer cnns feature fusion; Future Generation computer systems; 101: 542–554.[Amir et al., 2020] Amir, J.; Amir, R.; Ednaldo Birgante, P. & Md Kafiul, I.: , 2020; Classification of emotions induced by horror and relaxing movies using single-channel EEG recordings.[Ang et al., 2008] Ang, K. K.; Chin, Z. Y.; Zhang, H. & Guan, C.: , 2008; Filter bank common spatial pattern (fbcsp) in brain- computer interface; en 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence); IEEE; págs. 2390–2397.[Anowar et al., 2021] Anowar, F.; Sadaoui, S. & Selim, B.: , 2021; Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE); Computer Science Review ; 40: 100378.[Antonakakis et al., 2020] Antonakakis, M.; Schrader, S.; Aydin, Ü.; Khan, A.; Gross, J.; Zervakis, M.; Rampp, S. & Wolters, C. H.: , 2020; Inter-subject variability of skull conductivity and thickness in calibrated realistic head models; Neuroimage; 223: 117353.[Anupallavi & MohanBabu, 2020] Anupallavi, S. & MohanBabu, G.: , 2020; A novel approach based on BSPCI for quantifying functional connectivity pattern of the brain’s region for the classification of epileptic seizure; Journal of Ambient Intelligence and Humanized Computing: 1–11.[Apicella et al., 2021] Apicella, A.; Arpaia, P.; Frosolone, M. & Moccaldi, N.: , 2021; High-wearable EEG-based distraction detection in motor rehabilitation; Scientific Reports; 11 (1): 1–9.[Apicella et al., 2022] Apicella, A.; Isgrò, F.; Pollastro, A. & Prevete, R.: , 2022; Toward the application of xai methods in eeg-based systems; arXiv preprint arXiv:2210.06554.[Arrieta et al., 2020] Arrieta, A. B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R. et al.: , 2020; Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai; Information fusion; 58: 82–115.[Arvaneh et al., 2011] Arvaneh, M.; Guan, C.; Ang, K. K. & Quek, C.: , 2011; Optimizing the channel selection and classification accuracy in EEG-based BCI; IEEE Transactions on Biomedical Engineering; 58 (6): 1865–1873.[Bakhshali et al., 2020] Bakhshali, M.; Khademi, M.; Ebrahimi, A. & Moghimi, S.: , 2020; Eeg signal classification of imagined speech based on riemannian distance of correntropy spectral density; Biomedical Signal Processing and Control; 59: 101899.[Bakhshayesh et al., 2019] Bakhshayesh, H.; Fitzgibbon, S. P.; Janani, A. S.; Grummett, T. S. & Pope, K. J.: , 2019; Detecting synchrony in eeg: A comparative study of functional connectivity measures; Computers in biology and medicine; 105: 1–15[Bang & Lee, 2022] Bang, J.-S. & Lee, S.-W.: , 2022; Interpretable convolutional neural networks for subject-independent motor imagery classification; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–5.[Baniqued et al., 2021] Baniqued, P. D. E.; Stanyer, E. C.; Awais, M.; Alazmani, A.; Jackson, A. E.; Mon-Williams, M. A.; Mushtaq, F. & Holt, R. J.: , 2021; Brain–computer interface robotics for hand rehabilitation after stroke: a systematic review; Journal of NeuroEngineering and Rehabilitation; 18 (1): 1–25.[Barachant et al., 2013] Barachant, A.; Bonnet, S.; Congedo, M. & Jutten, C.: , 2013; Classification of covariance matrices using a riemannian-based kernel for BCI applications; Neurocomputing; 112: 172–178.[Barios et al., 2019] Barios, J. A.; Ezquerro, S.; Bertomeu-Motos, A.; Nann, M.; Badesa, F. J.; Fernandez, E.; Soekadar, S. R. & Garcia-Aracil, N.: , 2019; Synchronization of slow cortical rhythms during motor imagery-based brain–machine interface control; International journal of neural systems; 29 (05): 1850045.[Bastos & Schoffelen, 2016] Bastos, A. M. & Schoffelen, J.-M.: , 2016; A tutorial review of functional connectivity analysis methods and their interpretational pitfalls; Frontiers in systems neuroscience; 9: 175.[Batres-Mendoza et al., 2016] Batres-Mendoza, P.; Montoro-Sanjose, C. R.; Guerra-Hernandez, E. I.; Almanza-Ojeda, D. L.; Rostro-Gonzalez, H.; Romero-Troncoso, R. J. & Ibarra-Manzano, M. A.: , 2016; Quaternion-based signal analysis for motor imagery classification from electroencephalographic signals; Sensors; 16 (3): 336.[Battaglia & Brovelli, 2020] Battaglia, D. & Brovelli, A.: , 2020; Functional connectivity and neuronal dynamics: insights from computational methods; The Cognitive Neurosciences.[Belwafi et al., 2020] Belwafi, K.; Gannouni, S. & Aboalsamh, H.: , 2020; An effective zeros-time windowing strategy to detect sensorimotor rhythms related to motor imagery eeg signals; IEEE Access; 8: 152669–152679.[Benzy et al., 2020] Benzy, V.; Vinod, A.; Subasree, R.; Alladi, S. & Raghavendra, K.: , 2020; Motor imagery hand movement direction decoding using brain computer interface to aid stroke recovery and rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (12): 3051–3062.[Betzel et al., 2019] Betzel, R. F.; Bertolero, M. A.; Gordon, E. M.; Gratton, C.; Dosenbach, N. U. & Bassett, D. S.: , 2019; The community structure of functional brain networks exhibits scale-specific patterns of inter-and intra-subject variability; Neuroimage; 202: 115990.[Billinger et al., 2013] Billinger, M.; Brunner, C. & Müller-Putz, G. R.: , 2013; Single-trial connectivity estimation for classification of motor imagery data; Journal of neural engineering; 10 (4): 046006.[Bishop, 2006] Bishop, C. M.: , 2006; Pattern recognition and machine learning; springer.[Bochner, 2020] Bochner, S.: , 2020; Harmonic analysis and the theory of probability; University of California press.[Bonci et al., 2021] Bonci, A.; Fiori, S.; Higashi, H.; Tanaka, T. & Verdini, F.: , 2021; An introductory tutorial on brain–computer interfaces and their applications; Electronics; 10 (5): 560.[Borra et al., 2019] Borra, D.; Fantozzi, S. & Magosso, E.: , 2019; Eeg motor execution decoding via interpretable sinc-convolutional neural networks; en Mediterranean Conference on Medical and Biological Engineering and Computing; Springer; págs. 1113– 1122.[Borra et al., 2020] Borra, D.; Fantozzi, S. & Magosso, E.: , 2020; Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination; Neural Networks; 129: 55–74.[Braga-Neto & Dougherty, 2004] Braga-Neto, U. M. & Dougherty, E. R.: , 2004; Is cross-validation valid for small-sample microarray classification?; Bioinformatics; 20 (3): 374–380.[Bramhall et al., 2020] Bramhall, S.; Horn, H.; Tieu, M. & Lohia, N.: , 2020; Qlime-a quadratic local interpretable model-agnostic explanation approach; SMU Data Science Review ; 3 (1): 4.[Brockmeier et al., 2014] Brockmeier, A.; Choi, J.; Kriminger, E.; Francis, J. & Principe, J.: , 2014; Neural decoding with kernel-based metric learning; Neural computation; 26 (6): 1080–1107.[Bromiley et al., 2004] Bromiley, P.; Thacker, N. & Bouhova-Thacker, E.: , 2004; Shannon entropy, renyi entropy, and information; statistics and inf; Series (2004-004).[Brunner et al., 2008] Brunner, C.; Leeb, R.; Müller-Putz, G.; Schlögl, A. & Pfurtscheller, G.: , 2008; Bci competition 2008–graz data set a; Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology; 16: 1–6.[Brunner et al., 2015] Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J. d. R.; Miralles, F.; Nijholt, A.; Opisso, E. et al.: , 2015; Bnci horizon 2020: towards a roadmap for the bci community; Brain- computer interfaces; 2 (1): 1–10.[Brusini et al., 2021] Brusini, L.; Stival, F.; Setti, F.; Menegatti, E.; Menegaz, G. & Storti, S. F.: , 2021; A systematic review on motor-imagery brain-connectivity-based computer interfaces; IEEE Transactions on Human-Machine Systems; 51 (6): 725–733.[Buchanan et al., 2021] Buchanan, D. M.; Ros, T. & Nahas, R.: , 2021; Elevated and slowed EEG oscillations in patients with post-concussive syndrome and chronic pain following a motor vehicle collision; Brain Sciences; 11 (5): 537.[Bullmore & Sporns, 2009] Bullmore, E. & Sporns, O.: , 2009; Complex brain networks: graph theoretical analysis of structural and functional systems; Nature reviews neuroscience; 10 (3): 186–198.[Cai et al., 2021] Cai, Q.; Gong, W.; Deng, Y. & Wang, H.: , 2021; Single-trial EEG classification via common spatial patterns with mixed lp-and lq-norms; Mathematical Problems in Engineering; 2021.[Caicedo-Acosta et al., 2021] Caicedo-Acosta, J.; Castaño, G. A.; Acosta-Medina, C.; Alvarez-Meza, A. & Castellanos- Dominguez, G.: , 2021; Deep neural regression prediction of motor imagery skills using EEG functional connectivity indicators; Sensors; 21 (6): 1932.[Cao et al., 2022a] Cao, J.; Zhao, Y.; Shan, X.; Wei, H.-l.; Guo, Y.; Chen, L.; Erkoyuncu, J. A. & Sarrigiannis, P. G.: , 2022a; Brain functional and effective connectivity based on electroencephalography recordings: A review; Human brain mapping; 43 (2): 860–879.[Cao et al., 2022b] Cao, L.; Wang, W.; Huang, C.; Xu, Z.; Wang, H.; Jia, J.; Chen, S.; Dong, Y.; Fan, C. & de Albuquerque, V. H. C.: , 2022b; An effective fusing approach by combining connectivity network pattern and temporal-spatial analysis for eeg-based bci rehabilitation; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 2264–2274.[Cárdenas-Peña et al., 2017] Cárdenas-Peña, D.; Collazos-Huertas, D. & Castellanos-Dominguez, G.: , 2017; Enhanced data representation by kernel metric learning for dementia diagnosis; Frontiers in neuroscience; 11: 413.[Carrara & Papadopoulo, 2023] Carrara, I. & Papadopoulo, T.: , 2023; Classification of bci-eeg based on augmented covariance matrix; arXiv preprint arXiv:2302.04508.[Casimo et al., 2017] Casimo, K.; Weaver, K. E.; Wander, J. & Ojemann, J. G.: , 2017; Bci use and its relation to adaptation in cortical networks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 25 (10): 1697–1704.[Cattai et al., 2021] Cattai, T.; Colonnese, S.; Corsi, M.-C.; Bassett, D. S.; Scarano, G. & Fallani, F. D. V.: , 2021; Phase/amplitude synchronization of brain signals during motor imagery bci tasks; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1168–1177.[Cattan et al., 2018] Cattan, G.; Mendoza, C.; Andreev, A. & Congedo, M.: , 2018; Recommendations for integrating a p300-based brain computer interface in virtual reality environments for gaming; Computers; 7 (2): 34.[Chaddad et al., 2023] Chaddad, A.; Peng, J.; Xu, J. & Bouridane, A.: , 2023; Survey of explainable ai techniques in healthcare; Sensors; 23 (2): 634.[Chakraborty et al., 2017] Chakraborty, S.; Tomsett, R.; Raghavendra, R.; Harborne, D.; Alzantot, M.; Cerutti, F.; Srivastava, M.; Preece, A.; Julier, S.; Rao, R. M. et al.: , 2017; Interpretability of deep learning models: A sur- vey of results; en 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, Internet of people and smart city innovation (smartworld/SCAL- COM/UIC/ATC/CBDcom/IOP/SCI); IEEE; págs. 1–6.[Chamola et al., 2020] Chamola, V.; Vineet, A.; Nayyar, A. & Hossain, E.: , 2020; Brain-computer interface-based humanoid control: A review; Sensors; 20 (13): 3620.[Chao & Liu, 2020] Chao, H. & Liu, Y.: , 2020; Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework; IEEE Access; 8: 33002–33012.[Chattopadhay et al., 2018] Chattopadhay, A.; Sarkar, A.; Howlader, P. & Balasubramanian, V. N.: , 2018; Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks; en 2018 IEEE winter conference on applications of computer vision (WACV); IEEE; págs. 839–847.[Chen et al., 2020] Chen, Y.; Hang, W.; Liang, S.; Liu, X.; Li, G.; Wang, Q.; Qin, J. & Choi, K.-S.: , 2020; A novel transfer support matrix machine for motor imagery-based brain computer interface; Frontiers in Neuroscience; 14.[Chen et al., 2021] Chen, Y. Y.; Lambert, K. J.; Madan, C. R. & Singhal, A.: , 2021; Mu oscillations and motor imagery performance: A reflection of intra-individual success, not inter-individual ability; Human Movement Science; 78: 102819.[Chen et al., 2019] Chen, Z.; Ji, J. & Liang, Y.: , 2019; Convolutional neural network with an element-wise filter to classify dynamic functional connectivity; en 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 643–646.[Chevallier et al., 2024] Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S. & Moreau, T.: , 2024; The largest eeg-based bci reproducibility study for open science: the moabb benchmark; arXiv preprint arXiv:2404.15319.[Chiarion et al., 2023] Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L. & Mesin, L.: , 2023; Connectivity analysis in eeg data: A tutorial review of the state of the art and emerging trends; Bioengineering; 10 (3): 372.[Cho et al., 2017] Cho, H.; Ahn, M.; Ahn, S.; Kwon, M. & Jun, S.: , 2017; EEG datasets for motor imagery brain–computer interface; GigaScience; 6 (7): gix034.[Choi & Kim, 2021] Choi, I. & Kim, W. C.: , 2021; Detecting and analyzing politically-themed stocks using text mining techniques and transfer entropy—focus on the republic of korea’s case; Entropy; 23 (6): 734.[Clark et al., 2020] Clark, S. V.; King, T. Z. & Turner, J. A.: , 2020; Cerebellar contributions to proactive and reactive control in the stop signal task: A systematic review and meta-analysis of functional magnetic resonance imaging studies; Neuropsychology review : 1–24.[Coelho et al., 2012] Coelho, G. P.; Barbante, C. C.; Boccato, L.; Attux, R. R.; Oliveira, J. R. & Von Zuben, F. J.: , 2012; Automatic feature selection for BCI: an analysis using the davies-bouldin index and extreme learning machines; en The 2012 International Joint Conference on Neural Networks (IJCNN); IEEE; págs. 1–8.