Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region
Uno de los requerimientos básicos para el manejo y la conservación de las especies es la correcta definición de sus poblaciones, es decir, cuántas poblaciones puede haber en un área particular y cómo se conectan entre sí. Esto se puede lograr de manera más efectiva utilizando enfoques genéticos en l...
- Autores:
-
Benavides Serrato, Milena
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79147
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/79147
- Palabra clave:
- Gene flow
Caribbean Sea
molecular markers
microsatellites
echinoderms
genetic population structure
Flujo Genético
Mar Caribe
estructura genética poblacional
marcadores moleculares
microsatélites
equinodermos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_22b5eb84be88c6f00b932ffda2887b28 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79147 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
title |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
spellingShingle |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region Gene flow Caribbean Sea molecular markers microsatellites echinoderms genetic population structure Flujo Genético Mar Caribe estructura genética poblacional marcadores moleculares microsatélites equinodermos |
title_short |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
title_full |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
title_fullStr |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
title_full_unstemmed |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
title_sort |
Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region |
dc.creator.fl_str_mv |
Benavides Serrato, Milena |
dc.contributor.advisor.spa.fl_str_mv |
Campos Campos, Néstor Hernando |
dc.contributor.author.spa.fl_str_mv |
Benavides Serrato, Milena |
dc.contributor.researchgroup.spa.fl_str_mv |
Fauna Marina Colombiana: Biodiversidad y Usos |
dc.subject.proposal.eng.fl_str_mv |
Gene flow Caribbean Sea molecular markers microsatellites echinoderms genetic population structure |
topic |
Gene flow Caribbean Sea molecular markers microsatellites echinoderms genetic population structure Flujo Genético Mar Caribe estructura genética poblacional marcadores moleculares microsatélites equinodermos |
dc.subject.proposal.spa.fl_str_mv |
Flujo Genético Mar Caribe estructura genética poblacional marcadores moleculares microsatélites equinodermos |
description |
Uno de los requerimientos básicos para el manejo y la conservación de las especies es la correcta definición de sus poblaciones, es decir, cuántas poblaciones puede haber en un área particular y cómo se conectan entre sí. Esto se puede lograr de manera más efectiva utilizando enfoques genéticos en las poblaciones a estudiar de una especie objeto para determinar la conectividad (flujo de genes) entre sitios de interés (por ejemplo, áreas marinas protegidas, áreas de pesca). En la provincia marina del Caribe, se han propuesto cuatro regiones de conectividad basados en complejos modelos hidrodinámicos de corrientes y datos genéticos especialmente de estudios de peces arrecifales del Caribe: Caribe Oriental, Caribe occidental, Bahamas y Panamá-Colombia. La dispersión es extensa dentro de las regiones, pero se desconoce la dispersión a lo largo de los bordes de esas regiones. Los esfuerzos para definir la conectividad marina y la estructura genética entre poblaciones se han centrado abrumadoramente en corales, esponjas y poblaciones de peces. En otros taxa marinos bien representados para el Caribe, faltan datos sobre la estructura genética de sus poblaciones y el flujo de genes. El erizo de mar Echinometra lucunter lucunter fue seleccionado como modelo para este estudio, principalmente debido a su amplia distribución en todo el Gran Caribe y sus características biológicas y ecológicas. El objetivo principal de esta investigación fue postular conexiones a nivel genético entre poblaciones naturales de invertebrados marinos a través de la región del Caribe con base en la especie modelo escogida, detectando si las discontinuidades marinas que se han identificado para otros taxa afectan esa conectividad, actuando como barreras para el flujo genético. Con este preámbulo, se buscó responder las siguientes preguntas utilizando microsatélites como marcadores moleculares: 1) ¿Cómo es la estructura genética de Echinometra lucunter lucunter a través del Mar Caribe? y 2) ¿Existe alguna influencia de discontinuidades marinas previamente detectadas a otros taxa en la conectividad entre poblaciones naturales de Echinometra lucunter lucunter?. Para alcanzar los objetivos, se diseñaron 26 microsatélites específicos para la especie basados en técnicas de secuenciación (NGS); diez de ellos se utilizaron para detectar la estructura genética de las poblaciones de E. lucunter lucunter a través del área, con base en varios índices genéticos y paquetes estadísticos. Los resultados mostraron en todos los loci y en todas las localidades, una heterocigosidad observada inferior a la esperada, mostrando un alto déficit de heterocigosidad reflejado por la desviación significativa del equilibrio de Hardy-Weingberg y los valores altos y positivos del coeficiente de endogamia (FIS) en todas las poblaciones y en todos los sitios. Hay varias razones discutidas por varios autores que podrían explicar potencialmente este comportamiento: 1). La variedad de opciones de apareamiento ligado al reconocimiento de proteínas de gametos, 2) la presencia de grupos de reproducción espacial vinculados a la estocasticidad en el éxito reproductivo, 3) parches en la distribución de gametos y 4) la dispersión colectiva de larvas genéticamente relacionadas en el plancton. Los sitios dentro del mar Caribe escogidos para este estudio muestran una clara evidencia de estructuración y flujo genético para E. lucunter lucunter a lo largo del Mar Caribe. Es evidente la presencia de tres grupos genéticamente distintos, uno con las estaciones del mar Caribe colombiano (con diferencias significativas entre los sitios), un segundo grupo con las estaciones de Venezuela y Belice y un tercer grupo con la estación de Puerto Rico. La estructuración y el flujo genético evidenciado entre las poblaciones de E. lucunter lucunter aparentemente están relacionados con las discontinuidades marinas encontradas, tales como la influencia de factores físicos (como, por ejemplo, las corrientes marinas y las rupturas geomorfológicas), así como las características biológicas de la especie, los cuales también han sido detectados en otros taxa marinos estudiados en el Caribe. Con los resultados de esta investigación, se demuestra la influencia de discontinuidades (corrientes marinas y rompimientos geomorfológicos) en el comportamiento de la etapa larval de Echinometra lucunter lucunter, evidenciado con los mosaicos espaciales heterogéneos de dispersión marina de la especie a través del mar Caribe colombiano frente al escenario homogéneo que se muestra en la conexión genética a través del Mar Caribe Occidental. Los resultados de este trabajo tienen implicaciones importantes para la aplicación de estrategias de conservación y manejo de áreas marinas protegidas, y pueden generar aportes importantes para investigadores y tomadores de decisiones. |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-10-19 |
dc.date.accessioned.spa.fl_str_mv |
2021-02-09T13:25:57Z |
dc.date.available.spa.fl_str_mv |
2021-02-09T13:25:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Benavides-Serrato, M. 2020. Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region. Thesis presented as a partial requirement to qualify for the title of Doctor en Ciencias-Biología. Universidad Nacional de Colombia. Instituto de Estudios en Ciencias del Mar-CECIMAR, Sede Caribe. 96 p. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79147 |
identifier_str_mv |
Benavides-Serrato, M. 2020. Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region. Thesis presented as a partial requirement to qualify for the title of Doctor en Ciencias-Biología. Universidad Nacional de Colombia. Instituto de Estudios en Ciencias del Mar-CECIMAR, Sede Caribe. 96 p. |
url |
https://repositorio.unal.edu.co/handle/unal/79147 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abbott, D. P., J. C. Ogden and I. A. Abbott. 1974. Studies on the activity pattern, behaviour and food of the echinoid Echinometra lucunter (Linnaeus) on beachrock and algal reefs at St. Croix, U. S. Virgin Islands. West Indies Laboratory Special Publication No. 4. Fairleigh Dickinson University, Christiansted, St. Croix, U. S. Virgin Islands. iv + 111 p. Almanza-Bernal, M., Márquez, E. J. and L. Chasqui. 2016. Evaluación de amplificación cruzada de microsatélites para estudios de genética poblacional del Cazón Antillano Rhizoprionodon porosus (Carcharhinidae) en el Caribe Colombiano. Bol. Invest. Mar. Cost. 45(1):41-56. Alonso, D., L. F. Ramírez, C. Segura-Quintero, P. Castillo-Torres, T. Walschburger and N. Arango. 2008. Hacia la construcción de un Subsistema Nacional de Áreas Marinas Protegidas en Colombia. Instituto de Investigaciones Marinas y Costeras INVEMAR, Unidad Administrativa Especial del Sistema de Parques nacionales Naturales UAESPNN y The Nature Coservancy TNC. Santa Marta, Colombia, 20 p. Alvarado, J. J. 2010. Echinoderm diversity in the Caribbean Sea. Mar. Biod., 41:261–285. Alvarado, J. J., and F. A. Solís-Marín (eds.). 2013. Echinoderm Research and Diversity in Latin America. Springer, Berlin. 675 p. DOI: 10.1007/978-3-642-20051-9_2. Álvarez-León, R., J. Aguilera-Quiñones, C. A. Andrade-Amaya and P. Nowak. 