[Cohen, 1998] Cohen, L.: , 1998; The generalization of the wiener-khinchin theorem; en Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), tomo 3; IEEE; págs. 1577–1580.[Collazos-Huertas et al., 2020] Collazos-Huertas, D.; Álvarez-Meza, A.; Acosta-Medina, C.; Castaño-Duque, G. & Castellanos-Dominguez, G.: , 2020; CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification; Brain Informatics; 7 (1): 1–13.[Collazos-Huertas et al., 2021] Collazos-Huertas, D. F.; Velasquez-Martinez, L. F.; Perez-Nastar, H. D.; Alvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2021; Deep and wide transfer learning with kernel matching for pooling data from electroencephalography and psychological questionnaires; Sensors; 21 (15): 5105.[Collazos-Huertas et al., 2023] Collazos-Huertas, D. F.; Álvarez-Meza, A. M.; Cárdenas-Peña, D. A.; Castaño-Duque, G. A. & Castellanos-Domínguez, C. G.: , 2023; Posthoc interpretability of neural responses by grouping subject motor imagery skills using cnn-based connectivity; Sensors; 23 (5): 2750.[Congedo et al., 2017a] Congedo, M.; Barachant, A. & Bhatia, R.: , 2017a; Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review; Brain-Computer Interfaces; 4 (3): 155–174.[Congedo et al., 2017b] Congedo, M.; Barachant, A. & Koopaei, E. K.: , 2017b; Fixed point algorithms for estimating power means of positive definite matrices; IEEE Transactions on Signal Processing; 65 (9): 2211–2220.[Congedo et al., 2017c] Congedo, M.; Rodrigues, P. L. C.; Bouchard, F.; Barachant, A. & Jutten, C.: , 2017c; A closed-form unsupervised geometry-aware dimensionality reduction method in the riemannian manifold of SPD matrices; en 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE; págs. 3198–3201.[Craik et al., 2019] Craik, A.; He, Y. & Contreras-Vidal, J. L.: , 2019; Deep learning for electroencephalogram (EEG) classification tasks: a review; Journal of Neural Engineering; 16 (3): 031001.[Dai et al., 2020] Dai, H.; Su, S.; Zhang, Y. & Jian, W.: , 2020; Effect of spatial filtering and channel selection on motor imagery BCI; en Proceedings of the 2020 Conference on Artificial Intelligence and Healthcare; págs. 270–274.[Dai et al., 2019] Dai, M.; Zheng, D.; Na, R.; Wang, S. & Zhang, S.: , 2019; Eeg classification of motor imagery using a novel deep learning framework; Sensors; 19 (3): 551.[Daly et al., 2012] Daly, I.; Nasuto, S. J. & Warwick, K.: , 2012; Brain computer interface control via functional connectivity dynamics; Pattern recognition; 45 (6): 2123–2136.[Darvish Ghanbar et al., 2021] Darvish Ghanbar, K.; Yousefi Rezaii, T.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; Plos one; 16 (3): e0248511.[De La Pava Panche et al., 2019] De La Pava Panche, I.; Alvarez-Meza, A. & Orozco-Gutierrez, A.: , 2019; A data-driven measure of effective connectivity based on renyi’s α-entropy; Frontiers in neuroscience; 13: 1277.[Demir et al., 2022] Demir, A.; Koike-Akino, T.; Wang, Y. & Erdoğmuş, D.: , 2022; Eeg-gat: graph attention networks for classification of electroencephalogram (eeg) signals; en 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–35.[Deng et al., 2020] Deng, Y.; Li, Z.; Wang, H.; Lu, X. & Fan, H.: , 2020; Local temporal joint recurrence common spatial patterns for MI-based BCI; en 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), tomo 1; IEEE; págs. 813–816.[Desbois et al., 2021] Desbois, A.; Cattai, T.; Corsi, M.-C. & de Vico Fallani, F.: , 2021; Functional connectivity for bci: Openvibe implementation; en JJC-ICON’2021-Journée Jeunes Chercheurs en Interfaces Cerveau-Ordinateur et Neurofeedback.[Ding et al., 2023] Ding, X.; Yang, L. & Li, C.: , 2023; Study of mi-bci classification method based on the riemannian transform of personalized eeg spatiotemporal features; Mathematical Biosciences and Engineering; 20 (7): 12454–12471.[Dose et al., 2018] Dose, H.; Møller, J. S.; Iversen, H. K. & Puthusserypady, S.: , 2018; An end-to-end deep learning approach to mi-eeg signal classification for bcis; Expert Systems with Applications; 114: 532–542.[Duan et al., 2014] Duan, L.; Zhong, H.; Miao, J.; Yang, Z.; Ma, W. & Zhang, X.: , 2014; A voting optimized strategy based on ELM for improving classification of motor imagery BCI data; Cognitive Computation; 6 (3): 477–483.[Duan et al., 2020] Duan, L.; Duan, H.; Qiao, Y.; Sha, S.; Qi, S.; Zhang, X.; Huang, J.; Huang, X. & Wang, C.: , 2020; Machine learning approaches for MDD detection and emotion decoding using EEG signals; Frontiers in Human Neuroscience; 14.[Duan et al., 2021] Duan, S.; Yu, S. & Príncipe, J. C.: , 2021; Modularizing deep learning via pairwise learning with kernels; IEEE Transactions on Neural Networks and Learning Systems.[Duclos et al., 2021] Duclos, C.; Maschke, C.; Mahdid, Y.; Berkun, K.; da Silva Castanheira, J.; Tarnal, V.; Picton, P.; Vanini, G.; Golmirzaie, G.; Janke, E. et al.: , 2021; Differential classification of states of consciousness using envelope-and phase-based functional connectivity; NeuroImage; 237: 118171.[Eichert et al., 2021] Eichert, N.; Watkins, K. E.; Mars, R. B. & Petrides, M.: , 2021; Morphological and functional variability in central and subcentral motor cortex of the human brain; Brain Structure and Function; 226 (1): 263–279.[EPMoghaddam et al., 2022] EPMoghaddam, D.; Sheth, S. A.; Haneef, Z.; Gavvala, J. & Aazhang, B.: , 2022; Epileptic seizure prediction using spectral width of the covariance matrix; Journal of Neural Engineering; 19 (2): 026029.[Fagerholm et al., 2020] Fagerholm, E. D.; Moran, R. J.; Violante, I. R.; Leech, R. & Friston, K. J.: , 2020; Dynamic causal modelling of phase-amplitude interactions; NeuroImage; 208: 116452.[Fahimi et al., 2020] Fahimi, F.; Dosen, S.; Ang, K. K.; Mrachacz-Kersting, N. & Guan, C.: , 2020; Generative adversarial networks-based data augmentation for brain–computer interface; IEEE transactions on neural networks and learning systems; 32 (9): 4039–4051.[Fan et al., 2021] Fan, F.-L.; Xiong, J.; Li, M. & Wang, G.: , 2021; On interpretability of artificial neural networks: A survey; IEEE Transactions on Radiation and Plasma Medical Sciences; 5 (6): 741–760.[Fauzi et al., 2019] Fauzi, H.; Azzam, M. A.; Shapiai, M. I.; Kyoso, M.; Khairuddin, U. & Komura, T.: , 2019; Energy extraction method for EEG channel selection; Telkomnika; 17 (5): 2561–2571.[Feng et al., 2020] Feng, Z.; Qian, L.; Hu, H. & Sun, Y.: , 2020; Functional connectivity for motor imaginary recognition in brain-computer interface; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 3678–3682.[Fine & Scheinberg, 2001] Fine, S. & Scheinberg, K.: , 2001; Efficient SVM training using low-rank kernel representations; Journal of Machine Learning Research; 2 (Dec): 243–264.[Fogelson et al., 2013] Fogelson, N.; Li, L.; Li, Y.; Fernandez-del Olmo, M.; Santos-Garcia, D. & Peled, A.: , 2013; Functional connectivity abnormalities during contextual processing in schizophrenia and in parkinson’s disease; Brain and cognition; 82 (3): 243–253.[Fong & Vedaldi, 2017] Fong, R. C. & Vedaldi, A.: , 2017; Interpretable explanations of black boxes by meaningful perturbation; en Proceedings of the IEEE international conference on computer vision; págs. 3429–3437.[Frau-Pascual et al., 2019] Frau-Pascual, A.; Fogarty, M.; Fischl, B.; Yendiki, A.; Aganj, I.; Initiative, A. D. N. et al.: , 2019; Quantification of structural brain connectivity via a conductance model; NeuroImage; 189: 485–496.[Freer et al., 2019] Freer, D.; Deligianni, F. & Yang, G.-Z.: , 2019; Adaptive riemannian bci for enhanced motor imagery training protocols; en 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN); IEEE; págs. 1–4.[Friston, 2002] Friston, K.: , 2002; Functional integration and inference in the brain; Progress in neurobiology; 68 (2): 113–143.[Friston et al., 2013] Friston, K.; Moran, R. & Seth, A. K.: , 2013; Analysing connectivity with granger causality and dynamic causal modelling; Current opinion in neurobiology; 23 (2): 172–178.[Friston, 2011] Friston, K. J.: , 2011; Functional and effective connectivity: a review; Brain connectivity; 1 (1): 13–36.[Frolov et al., 2019] Frolov, N.; Maksimenko, V.; Lüttjohann, A.; Koronovskii, A. & Hramov, A.: , 2019; Feed-forward artificial neural network provides data-driven inference of functional connectivity; Chaos: An Interdisciplinary Journal of Nonlinear Science; 29 (9): 091101.[Fu et al., 2020] Fu, R.; Han, M.; Tian, Y. & Shi, P.: , 2020; Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.[Ganin et al., 2013] Ganin, I. P.; Shishkin, S. L. & Kaplan, A. Y.: , 2013; A p300-based brain-computer interface with stimuli on moving objects: four-session single-trial and triple-trial tests with a game-like task design; PloS one; 8 (10): e77755.[Gao et al., 2024] Gao, H.; Wang, X.; Chen, Z.; Wu, M.; Cai, Z.; Zhao, L.; Li, J. & Liu, C.: , 2024; Graph convolutional network with connectivity uncertainty for eeg-based emotion recognition; IEEE Journal of Biomedical and Health Informatics.[Gao et al., 2022] Gao, S.; Yang, J.; Shen, T. & Jiang, W.: , 2022; A parallel feature fusion network combining gru and cnn for motor imagery eeg decoding; Brain Sciences; 12 (9): 1233.[Gao et al., 2021] Gao, Z.; Dang, W.; Wang, X.; Hong, X.; Hou, L.; Ma, K. & Perc, M.: , 2021; Complex networks and deep learning for EEG signal analysis; Cognitive Neurodynamics; 15 (3): 369–388.[García-Murillo et al., 2021] García-Murillo, D. G.; Alvarez-Meza, A. & Castellanos-Dominguez, G.: , 2021; Single-trial kernel-based functional connectivity for enhanced feature extraction in motor-related tasks; Sensors; 21 (8): 2750.[Garg et al., 2023] Garg, D.; Verma, G. K. & Singh, A. K.: , 2023; A review of deep learning based methods for affect analysis using physiological signals; Multimedia Tools and Applications: 1–46.[Gaur et al., 2021a] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. & Wang, H.: , 2021a; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.[Gaur et al., 2021b] Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R. B. & Wang, H.: , 2021b; A sliding window common spatial pattern for enhancing motor imagery classification in eeg-bci; IEEE Transactions on Instrumentation and Measurement; 70: 1–9.[Gaur et al., 2021c] Gaur, P.; McCreadie, K.; Pachori, R. B.; Wang, H. & Prasad, G.: , 2021c; An automatic subject specific channel selection method for enhancing motor imagery classification in EEG-BCI using correlation; Biomedical Signal Processing and Control; 68: 102574.[Gaxiola-Tirado et al., 2017] Gaxiola-Tirado, J. A.; Salazar-Varas, R. & Gutiérrez, D.: , 2017; Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces; IEEE Transactions on Cognitive and Developmental Systems; 10 (3): 776–783.[Georgiadis et al., 2018] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2018; Exploiting the heightened phase synchrony in patients with neuromuscular disease for the establishment of efficient motor imagery bcis; Journal of neuroengineering and rehabilitation; 15 (1): 1–18.[Georgiadis et al., 2019] Georgiadis, K.; Laskaris, N.; Nikolopoulos, S. & Kompatsiaris, I.: , 2019; Connectivity steered graph fourier transform for motor imagery bci decoding; Journal of neural engineering; 16 (5): 056021.[Géron, 2022] Géron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow ; " O’Reilly Media, Inc.".[Ghanbar et al., 2021] Ghanbar, K. D.; Rezaii, T. Y.; Farzamnia, A. & Saad, I.: , 2021; Correlation-based common spatial pattern (ccsp): A novel extension of csp for classification of motor imagery signal; PLoS One; 16 (3): 1–18.[Ghane & Hossain, 2020] Ghane, P. & Hossain, G.: , 2020; Learning patterns in imaginary vowels for an intelligent brain computer interface (BCI) design; arXiv preprint arXiv:2010.12066.[Giraldo et al., 2014] Giraldo, L. G. S.; Rao, M. & Principe, J. C.: , 2014; Measures of entropy from data using infinitely divisible kernels; IEEE Transactions on Information Theory; 61 (1): 535–548.[Golugula et al., 2011] Golugula, A.; Lee, G. & Madabhushi, A.: , 2011; Evaluating feature selection strategies for high dimensional, small sample size datasets; en 2011 Annual International conference of the IEEE engineering in medicine and biology society; IEEE; págs. 949–952.[Gonuguntla et al., 2016] Gonuguntla, V.; Wang, Y. & Veluvolu, K. C.: , 2016; Event-related functional network identification: application to EEG classification; IEEE journal of selected topics in signal processing; 10 (7): 1284–1294.[Gonzalez-Astudillo et al., 2020] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2020; Network-based brain computer interfaces: principles and applications; Journal of Neural Engineering.[Gonzalez-Astudillo et al., 2021] Gonzalez-Astudillo, J.; Cattai, T.; Bassignana, G.; Corsi, M.-C. & Fallani, F. D. V.: , 2021; Network-based brain–computer interfaces: principles and applications; Journal of neural engineering; 18 (1): 011001.[Gramfort & Clerc, 2007] Gramfort, A. & Clerc, M.: , 2007; Low dimensional representations of MEG/EEG data using laplacian eigenmaps; en 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging; IEEE; págs. 169–172.[Graña & Morais-Quilez, 2023] Graña, M. & Morais-Quilez, I.: , 2023; A review of graph neural networks for electroencephalography data analysis; Neurocomputing: 126901.[Grigorev et al., 2021] Grigorev, N. A.; Savosenkov, A. O.; Lukoyanov, M. V.; Udoratina, A.; Shusharina, N. N.; Kaplan, A. Y.; Hramov, A. E.; Kazantsev, V. B. & Gordleeva, S.: , 2021; A bci-based vibrotactile neurofeedback training improves motor cortical excitability during motor imagery; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 1583–1592.[Grilo et al., 2019] Grilo, M.; Ribeiro, L.; Moraes, C.; Melo, C.; Fantinato, D.; Sampaio, L.; Neves, A. & Ramos, R.: , 2019; Artifact removal in EEG based emotional signals through linear and nonlinear methods; en 2019 E-Health and Bioengineering Conference (EHB); IEEE; págs. 1–4.[Gu et al., 2023] Gu, H.; Wang, J. & Han, Y.: , 2023; Decoding of brain functional connections underlying natural grasp task using time-frequency cross mutual information; IEEE Access.[Gu et al., 2021a] Gu, J.; Wei, M.; Guo, Y. & Wang, H.: , 2021a; Common spatial pattern with l21-norm; Neural Processing Letters: 1–20.[Gu et al., 2020a] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020a; EEG-based classification of lower limb motor imagery with brain network analysis; Neuroscience; 436: 93–109.[Gu et al., 2020b] Gu, L.; Yu, Z.; Ma, T.; Wang, H.; Li, Z. & Fan, H.: , 2020b; Random matrix theory for analysing the brain functional network in lower limb motor imagery; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 506–509.[Gu et al., 2021b] Gu, X.; Cao, Z.; Jolfaei, A.; Xu, P.; Wu, D.; Jung, T.-P. & Lin, C.-T.: , 2021b; Eeg-based brain-computer interfaces (bcis): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications; IEEE/ACM transactions on computational biology and bioinformatics; 18 (5): 1645–1666.[Guillot & Debarnot, 2019] Guillot, A. & Debarnot, U.: , 2019; Benefits of motor imagery for human space flight: a brief review of current knowledge and future applications; Frontiers in Physiology; 10: 396.[Gunawardena et al., 2023] Gunawardena, R.; Sarrigiannis, P. G.; Blackburn, D. J. & He, F.: , 2023; Kernel-based nonlinear manifold learning for eeg-based functional connectivity analysis and channel selection with application to alzheimer’s disease; Neuroscience.[Guo et al., 2020] Guo, Y.; Zhang, Y.; Chen, Z.; Liu, Y. & Chen, W.: , 2020; Eeg classification by filter band component regularized common spatial pattern for motor imagery; Biomedical Signal Processing and Control; 59: 101917.[Gupta et al., 2015] Gupta, A.; Agrawal, R. & Kaur, B.: , 2015; Performance enhancement of mental task classification using EEG signal: a study of multivariate feature selection methods; Soft Computing; 19 (10): 2799–2812.[Haddad et al., 2019] Haddad, A.; Shamsi, F.; Ghovanloo, M. & Najafizadeh, L.: , 2019; Early decoding of tongue-hand movement from EEG recordings using dynamic functional connectivity graphs; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 373–376.[Haghanifar et al., 2022] Haghanifar, A.; Majdabadi, M. M.; Choi, Y.; Deivalakshmi, S. & Ko, S.: , 2022; Covid-cxnet: Detecting covid-19 in frontal chest x-ray images using deep learning; Multimedia Tools and Applications; 81 (21): 30615–30645.[Hamedi et al., 2014] Hamedi, M.; Salleh, S.-H.; Noor, A. M. & Mohammad-Rezazadeh, I.: , 2014; Neural network-based three-class motor imagery classification using time-domain features for bci applications; en 2014 IEEE region 10 symposium; IEEE; págs. 204–207.[Hamedi et al., 2016] Hamedi, M.; Salleh, S.-H. & Noor, A. M.: , 2016; Electroencephalographic motor imagery brain connectivity analysis for BCI: a review; Neural computation; 28 (6): 999–1041.[Han et al., 2023] Han, S.; Zhang, C.; Lei, J.; Han, Q.; Du, Y.; Wang, A.; Bai, S. & Zhang, M.: , 2023; Cepstral analysis based artifact detection, recognition and removal for prefrontal eeg; IEEE Transactions on Circuits and Systems II: Express Briefs.[Hang et al., 2020] Hang, W.; Feng, W.; Liang, S.; Wang, Q.; Liu, X. & Choi, K.-S.: , 2020; Deep stacked support matrix machine based representation learning for motor imagery EEG classification; Computer methods and programs in biomedicine; 193: 105466.[Hassanpour et al., 2019] Hassanpour, A.; Moradikia, M.; Adeli, H.; Khayami, S. R. & Shamsinejadbabaki, P.: , 2019; A novel end-to-end deep learning scheme for classifying multi-class motor imagery electroencephalography signals; Expert Systems; 36 (6): e12494.[Hassija et al., 2023] Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M. & Hussain, A.: , 2023; Interpreting black-box models: a review on explainable artificial intelligence; Cognitive Computation: 1–30.[Hata et al., 2016] Hata, M.; Kazui, H.; Tanaka, T.; Ishii, R.; Canuet, L.; Pascual-Marqui, R. D.; Aoki, Y.; Ikeda, S.; Kanemoto, H.; Yoshiyama, K. et al.: , 2016; Functional connectivity assessed by resting state eeg correlates with cognitive decline of alzheimer’s disease–an eloreta study; Clinical Neurophysiology; 127 (2): 1269–1278.[He et al., 2019] He, B.; Astolfi, L.; Valdés-Sosa, P. A.; Marinazzo, D.; Palva, S. O.; Bénar, C.-G.; Michel, C. M. & Koenig, T.: , 2019; Electrophysiological brain connectivity: theory and implementation; IEEE Transactions on Biomedical Engineering; 66 (7): 2115–2137.[He et al., 2013] He, L.; Hu, Y.; Li, Y. & Li, D.: , 2013; Channel selection by rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG; Neurocomputing; 121: 423–433.[Hejazi & Motie Nasrabadi, 2019] Hejazi, M. & Motie Nasrabadi, A.: , 2019; Prediction of epilepsy seizure from multi-channel electroencephalogram by effective connectivity analysis using granger causality and directed transfer function methods; Cognitive neurodynamics; 13: 461–473.[Herranz-Gómez et al., 2020] Herranz-Gómez, A.; Gaudiosi, C.; Angulo-Díaz-Parreño, S.; Suso-Martí, L.; La Touche, R. & Cuenca-Martínez, F.: , 2020; Effectiveness of motor imagery and action observation on functional variables: An umbrella and mapping review with meta-meta-analysis; Neuroscience & Biobehavioral Reviews.[Hobson & Bishop, 2017] Hobson, H. M. & Bishop, D. V.: , 2017; The interpretation of mu suppression as an index of mirror neuron activity: past, present and future; Royal Society Open Science; 4 (3): 160662.[Hochberg et al., 2012] Hochberg, L. R.; Bacher, D.; Jarosiewicz, B.; Masse, N. Y.; Simeral, J. D.; Vogel, J.; Haddadin, S.; Liu, J.; Cash, S. S.; Van Der Smagt, P. et al.: , 2012; Reach and grasp by people with tetraplegia using a neurally controlled robotic arm; Nature; 485 (7398): 372–375.[Hossain et al., 2023] Hossain, K. M.; Islam, M. A.; Hossain, S.; Nijholt, A. & Ahad, M. A. R.: , 2023; Status of deep learning for eeg-based brain–computer interface applications; Frontiers in computational neuroscience; 16: 1006763.[Hosseini et al., 2020a] Hosseini, M.; Powell, M.; Collins, J.; Callahan-Flintoft, C.; Jones, W.; Bowman, H. & Wyble, B.: , 2020a; I tried a bunch of things: The dangers of unexpected overfitting in classification of brain data; Neuroscience & Biobehavioral Reviews.[Hosseini et al., 2020b] Hosseini, M.-P.; Hosseini, A. & Ahi, K.: , 2020b; A review on machine learning for EEG signal processing in bioengineering; IEEE reviews in biomedical engineering.[Hrisca-Eva & Lazar, 2021] Hrisca-Eva, O.-D. & Lazar, A. M.: , 2021; Multi-sessions outcome for EEG feature extraction and classification methods in a motor imagery task.; Traitement du Signal; 38 (2).[Hsu & Chen, 2020] Hsu, L. & Chen, Y.-J.: , 2020; Neuromarketing, subliminal advertising, and hotel selection: An EEG study; Australasian Marketing Journal (AMJ); 28 (4): 200–208.[Huang et al., 2023] Huang, G.; Zhao, Z.; Zhang, S.; Hu, Z.; Fan, J.; Fu, M.; Chen, J.; Xiao, Y.; Wang, J. & Dan, G.: , 2023; Discrepancy between inter-and intra-subject variability in eeg-based motor imagery brain-computer interface: Evidence from multiple perspectives; Frontiers in Neuroscience; 17: 1122661.[Huang et al., 2022] Huang, Q.; Yamada, M.; Tian, Y.; Singh, D. & Chang, Y.: , 2022; Graphlime: Local interpretable model explanations for graph neural networks; IEEE Transactions on Knowledge and Data Engineering.[Hurtado-Rincón et al., 2016] Hurtado-Rincón, J. V.; Martínez-Vargas, J. D.; Rojas-Jaramillo, S.; Giraldo, E. & Castellanos-Dominguez, G.: , 2016; Identification of relevant inter-channel EEG connectivity patterns: a kernel-based supervised approach; en International Conference on Brain Informatics; Springer; págs. 14–23.[Idowu et al., 2021] Idowu, O. P.; Ilesanmi, A. E.; Li, X.; Samuel, O. W.; Fang, P. & Li, G.: , 2021; An integrated deep learning model for motor intention recognition of multi-class EEG signals in upper limb amputees; Computer Methods and Programs in Biomedicine; 206: 106121.[Ismail & Karwowski, 2020] Ismail, L. E. & Karwowski, W.: , 2020; A graph theory-based modeling of functional brain connectivity based on EEG: A systematic review in the context of neuroergonomics; IEEE Access; 8: 155103–155135.[Iturralde et al., 2012] Iturralde, P. A.; Patrone, M.; Lecumberry, F. & Fernández, A.: , 2012; Motor intention recognition in EEG: In pursuit of a relevant feature set; en Iberoamerican Congress on Pattern Recognition; Springer; págs. 551–558.[Jahromy et al., 2019] Jahromy, F. Z.; Bajoulvand, A. & Daliri, M. R.: , 2019; Statistical algorithms for emo- tion classification via functional connectivity.; Journal of Integrative Neuroscience; 18 (3): 293–297; doi:10.31083/j. jin.2019.03.601; URL https://app.dimensions.ai/details/publication/pub.1121421951andhttps://jin.imrpress.com/EN/article/ downloadArticleFile.do?attachType=PDF&id=1604.[Jain & Zongker, 1997] Jain, A. & Zongker, D.: , 1997; Feature selection: Evaluation, application, and small sample performance; IEEE transactions on pattern analysis and machine intelligence; 19 (2): 153–158.[Janapati et al., 2023] Janapati, R.; Dalal, V. & Sengupta, R.: , 2023; Advances in modern eeg-bci signal processing: A review; Materials Today: Proceedings; 80: 2563–2566.[Jiang et al., 2021a] Jiang, P.-T.; Zhang, C.-B.; Hou, Q.; Cheng, M.-M. & Wei, Y.: , 2021a; Layercam: Exploring hierarchical class activation maps for localization; IEEE Transactions on Image Processing; 30: 5875–5888.[Jiang et al., 2021b] Jiang, Y.; Chen, W.; Li, M.; Zhang, T. & You, Y.: , 2021b; Synchroextracting chirplet transform-based epileptic seizures detection using EEG; Biomedical Signal Processing and Control; 68: 102699.[Jin et al., 2021] Jin, J.; Sun, H.; Daly, I.; Li, S.; Liu, C.; Wang, X. & Cichocki, A.: , 2021; A novel classification framework using the graph representations of electroencephalogram for motor imagery based brain-computer interface; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 30: 20–29.[Johnson et al., 2018] Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K. & He, B.: , 2018; Combined rtms and virtual reality brain–computer interface training for motor recovery after stroke; Journal of neural engineering; 15 (1): 016009.[Ju & Guan, 2023] Ju, C. & Guan, C.: , 2023; Graph neural networks on spd manifolds for motor imagery classification: A perspective from the time–frequency analysis; IEEE Transactions on Neural Networks and Learning Systems.[Kant et al., 2020] Kant, P.; Laskar, S. H.; Hazarika, J. & Mahamune, R.: , 2020; Cwt based transfer learning for motor imagery classification for brain computer interfaces; Journal of Neuroscience Methods; 345: 108886.[Kaper et al., 2004] Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T. & Ritter, H.: , 2004; BCI competition 2003-data set IIb: support vector machines for the p300 speller paradigm; IEEE Transactions on biomedical Engineering; 51 (6): 1073–1076.[Kawanabe et al., 2006] Kawanabe, M.; Krauledat, M. & Blankertz, B.: , 2006; A bayesian approach for adaptive BCI classification; Citeseer.[Khademi et al., 2023] Khademi, Z.; Ebrahimi, F. & Kordy, H. M.: , 2023; A review of critical challenges in mi-bci: From conventional to deep learning methods; Journal of Neuroscience Methods; 383: 109736.[Khan et al., 2021] Khan, D. M.; Yahya, N.; Kamel, N. & Faye, I.: , 2021; Effective connectivity in default mode network for alcoholism diagnosis; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 796–808.[Khan et al., 2020] Khan, M. A.; Das, R.; Iversen, H. K. & Puthusserypady, S.: , 2020; Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application; Computers in Biology and Medicine: 103843.[Khosla et al., 2020] Khosla, A.; Khandnor, P. & Chand, T.: , 2020; A comparative analysis of signal processing and classification methods for different applications based on EEG signals; Biocybernetics and Biomedical Engineering; 40 (2): 649–690.[Kim et al., 2022] Kim, S.-J.; Lee, D.-H. & Lee, S.-W.: , 2022; Rethinking cnn architecture for enhancing decoding performance of motor imagery-based eeg signals; IEEE Access; 10: 96984–96996.[Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.[Kim et al., 2019] Kim, Y.; Lee, S.; Kim, H.; Lee, S.; Lee, S. & Kim, D.: , 2019; Reduced burden of individual calibration process in brain-computer interface by clustering the subjects based on brain activation; en 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC); IEEE; págs. 2139–2143.[Kingma, 2014] Kingma, D. P.: , 2014; Adam: A method for stochastic optimization; arXiv preprint arXiv:1412.6980.