1995. Caracterización general de la zona de surgencia en la Guajira Colombiana. Revista Acad. Colomb. Ci. Exact., 19(75):679-694. Andrade, C. A. 2001. Las corrientes superficiales en la Cuenca de Colombia observadas con boyas de deriva. Rev. Acad. Colomb. Cienc., 25(96):321-335. Andrade, C. A. 2009. La circulación y variabilidad de la Cuenca de Colombia en el mar Caribe. Edición especial CIOH, DIMAR. Andrade, C. A: 2012. Oceanografía del archipiélago de San Andrés, Providencia y Santa Catalina pp (53-59). en CORALINA-INVEMAR, 2012. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28. Santa Marta, Colombia 180 p. Andrade, C. A and E. D. Barton. 2000. Eddy development and motion in the Caribbean. J. Geophys. Res., 105:191-201. Andrade, C. A, L. Giraldo and S. Lonin. 1997. Nota sobre la circulación de las aguas en el Bajo Alicia y el sector de San Andrés Islas. Boletín Científico CIOH (17):27-36. Andrade, C. A., E. D. Barton and C. N. K. Mooers. 2003. Evidence for an eastward flow along the Central and South American Caribbean Coast. J. Geophys. Res., 108: (C6):3185. Andras, J. P., K. I. Rypien and C. D. Harvell. 2013. Range wide population genetic structure of the Caribbean Sea fan coral, Gorgonia ventalina. Mol. Ecol., 22, 56-73. Astudillo, D., J. Rosas, A. Velásquez, T. Cabrera and C. Maneiro. 2005. Crecimiento y supervivencia de larvas de Echinometra lucunter (Echinoidea: Echinometridae) alimentadas con las microalgas Chaetoceros gracilis e Isochrysis galbana. Rev. Biol. Trop., 53:377-344. Avise, J. C. 1992. Molecular population structure and biogeographic history of a regional fauna: a case history with lessons for conservative biology. Oikos., 63(1):62–76. Bak, R. P. M. 1990. Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser., 66:267-272. Baums, I. B., M. W. Miller and M. E. Hellberg. 2005. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol., 14:1377–1390. Benavides, M. 2013. Diversidad y estructura genética de las poblaciones del erizo Eucidaris tribuloides en el Caribe colombiano y su relación con las discontinuidades marinas del área. XV Seminario Nacional de Ciencias y Tecnologías del Mar, SENALMAR, Cartagena, Colombia. 16-20 de Septiembre 2013. Benavides-Serrato, M., Y. F. Contreras-Rueda, L. M. Barrios-Gardelis, G. Fox, T. D. Hugues, N. H. Campos-Campos and R. Preziosi. 2020. Isolation and characterization of 17 polymorphic microsatellite loci for a sea urchin (Echinometra lucunter: Echinometridae). Revista Acad. Colomb. Ci. Exact., 44(172):759-767. Benavides-Serrato, M. and G. H. Borrero-Pérez. 2010. Equinodermos de la plataforma y la franja superior del talud continental del Caribe colombiano. Pp (255-277). En INVEMAR (Eds). 2010. Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar, No. 20 p. 458. Benham, C. E., K. J. Supernault and R. S. Burton. 2012. Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus franciscanus). Journ. Exp. Mar. Biol. Ecol.,47-54. Betancur-R, R., A. Acero P., H. Duque-Caro and S. R. Santos. 2010. Phylogenetic and Morphologic Analyses of a Coastal Fish Reveals a Marine Biogeographic Break of Terrestrial Origin in the Southern Caribbean. PloS ONE 5(7): e11566. doi: 10.1371/journal.pone.0011566. Betancur-R, R. A. Hines, A. Acero P., G. Ortí, A. E. Wilbur and D. W. Freshwater. 2011. Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J. Biogeogr., 38:1281−1293. Biermann, C. H. 1998. The molecular evolution of sperm bindin in six species of sea urchins (Echinoida: Strongylocentrotidae). Mol. Biol. Evol., 15(12):1761–1771. Blacket, M. J., C. Robin, R. T. Good, S. F. Lee and A. D. Miller. 2012. Universal primers for fluorescent labelling of PCR fragments – an effective approach to genotyping by fluorescence. Mol. Ecol. Resour., 12:456-463. Blanco, J. A., 1988. Las variaciones ambientales estacionales en las aguas costeras y su importancia para la pesca en la región de Santa Marta, Caribe colombiano. Tesis de Maestría, Universidad Nacional de Colombia, 50 p. Borrero-Pérez G. H., M. Benavides-Serrato and C. M. Diaz-Sanchez. 2012. Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea. Serie de Publicaciones Especiales de Invemar No. 30. Santa Marta, 250 p. Broquet, T. F. Viard and J. M. Yearsley. 2013. Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evol., 67:1660–1675. Calderón, I. and X. Turon. 2010. Temporal genetic variability in the Mediterranean common sea urchin Paracentrotus lividus. Mar Ecol Prog Ser., 408:149–159. Calderón, I. N. Ortega, S. Duran, M. A. Becerro, M. Pascual and X. Turon. 2007. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Mol. Ecol., 16:1799-1810. Calderón, I., G. Giribet and X. Turon. 2008. Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Mar. Biol., 154:137–151. Calderón, I., Turon, X. and M. Pascual. 2009. Isolation of 9 nuclear microsatellites in the common Mediterranean sea urchin Paracentrotus lividus (Lamarck). Mol. Ecol. Resour., 1145-1147. Cameron, R. A. 1986. Reproduction larval occurrence and recruitment in Caribbean sea urchins. Bull. Mar. Sci., 39:335-342. Carlin, J. L., D. R. Robertson and B. W. Bowen. 2003. Ancient divergences and recent connections in two tropical Atlantic reef fishes Epinephelus adscensionis and Rypticus saponaceous (Percoidei: Serranidae). Mar. Biol., 143:1057-1069. Carreras-Carbonell, J., E. Macpherson and M. Pascual. 2006. Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol. Ecol., 15:3527-3539. Chandler, L. M., L. J. Walters, W. C. Sharp and E. A. Hoffman. 2017. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci., 93(3):881-889. Chaves-Fonnegra, A., K. A. Felddheim, J. Secord and J. V. Lopez. 2015. Population structure and dispersal of the coral‐excavating sponge Cliona delitrix. Mol. Ecol., 24(7):1447-1466. Chesher, R. H. 1968. The systematics of sympatric species in West Indian Spatangoids: A revision of the genera Brissopssis, Plethotaenia, Paleopneustes and Savinaster. Studies in tropical oceanography (Miami), 7, 165 p. Chollett, I., P. J. Mumby, F. E. Müller-Karger and H. Chuanmin. 2012. Physical environments of the Caribbean Sea. Limnol. Oceanogr., 57(4):1233-1244. Corredor, J. E. 1979. Phytoplankton response to low level nutrient enrichment through upwelling in the Colombian Caribbean basin. Deep-Sea. Res., Part A, 26:731-741. Couvray, S. and Coupé S. 2018. Three-year monitoring of genetic diversity reveals a micro-connectivity pattern and local recruitment in the broadcast marine species Paracentrotus lividus. Heredity., 120:110. Cowen, R. K., C. B. Paris and A. Srinivasan. 2006. Scaling of population connectivity in marine populations. Science., 311:522–527. Culley, T. M., T. I. Stamper, R. L. Stokes, J. R. Brzski, N. A. Hardman, M. R. Klooster and B. J. Merritt. 2013. An efficient technique for primer development and application that integrates fluorescent labelling and multiplex PCR. Application in Plant Sciences, 1(10):1-10. Day, A. J and B. L Bayne. 1988. Allozyme variation in population of the dog-welk Nucella lapillus (Prosobranchia, Muriacea) from the south-west peninsula of England. Mar. Biol., 99:93–100. Dethier, M. N., K. McDonald and R. R. Strathmann. 2003. Colonization and connectivity of habitat patches for coastal marine species distant from source populations. Conserv. Biol.,17:1024–1035. Díaz, J. M. 1991. Ecosistemas litorales del Caribe colombiano. Documento de trabajo No. 4, p. 1-34. In CORPES (eds.). Perfil ambiental del Caribe colombiano. Santa Marta. Díaz-Ferguson, E., R. Haney, J. Wares and B. Silliman. 2010. Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity. PLoS ONE 5(9): e12675. doi:10.1371/journal.pone.0012675. Díaz-Ferguson, E., R. A. Haney, J. P. Wares and B. R. Silliman. 2011. Genetic Structure and Connectivity Patterns of two Caribbean Rocky Intertidial gastropods. Journ. Moll. Stud., 0:1-7. Duffy, J. E. 1993. Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Mar. Biol., 116:459–470. Duran, S., C. Palacin, M. A. Becerro, X. Turon and G. Giribet. 2004a. Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata: Echinoidea). Mol. Ecol., 13:3317-3328. Duran, S., M. Pascual, A. Estoup and X. Turon. 2004b. Strong population structure in the sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol. Ecol., 13:511–522. Earl, D. A and B. M. VonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2):359–361 DOI 10.1007/s12686-011-9548-7. Ebert, T. A., M. P. Russell, G. Gamba and A. Bodnar. 2008. Growth, survival, and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata, Echinoidea) in Bermuda. Bull. Mar. Sci., 82:381–403. Emlet, R. B., L. R. McEdward and R. R. Strathman. 1987. Echinoderm larval ecology viewed from the egg. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm Studies, vol. 2. Balkema, Rotterdam, pp. 55–136. Espinoza G., R. A., J. L. Reyes, J. H. Himmelman and C. Lodeiros. 2008. Actividad reproductiva de los erizos Lytechinus variegatus y Echinometra lucunter (Echinodermata: Echinoidea) en relación con factores ambientales en el Golfo de Cariaco, Venezuela. Rev. Biol. Trop., 56(3):341-350. Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol., 14(8):2611–2620 DOI 10.1111/j.1365-294X.2005.02553.x. Excoffier L, Laval G and Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:47–50 DOI 10.1177/117693430500100003. Farfante, P. 1959. Los erizos irregulares de Cuba. Islas 1(2):331 372. Fell, F. J. 1974. The echinoids of Easter Island (Rapa Nui). Pac. Sci., 28:147-158. Fisher, J. L., W. T. Peterson and S. G. Morgan. 2014. Does larval advection explain latitudinal differences in recruitment across upwelling regimes?. Mar. Ecol. Prog. Ser., 503: 23-137. Fox, G., Preziosi, R. F., Antwis, R. E., Benavides‐Serrato M., Combe, F. J., Harris, W. E., Hartley, I. R., Kitchener, A. C., De Kort, S. R., Nekaris, A. I., Rowntree, J. K. 2019. Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi). Mol Ecol Resour., 00:1–9. Doi: https://doi.org/10.1111/1755-0998.13065. Galarza, J. A., J. Carreras-Carbonell, E. Macpherson, M. Pascual, S. Roques, G. F. Turner and C. Rico. 2009. The influence of oceanographic fronts and early-life history traits on connectivity among fish populations: a multispecies approach. PNAS., 106: 1473-1478. Galindo, H. M., D. B. Olson and S. R. Palumbi. 