[Knapen, 2021] Knapen, T.: , 2021; Topographic connectivity reveals task-dependent retinotopic processing throughout the human brain; Proceedings of the National Academy of Sciences; 118 (2).[Köllőd et al., 2023] Köllőd, C. M.; Adolf, A.; Iván, K.; Márton, G. & Ulbert, I.: , 2023; Deep comparisons of neural networks from the eegnet family; Electronics; 12 (12): 2743.[Kondratyev et al., 2020] Kondratyev, A.; Schwarz, C. & Horvath, B.: , 2020; Data anonymisation, outlier detection and fighting overfitting with restricted boltzmann machines; Outlier Detection and Fighting Overfitting with Restricted Boltzmann Machines (January 27, 2020).[Kostiukevych et al., 2021] Kostiukevych, K.; Stirenko, S.; Gordienko, N.; Rokovyi, O.; Alienin, O. & Gordienko, Y.: , 2021; Convolutional and recurrent neural networks for physical action forecasting by brain-computer interface; en 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), tomo 2; IEEE; págs. 973–978.[Kotte & Dabbakuti, 2020] Kotte, S. & Dabbakuti, J. K.: , 2020; Methods for removal of artifacts from eeg signal: A review; en Journal of Physics: Conference Series, tomo 1706; IOP Publishing; pág. 012093.[Kraeutner et al., 2016] Kraeutner, S. N.; MacKenzie, L. A.; Westwood, D. A. & Boe, S. G.: , 2016; Characterizing skill acquisition through motor imagery with no prior physical practice.; Journal of Experimental Psychology: Human Perception and Performance; 42 (2): 257.[Kuang, 2021] Kuang, P.-C.: , 2021; Measuring information flow among international stock markets: An approach of entropy-based networks on multi time-scales; Physica A: Statistical Mechanics and its Applications; 577: 126068.[Kübler, 2020] Kübler, A.: , 2020; The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome; Neuroethics; 13 (2): 163–180.[Kulatilleke, 2023] Kulatilleke, G.: , 2023; Towards efficient graph neural networks for optimizing illicit dark web interventions.[Kulkarni et al., 2019] Kulkarni, P. M.; Xiao, Z.; Robinson, E. J.; Jami, A. S.; Zhang, J.; Zhou, H.; Henin, S. E.; Liu, A. A.; Osorio, R. S.; Wang, J. et al.: , 2019; A deep learning approach for real-time detection of sleep spindles; Journal of neural engineering; 16 (3): 036004.[Kumar et al., 2018] Kumar, S.; Reddy, T. & Behera, L.: , 2018; Eeg based motor imagery classification using instantaneous phase difference sequence; en 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 499–504.[Kumar et al., 2019] Kumar, S.; Sharma, A. & Tsunoda, T.: , 2019; Brain wave classification using long short-term memory network based OPTICAL predictor; Scientific reports; 9 (1): 1–13.[Kumar et al., 2021] Kumar, S.; Sharma, R. & Sharma, A.: , 2021; Optical+: a frequency-based deep learning scheme for recognizing brain wave signals; Peerj Computer Science; 7: e375.[Kwon et al., 2021] Kwon, B.-H.; Jeong, J.-H. & Lee, S.-W.: , 2021; Visual motion imagery classification with deep neural network based on functional connectivity; arXiv preprint arXiv:2103.02851.[Kwon et al., 2019] Kwon, O.-Y.; Lee, M.-H.; Guan, C. & Lee, S.-W.: , 2019; Subject-independent brain–computer interfaces based on deep convolutional neural networks; IEEE transactions on neural networks and learning systems; 31 (10): 3839–3852.[Ladda et al., 2021] Ladda, A. M.; Lebon, F. & Lotze, M.: , 2021; Using motor imagery practice for improving motor performance–a review; Brain and cognition; 150: 105705.[Lahane et al., 2019] Lahane, P.; Jagtap, J.; Inamdar, A.; Karne, N. & Dev, R.: , 2019; A review of recent trends in eeg based brain-computer interface; en 2019 International Conference on Computational Intelligence in Data Science (ICCIDS); IEEE; págs. 1–6.[Lakshmi et al., 2014] Lakshmi, M. R.; Prasad, T. & Prakash, D. V. C.: , 2014; Survey on EEG signal processing methods; International Journal of Advanced Research in Computer Science and Software Engineering; 4 (1).[Lawhern et al., 2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.; Hung, C. P. & Lance, B. J.: , 2018; Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces; Journal of neural engineering; 15 (5): 056013.[Le et al., 2021] Le, N. Q. K.; Kha, Q. H.; Nguyen, V. H.; Chen, Y.-C.; Cheng, S.-J. & Chen, C.-Y.: , 2021; Machine learning-based radiomics signatures for egfr and kras mutations prediction in non-small-cell lung cancer; International journal of molecular sciences; 22 (17): 9254.[Lebedev & Nicolelis, 2006] Lebedev, M. A. & Nicolelis, M. A.: , 2006; Brain–machine interfaces: past, present and future; TRENDS in Neurosciences; 29 (9): 536–546.[Ledoit & Wolf, 2004] Ledoit, O. & Wolf, M.: , 2004; A well-conditioned estimator for large-dimensional covariance matrices; Journal of multivariate analysis; 88 (2): 365–411.[Lee et al., 2004] Lee, F.; Scherer, R.; Leeb, R.; Schlögl, A.; Bischof, H. & Pfurtscheller, G.: , 2004; Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface; Citeseer.[Lee & Choi, 2019] Lee, H. K. & Choi, Y.-S.: , 2019; Application of continuous wavelet transform and convolutional neural network in decoding motor imagery brain-computer interface; Entropy; 21 (12): 1199.[Lee et al., 2020] Lee, M.; Yoon, J.-G. & Lee, S.-W.: , 2020; Predicting motor imagery performance from resting-state eeg using dynamic causal modeling; Frontiers in human neuroscience; 14: 321.[Leeuwis et al., 2021] Leeuwis, N.; Yoon, S. & Alimardani, M.: , 2021; Functional connectivity analysis in motor-imagery brain computer interfaces; Frontiers in Human Neuroscience; 15: 732946.[Li et al., 2021a] Li, B.; Cheng, T. & Guo, Z.: , 2021a; A review of eeg acquisition, processing and application; en Journal of Physics: Conference Series, tomo 1907; IOP Publishing; pág. 012045.[Li et al., 2015] Li, J.; Struzik, Z.; Zhang, L. & Cichocki, A.: , 2015; Feature learning from incomplete eeg with denoising autoencoder; Neurocomputing; 165: 23–31.[Li et al., 2019a] Li, J. W.; Barma, S.; Mak, P. U.; Pun, S. H. & Vai, M. I.: , 2019a; Brain rhythm sequencing using eeg signals: A case study on seizure detection; IEEE Access; 7: 160112–160124.[Li & Principe, 2020] Li, K. & Principe, J. C.: , 2020; Fast estimation of information theoretic learning descriptors using explicit inner product spaces; arXiv preprint arXiv:2001.00265.[Li & Chen, 2021] Li, M. & Chen, W.: , 2021; FFT-based deep feature learning method for EEG classification; Biomedical Signal Processing and Control; 66: 102492.[Li et al., 2016] Li, M.; Luo, X.; Yang, J. & Sun, Y.: , 2016; Applying a locally linear embedding algorithm for feature extraction and visualization of MI-EEG; Journal of Sensors; 2016.[Li et al., 2019b] Li, M.-A.; Han, J.-F. & Duan, L.-J.: , 2019b; A novel mi-eeg imaging with the location information of electrodes; IEEE Access; 8: 3197–3211.[Li, 2022] Li, P.: , 2022; Bayesian networks for brain-computer interfaces: A survey; arXiv preprint arXiv:2206.07487.[Li et al., 2019c] Li, S.; Xie, X.; Gu, Z.; Yu, Z. L. & Li, Y.: , 2019c; Motor imagery classification based on local isometric embedding of riemannian manifold; en 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA); IEEE; págs. 2368–2372.[Li et al., 2019d] Li, Y.; Zhang, X.-R.; Zhang, B.; Lei, M.-Y.; Cui, W.-G. & Guo, Y.-Z.: , 2019d; A channel-projection mixed- scale convolutional neural network for motor imagery EEG decoding; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 27 (6): 1170–1180.[Li et al., 2020] Li, Y.; Liu, Y.; Cui, W.-G.; Guo, Y.-Z.; Huang, H. & Hu, Z.-Y.: , 2020; Epileptic seizure detection in EEG signals using a unified temporal-spectral squeeze-and-excitation network; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 782–794.[Li et al., 2021b] Li, Y.; Fu, B.; Li, F.; Shi, G. & Zheng, W.: , 2021b; A novel transferability attention neural network model for EEG emotion recognition; Neurocomputing; 447: 92–101.[Lim et al., 2021] Lim, J.-S.; Lee, J.-J. & Woo, C.-W.: , 2021; Post-stroke cognitive impairment: pathophysiological insights into brain disconnectome from advanced neuroimaging analysis techniques; Journal of Stroke; 23 (3): 297–311.[Lin et al., 2021] Lin, Y.-S.; Lee, W.-C. & Celik, Z. B.: , 2021; What do you see? evaluation of explainable artificial intelligence (xai) interpretability through neural backdoors; en Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining; págs. 1027–1035.[Linderman & Steinerberger, 2019] Linderman, G. & Steinerberger, S.: , 2019; Clustering with t-sne, provably; SIAM Journal on Mathematics of Data Science; 1 (2): 313–332.[Liu & Gillies, 2016] Liu, R. & Gillies, D. F.: , 2016; Overfitting in linear feature extraction for classification of high-dimensional image data; Pattern Recognition; 53: 73–86.[Liu & Yang, 2021] Liu, T. & Yang, D.: , 2021; A densely connected multi-branch 3d convolutional neural network for motor imagery eeg decoding; Brain Sciences; 11 (2): 197.[Liu et al., 2024] Liu, W.; Guo, C. & Gao, C.: , 2024; A cross-session motor imagery classification method based on riemannian geometry and deep domain adaptation; Expert Systems with Applications; 237: 121612.[Llanos et al., 2013] Llanos, C.; Rodriguez, M.; Rodriguez-Sabate, C.; Morales, I. & Sabate, M.: , 2013; Mu-rhythm changes during the planning of motor and motor imagery actions; Neuropsychologia; 51 (6): 1019–1026.[Lopez et al., 2020] Lopez, C. A. F.; Li, G. & Zhang, D.: , 2020; Beyond technologies of electroencephalography-based brain- computer interfaces: A systematic review from commercial and ethical aspects; Frontiers in Neuroscience; 14.[Lotte et al., 2018] Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A. & Yger, F.: , 2018; A review of classification algorithms for eeg-based brain–computer interfaces: a 10 year update; Journal of neural engineering; 15 (3): 031005.[Lu et al., 2011] Lu, C.-F.; Teng, S.; Hung, C.-I.; Tseng, P.-J.; Lin, L.-T.; Lee, P.-L. & Wu, Y.-T.: , 2011; Reorganiza- tion of functional connectivity during the motor task using EEG time–frequency cross mutual information analysis; Clinical Neurophysiology; 122 (8): 1569–1579.[Luo et al., 2019] Luo, J.; Wang, J.; Xu, R. & Xu, K.: , 2019; Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification; Journal of neuroscience methods; 323: 98–107.[Luo et al., 2020] Luo, J.; Gao, X.; Zhu, X.; Wang, B.; Lu, N. & Wang, J.: , 2020; Motor imagery eeg classification based on ensemble support vector learning; Computer methods and programs in biomedicine; 193: 105464.[Luo et al., 2018] Luo, T.-j.; Zhou, C.-l. & Chao, F.: , 2018; Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network; BMC bioinformatics; 19 (1): 1–18.[Luo et al., 2021] Luo, Z.; Jin, R.; Shi, H. & Lu, X.: , 2021; Research on recognition of motor imagination based on connectivity features of brain functional network; Neural plasticity; 2021.[Ma et al., 2023] Ma, W.; Wang, C.; Sun, X.; Lin, X. & Wang, Y.: , 2023; A double-branch graph convolutional network based on individual differences weakening for motor imagery eeg classification; Biomedical Signal Processing and Control; 84: 104684.[Ma et al., 2020] Ma, X.; Wang, D.; Liu, D. & Yang, J.: , 2020; Dwt and cnn based multi-class motor imagery electroencephalo- graphic signal recognition; Journal of neural engineering; 17 (1): 016073.[Maiseli et al., 2023] Maiseli, B.; Abdalla, A. T.; Massawe, L. V.; Mbise, M.; Mkocha, K.; Nassor, N. A.; Ismail, M.; Michael, J. & Kimambo, S.: , 2023; Brain–computer interface: trend, challenges, and threats; Brain Informatics; 10 (1): 20.[Maksimenko et al., 2017] Maksimenko, V. A.; Lüttjohann, A.; Makarov, V. V.; Goremyko, M. V.; Koronovskii, A. A.; Nedaivozov, V.; Runnova, A. E.; van Luijtelaar, G.; Hramov, A. E. & Boccaletti, S.: , 2017; Macroscopic and microscopic spectral properties of brain networks during local and global synchronization; Physical Review E ; 96 (1): 012316.[Mammone et al., 2023] Mammone, N.; Ieracitano, C.; Adeli, H. & Morabito, F. C.: , 2023; Autoencoder filter bank common spatial patterns to decode motor imagery from eeg; IEEE Journal of Biomedical and Health Informatics.[Martínez-Cancino et al., 2020] Martínez-Cancino, R.; Delorme, A.; Wagner, J.; Kreutz-Delgado, K.; Sotero, R. C. & Makeig, S.: , 2020; What can local transfer entropy tell us about phase-amplitude coupling in electrophysiological signals?; Entropy; 22 (11): 1262.[Matemba et al., 2020] Matemba, E. D.; Li, G.; Gogan, I. C. W. & Maiseli, B. J.: , 2020; Technology acceptance model: recent developments, future directions, and proposal for hypothetical extensions; International Journal of Technology Intelligence and Planning; 12 (4): 315–348.[McFarland & Wolpaw, 2011] McFarland, D. J. & Wolpaw, J. R.: , 2011; Brain-computer interfaces for communication and control; Communications of the ACM ; 54 (5): 60–66.[Meanti et al., 2020] Meanti, G.; Carratino, L.; Rosasco, L. & Rudi, A.: , 2020; Kernel methods through the roof: handling billions of points efficiently; arXiv preprint arXiv:2006.10350.[Meers et al., 2020] Meers, R.; Nuttall, H. E. & Vogt, S.: , 2020; Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery; Cortex ; 126: 322–333.[Meng et al., 2023] Meng, J.; Zhao, Y.; Wang, K.; Sun, J.; Yi, W.; Xu, F.; Xu, M. & Ming, D.: , 2023; Rhythmic temporal prediction enhances neural representations of movement intention for brain–computer interface; Journal of Neural Engineering; 20 (6): 066004.[Miah et al., 2020] Miah, A. S. M.; Rahim, M. A. & Shin, J.: , 2020; Motor-imagery classification using riemannian geometry with median absolute deviation; Electronics; 9 (10): 1584.[Miao et al., 2020] Miao, M.; Hu, W.; Yin, H. & Zhang, K.: , 2020; Spatial-frequency feature learning and classification of motor imagery eeg based on deep convolution neural network; Computational and mathematical methods in medicine; 2020.[Midha et al., 2021] Midha, S.; Maior, H. A.; Wilson, M. L. & Sharples, S.: , 2021; Measuring mental workload variations in office work tasks using fnirs; International Journal of Human-Computer Studies; 147: 102580.[Miladinović et al., 2021] Miladinović, A.; Ajčević, M.; Jarmolowska, J.; Marusic, U.; Colussi, M.; Silveri, G.; Battaglini, P. P. & Accardo, A.: , 2021; Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study; Computer Methods and Programs in Biomedicine; 198: 105808.[Miljevic et al., 2022] Miljevic, A.; Bailey, N. W.; Vila-Rodriguez, F.; Herring, S. E. & Fitzgerald, P. B.: , 2022; Electroen- cephalographic connectivity: a fundamental guide and checklist for optimal study design and evaluation; Biological Psychiatry: Cognitive Neuroscience and Neuroimaging; 7 (6): 546–554.[Millan & Mouriño, 2003] Millan, J. R. & Mouriño, J.: , 2003; Asynchronous BCI and local neural classifiers: an overview of the adaptive brain interface project; IEEE transactions on neural systems and rehabilitation engineering; 11 (2): 159–161.[Miotto et al., 2018] Miotto, R.; Wang, F.; Wang, S.; Jiang, X. & Dudley, J. T.: , 2018; Deep learning for healthcare: review, opportunities and challenges; Briefings in bioinformatics; 19 (6): 1236–1246.[Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.[Mirzaei & Ghasemi, 2021] Mirzaei, S. & Ghasemi, P.: , 2021; EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder; Biomedical Signal Processing and Control; 68: 102584.[Modares-Haghighi et al., 2021] Modares-Haghighi, P.; Boostani, R.; Nami, M. & Sanei, S.: , 2021; Quantification of pain severity using EEG-based functional connectivity; Biomedical Signal Processing and Control; 69: 102840.[Mohammadi et al., 2021] Mohammadi, L.; Einalou, Z.; Hosseinzadeh, H. & Dadgostar, M.: , 2021; Cursor movement detection in brain-computer-interface systems using the k-means clustering method and LSVM; Journal of Big Data; 8 (1): 1–15.[Molina-Giraldo et al., 2015] Molina-Giraldo, S.; Carvajal-González, J.; Álvarez-Meza, A. M. & Castellanos-Domínguez, G.: , 2015; Video segmentation framework based on multi-kernel representations and feature relevance analysis for object classification; en Pattern recognition applications and methods; Springer; págs. 273–283.[Molnar et al., 2020] Molnar, C.; Casalicchio, G. & Bischl, B.: , 2020; Interpretable machine learning–a brief history, state-of-the- art and challenges; en Joint European conference on machine learning and knowledge discovery in databases; Springer; págs. 417–431.[Moran et al., 2012] Moran, A.; Guillot, A.; MacIntyre, T. & Collet, C.: , 2012; Re-imagining motor imagery: Building bridges between cognitive neuroscience and sport psychology; British Journal of Psychology; 103 (2): 224–247.[Mridha et al., 2021] Mridha, M. F.; Das, S. C.; Kabir, M. M.; Lima, A. A.; Islam, M. R. & Watanobe, Y.: , 2021; Brain-computer interface: Advancement and challenges; Sensors; 21 (17): 5746.[Mumtaz et al., 2018] Mumtaz, W.; Kamel, N.; Ali, S. S. A.; Malik, A. S. et al.: , 2018; An EEG-based functional connectivity measure for automatic detection of alcohol use disorder; Artificial intelligence in medicine; 84: 79–89.[Musallam et al., 2021] Musallam, Y. K.; AlFassam, N. I.; Muhammad, G.; Amin, S. U.; Alsulaiman, M.; Abdul, W.; Altaheri, H.; Bencherif, M. A. & Algabri, M.: , 2021; Electroencephalography-based motor imagery classification using temporal convolutional network fusion; Biomedical Signal Processing and Control; 69: 102826.[Naidu et al., 2020] Naidu, R.; Ghosh, A.; Maurya, Y.; Kundu, S. S. et al.: , 2020; Is-cam: Integrated score-cam for axiomatic- based explanations; arXiv preprint arXiv:2010.03023.[Nentwich et al., 2020] Nentwich, M.; Ai, L.; Madsen, J.; Telesford, Q. K.; Haufe, S.; Milham, M. P. & Parra, L. C.: , 2020; Functional connectivity of eeg is subject-specific, associated with phenotype, and different from fmri; NeuroImage; 218: 117001.[Nguyen et al., 2021] Nguyen, H. T. T.; Cao, H. Q.; Nguyen, K. V. T. & Pham, N. D. K.: , 2021; Evaluation of explainable artificial intelligence: Shap, lime, and cam; en Proceedings of the FPT AI Conference; págs. 1–6.[Nicolini et al., 2020] Nicolini, C.; Forcellini, G.; Minati, L. & Bifone, A.: , 2020; Scale-resolved analysis of brain functional connectivity networks with spectral entropy; NeuroImage; 211: 116603.[Nisar et al., 2018] Nisar, H.; Thee, K. W.; Lim, S. H.; Yap, V. V.; Teh, P. C.; Nor, N. M. & Chow, C. M.: , 2018; Brain functional connectivity analysis using single trial EEG for understanding individual mechanisms; en 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA); IEEE; págs. 209–214.[Nkengfack et al., 2020] Nkengfack, L. C. D.; Tchiotsop, D.; Atangana, R.; Louis-Door, V. & Wolf, D.: , 2020; EEG signals analysis for epileptic seizures detection using polynomial transforms, linear discriminant analysis and support vector machines; Biomedical Signal Processing and Control; 62: 102141.[Noshadi et al., 2014] Noshadi, S.; Abootalebi, V.; Sadeghi, M. T. & Shahvazian, M. S.: , 2014; Selection of an efficient feature space for EEG-based mental task discrimination; Biocybernetics and Biomedical Engineering; 34 (3): 159–168.[Nunnari et al., 2021] Nunnari, F.; Kadir, M. A. & Sonntag, D.: , 2021; On the overlap between grad-cam saliency maps and explainable visual features in skin cancer images; en International Cross-Domain Conference for Machine Learning and Knowledge Extraction; Springer; págs. 241–253.[Oikonomou et al., 2017] Oikonomou, V. P.; Georgiadis, K.; Liaros, G.; Nikolopoulos, S. & Kompatsiaris, I.: , 2017; A comparison study on eeg signal processing techniques using motor imagery eeg data; en 2017 IEEE 30th international symposium on computer-based medical systems (CBMS); IEEE; págs. 781–786.[Omeiza et al., 2019] Omeiza, D.; Speakman, S.; Cintas, C. & Weldermariam, K.: , 2019; Smooth grad-CAM++: An enhanced inference level visualization technique for deep convolutional neural network models; arXiv preprint arXiv:1908.01224.[O’Reilly & Chanmittakul, 2021] O’Reilly, J. A. & Chanmittakul, W.: , 2021; L1 regularization-based selection of EEG spectral power and ECG features for classification of cognitive state; en 2021 9th International Electrical Engineering Congress (iEECON); IEEE; págs. 365–368.[Ortiz-Echeverri et al., 2019] Ortiz-Echeverri, C. J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J. & Gómez-Loenzo, R. A.: , 2019; A new approach for motor imagery classification based on sorted blind source separation, continuous wavelet transform, and convolutional neural network; Sensors; 19 (20): 4541.[Özdenizci et al., 2019] Özdenizci, O.; Wang, Y.; Koike-Akino, T. & Erdoğmuş, D.: , 2019; Adversarial deep learning in EEG biometrics; IEEE signal processing letters; 26 (5): 710–714.[Padfield et al., 2019] Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V. & Ren, J.: , 2019; Eeg-based brain-computer interfaces using motor-imagery: Techniques and challenges; Sensors; 19 (6): 1423.[Pandey & Miyapuram, 2021] Pandey, P. & Miyapuram, K. P.: , 2021; BRAIN2DEPTH: Lightweight CNN model for classification of cognitive states from EEG recordings; arXiv preprint arXiv:2106.06688.[Parhi & Tewfik, 2021] Parhi, M. & Tewfik, A. H.: , 2021; Classifying imaginary vowels from frontal lobe EEG via deep learning; en 2020 28th European Signal Processing Conference (EUSIPCO); IEEE; págs. 1195–1199.[Park et al., 2023] Park, S.; Ha, J. & Kim, L.: , 2023; Improving performance of motor imagery-based brain–computer interface in poorly performing subjects using a hybrid-imagery method utilizing combined motor and somatosensory activity; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 31: 1064–1074.[Park et al., 2017] Park, S.-H.; Lee, D. & Lee, S.-G.: , 2017; Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (2): 498–505.[Paz-Linares et al., 2017] Paz-Linares, D.; Vega-Hernandez, M.; Rojas-Lopez, P. A.; Valdes-Hernandez, P. A.; Martinez- Montes, E. & Valdes-Sosa, P. A.: , 2017; Spatio temporal EEG source imaging with the hierarchical bayesian elastic net and elitist lasso models; Frontiers in neuroscience; 11: 635.[Perdikis et al., 2018] Perdikis, S.; Tonin, L.; Saeedi, S.; Schneider, C. & Millán, J. d. R.: , 2018; The cybathlon bci race: Successful longitudinal mutual learning with two tetraplegic users; PLoS biology; 16 (5): e2003787.[Peterson et al., 2019] Peterson, V.; Wyser, D.; Lambercy, O.; Spies, R. & Gassert, R.: , 2019; A penalized time-frequency band feature selection and classification procedure for improved motor intention decoding in multichannel EEG; Journal of Neural Engineering; 16 (1): 016019.[Philip et al., 2022] Philip, B. S.; Prasad, G. & Hemanth, D. J.: , 2022; Non-stationarity removal techniques in meg data: A review; Procedia Computer Science; 215: 824–833.[Phunruangsakao et al., 2023] Phunruangsakao, C.; Achanccaray, D.; Bhattacharyya, S.; Izumi, S.-I. & Hayashibe, M.: , 2023; Effects of visual-electrotactile stimulation feedback on brain functional connectivity during motor imagery practice; Scientific Reports; 13 (1): 17752.[Pope et al., 2019] Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E. & Hoffmann, H.: , 2019; Explainability methods for graph convolutional neural networks; en Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; págs. 10772–10781.[Prakash et al., ] Prakash, E. I.; Shrikumar, A. & Kundaje, A.: , ; Towards more realistic simulated datasets for benchmarking deep learning models in regulatory genomics; en Machine Learning in Computational Biology; PMLR; págs. 58–77.[Principe, 2010] Principe, J. C.: , 2010; Information theoretic learning: Renyi’s entropy and kernel perspectives; Springer Science & Business Media.[Pulgarin-Giraldo et al., 2017] Pulgarin-Giraldo, J. D.; Ruales-Torres, A.; Álvarez-Meza, A. M. & Castellanos-Dominguez, G.: , 2017; Relevant kinematic feature selection to support human action recognition in MoCap data; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 501–509.[Purves, 2001] Purves, W. K.: , c 2001.; Life, the science of biology / ; Sinauer Associates„ Sunderland, MA :; 6a edición; includes index.[Qian et al., 2018] Qian, X.; Loo, B. R. Y.; Castellanos, F. X.; Liu, S.; Koh, H. L.; Poh, X. W. W.; Krishnan, R.; Fung, D.; Chee, M. W.; Guan, C. et al.: , 2018; Brain-computer-interface-based intervention re-normalizes brain functional network topology in children with attention deficit/hyperactivity disorder; Translational psychiatry; 8 (1): 149.[Qiao et al., 2023] Qiao, R.; Zhang, H. & Tian, Y.: , 2023; Eeg cortical network reveals the temporo-spatial mechanism of visual search; Brain Research Bulletin; 203: 110758.[Qiumei et al., 2019] Qiumei, Z.; Dan, T. & Fenghua, W.: , 2019; Improved convolutional neural network based on fast exponentially linear unit activation function; Ieee Access; 7: 151359–151367.[Raeisi et al., 2020] Raeisi, K.; Mohebbi, M.; Khazaei, M.; Seraji, M. & Yoonessi, A.: , 2020; Phase-synchrony evaluation of EEG signals for multiple sclerosis diagnosis based on bivariate empirical mode decomposition during a visual task; Computers in biology and medicine; 117: 103596.[Raeisi et al., 2022] Raeisi, K.; Khazaei, M.; Croce, P.; Tamburro, G.; Comani, S. & Zappasodi, F.: , 2022; A graph convolutional neural network for the automated detection of seizures in the neonatal eeg; Computer methods and programs in biomedicine; 222: 106950.[Rahate et al., 2022] Rahate, A.; Walambe, R.; Ramanna, S. & Kotecha, K.: , 2022; Multimodal co-learning: challenges, applications with datasets, recent advances and future directions; Information Fusion; 81: 203–239.[Rahimi et al., 2007] Rahimi, A.; Recht, B. et al.: , 2007; Random features for large-scale kernel machines.; en NIPS, tomo 3; Citeseer; pág. 5.[Ramadan & Vasilakos, 2017] Ramadan, R. A. & Vasilakos, A. V.: , 2017; Brain computer interface: control signals review; Neurocomputing; 223: 26–44.[Ramadan et al., 2015] Ramadan, R. A.; Refat, S.; Elshahed, M. A. & Ali, R. A.: , 2015; Basics of brain computer interface; en Brain-Computer Interfaces; Springer; págs. 31–50.[Ras et al., 2018] Ras, G.; van Gerven, M. & Haselager, P.: , 2018; Explanation methods in deep learning: Users, values, concerns and challenges; Explainable and interpretable models in computer vision and machine learning: 19–36.[Rashed-Al-Mahfuz et al., 2021] Rashed-Al-Mahfuz, M.; Moni, M. A.; Uddin, S.; Alyami, S. A.; Summers, M. A. & Eapen, V.: , 2021; A deep convolutional neural network method to detect seizures and characteristic frequencies using epileptic electroencephalogram (eeg) data; IEEE journal of translational engineering in health and medicine; 9: 1–12.