2006. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol., 16:1622–1626. García-Cisneros, A., C. Valero-Jiménez, C. Palacín and R. Pérez-Portela. 2013. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conserv Genet. Resour., 5:749–753. Geyer, L. B. and H. A. Lessios. 2009. Lack of character displacement in the male recognition molecule, bindin, in Atlantic sea urchins of the genus Echinometra. Mol. Biol. and Evol.. 26 (9): 2135–2146. https://doi.org/10.1093/molbev/msp122. Gordon, A. L. 1967. Circulation of the Caribbean Sea. J. Geophys. Res., 72:6207–6223. Griffiths, S. M. 2013. Isolating microsatellite markers in the marine sponge Cinachyrella alloclada for use in community and population genetics studies. A thesis submitted to the University of Manchester for the degree of MPhil Environmental Biology in the Faculty of Life Sciences. 31 p. Griffiths, S. M., G. Fox, P. J. Briggs, I. J. Dolnaldson, S. Hood, P. Richardson, G. W. Leaver, N. K. Truelove and R. F. Preziosi. 2016. A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conservation. Genet. Resour., 8:481-486. Gyory, J., Mariano, A. J. and Ryan, E. H. 2013. The Caribbean current. Ocean surface currents. Retrieved from http://oceancurrents.rsmas.miami.edu/ caribbean/caribbean.html. Hellberg, M. E., R. S. Burton, J. E. Neigel and S. R. Palumbi. 2002. Genetic assessment of connectivity among marine populations. Bull. Mar. Sci., 70:273-290. Hendler, G., J. Miller, D. Pawson and P. Kier. 1995. Sea stars, sea urchins, and Allies Echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington and London. 390 p. Hofmann, E. E. and S. J. Worley. 1986. An investigation of the circulation of the Gulf of Mexico. J. Geophys. Res., 91:14221–14236, doi:10.1029/JC091iC12p14221. Holley, C. E. and P. G. Geerts. 2009. Multiplex Manager 1.0: A crossplatform computer program that plans and optimizes multiplex PCR. Biotechniques., 46:511-517. Hoskin, C. M., J. K. Reed and D. H. Mook. 1986. Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar. Geol., 73(12):125-144. Hubisz, M. J., D. Falush, M. Stephens and J. K. Pritchard. 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour., 9(5):1322–1332 DOI 10.1111/j.1755-0998.2009.02591.x. Hunt, A. 1993. Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar. Ecol. Prog. Ser., 92:179–186. Hunt, M. 1969. A preliminary investigation of the habits and habitat of the rock-boring urchin Echinometra lucunter near Devonshire Bay, Bermuda, p. 35-40. In: Ginsberg, R. N. and P. Garrett, eds.. Seminar on organism-sediment interrelationships: Bermuda Biol. Sta. Spec. Pub., 2, 153 p. Imbach, P., L. Molina, B. Locatelli, O. Roupsard, P. Ciais, L. Corrales and G. Mahe. 2010. Climatology-based regional modelling of potential vegetation and average annual longterm runoff for Mesoamerica. Hydrol. Earth Syst. Sci., 14:1801–1817, doi:10.5194/hess-14-1801-2010. INVEMAR-ANH. 2012. Estudio Línea base ambiental y pesquera en la Reserva de Biósfera Seaflower (Archipiélago de San Andrés, Providencia y Santa Catalina) como aporte al conocimiento y aprovechamiento sostenible de los recursos para la región-FASE I. Informe técnico final. Santa Marta, 155 p. Jakobsson, M. and N. A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics., 23(14):1801–1806 DOI 10.1093/bioinformatics/btm233. Janson, K. and R. D. Ward. 1984. Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biol. J. Linnean. Soc., 22:289–307. Jombart, T. 2008. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405 DOI 10.1093/bioinformatics/btn129. Jossart, Q., L. B. Geyer and H. A. Lessios. 2015. Characterization of eight microsatellite loci for the sea urchin Meoma ventricosa (Spatangoida, Brissidae) through Next Generation Sequencing. Bio. Syst. Ecol., 59:100-103. Jossart, Q., C. De Ridder, H. A. Lessios, M. Bauwens; S. Motreuil, T. Rigaud, R. Wattier and B. David. 2017. Highly contrasted population genetic structures in a host–parasite pair in the Caribbean Sea. Ecol. Evol., 7:9267-9280. Kinder, T. H. 1983. Shallow currents in the Caribbean Sea and Gulf of Mexico as observed with satellite-tracked drifters. Bull. Mar. Sci., 33:239-246. Kinder, T. H., G. W. Heburn and A. W. Green. 1985. Some aspects of the Caribbean circulation. Mar. Geol., 68:25–52. Kinjo, S., Y. Shirayama and H. Wada. 2004. Phylogenetic relationships diversity in the family Echinometridae (Echinoidea, Echinodermata). In: Echinoderms: München – Heinzeller & Nebelsick (eds), 527-530. Kool, J. T., Paris, C. B., Andréfouët, S. and Cowen, R. K. 2010. Complex migration and the development of genetic structure in subdivided populations: An example from Caribbean coral reef ecosystems. Ecography, 33:597–606. Kroh, A. and R. Mooi. 2019. World Echinoidea Database. Accessed at http://www.marinespecies.org/echinoidea on 2019-02-4. doi:10.14284/355. Lacson, J. M. 1992. Minimal genetic variation among samples of six species of coral reef fishes collected at La Parguera, Puerto Rico, and Discovery Bay, Jamaica. Mar. Biol., 112:327–331. Landínez-García, R. M., S. P. Ospina-Guerrero, D. J. Rodríguez-Castro, R. Arango and E. Márquez-Fernández. 2009. Genetic analysis of Lutjanus synagris populations in the Colombian Caribbean. Cienc. Mar., 35(4):321-331. Lessios, H. A., 1981. Reproductive periodicity of the echinoids Diadema and Echinometra on the two Coasts of Panama. J. Exp. Mar. Biol. Ecol., 50:47–61. Lessios, H. A., Robertson, D. R. and J. D. Cubit. 1984. Spread of Diadema mass mortality through the Caribbean. Science, 226:335–337. Lessios, H. A., S. Lockhart, R. Collin, G. Sotil, P. Sánchez-Jerez, K. S. Zigler, et al. 2012. Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol. Ecol., 21:130–144. Lewis, J. B. and G. S. Storey. 1984. Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats. Mar. Ecol. Prog. Ser., 15:207-211. Lluvia-Flores R and L. V. Andrews. 2013. Scoring Microsatellite Loci. Chapter 21. In: Clifton N. J. Methods in molecular biology, 1-20 p. Lodeiros, C. and N. Garcia. 2004. The use of sea urchins to control fouling during suspended culture of bivalves. Aquacul., 231:293–298. Lozano-Cortés D. F., E. Londoño-Cruz and F. A. Zapata. 2011. Bioerosión de sustrato rocoso por erizos en Bahía Málaga (Colombia), Pacífico Tropical. Rev. Cienc., 15:9-22. Lozano-Duque, Y., J. Medellín-Mora and G. R. Navas. 2010. Contexto climatológico y oceanográfico del Mar Caribe Colombiano. 52-83. En INVEMAR (Eds). 2010. Biodiversidad del margen continental del mar Caribe colombiano. Serie de Publicaciones Especiales, Invemar No 20. p 458. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Can. Resear., 27:209–220. Márquez‐Fernández, E., R. Landínez, S. Ospina, J. A. Segura, M. Prada, E. Castro and J. L. Correa. 2013. Genetic Analysis of Queen Conch Strombus gigas from the South West Caribbean. Book of Abstracts. 65 Conference Gulf and Caribbean Fisheries Institute. Santa Marta, p. 114. Marshall, T. C., J. Slate, L. E. B. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol., 7(5):639–655. DOI 10.1046/j.1365-294x.1998.00374.x. McCartney, M. A. and H. A. Lessios. 2004. Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra. Mol. Biol. Evol., 21:732–745. McCartney, M. A., G. Keller and H. A. Lessios. 2000. Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol. Ecol., 9: 1391-1400. McClanahan, T. R. and N. A. Muthiga. 2013. Chapter 23: Echinometra. 337-353. In: Lawrence, J. M (eds). 2013. Sea Urchins: Biology and Ecology. Elsevier. 530 pp. McLean, R. F. 1967. Erosion of burrows in beachrock by the tropical sea urchin Echinometra lucunter. Can. Jour. Zool., 45:586-588. McMillan, W. O., R. A Raff and S. R Palumbi. 1992. Population genetic consequences of developmental evolution and reduced dispersal in sea urchins (genus Heliocidaris). Evol., 46:1299–1312. McPherson, B. F. 1969. Studies on the biology of the tropical sea urchin Echinometra lucunter and Echinometra viridis. Bull. Mar. Sci., 19:194-213. McPherson, E. and N. Raventos. 2006. Relationship between pelagic larval duration and geographic distribution in Mediterranean littoral fishes. Mar. Ecol-Prog. Ser., 327:257-265. Meirmans, P. G. and P. W. Hedrick. 2011. Assessing population structure: FST and related measures. Mol. Ecol. Resour., 11(1): 5-18 DOI 10.1111/j.1755-0998.2010.02927.x. Metaxas, A. and C. M. Young. 1998. Response of echinoid larvae to food patches of different algal densities. Mar. Biol., 130:433-445. Metz, E. C. and S. R. Palumbi. 1996. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol., 13:397–406. Metz, E. C., G. Gomez-Gutierrez and V. D. Vacquier. 1998. Mitochondrial DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol. Biol. Evol., 15:185–195. Miller, K. M., K. H., Kaukinen, K. Laberee, K. J. Supernault. 2004. Microsatellite loci from red sea urchins (Strongylocentrotus franciscanus). Mol. Ecol. Notes., 4:722-724. Miloslavich, P., J. M. Díaz, E. Klein, J. J. Alvarado, C. Díaz, J. Gobin, E. Escobar-Briones, J. J. Cruz-Motta, E. Weil, J. Cortés, A. C. Bastidas, R. Robertson, F. Zapata, A. Martín, J. Castillo, A. Kazandjian, M. Ortiz. 2010. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE 5(8): e11916. doi:10.1371/journal.pone.0011916. Monroy-López, M. and O. D. Solano. 2005. Estado poblacional de Echinometra lucunter (Echinoida: Echinometridae) y su fauna acompañante en el litoral rocoso del Caribe colombiano. Rev. Biol. Trop., 53(3):291-297. Monroy-López, M. and O. D. Solano. 2008. Ophiothrix synoecina (Echinodermata: Ophiuroidea:Ophiotrichidae): Especie Endémica y Vulnerable del Caribe Colombiano. Bol. Invest. Mar. Cost., 37(1):191-196. Mortensen, T. H. 1921. Studies of the development and larval forms of echinoderms. GEC Gad, Copenhagen. Mortensen, T. H. 1928. A monograph of the Echinoidea. Cidaroida. Vol I. C. A. Reitzel, Copenhagen. 551 pp, 88 pls. Mortensen, T. H. 1935. A monograph of the Echinoidea. Bothriocidaroida, Meonechinoida, Lepidocentroida and Stiridonta. Vol II. Copenhagen. 647 pp. 377 figures, 89 pls. page(s): 239-241. Mortensen, T. H. 1937. Contributions to the study of the development of the larval forms of the echinoderms III. Memoirs de l’Academie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 1–65 9me serie t. VII. No. 1. Mortensen, T. H. 1940. A monograph of the Echinoidea. Aulodonta, With additions to Vol. II (Lepidocentra and Stirodonta). Vol III.1. C.A. Reitzel, Copenhagen. iv + 370 p, 77 pls. Mortensen, T. H. 1943a. A monograph of the Echinoidea. Camarodonta. I. Orthopsidae, Glyphocyphidae, Temnopleuridae and Toxopneustidae. Vol III.2. C. A. Reitzel, Copenhagen. 553 pp, 56 pls. Mortensen, T. H. 1943b. A monograph of the Echinoidea. Camarodonta II. Echinidae, Strongylocentrotidae, Parasaleniidae, Echinometridae. Vol III.3. C. A. Reitzel, Copenhagen. vi + 446 pp, 66 pls. Mortensen, T. H. 1948a. A Monograph of the Echinoidea. Holectypoida, Cassiduloida. Vol IV.I. C. A. Reitzel, Copenhagen. viii + 371 pp, 15 pls. Mortensen, T. H. 1948b. A Monograph of the Echinoidea. Clypeastroida. Clypeastridae, Arachnoididae, Fibulariidae, Laganidae and Scutellidae. VolIV.2. C. A. Reitzel, Copenhagen. viii + 471 pp, 72 pls. Mortensen, T. H. 1950. A monograph of the Echinoidea. Spatangoida I. Vol V.1. 25 plates. 315 figures. Text 421pp. Mortensen, T. H. 1951. A Monograph of the Echinoidea. V, 2. Spatangoida II. Amphisternata II. Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ. Copenhagen (C. A. Reitzel). 593 p. Müller-Karger, F. E., R. Varela, R. Thunell, Y. Astor, H. Zhang, R. Luerssen and C. Hu. 2004. Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea. Res., II 51:927–943, doi:10.1016/j.dsr2.2003.10.010. Muthiga, N. A. 1996. The role of early life history strategies on the population dynamics of the sea urchin Echinometra mathaei (De Blainville) on reefs in Kenya. PhD Thesis. University of Nairobi. 273 p. Muthiga, N. A. and V. Jaccarini. 2005. Effects of seasonality and population density on the reproduction of the Indo-Pacific echinoid Echinometra mathaei in Kenyan coral reef lagoons. Mar. Biol., 146:445–453. Nagelkerken, I., G. Smith and E. Snelders. 1999. Sea urchin Meoma ventricosa die-off in Curaçao (Netherlands Antilles) associated with a pathogenic bacterium. Dis. Aquati. Org., 38:71-74. Narváez, J. C., Orozco, G., Aguirre, J. C., E. Muñoz., J. Quintero., F. Bolívar., T. Narváez., R. Mendoza, L. Castro and L. O. Duarte. 2015a. Estudio Piloto del efecto de desborde en Áreas Marinas Protegidas (AMP) del Caribe de Colombia. Estado genético y conectividad de la población del pargo rayado Lutjanus synagris en sitios dentro y fuera de las Áreas Marinas Protegidas (AMP) de Parques Nacionales Naturales De La Territorial Caribe. Programas de Ingeniería Pesquera y Biología, Vicerrectoría de Investigación, Universidad del Magdalena. 25 pp. Narváez, J. C., Orozco, G., Aguirre, J. C., E. Muñoz., J. Quintero., F. Bolívar., T. Narváez., R. Mendoza, L. Castro y L. O. Duarte. 2015b. Estudio Piloto del efecto de desborde en Áreas Marinas Protegidas (AMP) del Caribe de Colombia. Estado genético de la población del lebranche Mugil liza en sitios dentro y fuera de las Áreas Marinas Protegidas (AMP) de Parques Nacionales Naturales De La Territorial Caribe. Programas de Ingeniería Pesquera y Biología, Vicerrectoría de Investigación, Universidad del Magdalena. 20 pp. Odgen, J. C. 1976. Some aspects of herbivore plants relationships on Caribbean reefs and sea grass beds. Aqua. Bot., 2:103-116. Odgen, J. C. 1977. Carbonate Sediment Production by Parrot Fish and Sea Urchins on Caribbean Reefs. Stud. In Geol. (Am. Assoc. Petrol. Geol)., 4:281-288. Ogden, J. C., D. P. Abbott and I. Abbott (eds). 1973. Studies on the activity and food of the echinoid Diadema antillarum Philippi on a West Indian patch reef: West Indies Lab. Spec. Pub. 2, 96 p. Orozco Berdugo, G. and J. C. Narváez Barandica. 2014. Genetic diversity and population structure of bocachico Prochilodus magdalenae (Pisces, Prochilodontidae) in the Magdalena River basin and its tributaries, Colombia. Genet. Mol. Biol., 37(1):37–45 DOI 10.1590/s1415-47572014000100008. Ospina-Guerrero, S. P., R. M. Landínez-García, D. J. Rodríguez Castro, R. Arango and E. Márquez. 2008. Conectividad genética de Stegaster partitus en el Caribe sur evidenciada por análisis microsatellite. Cienc. Mar., 34(2):155-163. Ovenden, J. R., D. J. Brasher and R. W. White. 1992. Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii supports an apparent absence of population subdivision throughout Australasia. Mar. Biol., 112:319–326. Palumbi, S. R and A. C. Wilson. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evol., 44:403–415. Palumbi, S. R. 1996. Macrospatial genetic structure and speciation in marine taxa with high dispersal abilities. In: Ferraris, J. D., Palumbi, S. R., ed. Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss, 101-117. Palumbi, S. R. 1999. All males are not created equal: fertility differences depend on gametic polymorphisms in sea urchins. Evol., 96:12632–12637. Palumbi, S. R. 2004. Marine reserves and Ocean neighborhoods: The spatial scale of marine populations and their management. Annu. Rev. Environ. Resour., 29:31‐68. Palumbi, S. R., G. Grabowsky, T. Duda, L. Geyer and N. Tachino. 1997. Speciation and population genetic structure in tropical Pacific sea urchins. Evol., 51:1506-1517. Paris, C. B. and R. K. Cowen. 2004. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr., 49:1964–1979. Peakall, R. and P. E: Smouse. 2006. Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288–295 DOI 10.1111/j.1471-8286.2005.01155.x. Pearse, J. S. 1969. Reproductive periodicities of Indo-pacific invertebrates in the Gulf of Suez. II. The echinoid Echinometra mathaei (de Blainville). Bull. Mar. Sci., 19:580–613. Pearse, J. S. and R. Cameron. 1991. Echinodermata: Echinoidea. In: Giese, A.C., Pearse, J.S., Pearse, V.B. (Eds.), Reproduction of Marine Invertebrates, Echinoderms and Lophophorates, volume VI. Boxwood Press, Pacific Grove, pp. 513–662. Pérez-Portela, R., O. S. Wangensteen, A. Garcia-Cisneros, C. Valero-Jiménez, C. Palacin and X. Turon. 2018. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity., 122:244-259. Pérez-Ruzafa, A., J. J. Alvarado, F. A. Solís-Marín, J. C. Hernández, A. Morata, C. Marcos, M. Abreu-Pérez, O. Aguilera, J. Alió, J. J. Bacallado-Aránega, E. Barraza, M. Benavides-Serrato, F. Benítez-Villalobos, L. Betancourt- Fernández, M. Borges, M. Brandt, M. I. Brogger, G. H. Borrero-Pérez, B. E. Buitrón-Sánchez, L. S. Campos, J. R. Cantera, S. Clemente, M. Cohen-Renfijo, S. E. Coppard, L. V. Costa-Lotufo, R. del Valle-García, M. E. Díaz de Vivar, J. P. Díaz-Martínez, Y. Díaz, A. Durán-González, L. Epherra, M. Escolar, V. Francisco, C. A. Freire, J. E. García-Arrarás, D. G. Gil, P. Guarderas, V. F. Hadel, A. Hearn, E. A. Hernández-Delgado, A. Herrera-Moreno, M. D Herrero-Pérezrul, Y. Hooker, M. B. I. Honey-Escandón, C. Lodeiros, M. Luzuriaga, C. L. C. Manso, A. Martín, M. I. Martínez, S. Martínez, L. Moro-Abad, E. Mutschke, J. C. Navarro, R. Neira, N. Noriega, J. S. Palleiro-Nayar, A. F. Pérez, E. Prieto-Ríos, J. Reyes, R. Rodríguez-Barreras, T. Rubilar, T. I. Sancho-Mejia, C. Sangil, J. R. M. C. Silva, J. I. Sonnenholzner, C. R. R. Ventura, A. Tablado, Y. Tavares, C. G. Tiago, F. Tuya and S. M. Williams. 2013. Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities. p. 511-542. En: Alvarado, J. J. and F.A. Solís-Marín (eds.). 2013. Echinoderm Research and Diversity in Latin America. Springer, Berlin. 675 p. DOI: 10.1007/978-3-642-20051-9_2. Perricone, V. and R. Collin. 2019. Larvae of Caribbean Echinoids Have Small Warming Tolerances for Chronic Stress in Panama. Biol. Bull., 236:000-000. Pompa, L., A. Prieto and R. Manrique. 1989. Abundancia y distribución espacial en una población del erizo Echinometra lucunter en el Golfo de Cariaco, Venezuela. Acta. Cient. Venez., 40:289-294. Portig, W. H. 1965. Central American rainfall. Geogr. Rev., 55:68–90, doi:10.2307/212856. Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155:945–959. Przeslawski, R., S. Ahyong, M. Byrne, G. Worheide and P. Hutchings. 2008. Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Glob. Chan. Biol., 14:2773-2795. Pujos, M., J. L. Pagliardini, R. Steer, G. Vernette and O. Weber. 1986. Influencia de la contra-corriente norte colombiana para la circulación de las aguas en la plataforma continental su acción sobre la dispersión de los efluentes en suspensión del río Magdalena. Bol. Cient., CIOH, 6:3-15. Rangel-Buitrago N and J. Idárraga-García. Geología General, Morfología submarina y Facies sedimentarias en el Margen Continental y los Fondos Oceánicos del Mar Caribe colombiano. Pp (29-50). En INVEMAR (Eds). 2010. Biodiversidad del Margen Continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar No. 20 p. 458. Raymond, M. and Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity, 86:248-249. Ricaurte-Villota, C., M. Murcia-Riaño and S. A. Ordoñez-Zúñiga. 2017. Región 3: insular. 62-82 pp. En Ricaurte-Villota, C. y M. L. Bastidas Salamanca (Eds.). 2017. Regionalización oceanográfica: una visión dinámica del Caribe. Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR). Serie de Publicaciones Especiales de INVEMAR # 14. Santa Marta, Colombia 180 p. Rice, W. R. 1989. Analyzing tables of statistical tests. Evol., 43(1):223–225 DOI 10.2307/2409177. Richardson, P. L. 2005. Caribbean current and eddies as observed by surface drifters. Deep Sea Research Part II: Topical Studies in Oceanography 52(3-4):429-463. Romero, J. E. 2009. Estudio poblacional de Echinometra lucunter (Echinodermata: Echinoidea) en la zona litoral rocoso en la ensenada de Bahía Concha, Parque Natural Nacional Tayrona (PNNT), Caribe colombiano, desde noviembre del 2007 a mayo del 2008. Trabajo de Grado presentado como requisito parcial para optar el Título de Biólogo. Universidad del Atlántico. Facultad de Ciencias Básicas. Programa de Biología. Barranquilla. 48 p. Rosenberg, N. A. 2004. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes., 4(1):137–138 DOI 10.1046/j.1471-8286.2003.00566.x. Ruppert, E. E. and R. D. Barnes. 1994. Invertebrate zoology. 6th ed. Saunders College Publishers, Philadelphia. Russo, C. A. M., A. M. Solé-Cava and J. P. Thorpe. 1994. Population structure and genetic variation in two tropical sea anemones (Cnidaria, Actinidae) with different reproductive strategies. Mar. Biol., 119:267–276. Sala, E. and N. Knowlton. 2006. Global marine biodiversity trends. Annu. Rev. Environ. Resour., 31:93-122. Salas, E., H. Molina-Ureña, R. P. Walter and D. D. Heath. 2010. Local and regional genetic connectivity in a Caribbean coral reef fish. Mar. Biol., 157:437-445. Sammarco, P., J. Levinton and J. C. Ogden. 1974. Grazing and control of coral reef community structure by Diadema antillarum Philippi (Echinodermata: Echinoidea) -a preliminary study. Jour. Mar. Res., 32:47-53. Schoppe, S. 1993. Die karpose um den felsbohrenden seeigel Echinometra lucunter (L.): Untersuchung der lebensraumbedingungen und der biologie der assoziierten Arten. Dissertation, Justus- Liebig University, Giensen, Alemania. 128 p. Schoppe, S. and B. Werding. 1996. The boreholes of the sea urchin genus Echinometra (Echinodermata: Echinoidea: Echinometridae) as microhabitat in tropical South America. P.S.Z.N.I.: Mar. Ecol., 17:181‐186. Schultz, E. T. and R. K. Cowen. 1994. Recruitment of coral-reef fishes to Bermuda – local retention or long-distance transport. Mar. Ecol. Prog. Ser., 109:15–28. Selkoe, K. A. and R. J. Toonen. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett., 9:615–29. Serafy, D. K. 1979. Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruises., 5:1-120. Sewell, M. A. and C. M. Young. 1999. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. Joun. Exp. Mar. Biol. Ecol., 236:291-305. Shanks, A. L., B. A. Grantham and M. H. Carr. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl., 13:S159-S169. Shulman, M. J. and E. Bermingham. 1995. Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evol., 49:897-910. Siegel, D. A., S. Mitarai, C. J. Costello, S. D. Gaines, B. E. Kendall, R. R. Warner and K. B. Winters. 2008. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U. S. A., 105(26):8974-8979. Smith, A. B. and A. Kroh. 2011. The Echinoid Directory. World Wide Web electronic publication. http://www.nhm.ac.uk/research-curation/projects/echinoid-directory [accessed March 2019]. Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends Ecol. Evol., 15:199-203. Taylor, M. S. and M. E. Hellberg. 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science, 299:107–109. Taylor, M. S. and M. E. Hellberg. 2006. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol. Ecol., 15:695–707. Truelove, N. K., K. Ley-Cooper, I. Segura-García, P. Briones-Fourzán, E. Lozano-Álvarez, B. F. Phillips, S. J. Box and R. F. Preziosi. 2015. Genetic analysis reveals temporal population structure in Caribbean spiny lobster (Panulirus argus) within marine protected areas in Mexico. Fis. Res., 1782: 44-49. Truelove, N. K., A. S. Kough, D. C. Behringer, C. B. Paris-Limouzy, S. J. Box, R. F. Preziosi, and M. J. Butler. 2016. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs., 36:232-244. Uthicke, S. and J. A. H. Benzie. 2003. Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from Indo-Pacific. Mol. Ecol., 12:2635–2648. Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, P. Shipley. 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes., 4(3):535–538 DOI 10.1111/j.1471-8286.2004.00684.x. Ventura, C. R. R., R. S. Varotto, A. L. P. S. Caravalho, A. D. Pereira, S. L. S. Alves and F. S. MacCord. 2003. Interpopulation comparison of the reproductive and morphological traits of Echinometra lucunter (Echinodermata: Echinoidea) from different habitats on Brazilian coast, 289‐293. En: Féral and David (Eds). 2003. Echinoderm Research 2001. Swets & Zeitlinger, Lisse, ISBN 90 5809 528 2. Wangensteen, O. S. 2013. Biology and phylogeography of the black sea urchin Arbacia lixula (Echinoidea: Arbacioida). PhD thesis, University of Barcelona. Wright, S. 1978. Evolution and the genetics of populations - variability within and among natural populations. The University of Chicago Press, Chicago. 590 p. Zigler, K. S. and H. A. Lessios. 2003. 250 million years of bindin evolution. Biol. Bull., 205:8–15. Zigler, K. S., M. A. McCartney, D. R. Levitan and H. A. Lessios. 2005. Sea urchin binding divergence predicts gamete compatibility. Evol., 59:2399. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
96 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Caribe - Caribe - Doctorado en Ciencias - Biología |
dc.publisher.department.spa.fl_str_mv |
Centro de estudios en Ciencias del mar-CECIMAR |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Caribe |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Caribe |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79147/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79147/1/52261333.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79147/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79147/4/52261333.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
217700a34da79ed616c2feb68d4c5e06 2b64166636e79a4182be919839a673e2 cccfe52f796b7c63423298c2d3365fc6 9d5338a54baf28ce60b8751fba89e8be |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090244491837440 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Campos Campos, Néstor Hernando9fd4f58c-3254-4bb1-9d52-2b10a669296d-1Benavides Serrato, Milena3bbd748a-ead9-43bf-a23a-d8ef20a65a02Fauna Marina Colombiana: Biodiversidad y Usos2021-02-09T13:25:57Z2021-02-09T13:25:57Z2020-10-19Benavides-Serrato, M. 2020. Connectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean region. Thesis presented as a partial requirement to qualify for the title of Doctor en Ciencias-Biología. Universidad Nacional de Colombia. Instituto de Estudios en Ciencias del Mar-CECIMAR, Sede Caribe. 96 p.https://repositorio.unal.edu.co/handle/unal/79147Uno de los requerimientos básicos para el manejo y la conservación de las especies es la correcta definición de sus poblaciones, es decir, cuántas poblaciones puede haber en un área particular y cómo se conectan entre sí. Esto se puede lograr de manera más efectiva utilizando enfoques genéticos en las poblaciones a estudiar de una especie objeto para determinar la conectividad (flujo de genes) entre sitios de interés (por ejemplo, áreas marinas protegidas, áreas de pesca). En la provincia marina del Caribe, se han propuesto cuatro regiones de conectividad basados en complejos modelos hidrodinámicos de corrientes y datos genéticos especialmente de estudios de peces arrecifales del Caribe: Caribe Oriental, Caribe occidental, Bahamas y Panamá-Colombia. La dispersión es extensa dentro de las regiones, pero se desconoce la dispersión a lo largo de los bordes de esas regiones. Los esfuerzos para definir la conectividad marina y la estructura genética entre poblaciones se han centrado abrumadoramente en corales, esponjas y poblaciones de peces. En otros taxa marinos bien representados para el Caribe, faltan datos sobre la estructura genética de sus poblaciones y el flujo de genes. El erizo de mar Echinometra lucunter lucunter fue seleccionado como modelo para este estudio, principalmente debido a su amplia distribución en todo el Gran Caribe y sus características biológicas y ecológicas. El objetivo principal de esta investigación fue postular conexiones a nivel genético entre poblaciones naturales de invertebrados marinos a través de la región del Caribe con base en la especie modelo escogida, detectando si las discontinuidades marinas que se han identificado para otros taxa afectan esa conectividad, actuando como barreras para el flujo genético. Con este preámbulo, se buscó responder las siguientes preguntas utilizando microsatélites como marcadores moleculares: 1) ¿Cómo es la estructura genética de Echinometra lucunter lucunter a través del Mar Caribe? y 2) ¿Existe alguna influencia de discontinuidades marinas previamente detectadas a otros taxa en la conectividad entre poblaciones naturales de Echinometra lucunter lucunter?. Para alcanzar los objetivos, se diseñaron 26 microsatélites específicos para la especie basados en técnicas de secuenciación (NGS); diez de ellos se utilizaron para detectar la estructura genética de las poblaciones de E. lucunter lucunter a través del área, con base en varios índices genéticos y paquetes estadísticos. Los resultados mostraron en todos los loci y en todas las localidades, una heterocigosidad observada inferior a la esperada, mostrando un alto déficit de heterocigosidad reflejado por la desviación significativa del equilibrio de Hardy-Weingberg y los valores altos y positivos del coeficiente de endogamia (FIS) en todas las poblaciones y en todos los sitios. Hay varias razones discutidas por varios autores que podrían explicar potencialmente este comportamiento: 1). La variedad de opciones de apareamiento ligado al reconocimiento de proteínas de gametos, 2) la presencia de grupos de reproducción espacial vinculados a la estocasticidad en el éxito reproductivo, 3) parches en la distribución de gametos y 4) la dispersión colectiva de larvas genéticamente relacionadas en el plancton. Los sitios dentro del mar Caribe escogidos para este estudio