[Rasheed et al., 2021] Rasheed, M. A.; Chand, P.; Ahmed, S.; Sharif, H.; Hoodbhoy, Z.; Siddiqui, A. & Hasan, B. S.: , 2021; Use of artificial intelligence on electroencephalogram (EEG) waveforms to predict failure in early school grades in children from a rural cohort in pakistan; Plos one; 16 (2): e0246236.[Rashid et al., 2020] Rashid, M.; Sulaiman, N.; PP Abdul Majeed, A.; Musa, R. M.; Ab Nasir, A. F.; Bari, B. S. & Khatun, S.: , 2020; Current status, challenges, and possible solutions of eeg-based brain-computer interface: a comprehensive review; Frontiers in neurorobotics: 25.[Rashkov et al., 2019] Rashkov, G.; Bobe, A.; Fastovets, D. & Komarova, M.: , 2019; Natural image reconstruction from brain waves: a novel visual bci system with native feedback; BioRxiv : 787101.[Rathee et al., 2017] Rathee, D.; Cecotti, H. & Prasad, G.: , 2017; Single-trial effective brain connectivity patterns enhance discriminability of mental imagery tasks; Journal of neural engineering; 14 (5): 056005.[Ravaioli et al., 2023] Ravaioli, G.; Domingos, T. & Teixeira, R. F.: , 2023; A framework for data-driven agent-based modelling of agricultural land use; Land; 12 (4): 756.[Rejer & Lorenz, 2013] Rejer, I. & Lorenz, K.: , 2013; Genetic algorithm and forward method for feature selection in EEG feature space; Journal of Theoretical and Applied Computer Science; 7 (2): 72–82.[Rényi, 1961] Rényi, A.: , 1961; On measures of entropy and information; en Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, tomo 4; University of California Press; págs. 547–562.[Reuderink et al., 2011] Reuderink, B.; Farquhar, J.; Poel, M. & Nijholt, A.: , 2011; A subject-independent brain-computer interface based on smoothed, second-order baselining; en 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; IEEE; págs. 4600–4604.[Rezaei & Shalbaf, 2023] Rezaei, E. & Shalbaf, A.: , 2023; Classification of right/left hand motor imagery by effective connectivity based on transfer entropy in electroencephalogram signal; Basic and Clinical Neuroscience; 14 (2): 213.[Riahi et al., 2020] Riahi, N.; Vakorin, V. A. & Menon, C.: , 2020; Estimating fugl-meyer upper extremity motor score from functional-connectivity measures; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 28 (4): 860–868.[Rimbert et al., 2020] Rimbert, S.; Bougrain, L. & Fleck, S.: , 2020; Learning how to generate kinesthetic motor imagery using a bci-based learning environment: A comparative study based on guided or trial-and-error approaches; en 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC); IEEE; págs. 2483–2498.[Rodrigues et al., 2019a] Rodrigues, P.; Stefano, C.; Attux, R.; Castellano, G. & Soriano, D.: , 2019a; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.[Rodrigues et al., 2020] Rodrigues, P.; Fim-Neto, A.; Sato, J.; Soriano, D. & Nasuto, S.: , 2020; Single-trial functional connectivity dynamics of event-related desynchronization for motor imagery eeg-based brain-computer interfaces; en Brazilian Congress on Biomedical Engineering; Springer; págs. 1887–1893.[Rodrigues et al., 2019b] Rodrigues, P. G.; Stefano Filho, C. A.; Attux, R.; Castellano, G. & Soriano, D. C.: , 2019b; Space-time recurrences for functional connectivity evaluation and feature extraction in motor imagery brain-computer interfaces; Medical & biological engineering & computing; 57 (8): 1709–1725.[Rodrigues et al., 2022] Rodrigues, P. G.; Filho, C. A. S.; Takahata, A. K.; Suyama, R.; Attux, R.; Castellano, G.; Sato, J. R.; Nasuto, S. J. & Soriano, D. C.: , 2022; Can dynamic functional connectivity be used to distinguish between resting-state and motor imagery in eeg-bcis?; en Complex Networks & Their Applications X: Volume 2, Proceedings of the Tenth International Conference on Complex Networks and Their Applications COMPLEX NETWORKS 2021 10 ; Springer; págs. 688–699.[Rongrong et al., 2020] Rongrong, F.; Mengmeng, H.; Yongsheng, T. & Peiming, S.: , 2020; Improvement motor imagery eeg classification based on sparse common spatial pattern and regularized discriminant analysis; Journal of Neuroscience Methods; 343: 108833.[Roweis & Ghahramani, 1999] Roweis, S. & Ghahramani, Z.: , 1999; A unifying review of linear gaussian models; Neural computation; 11 (2): 305–345.[Roy et al., 2022] Roy, G.; Bhoi, A. & Bhaumik, S.: , 2022; A comparative approach for mi-based eeg signals classification using energy, power and entropy; IRBM ; 43 (5): 434–446.[Rubinov & Sporns, 2010] Rubinov, M. & Sporns, O.: , 2010; Complex network measures of brain connectivity: uses and interpre- tations; Neuroimage; 52 (3): 1059–1069.[Ruffino et al., 2017] Ruffino, C.; Papaxanthis, C. & Lebon, F.: , 2017; Neural plasticity during motor learning with motor imagery practice: Review and perspectives; Neuroscience; 341: 61–78.[Ruiz-Gómez et al., 2020] Ruiz-Gómez, S. J.; Gómez, C.; Poza, J.; Revilla-Vallejo, M.; Gutiérrez-de Pablo, V.; Rodríguez- González, V.; Maturana-Candelas, A. & Hornero, R.: , 2020; Volume conduction effects on connectivity metrics: Application of network parameters to characterize alzheimer’s disease continuum; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 30–33.[Saha & Baumert, 2020] Saha, S. & Baumert, M.: , 2020; Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review; Frontiers in computational neuroscience; 13: 87.[Said et al., 2017] Said, S.; Bombrun, L.; Berthoumieu, Y. & Manton, J. H.: , 2017; Riemannian gaussian distributions on the space of symmetric positive definite matrices; IEEE Transactions on Information Theory; 63 (4): 2153–2170.[Sakkalis, 2011] Sakkalis, V.: , 2011; Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG; Computers in biology and medicine; 41 (12): 1110–1117.[Samuel et al., 2017] Samuel, O. W.; Geng, Y.; Li, X. & Li, G.: , 2017; Towards efficient decoding of multiple classes of motor imagery limb movements based on eeg spectral and time domain descriptors; Journal of medical systems; 41: 1–13.[Sannelli et al., 2019] Sannelli, C.; Vidaurre, C.; Müller, K. & Blankertz, B.: , 2019; A large scale screening study with a smr-based bci: Categorization of bci users and differences in their smr activity; PLoS One; 14 (1): e0207351.[Sarin et al., 2020] Sarin, M.; Verma, A.; Mehta, D. H.; Shukla, P. K. & Verma, S.: , 2020; Automated ocular artifacts identification and removal from EEG data using hybrid machine learning methods; en 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN); IEEE; págs. 1054–1059.[Sarraf, 2017] Sarraf, S.: , 2017; Eeg-based movement imagery classification using machine learning techniques and welch’s power spectral density estimation; American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS); 33 (1): 124–145.[Schirrmeister et al., 2017] Schirrmeister, R. T.; Springenberg, J. T.; Fiederer, L. D. J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W. & Ball, T.: , 2017; Deep learning with convolutional neural networks for EEG decoding and visualization; Human brain mapping; 38 (11): 5391–5420.[Seghier & Price, 2018] Seghier, M. L. & Price, C. J.: , 2018; Interpreting and utilising intersubject variability in brain function; Trends in cognitive sciences; 22 (6): 517–530.[Selvaraju et al., 2016] Selvaraju, R. R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D. & Batra, D.: , 2016; Grad-CAM: Why did you say that?; arXiv preprint arXiv:1611.07450.[Selvaraju et al., 2017] Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D. & Batra, D.: , 2017; Grad-cam: Visual explanations from deep networks via gradient-based localization; en Proceedings of the IEEE international conference on computer vision; págs. 618–626.[Shali & Setarehdan, 2020] Shali, R. K. & Setarehdan, S. K.: , 2020; The impact of electrode reduction in the diagnosis of dyslexia; en 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME); IEEE; págs. 118–125.[Shamsi et al., 2020a] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2020a; Early classification of motor tasks using dynamic functional connectivity graphs from eeg; Journal of Neural Engineering.[Shamsi et al., 2020b] Shamsi, F.; Haddad, A. et al.: , 2020b; Recognizing pain in motor imagery EEG recordings using dynamic functional connectivity graphs; en 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); IEEE; págs. 2869–2872.[Shamsi et al., 2021] Shamsi, F.; Haddad, A. & Najafizadeh, L.: , 2021; Early classification of motor tasks using dynamic functional connectivity graphs from EEG; Journal of Neural Engineering; 18 (1): 016015.[Shao et al., 2020] Shao, L.; Zhang, L.; Belkacem, A. N.; Zhang, Y.; Chen, X.; Li, J. & Liu, H.: , 2020; EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface; Journal of healthcare engineering; 2020.[Sharma et al., 2023] Sharma, N.; Sharma, M.; Singhal, A.; Vyas, R.; Malik, H.; Afthanorhan, A. & Hossaini, M. A.: , 2023; Recent trends in eeg based motor imagery signal analysis and recognition: A comprehensive review.; IEEE Access.[Shrikumar et al., 2017] Shrikumar, A.; Greenside, P. & Kundaje, A.: , 2017; Learning important features through propagating activation differences; en International conference on machine learning; PMLR; págs. 3145–3153.[Si et al., 2020] Si, Y.; Li, F.; Duan, K.; Tao, Q.; Li, C.; Cao, Z.; Zhang, Y.; Biswal, B.; Li, P.; Yao, D. et al.: , 2020; Predicting individual decision-making responses based on single-trial eeg; NeuroImage; 206: 116333.[Simon et al., 2013] Simon, N.; Friedman, J.; Hastie, T. & Tibshirani, R.: , 2013; A sparse-group lasso; Journal of computational and graphical statistics; 22 (2): 231–245.[Simonyan et al., 2013] Simonyan, K.; Vedaldi, A. & Zisserman, A.: , 2013; Deep inside convolutional networks: Visualising image classification models and saliency maps; arXiv preprint arXiv:1312.6034.[Singh et al., 2021] Singh, A.; Hussain, A. A.; Lal, S. & Guesgen, H. W.: , 2021; A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface; Sensors; 21 (6): 2173.[Sisti et al., 2022] Sisti, H. M.; Beebe, A.; Bishop, M. & Gabrielsson, E.: , 2022; A brief review of motor imagery and bimanual coordination; Frontiers in Human Neuroscience; 16: 1037410.[Sitaram et al., 2017] Sitaram, R.; Ros, T.; Stoeckel, L.; Haller, S.; Scharnowski, F.; Lewis-Peacock, J.; Weiskopf, N.; Blefari, M. L.; Rana, M.; Oblak, E. et al.: , 2017; Closed-loop brain training: the science of neurofeedback; Nature Reviews Neuroscience; 18 (2): 86–100.[Siviero et al., 2023] Siviero, I.; Menegaz, G. & Storti, S. F.: , 2023; Functional connectivity and feature fusion enhance multiclass motor-imagery brain–computer interface performance; Sensors; 23 (17): 7520.[Smith et al., 2011] Smith, S. M.; Miller, K. L.; Salimi-Khorshidi, G.; Webster, M.; Beckmann, C. F.; Nichols, T. E.; Ramsey, J. D. & Woolrich, M. W.: , 2011; Network modelling methods for fmri; Neuroimage; 54 (2): 875–891.[Smola & Schölkopf, 2000] Smola, A. J. & Schölkopf, B.: , 2000; Sparse greedy matrix approximation for machine learning.[Smuha, 2019] Smuha, N. A.: , 2019; The eu approach to ethics guidelines for trustworthy artificial intelligence; Computer Law Review International; 20 (4): 97–106.[Somers et al., 2018] Somers, B.; Francart, T. & Bertrand, A.: , 2018; A generic eeg artifact removal algorithm based on the multi-channel wiener filter; Journal of neural engineering; 15 (3): 036007.[Sorger & Goebel, 2020] Sorger, B. & Goebel, R.: , 2020; Real-time fmri for brain-computer interfacing; Handbook of clinical neurology; 168: 289–302.[Souto et al., 2020] Souto, D. O.; Cruz, T. K. F.; Coutinho, K.; Julio-Costa, A.; Fontes, P. L. B. & Haase, V. G.: , 2020; Effect of motor imagery combined with physical practice on upper limb rehabilitation in children with hemiplegic cerebral palsy; NeuroRehabilitation; 46 (1): 53–63.[Speith, 2022] Speith, T.: , 2022; A review of taxonomies of explainable artificial intelligence (xai) methods; en 2022 ACM Conference on Fairness, Accountability, and Transparency; págs. 2239–2250.[Springenberg et al., 2014] Springenberg, J. T.; Dosovitskiy, A.; Brox, T. & Riedmiller, M.: , 2014; Striving for simplicity: The all convolutional net; arXiv preprint arXiv:1412.6806.[Stefano Filho et al., 2018] Stefano Filho, C. A.; Attux, R. & Castellano, G.: , 2018; Can graph metrics be used for EEG-BCIs based on hand motor imagery?; Biomedical Signal Processing and Control; 40: 359–365.[Stefano Filho et al., 2021] Stefano Filho, C. A.; Ignacio Serrano, J.; Attux, R.; Castellano, G.; Rocon, E. & del Castillo, M. D.: , 2021; Reorganization of resting-state EEG functional connectivity patterns in children with cerebral palsy following a motor imagery virtual-reality intervention; Applied Sciences; 11 (5): 2372.[Stephan et al., 2009] Stephan, K.; Friston, K. & Squire, L.: , 2009; Functional connectivity.[Stergiadis et al., 2022] Stergiadis, C.; Kostaridou, V.-D. & Klados, M. A.: , 2022; Which bss method separates better the eeg signals? a comparison of five different algorithms; Biomedical Signal Processing and Control; 72: 103292.[Sturm et al., 2016] Sturm, I.; Lapuschkin, S.; Samek, W. & Müller, K.-R.: , 2016; Interpretable deep neural networks for single-trial EEG classification; Journal of neuroscience methods; 274: 141–145.