muestran una clara evidencia de estructuración y flujo genético para E. lucunter lucunter a lo largo del Mar Caribe. Es evidente la presencia de tres grupos genéticamente distintos, uno con las estaciones del mar Caribe colombiano (con diferencias significativas entre los sitios), un segundo grupo con las estaciones de Venezuela y Belice y un tercer grupo con la estación de Puerto Rico. La estructuración y el flujo genético evidenciado entre las poblaciones de E. lucunter lucunter aparentemente están relacionados con las discontinuidades marinas encontradas, tales como la influencia de factores físicos (como, por ejemplo, las corrientes marinas y las rupturas geomorfológicas), así como las características biológicas de la especie, los cuales también han sido detectados en otros taxa marinos estudiados en el Caribe. Con los resultados de esta investigación, se demuestra la influencia de discontinuidades (corrientes marinas y rompimientos geomorfológicos) en el comportamiento de la etapa larval de Echinometra lucunter lucunter, evidenciado con los mosaicos espaciales heterogéneos de dispersión marina de la especie a través del mar Caribe colombiano frente al escenario homogéneo que se muestra en la conexión genética a través del Mar Caribe Occidental. Los resultados de este trabajo tienen implicaciones importantes para la aplicación de estrategias de conservación y manejo de áreas marinas protegidas, y pueden generar aportes importantes para investigadores y tomadores de decisiones.One of the basic requirements for the management and conservation of species is the correct definition of their population structure, meaning, how many populations may be in a particular area and how they connect with each other. This can be achieved more effectively using genetic approaches to determine the connectivity (gene flow) between the sites of interest (e.g. marine protected areas, fishing areas). In the Caribbean marine province, four connectivity regions have been proposed based on complex hydrodynamic current models and genetic data from fish studies especially from the Eastern Caribbean, Western Caribbean, Bahamas and Panama–Colombia. Dispersal is extensive within regions, but dispersal across their boundaries is unknown. Efforts to define the marine connectivity and the genetic structure among populations have been focused overwhelmingly on corals, sponges and fish populations, however, in other well represented marine taxa in the Caribbean, data of their genetic structure and gene flow are lacking. The sea urchin Echinometra lucunter lucunter was selected as the model species for this study, mainly due to its wide distribution throughout the Caribbean Sea and its biological and ecological characteristics. The main objective of this research was to postulate connections at the genetic level between natural populations of marine invertebrates throughout the Caribbean Sea, using the chosen model specie to detect whether the marine discontinuities identified for other taxa affect their connectivity, acting as barriers to gene flow. With this preamble, it was sought to answer the following questions using microsatellites as molecular markers: 1) How is the genetic structure of Echinometra lucunter lucunter through the Caribbean Sea? and 2) Is there any influence from marine discontinuities previously detected to others taxa in the connectivity between natural populations of Echinometra lucunter lucunter? In order to reach the objectives, 26 specific microsatellites for E. lucunter lucunter were designed, ten of them were used to detect the genetic structure of E. lucunter lucunter populations through the Caribbean Sea. The results from all loci and all localities, showed lower heterozygosity than expected. This deficit in heterozygosity was identified by the significant deviation from the Hardy-Weingberg Equilibrium and the high/positive inbreeding coefficient (FIS) values in all sites. Several reasons could potentially explain this result: 1) the assortative matting linked to different gamete recognition proteins, 2) the presence of spatial breeding groups linked to stochasticity in reproductive success, 3) patchiness in gamete distribution and 4) the collective dispersal of genetically related larvae in the plankton. The Caribbean sites chosen for this study show a clear evidence of genetic structure and gene flow for E. lucunter lucunter through the Caribbean Sea. It is also evident the presence of three genetic different groups or populations: one corresponding to the Colombian Caribbean Sea sites (with significant differences among sites), a second related to the area of Venezuela and Belize, and a third group in Puerto Rico. The clear evidence of structure and gene flow between the populations of E. lucunter lucunter is apparently related to marine discontinuities found in other marine taxa studied before, such as the influence of physical factors (e.g. marine currents and the geomorphological breaks) and their variation through the area, as well as the biological characteristics of the specie. The results of this research demonstrate the influence of discontinuities (marine currents and geomorphological breaks) in the performance of Echinometra lucunter lucunter early life stages, evidenced in the heterogeneous spatial mosaics of marine dispersion through the Colombian Caribbean Sea vs. the homogeneous scenario shown in the genetic connexion through the West Caribbean Sea. The results of this work have important implications for the application of conservation and management strategies of Marine Protected Areas, because they generate important inputs for researchers and decision makers.MinCIENCIASThe influence of marine barriers on genetic connectivity among Colombian Caribbean rocky shore sea urchinsDoctorado96application/pdfengConnectivity between natural populations of the sea urchin Echinometra lucunter lucunter (Echinodermata: Echinoidea: Echinometridae) throughout the Caribbean regionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDCaribe - Caribe - Doctorado en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad CaribeUniversidad Nacional de Colombia - Sede CaribeAbbott, D. P., J. C. Ogden and I. A. Abbott. 1974. Studies on the activity pattern, behaviour and food of the echinoid Echinometra lucunter (Linnaeus) on beachrock and algal reefs at St. Croix, U. S. Virgin Islands. West Indies Laboratory Special Publication No. 4. Fairleigh Dickinson University, Christiansted, St. Croix, U. S. Virgin Islands. iv + 111 p.Almanza-Bernal, M., Márquez, E. J. and L. Chasqui. 2016. Evaluación de amplificación cruzada de microsatélites para estudios de genética poblacional del Cazón Antillano Rhizoprionodon porosus (Carcharhinidae) en el Caribe Colombiano. Bol. Invest. Mar. Cost. 45(1):41-56.Alonso, D., L. F. Ramírez, C. Segura-Quintero, P. Castillo-Torres, T. Walschburger and N. Arango. 2008. Hacia la construcción de un Subsistema Nacional de Áreas Marinas Protegidas en Colombia. Instituto de Investigaciones Marinas y Costeras INVEMAR, Unidad Administrativa Especial del Sistema de Parques nacionales Naturales UAESPNN y The Nature Coservancy TNC. Santa Marta, Colombia, 20 p.Alvarado, J. J. 2010. Echinoderm diversity in the Caribbean Sea. Mar. Biod., 41:261–285.Alvarado, J. J., and F. A. Solís-Marín (eds.). 2013. Echinoderm Research and Diversity in Latin America. Springer, Berlin. 675 p. DOI: 10.1007/978-3-642-20051-9_2.Álvarez-León, R., J. Aguilera-Quiñones, C. A. Andrade-Amaya and P. Nowak. 1995. Caracterización general de la zona de surgencia en la Guajira Colombiana. Revista Acad. Colomb. Ci. Exact., 19(75):679-694.Andrade, C. A. 2001. Las corrientes superficiales en la Cuenca de Colombia observadas con boyas de deriva. Rev. Acad. Colomb. Cienc., 25(96):321-335.Andrade, C. A. 2009. La circulación y variabilidad de la Cuenca de Colombia en el mar Caribe. Edición especial CIOH, DIMAR.Andrade, C. A: 2012. Oceanografía del archipiélago de San Andrés, Providencia y Santa Catalina pp (53-59). en CORALINA-INVEMAR, 2012. Gómez-López, D. I., C. Segura-Quintero, P. C. Sierra-Correa y J. Garay-Tinoco (Eds). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28. Santa Marta, Colombia 180 p.Andrade, C. A and E. D. Barton. 2000. Eddy development and motion in the Caribbean. J. Geophys. Res., 105:191-201.Andrade, C. A, L. Giraldo and S. Lonin. 1997. Nota sobre la circulación de las aguas en el Bajo Alicia y el sector de San Andrés Islas. Boletín Científico CIOH (17):27-36.Andrade, C. A., E. D. Barton and C. N. K. Mooers. 2003. Evidence for an eastward flow along the Central and South American Caribbean Coast. J. Geophys. Res., 108: (C6):3185.Andras, J. P., K. I. Rypien and C. D. Harvell. 2013. Range wide population genetic structure of the Caribbean Sea fan coral, Gorgonia ventalina. Mol. Ecol., 22, 56-73.Astudillo, D., J. Rosas, A. Velásquez, T. Cabrera and C. Maneiro. 2005. Crecimiento y supervivencia de larvas de Echinometra lucunter (Echinoidea: Echinometridae) alimentadas con las microalgas Chaetoceros gracilis e Isochrysis galbana. Rev. Biol. Trop., 53:377-344.Avise, J. C. 1992. Molecular population structure and biogeographic history of a regional fauna: a case history with lessons for conservative biology. Oikos., 63(1):62–76.Bak, R. P. M. 1990. Patterns of echinoid bioerosion in two Pacific coral reef lagoons. Mar. Ecol. Prog. Ser., 66:267-272.Baums, I. B., M. W. Miller and M. E. Hellberg. 2005. Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol. Ecol., 14:1377–1390.Benavides, M. 2013. Diversidad y estructura genética de las poblaciones del erizo Eucidaris tribuloides en el Caribe colombiano y su relación con las discontinuidades marinas del área. XV Seminario Nacional de Ciencias y Tecnologías del Mar, SENALMAR, Cartagena, Colombia. 16-20 de Septiembre 2013.Benavides-Serrato, M., Y. F. Contreras-Rueda, L. M. Barrios-Gardelis, G. Fox, T. D. Hugues, N. H. Campos-Campos and R. Preziosi. 2020. Isolation and characterization of 17 polymorphic microsatellite loci for a sea urchin (Echinometra lucunter: Echinometridae). Revista Acad. Colomb. Ci. Exact., 44(172):759-767.Benavides-Serrato, M. and G. H. Borrero-Pérez. 2010. Equinodermos de la plataforma y la franja superior del talud continental del Caribe colombiano. Pp (255-277). En INVEMAR (Eds). 2010. Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar, No. 20 p. 458.Benham, C. E., K. J. Supernault and R. S. Burton. 2012. Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus franciscanus). Journ. Exp. Mar. Biol. Ecol.,47-54.Betancur-R, R., A. Acero P., H. Duque-Caro and S. R. Santos. 2010. Phylogenetic and Morphologic Analyses of a Coastal Fish Reveals a Marine Biogeographic Break of Terrestrial Origin in the Southern Caribbean. PloS ONE 5(7): e11566. doi: 10.1371/journal.pone.0011566.Betancur-R, R. A. Hines, A. Acero P., G. Ortí, A. E. Wilbur and D. W. Freshwater. 2011. Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J. Biogeogr., 38:1281−1293.Biermann, C. H. 1998. The molecular evolution of sperm bindin in six species of sea urchins (Echinoida: Strongylocentrotidae). Mol. Biol. Evol., 15(12):1761–1771.Blacket, M. J., C. Robin, R. T. Good, S. F. Lee and A. D. Miller. 2012. Universal primers for fluorescent labelling of PCR fragments – an effective approach to genotyping by fluorescence. Mol. Ecol. Resour., 12:456-463.Blanco, J. A., 1988. Las variaciones ambientales estacionales en las aguas costeras y su importancia para la pesca en la región de Santa Marta, Caribe colombiano. Tesis de Maestría, Universidad Nacional de Colombia, 50 p.Borrero-Pérez G. H., M. Benavides-Serrato and C. M. Diaz-Sanchez. 2012. Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea. Serie de Publicaciones Especiales de Invemar No. 30. Santa Marta, 250 p.Broquet, T. F. Viard and J. M. Yearsley. 2013. Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evol., 67:1660–1675.Calderón, I. and X. Turon. 2010. Temporal genetic variability in the Mediterranean common sea urchin Paracentrotus lividus. Mar Ecol Prog Ser., 408:149–159.Calderón, I. N. Ortega, S. Duran, M. A. Becerro, M. Pascual and X. Turon. 2007. Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Mol. Ecol., 16:1799-1810.Calderón, I., G. Giribet and X. Turon. 2008. Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Mar. Biol., 154:137–151.Calderón, I., Turon, X. and M. Pascual. 2009. Isolation of 9 nuclear microsatellites in the common Mediterranean sea urchin Paracentrotus lividus (Lamarck). Mol. Ecol. Resour., 1145-1147.Cameron, R. A. 1986. Reproduction larval occurrence and recruitment in Caribbean sea urchins. Bull. Mar. Sci., 39:335-342.Carlin, J. L., D. R. Robertson and B. W. Bowen. 2003. Ancient divergences and recent connections in two tropical Atlantic reef fishes Epinephelus adscensionis and Rypticus saponaceous (Percoidei: Serranidae). Mar. Biol., 143:1057-1069.Carreras-Carbonell, J., E. Macpherson and M. Pascual. 2006. Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci. Mol. Ecol., 15:3527-3539.Chandler, L. M., L. J. Walters, W. C. Sharp and E. A. Hoffman. 2017. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci., 93(3):881-889.Chaves-Fonnegra, A., K. A. Felddheim, J. Secord and J. V. Lopez. 2015. Population structure and dispersal of the coral‐excavating sponge Cliona delitrix. Mol. Ecol., 24(7):1447-1466.Chesher, R. H. 1968. The systematics of sympatric species in West Indian Spatangoids: A revision of the genera Brissopssis, Plethotaenia, Paleopneustes and Savinaster. Studies in tropical oceanography (Miami), 7, 165 p.Chollett, I., P. J. Mumby, F. E. Müller-Karger and H. Chuanmin. 2012. Physical environments of the Caribbean Sea. Limnol. Oceanogr., 57(4):1233-1244.Corredor, J. E. 1979. Phytoplankton response to low level nutrient enrichment through upwelling in the Colombian Caribbean basin. Deep-Sea. Res., Part A, 26:731-741.Couvray, S. and Coupé S. 2018. Three-year monitoring of genetic diversity reveals a micro-connectivity pattern and local recruitment in the broadcast marine species Paracentrotus lividus. Heredity., 120:110.Cowen, R. K., C. B. Paris and A. Srinivasan. 2006. Scaling of population connectivity in marine populations. Science., 311:522–527.Culley, T. M., T. I. Stamper, R. L. Stokes, J. R. Brzski, N. A. Hardman, M. R. Klooster and B. J. Merritt. 2013. An efficient technique for primer development and application that integrates fluorescent labelling and multiplex PCR. Application in Plant Sciences, 1(10):1-10.Day, A. J and B. L Bayne. 1988. Allozyme variation in population of the dog-welk Nucella lapillus (Prosobranchia, Muriacea) from the south-west peninsula of England. Mar. Biol., 99:93–100.Dethier, M. N., K. McDonald and R. R. Strathmann. 2003. Colonization and connectivity of habitat patches for coastal marine species distant from source populations. Conserv. Biol.,17:1024–1035.Díaz, J. M. 1991. Ecosistemas litorales del Caribe colombiano. Documento de trabajo No. 4, p. 1-34. In CORPES (eds.). Perfil ambiental del Caribe colombiano. Santa Marta.Díaz-Ferguson, E., R. Haney, J. Wares and B. Silliman. 2010. Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity. PLoS ONE 5(9): e12675. doi:10.1371/journal.pone.0012675.Díaz-Ferguson, E., R. A. Haney, J. P. Wares and B. R. Silliman. 2011. Genetic Structure and Connectivity Patterns of two Caribbean Rocky Intertidial gastropods. Journ. Moll. Stud., 0:1-7.Duffy, J. E. 1993. Genetic population structure in two tropical sponge-dwelling shrimps that differ in dispersal potential. Mar. Biol., 116:459–470.Duran, S., C. Palacin, M. A. Becerro, X. Turon and G. Giribet. 2004a. Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata: Echinoidea). Mol. Ecol., 13:3317-3328.Duran, S., M. Pascual, A. Estoup and X. Turon. 2004b. Strong population structure in the sponge Crambe crambe (Poecilosclerida) as revealed by microsatellite markers. Mol. Ecol., 13:511–522.Earl, D. A and B. M. VonHoldt. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2):359–361 DOI 10.1007/s12686-011-9548-7.Ebert, T. A., M. P. Russell, G. Gamba and A. Bodnar. 2008. Growth, survival, and longevity estimates for the rock-boring sea urchin Echinometra lucunter lucunter (Echinodermata, Echinoidea) in Bermuda. Bull. Mar. Sci., 82:381–403.Emlet, R. B., L. R. McEdward and R. R. Strathman. 1987. Echinoderm larval ecology viewed from the egg. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm Studies, vol. 2. Balkema, Rotterdam, pp. 55–136.Espinoza G., R. A., J. L. Reyes, J. H. Himmelman and C. Lodeiros. 2008. Actividad reproductiva de los erizos Lytechinus variegatus y Echinometra lucunter (Echinodermata: Echinoidea) en relación con factores ambientales en el Golfo de Cariaco, Venezuela. Rev. Biol. Trop., 56(3):341-350.Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol., 14(8):2611–2620 DOI 10.1111/j.1365-294X.2005.02553.x.Excoffier L, Laval G and Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics 1:47–50 DOI 10.1177/117693430500100003.Farfante, P. 1959. Los erizos irregulares de Cuba. Islas 1(2):331 372.Fell, F. J. 1974. The echinoids of Easter Island (Rapa Nui). Pac. Sci., 28:147-158.Fisher, J. L., W. T. Peterson and S. G. Morgan. 2014. Does larval advection explain latitudinal differences in recruitment across upwelling regimes?. Mar. Ecol. Prog. Ser., 503: 23-137.Fox, G., Preziosi, R. F., Antwis, R. E., Benavides‐Serrato M., Combe, F. J., Harris, W. E., Hartley, I. R., Kitchener, A. C., De Kort, S. R., Nekaris, A. I., Rowntree, J. K. 2019. Multi‐individual microsatellite identification: A multiple genome approach to microsatellite design (MiMi). Mol Ecol Resour., 00:1–9. Doi: https://doi.org/10.1111/1755-0998.13065.Galarza, J. A., J. Carreras-Carbonell, E. Macpherson, M. Pascual, S. Roques, G. F. Turner and C. Rico. 2009. The influence of oceanographic fronts and early-life history traits on connectivity among fish populations: a multispecies approach. PNAS., 106: 1473-1478.Galindo, H. M., D. B. Olson and S. R. Palumbi. 2006. Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr. Biol., 16:1622–1626.García-Cisneros, A., C. Valero-Jiménez, C. Palacín and R. Pérez-Portela. 2013. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conserv Genet. Resour., 5:749–753.Geyer, L. B. and H. A. Lessios. 2009. Lack of character displacement in the male recognition molecule, bindin, in Atlantic sea urchins of the genus Echinometra. Mol. Biol. and Evol.. 26 (9): 2135–2146. https://doi.org/10.1093/molbev/msp122.Gordon, A. L. 1967. Circulation of the Caribbean Sea. J. Geophys. Res., 72:6207–6223.Griffiths, S. M. 2013. Isolating microsatellite markers in the marine sponge Cinachyrella alloclada for use in community and population genetics studies. A thesis submitted to the University of Manchester for the degree of MPhil Environmental Biology in the Faculty of Life Sciences. 31 p.Griffiths, S. M., G. Fox, P. J. Briggs, I. J. Dolnaldson, S. Hood, P. Richardson, G. W. Leaver, N. K. Truelove and R. F. Preziosi. 2016. A Galaxy-based bioinformatics pipeline for optimised, streamlined microsatellite development from Illumina next-generation sequencing data. Conservation. Genet. Resour., 8:481-486.Gyory, J., Mariano, A. J. and Ryan, E. H. 2013. The Caribbean current. Ocean surface currents. Retrieved from http://oceancurrents.rsmas.miami.edu/ caribbean/caribbean.html.Hellberg, M. E., R. S. Burton, J. E. Neigel and S. R. Palumbi. 2002. Genetic assessment of connectivity among marine populations. Bull. Mar. Sci., 70:273-290.Hendler, G., J. Miller, D. Pawson and P. Kier. 1995. Sea stars, sea urchins, and Allies Echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington and London. 