[Subasi & Gursoy, 2010] Subasi, A. & Gursoy, M. I.: , 2010; EEG signal classification using PCA, ICA, LDA and support vector machines; Expert systems with applications; 37 (12): 8659–8666.[Subasi et al., 2021] Subasi, A.; Tuncer, T.; Dogan, S.; Tanko, D. & Sakoglu, U.: , 2021; EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier; Biomedical Signal Processing and Control; 68: 102648.[Sujatha Ravindran & Contreras-Vidal, 2023] Sujatha Ravindran, A. & Contreras-Vidal, J.: , 2023; An empirical comparison of deep learning explainability approaches for eeg using simulated ground truth; Scientific Reports; 13 (1): 17709.[Sun et al., 2020a] Sun, C.; Lin, K.; Huang, Y.-T.; Ching, E. S.; Lai, P.-Y. & Chan, C.: , 2020a; Directed effective connectivity and synaptic weights of in vitro neuronal cultures revealed from high-density multielectrode array recordings; bioRxiv.[Sun et al., 2020b] Sun, X.; Hu, B.; Zheng, X.; Yin, Y. & Ji, C.: , 2020b; Emotion classification based on brain functional connectivity network; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 2082–2089.[Suto & Oniga, 2018] Suto, J. & Oniga, S.: , 2018; Music stimuli recognition in electroencephalogram signal; Elektronika ir Elektrotechnika; 24 (4): 68–71.[Šverko et al., 2022] Šverko, Z.; Vrankić, M.; Vlahinić, S. & Rogelj, P.: , 2022; Complex pearson correlation coefficient for eeg connectivity analysis; Sensors; 22 (4): 1477.[Tabar & Halici, 2016] Tabar, Y. R. & Halici, U.: , 2016; A novel deep learning approach for classification of eeg motor imagery signals; Journal of neural engineering; 14 (1): 016003.[Tafreshi et al., 2019] Tafreshi, T. F.; Daliri, M. R. & Ghodousi, M.: , 2019; Functional and effective connectivity based features of eeg signals for object recognition; Cognitive neurodynamics; 13: 555–566.[Talukdar et al., 2019] Talukdar, U.; Hazarika, S. M. & Gan, J. Q.: , 2019; Motor imagery and mental fatigue: inter-relationship and eeg based estimation; Journal of computational neuroscience; 46: 55–76.[Tang et al., 2014] Tang, Q.; Wang, J. & Wang, H.: , 2014; L1-norm based discriminative spatial pattern for single-trial EEG classification; Biomedical Signal Processing and Control; 10: 313–321.[Tang et al., 2020] Tang, X.; Li, W.; Li, X.; Ma, W. & Dang, X.: , 2020; Motor imagery eeg recognition based on conditional optimization empirical mode decomposition and multi-scale convolutional neural network; Expert Systems with Applications; 149: 113285.[Tang et al., 2023] Tang, X.; Wang, S.; Deng, X.; Liu, K.; Tian, Y.; Wang, H. & Gao, X.: , 2023; Graph-based information separator and area convolutional network for eeg-based intention decoding; IEEE Transactions on Cognitive and Developmental Systems.[Tay et al., 2023] Tay, J. K.; Narasimhan, B. & Hastie, T.: , 2023; Elastic net regularization paths for all generalized linear models; Journal of statistical software; 106.[Tayeb et al., 2019] Tayeb, Z.; Fedjaev, J.; Ghaboosi, N.; Richter, C.; Everding, L.; Qu, X.; Wu, Y.; Cheng, G. & Conradt, J.: , 2019; Validating deep neural networks for online decoding of motor imagery movements from eeg signals; Sensors; 19 (1): 210.[Teo & Chew, 2014] Teo, W.-P. & Chew, E.: , 2014; Is motor-imagery brain-computer interface feasible in stroke rehabilitation?; PM&R; 6 (8): 723–728.[Thakur et al., 2016] Thakur, K. T.; Albanese, E.; Giannakopoulos, P.; Jette, N.; Linde, M.; Prince, M. J.; Steiner, T. J. & Dua, T.: , 2016; Neurological disorders.[Thiebaut de Schotten et al., 2020] Thiebaut de Schotten, M.; Foulon, C. & Nachev, P.: , 2020; Brain disconnections link structural connectivity with function and behaviour; Nature communications; 11 (1): 5094.[Tibrewal et al., 2022] Tibrewal, N.; Leeuwis, N. & Alimardani, M.: , 2022; Classification of motor imagery eeg using deep learning increases performance in inefficient bci users; Plos one; 17 (7): e0268880.[Tibshirani, 1996] Tibshirani, R.: , 1996; Regression shrinkage and selection via the lasso; Journal of the Royal Statistical Society: Series B (Methodological); 58 (1): 267–288.[Tjoa & Guan, 2020] Tjoa, E. & Guan, C.: , 2020; A survey on explainable artificial intelligence (xai): Toward medical xai; IEEE transactions on neural networks and learning systems; 32 (11): 4793–4813.[Tjoa & Guan, 2022] Tjoa, E. & Guan, C.: , 2022; Evaluating weakly supervised object localization methods right? a study on heatmap-based xai and neural backed decision tree; A Study on Heatmap-Based Xai and Neural Backed Decision Tree (November 27, 2022).[Tortora et al., 2020] Tortora, S.; Ghidoni, S.; Chisari, C.; Micera, S. & Artoni, F.: , 2020; Deep learning-based BCI for gait decoding from EEG with LSTM recurrent neural network; Journal of Neural Engineering; 17 (4): 046011.[Tuncer et al., 2021] Tuncer, T.; Dogan, S. & Acharya, U. R.: , 2021; Automated EEG signal classification using chaotic local binary pattern; Expert Systems with Applications; 182: 115175.[Uribe et al., 2019] Uribe, L. F. S.; Stefano Filho, C. A.; de Oliveira, V. A.; da Silva Costa, T. B.; Rodrigues, P. G.; Soriano, D. C.; Boccato, L.; Castellano, G. & Attux, R.: , 2019; A correntropy-based classifier for motor imagery brain-computer interfaces; Biomedical Physics & Engineering Express; 5 (6): 065026.[Van der Lubbe et al., 2021] Van der Lubbe, R. H.; Sobierajewicz, J.; Jongsma, M. L.; Verwey, W. B. & Przekoracka- Krawczyk, A.: , 2021; Frontal brain areas are more involved during motor imagery than during motor execution/preparation of a response sequence; International journal of psychophysiology; 164: 71–86.[Van der Maaten & Hinton, 2008] Van der Maaten, L. & Hinton, G.: , 2008; Visualizing data using t-sne.; Journal of machine learning research; 9 (11).[Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.[Van Der Maaten et al., 2009] Van Der Maaten, L.; Postma, E. & Van den Herik, J.: , 2009; Dimensionality reduction: a comparative; J Mach Learn Res; 10 (66-71): 13.[Van Mierlo et al., 2014] Van Mierlo, P.; Papadopoulou, M.; Carrette, E.; Boon, P.; Vandenberghe, S.; Vonck, K. & Marinazzo, D.: , 2014; Functional brain connectivity from eeg in epilepsy: Seizure prediction and epileptogenic focus localization; Progress in neurobiology; 121: 19–35.[Vaquerizo-Villar et al., 2023] Vaquerizo-Villar, F.; Gutiérrez-Tobal, G. C.; Calvo, E.; Álvarez, D.; Kheirandish-Gozal, L.; Del Campo, F.; Gozal, D. & Hornero, R.: , 2023; An explainable deep-learning model to stage sleep states in children and propose novel eeg-related patterns in sleep apnea; Computers in Biology and Medicine; 165: 107419.[Värbu et al., 2022] Värbu, K.; Muhammad, N. & Muhammad, Y.: , 2022; Past, present, and future of eeg-based bci applications; Sensors; 22 (9): 3331.[Varone et al., 2021] Varone, G.; Boulila, W.; Lo Giudice, M.; Benjdira, B.; Mammone, N.; Ieracitano, C.; Dashtipour, K.; Neri, S.; Gasparini, S.; Morabito, F. C. et al.: , 2021; A machine learning approach involving functional connectivity features to classify rest-eeg psychogenic non-epileptic seizures from healthy controls; Sensors; 22 (1): 129.[Varoquaux, 2018] Varoquaux, G.: , 2018; Cross-validation failure: small sample sizes lead to large error bars; Neuroimage; 180: 68–77.[Varsehi & Firoozabadi, 2021] Varsehi, H. & Firoozabadi, S. M. P.: , 2021; An EEG channel selection method for motor imagery based brain–computer interface and neurofeedback using granger causality; Neural Networks; 133: 193–206.[Veena & Anitha, 2020] Veena, N. & Anitha, N.: , 2020; A review of non-invasive bci devices; Int. J. Biomed. Eng. Technol; 34 (3): 205–233.[Velasquez-Martinez et al., 2020a] Velasquez-Martinez, L.; Caicedo-Acosta, J. & Castellanos-Dominguez, G.: , 2020a; Entropy-based estimation of event-related de/synchronization in motor imagery using vector-quantized patterns; Entropy; 22 (6): 703.[Velasquez-Martinez et al., 2020b] Velasquez-Martinez, L.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020b; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14: 714.[Velásquez-Martínez et al., 2013] Velásquez-Martínez, L. F.; Álvarez-Meza, A. M. & Castellanos-Domínguez, C. G.: , 2013; Motor imagery classification for BCI using common spatial patterns and feature relevance analysis; en International Work-Conference on the Interplay Between Natural and Artificial Computation; Springer; págs. 365–374.[Velasquez-Martinez et al., 2020c] Velasquez-Martinez, L. F.; Zapata-Castano, F. & Castellanos-Dominguez, G.: , 2020c; Dynamic modeling of common brain neural activity in motor imagery tasks; Frontiers in Neuroscience; 14.[Verleysen & François, 2005] Verleysen, M. & François, D.: , 2005; The curse of dimensionality in data mining and time series prediction; en International work-conference on artificial neural networks; Springer; págs. 758–770.[Vidaurre et al., 2020] Vidaurre, C.; Haufe, S.; Jorajuría, T.; Müller, K.-R. & Nikulin, V. V.: , 2020; Sensorimotor functional connectivity: a neurophysiological factor related to BCI performance; Frontiers in Neuroscience; 14: 1278.[Vidaurre et al., 2021] Vidaurre, C.; Jorajuría, T.; Ramos-Murguialday, A.; Müller, K. R.; Gómez, M. & Nikulin, V. V.: , 2021; Improving motor imagery classification during induced motor perturbations; Journal of neural engineering; 18 (4): 0460b1.[Vidaurre et al., 2023] Vidaurre, C.; Gurunandan, K.; Idaji, M. J.; Nolte, G.; Gómez, M.; Villringer, A.; Müller, K.-R. & Nikulin, V. V.: , 2023; Novel multivariate methods to track frequency shifts of neural oscillations in eeg/meg recordings; NeuroImage; 276: 120178.[Vilela & Hochberg, 2020] Vilela, M. & Hochberg, L. R.: , 2020; Applications of brain-computer interfaces to the control of robotic and prosthetic arms; en Handbook of clinical neurology, tomo 168; Elsevier; págs. 87–99.[Volosyak et al., 2020] Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F. & Stawicki, P.: , 2020; Towards solving of the illiteracy phenomenon for vep-based brain-computer interfaces; Biomedical Physics & Engineering Express; 6 (3): 035034.[Wackernagel, 2003] Wackernagel, H.: , 2003; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.[Wackernagel, 2013] Wackernagel, H.: , 2013; Multivariate geostatistics: an introduction with applications; Springer Science & Business Media.[Wang et al., 2020a] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P. & Hu, X.: , 2020a; Score-CAM: Score-weighted visual explanations for convolutional neural networks; en Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops; págs. 24–25.[Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.[Wang et al., 2020b] Wang, H.; Xu, T.; Tang, C.; Yue, H.; Chen, C.; Xu, L.; Pei, Z.; Dong, J.; Bezerianos, A. & Li, J.: , 2020b; Diverse feature blend based on filter-bank common spatial pattern and brain functional connectivity for multiple motor imagery detection; IEEE Access; 8: 155590–155601.[Wang et al., 2021a] Wang, J.-G.; Shao, H.-M.; Yao, Y.; Liu, J.-L. & Ma, S.-W.: , 2021a; A personalized feature extraction and classification method for motor imagery recognition; Mobile Networks and Applications: 1–13.[Wang et al., 2019a] Wang, K.; Zhai, D.-H. & Xia, Y.: , 2019a; Motor imagination eeg recognition algorithm based on dwt, csp and extreme learning machine; en 2019 Chinese control conference (CCC); IEEE; págs. 4590–4595.[Wang et al., 2020c] Wang, K.; Xu, M.; Wang, Y.; Zhang, S.; Chen, L. & Ming, D.: , 2020c; Enhance decoding of pre-movement EEG patterns for brain–computer interfaces; Journal of Neural Engineering; 17 (1): 016033.[Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26.[Wang et al., 2019b] Wang, M.; Hu, J. & Abbass, H. A.: , 2019b; Stable eeg biometrics using convolutional neural networks and functional connectivity.; Aust. J. Intell. Inf. Process. Syst.; 15 (3): 19–26.[Wang et al., 2014] Wang, X.; Wang, A.; Zheng, S.; Lin, Y. & Yu, M.: , 2014; A multiple autocorrelation analysis method for motor imagery EEG feature extraction; en The 26th Chinese Control and Decision Conference (2014 CCDC); IEEE; págs. 3000–3004.[Wang et al., 2021b] Wang, Z.; Wang, F.; Liang, C. & Zhang, J.: , 2021b; A time-varying method for brain effective connectivity analysis of emotional EEG data; en 2021 IEEE 6th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA); IEEE; págs. 131–139.[Warrens, 2015] Warrens, M. J.: , 2015; Five ways to look at cohen’s kappa; Journal of Psychology & Psychotherapy; 5 (4): 1.[Wei & Luo, 2010] Wei, G. & Luo, J.: , 2010; Sport expert’s motor imagery: Functional imaging of professional motor skills and simple motor skills; Brain research; 1341: 52–62.[Wei et al., 2023] Wei, M.; Yang, R.; Huang, M.; Ni, J.; Wang, Z. & Liu, X.: , 2023; Sub-band cascaded csp-based deep transfer learning for cross-subject lower limb motor imagery classification; IEEE Transactions on Cognitive and Developmental Systems.[Willett et al., 2021] Willett, F. R.; Avansino, D. T.; Hochberg, L. R.; Henderson, J. M. & Shenoy, K. V.: , 2021; High-performance brain-to-text communication via handwriting; Nature; 593 (7858): 249–254.[Williams & Seeger, 2001] Williams, C. & Seeger, M.: , 2001; Using the nyström method to speed up kernel machines; en Proceedings of the 14th annual conference on neural information processing systems; CONF; págs. 682–688.