390 p.Hofmann, E. E. and S. J. Worley. 1986. An investigation of the circulation of the Gulf of Mexico. J. Geophys. Res., 91:14221–14236, doi:10.1029/JC091iC12p14221.Holley, C. E. and P. G. Geerts. 2009. Multiplex Manager 1.0: A crossplatform computer program that plans and optimizes multiplex PCR. Biotechniques., 46:511-517.Hoskin, C. M., J. K. Reed and D. H. Mook. 1986. Production and off-bank transport of carbonate sediment, Black Rock, southwest Little Bahama Bank. Mar. Geol., 73(12):125-144.Hubisz, M. J., D. Falush, M. Stephens and J. K. Pritchard. 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour., 9(5):1322–1332 DOI 10.1111/j.1755-0998.2009.02591.x.Hunt, A. 1993. Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and P. exigua. Mar. Ecol. Prog. Ser., 92:179–186.Hunt, M. 1969. A preliminary investigation of the habits and habitat of the rock-boring urchin Echinometra lucunter near Devonshire Bay, Bermuda, p. 35-40. In: Ginsberg, R. N. and P. Garrett, eds.. Seminar on organism-sediment interrelationships: Bermuda Biol. Sta. Spec. Pub., 2, 153 p.Imbach, P., L. Molina, B. Locatelli, O. Roupsard, P. Ciais, L. Corrales and G. Mahe. 2010. Climatology-based regional modelling of potential vegetation and average annual longterm runoff for Mesoamerica. Hydrol. Earth Syst. Sci., 14:1801–1817, doi:10.5194/hess-14-1801-2010.INVEMAR-ANH. 2012. Estudio Línea base ambiental y pesquera en la Reserva de Biósfera Seaflower (Archipiélago de San Andrés, Providencia y Santa Catalina) como aporte al conocimiento y aprovechamiento sostenible de los recursos para la región-FASE I. Informe técnico final. Santa Marta, 155 p.Jakobsson, M. and N. A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics., 23(14):1801–1806 DOI 10.1093/bioinformatics/btm233.Janson, K. and R. D. Ward. 1984. Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biol. J. Linnean. Soc., 22:289–307.Jombart, T. 2008. ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405 DOI 10.1093/bioinformatics/btn129.Jossart, Q., L. B. Geyer and H. A. Lessios. 2015. Characterization of eight microsatellite loci for the sea urchin Meoma ventricosa (Spatangoida, Brissidae) through Next Generation Sequencing. Bio. Syst. Ecol., 59:100-103.Jossart, Q., C. De Ridder, H. A. Lessios, M. Bauwens; S. Motreuil, T. Rigaud, R. Wattier and B. David. 2017. Highly contrasted population genetic structures in a host–parasite pair in the Caribbean Sea. Ecol. Evol., 7:9267-9280.Kinder, T. H. 1983. Shallow currents in the Caribbean Sea and Gulf of Mexico as observed with satellite-tracked drifters. Bull. Mar. Sci., 33:239-246.Kinder, T. H., G. W. Heburn and A. W. Green. 1985. Some aspects of the Caribbean circulation. Mar. Geol., 68:25–52.Kinjo, S., Y. Shirayama and H. Wada. 2004. Phylogenetic relationships diversity in the family Echinometridae (Echinoidea, Echinodermata). In: Echinoderms: München – Heinzeller & Nebelsick (eds), 527-530.Kool, J. T., Paris, C. B., Andréfouët, S. and Cowen, R. K. 2010. Complex migration and the development of genetic structure in subdivided populations: An example from Caribbean coral reef ecosystems. Ecography, 33:597–606.Kroh, A. and R. Mooi. 2019. World Echinoidea Database. Accessed at http://www.marinespecies.org/echinoidea on 2019-02-4. doi:10.14284/355.Lacson, J. M. 1992. Minimal genetic variation among samples of six species of coral reef fishes collected at La Parguera, Puerto Rico, and Discovery Bay, Jamaica. Mar. Biol., 112:327–331.Landínez-García, R. M., S. P. Ospina-Guerrero, D. J. Rodríguez-Castro, R. Arango and E. Márquez-Fernández. 2009. Genetic analysis of Lutjanus synagris populations in the Colombian Caribbean. Cienc. Mar., 35(4):321-331.Lessios, H. A., 1981. Reproductive periodicity of the echinoids Diadema and Echinometra on the two Coasts of Panama. J. Exp. Mar. Biol. Ecol., 50:47–61.Lessios, H. A., Robertson, D. R. and J. D. Cubit. 1984. Spread of Diadema mass mortality through the Caribbean. Science, 226:335–337.Lessios, H. A., S. Lockhart, R. Collin, G. Sotil, P. Sánchez-Jerez, K. S. Zigler, et al. 2012. Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol. Ecol., 21:130–144.Lewis, J. B. and G. S. Storey. 1984. Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats. Mar. Ecol. Prog. Ser., 15:207-211.Lluvia-Flores R and L. V. Andrews. 2013. Scoring Microsatellite Loci. Chapter 21. In: Clifton N. J. Methods in molecular biology, 1-20 p.Lodeiros, C. and N. Garcia. 2004. The use of sea urchins to control fouling during suspended culture of bivalves. Aquacul., 231:293–298.Lozano-Cortés D. F., E. Londoño-Cruz and F. A. Zapata. 2011. Bioerosión de sustrato rocoso por erizos en Bahía Málaga (Colombia), Pacífico Tropical. Rev. Cienc., 15:9-22.Lozano-Duque, Y., J. Medellín-Mora and G. R. Navas. 2010. Contexto climatológico y oceanográfico del Mar Caribe Colombiano. 52-83. En INVEMAR (Eds). 2010. Biodiversidad del margen continental del mar Caribe colombiano. Serie de Publicaciones Especiales, Invemar No 20. p 458.Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Can. Resear., 27:209–220.Márquez‐Fernández, E., R. Landínez, S. Ospina, J. A. Segura, M. Prada, E. Castro and J. L. Correa. 2013. Genetic Analysis of Queen Conch Strombus gigas from the South West Caribbean. Book of Abstracts. 65 Conference Gulf and Caribbean Fisheries Institute. Santa Marta, p. 114.Marshall, T. C., J. Slate, L. E. B. Kruuk and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol., 7(5):639–655. DOI 10.1046/j.1365-294x.1998.00374.x.McCartney, M. A. and H. A. Lessios. 2004. Adaptive evolution of sperm bindin tracks egg incompatibility in neotropical sea urchins of the genus Echinometra. Mol. Biol. Evol., 21:732–745.McCartney, M. A., G. Keller and H. A. Lessios. 2000. Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol. Ecol., 9: 1391-1400.McClanahan, T. R. and N. A. Muthiga. 2013. Chapter 23: Echinometra. 337-353. In: Lawrence, J. M (eds). 2013. Sea Urchins: Biology and Ecology. Elsevier. 530 pp.McLean, R. F. 1967. Erosion of burrows in beachrock by the tropical sea urchin Echinometra lucunter. Can. Jour. Zool., 45:586-588.McMillan, W. O., R. A Raff and S. R Palumbi. 1992. Population genetic consequences of developmental evolution and reduced dispersal in sea urchins (genus Heliocidaris). Evol., 46:1299–1312.McPherson, B. F. 1969. Studies on the biology of the tropical sea urchin Echinometra lucunter and Echinometra viridis. Bull. Mar. Sci., 19:194-213.McPherson, E. and N. Raventos. 2006. Relationship between pelagic larval duration and geographic distribution in Mediterranean littoral fishes. Mar. Ecol-Prog. Ser., 327:257-265.Meirmans, P. G. and P. W. Hedrick. 2011. Assessing population structure: FST and related measures. Mol. Ecol. Resour., 11(1): 5-18 DOI 10.1111/j.1755-0998.2010.02927.x.Metaxas, A. and C. M. Young. 1998. Response of echinoid larvae to food patches of different algal densities. Mar. Biol., 130:433-445.Metz, E. C. and S. R. Palumbi. 1996. Positive selection and sequence rearrangements generate extensive polymorphism in the gamete recognition protein bindin. Mol. Biol. Evol., 13:397–406.Metz, E. C., G. Gomez-Gutierrez and V. D. Vacquier. 1998. Mitochondrial DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol. Biol. Evol., 15:185–195.Miller, K. M., K. H., Kaukinen, K. Laberee, K. J. Supernault. 2004. Microsatellite loci from red sea urchins (Strongylocentrotus franciscanus). Mol. Ecol. Notes., 4:722-724.Miloslavich, P., J. M. Díaz, E. Klein, J. J. Alvarado, C. Díaz, J. Gobin, E. Escobar-Briones, J. J. Cruz-Motta, E. Weil, J. Cortés, A. C. Bastidas, R. Robertson, F. Zapata, A. Martín, J. Castillo, A. Kazandjian, M. Ortiz. 2010. Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns. PLoS ONE 5(8): e11916. doi:10.1371/journal.pone.0011916.Monroy-López, M. and O. D. Solano. 2005. Estado poblacional de Echinometra lucunter (Echinoida: Echinometridae) y su fauna acompañante en el litoral rocoso del Caribe colombiano. Rev. Biol. Trop., 53(3):291-297.Monroy-López, M. and O. D. Solano. 2008. Ophiothrix synoecina (Echinodermata: Ophiuroidea:Ophiotrichidae): Especie Endémica y Vulnerable del Caribe Colombiano. Bol. Invest. Mar. Cost., 37(1):191-196.Mortensen, T. H. 1921. Studies of the development and larval forms of echinoderms. GEC Gad, Copenhagen.Mortensen, T. H. 1928. A monograph of the Echinoidea. Cidaroida. Vol I. C. A. Reitzel, Copenhagen. 551 pp, 88 pls.Mortensen, T. H. 1935. A monograph of the Echinoidea. Bothriocidaroida, Meonechinoida, Lepidocentroida and Stiridonta. Vol II. Copenhagen. 647 pp. 377 figures, 89 pls. page(s): 239-241.Mortensen, T. H. 1937. Contributions to the study of the development of the larval forms of the echinoderms III. Memoirs de l’Academie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 1–65 9me serie t. VII. No. 1.Mortensen, T. H. 1940. A monograph of the Echinoidea. Aulodonta, With additions to Vol. II (Lepidocentra and Stirodonta). Vol III.1. C.A. Reitzel, Copenhagen. iv + 370 p, 77 pls.Mortensen, T. H. 1943a. A monograph of the Echinoidea. Camarodonta. I. Orthopsidae, Glyphocyphidae, Temnopleuridae and Toxopneustidae. Vol III.2. C. A. Reitzel, Copenhagen. 553 pp, 56 pls.Mortensen, T. H. 1943b. A monograph of the Echinoidea. Camarodonta II. Echinidae, Strongylocentrotidae, Parasaleniidae, Echinometridae. Vol III.3. C. A. Reitzel, Copenhagen. vi + 446 pp, 66 pls.Mortensen, T. H. 1948a. A Monograph of the Echinoidea. Holectypoida, Cassiduloida. Vol IV.I. C. A. Reitzel, Copenhagen. viii + 371 pp, 15 pls.Mortensen, T. H. 1948b. A Monograph of the Echinoidea. Clypeastroida. Clypeastridae, Arachnoididae, Fibulariidae, Laganidae and Scutellidae. VolIV.2. C. A. Reitzel, Copenhagen. viii + 471 pp, 72 pls.Mortensen, T. H. 1950. A monograph of the Echinoidea. Spatangoida I. Vol V.1. 25 plates. 315 figures. Text 421pp.Mortensen, T. H