[Wilroth et al., 2023] Wilroth, J.; Bernhardsson, B.; Heskebeck, F.; Skoglund, M. A.; Bergeling, C. & Alickovic, E.: , 2023; Improving eeg-based decoding of the locus of auditory attention through domain adaptation; Journal of Neural Engineering; 20 (6): 066022.[Wriessnegger et al., 2020] Wriessnegger, S. C.; Müller-Putz, G. R.; Brunner, C. & Sburlea, A. I.: , 2020; Inter-and intra-individual variability in brain oscillations during sports motor imagery; Frontiers in human neuroscience; 14: 576241.[Wu & Mooney, 2018] Wu, J. & Mooney, R. J.: , 2018; Faithful multimodal explanation for visual question answering; arXiv preprint arXiv:1809.02805.[Wu et al., 2020a] Wu, J.; Zhou, T. & Li, T.: , 2020a; Detecting epileptic seizures in EEG signals with complementary ensemble empirical mode decomposition and extreme gradient boosting; Entropy; 22 (2): 140.[Wu et al., 2019] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2019; Identifying functional brain connectivity patterns for EEG-based emotion recognition; en 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER); IEEE; págs. 235–238.[Wu et al., 2020b] Wu, X.; Zheng, W.-L. & Lu, B.-L.: , 2020b; Investigating EEG-based functional connectivity patterns for multimodal emotion recognition; arXiv preprint arXiv:2004.01973.[Xiao et al., 2018] Xiao, C.; Choi, E. & Sun, J.: , 2018; Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review; Journal of the American Medical Informatics Association; 25 (10): 1419–1428.[Xie et al., 2019] Xie, J.; Liu, F.; Wang, K. & Huang, X.: , 2019; Deep kernel learning via random fourier features; arXiv preprint arXiv:1910.02660.[Xie et al., 2018] Xie, X.; Yu, Z. L.; Gu, Z.; Zhang, J.; Cen, L. & Li, Y.: , 2018; Bilinear regularized locality preserving learning on riemannian graph for motor imagery BCI; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 26 (3): 698–708.[Xie & Oniga, 2020] Xie, Y. & Oniga, S.: , 2020; A review of processing methods and classification algorithm for EEG signal.; Carpathian Journal of Electronic & Computer Engineering; 12 (3).[Xiong et al., 2020] Xiong, X.; Yu, Z.; Ma, T.; Luo, N.; Wang, H.; Lu, X. & Fan, H.: , 2020; Weighted brain network metrics for decoding action intention understanding based on EEG; Frontiers in Human Neuroscience; 14: 232.[Xu et al., 2018] Xu, B.; Zhang, L.; Song, A.; Wu, C.; Li, W.; Zhang, D.; Xu, G.; Li, H. & Zeng, H.: , 2018; Wavelet transform time-frequency image and convolutional network-based motor imagery eeg classification; Ieee Access; 7: 6084–6093.[Xu et al., 2020a] Xu, J.; Grosse-Wentrup, M. & Jayaram, V.: , 2020a; Tangent space spatial filters for interpretable and efficient riemannian classification; Journal of Neural Engineering; 17 (2): 026043.[Xu et al., 2020b] Xu, J.; Zheng, H.; Wang, J.; Li, D. & Fang, X.: , 2020b; Recognition of eeg signal motor imagery intention based on deep multi-view feature learning; Sensors; 20 (12): 3496.[Xu et al., 2020c] Xu, M.; Yao, J.; Zhang, Z.; Li, R.; Yang, B.; Li, C.; Li, J. & Zhang, J.: , 2020c; Learning eeg topographical representation for classification via convolutional neural network; Pattern Recognition; 105: 107390.[Yang et al., 2021a] Yang, J.; Ma, Z. & Shen, T.: , 2021a; Multi-time and multi-band csp motor imagery eeg feature classification algorithm; Applied Sciences; 11 (21): 10294.[Yang et al., 2021b] Yang, J.; Yu, H.; Shen, T.; Song, Y. & Chen, Z.: , 2021b; 4-class mi-eeg signal generation and recognition with cvae-gan; Applied Sciences; 11 (4): 1798.[Yang et al., 2021c] Yang, L.; Song, Y.; Ma, K.; Su, E. & Xie, L.: , 2021c; A novel motor imagery eeg decoding method based on feature separation; Journal of Neural Engineering; 18 (3): 036022.[Yao et al., 2020] Yao, Y.; Ding, Y.; Zhong, S. & Cui, Z.: , 2020; EEG-based epilepsy recognition via multiple kernel learning; Computational and Mathematical Methods in Medicine; 2020.[Yeh et al., 2021] Yeh, C.-H.; Jones, D. K.; Liang, X.; Descoteaux, M. & Connelly, A.: , 2021; Mapping structural connectivity using diffusion MRI: Challenges and opportunities; Journal of Magnetic Resonance Imaging; 53 (6): 1666–1682.[Yeh et al., 2012] Yeh, Y.-R.; Lin, T.-C.; Chung, Y.-Y. & Wang, Y.-C. F.: , 2012; A novel multiple kernel learning framework for heterogeneous feature fusion and variable selection; IEEE Transactions on multimedia; 14 (3): 563–574.[Yen et al., 2023] Yen, C.; Lin, C.-L. & Chiang, M.-C.: , 2023; Exploring the frontiers of neuroimaging: a review of recent advances in understanding brain functioning and disorders; Life; 13 (7): 1472.[Yilmaz et al., 2018] Yilmaz, C. M.; Kose, C. & Hatipoglu, B.: , 2018; A quasi-probabilistic distribution model for eeg signal classification by using 2-d signal representation; Computer methods and programs in biomedicine; 162: 187–196.[Yu & Yu, 2021] Yu, J. & Yu, Z. L.: , 2021; Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems; Journal of Neural Engineering.[Yu et al., 2019] Yu, S.; Giraldo, L. G. S.; Jenssen, R. & Principe, J. C.: , 2019; Multivariate extension of matrix-based rényi’s α-order entropy functional; IEEE transactions on pattern analysis and machine intelligence; 42 (11): 2960–2966.[Yu et al., 2020] Yu, Z.; Ma, T.; Fang, N.; Wang, H.; Li, Z. & Fan, H.: , 2020; Local temporal common spatial patterns modulated with phase locking value; Biomedical Signal Processing and Control; 59: 101882.[Yuan et al., 2021] Yuan, K.; Chen, C.; Wang, X.; Chu, W. C.-w. & Tong, R. K.-y.: , 2021; Bci training effects on chronic stroke correlate with functional reorganization in motor-related regions: A concurrent eeg and fmri study; Brain sciences; 11 (1): 56.[Yuksel & Olmez, 2015] Yuksel, A. & Olmez, T.: , 2015; A neural network-based optimal spatial filter design method for motor imagery classification; PloS one; 10 (5): e0125039.[Zapała et al., 2020] Zapała, D.; Zabielska-Mendyk, E.; Augustynowicz, P.; Cudo, A.; Jaśkiewicz, M.; Szewczyk, M.; Kopiś, N. & Francuz, P.: , 2020; The effects of handedness on sensorimotor rhythm desynchronization and motor-imagery bci control; Scientific reports; 10 (1): 2087.[Zeiler & Fergus, 2014] Zeiler, M. D. & Fergus, R.: , 2014; Visualizing and understanding convolutional networks; en Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 ; Springer; págs. 818–833.[Zhang et al., 2021a] Zhang, A.; Lipton, Z. C.; Li, M. & Smola, A. J.: , 2021a; Dive into deep learning; arXiv preprint arXiv:2106.11342.[Zhang et al., 2020a] Zhang, B.; Yan, G.; Yang, Z.; Su, Y.; Wang, J. & Lei, T.: , 2020a; Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification; IEEE Transactions on Neural Systems and Rehabilitation Engineering; 29: 215–229.[Zhang et al., 2021b] Zhang, C.; Kim, Y.-K. & Eskandarian, A.: , 2021b; Eeg-inception: an accurate and robust end-to-end neural network for eeg-based motor imagery classification; Journal of Neural Engineering; 18 (4): 046014.[Zhang et al., 2020b] Zhang, D.; Chen, K.; Jian, D. & Yao, L.: , 2020b; Motor imagery classification via temporal attention cues of graph embedded eeg signals; IEEE journal of biomedical and health informatics; 24 (9): 2570–2579.[Zhang et al., 2020c] Zhang, K.; Xu, G.; Han, Z.; Ma, K.; Zheng, X.; Chen, L.; Duan, N. & Zhang, S.: , 2020c; Data augmentation for motor imagery signal classification based on a hybrid neural network; Sensors; 20 (16): 4485.[Zhang et al., 2021c] Zhang, K.; Robinson, N.; Lee, S.-W. & Guan, C.: , 2021c; Adaptive transfer learning for eeg motor imagery classification with deep convolutional neural network; Neural Networks; 136: 1–10.[Zhang et al., 2017] Zhang, L.; Chen, Y.; Tan, X.; He, C. & Zhang, L.: , 2017; An improved self-training algorithm for classifying motor imagery electroencephalography in brain-computer interface; Journal of Medical Imaging and Health Informatics; 7 (2): 330–337.[Zhang et al., 2018a] Zhang, R.; Xiao, X.; Liu, Z.; Jiang, W.; Li, J.; Cao, Y.; Ren, J.; Jiang, D. & Cui, L.: , 2018a; A new motor imagery EEG classification method FB-TRCSP+ RF based on CSP and random forest; IEEE Access; 6: 44944–44950.[Zhang et al., 2019] Zhang, R.; Li, X.; Wang, Y.; Liu, B.; Shi, L.; Chen, M.; Zhang, L. & Hu, Y.: , 2019; Using brain network features to increase the classification accuracy of MI-BCI inefficiency subject; IEEE Access; 7: 74490–74499.[Zhang et al., 2021d] Zhang, R.; Zong, Q.; Dou, L.; Zhao, X.; Tang, Y. & Li, Z.: , 2021d; Hybrid deep neural network using transfer learning for eeg motor imagery decoding; Biomedical Signal Processing and Control; 63: 102144.[Zhang et al., 2021e] Zhang, T.; Han, Z.; Chen, X. & Chen, W.: , 2021e; Subbands and cumulative sum of subbands based nonlinear features enhance the performance of epileptic seizure detection; Biomedical Signal Processing and Control; 69: 102827.[Zhang et al., 2018b] Zhang, W.; Tan, C.; Sun, F.; Wu, H. & Zhang, B.: , 2018b; A review of EEG-based brain-computer interface systems design; Brain Science Advances; 4 (2): 156–167.[Zhang et al., 2021f] Zhang, W.; Liang, Z. & Liu, Z.: , 2021f; Combination of variational mode decomposition for feature extraction and deep belief network for feature classification in motor imagery electroencephalogram recognition.; Sensors & Materials; 33.[Zhang et al., 2020d] Zhang, X.; Lu, D.; Shen, J.; Gao, J.; Huang, X. & Wu, M.: , 2020d; Spatial-temporal joint optimization network on covariance manifolds of electroencephalography for fatigue detection; en 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE; págs. 893–900.[Zhang et al., 2021g] Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D. & Zhang, Y.: , 2021g; A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers; Journal of neural engineering; 18 (3): 031002.[Zhang et al., 2018c] Zhang, Y.; Nam, C.; Zhou, G.; Jin, J.; Wang, X. & Cichocki, A.: , 2018c; Temporally constrained sparse group spatial patterns for motor imagery BCI; IEEE transactions on cybernetics; 49 (9): 3322–3332.[Zhao et al., 2021a] Zhao, N.; Zhang, H.; Liu, T.; Liu, J.; Xiang, Y.; Shu, G.; Li, C.; Xie, J. & Chen, L.: , 2021a; Neuromodulatory effect of sensorimotor network functional connectivity of temporal three-needle therapy for ischemic stroke patients with motor dysfunction: Study protocol for a randomized, patient-assessor blind, controlled, neuroimaging trial; Evidence-Based Complementary and Alternative Medicine; 2021.[Zhao et al., 2019a] Zhao, X.; Zhang, H.; Zhu, G.; You, F.; Kuang, S. & Sun, L.: , 2019a; A multi-branch 3d convolutional neural network for eeg-based motor imagery classification; IEEE transactions on neural systems and rehabilitation engineering; 27 (10): 2164–2177.[Zhao et al., 2019b] Zhao, Y.; Zhao, Y.; Durongbhan, P.; Chen, L.; Liu, J.; Billings, S.; Zis, P.; Unwin, Z. C.; De Marco, M.; Venneri, A. et al.: , 2019b; Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of alzheimer’s disease; IEEE transactions on medical imaging; 39 (5): 1571–1581.[Zhao et al., 2020] Zhao, Z.; Zhao, P. & Zhou, Q.: , 2020; A hierarchical stacking extreme learning machine for multi-classification; en 2020 Chinese Automation Congress (CAC); IEEE; págs. 4176–4181.[Zhao et al., 2021b] Zhao, Z.; Li, J.; Niu, Y.; Wang, C.; Zhao, J.; Yuan, Q.; Ren, Q.; Xu, Y. & Yu, Y.: , 2021b; Classification of schizophrenia by combination of brain effective and functional connectivity; Frontiers in Neuroscience; 15: 552.[Zhu et al., 2020] Zhu, L.; Su, C.; Zhang, J.; Cui, G.; Cichocki, A.; Zhou, C. & Li, J.: , 2020; EEG-based approach for recognizing human social emotion perception; Advanced Engineering Informatics; 46: 101191.[Zhuang et al., 2020] Zhuang, M.; Wu, Q.; Wan, F. & Hu, Y.: , 2020; State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review; Journal of Neurorestoratology; 8 (1): 12–25.[Zoumpourlis & Patras, 2022] Zoumpourlis, G. & Patras, I.: , 2022; Covmix: Covariance mixing regularization for motor imagery decoding; en 2022 10th International Winter Conference on Brain-Computer Interface (BCI); IEEE; págs. 1–7.[Zuk et al., 2020] Zuk, N. J.; Teoh, E. S. & Lalor, E. C.: , 2020; Eeg-based classification of natural sounds reveals specialized responses to speech and music; NeuroImage; 210: 116558.Sistema de visión artificial para el monitoreo y seguimiento de efectos analgésicos y anestésicos administrados vía neuroaxial epidural en población obstétrica durante labores de parto para el fortalecimiento de servicios de salud materna del Hospital Universitario de Caldas - SES HUC.Alianza científica con enfoque comunitario para mitigar brechas de atención y manejo de trastornos mentales y epilepsia en Colombia (ACEMATE).MINCIENCIAS,Universidad Nacional de ColombiaBibliotecariosEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86921/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1053839441 2024.pdf1053839441 2024.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf42810510https://repositorio.unal.edu.co/bitstream/unal/86921/2/1053839441%202024.pdfeff3df24235d9b0ef056bc845526e335MD52THUMBNAIL1053839441 2024.pdf.jpg1053839441 2024.pdf.jpgGenerated Thumbnailimage/jpeg5170https://repositorio.unal.edu.co/bitstream/unal/86921/3/1053839441%202024.pdf.jpg98f1a05f379d5e7b091cae20b523f4fbMD53unal/86921oai:repositorio.unal.edu.co:unal/869212024-10-09 23:52:04.543Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |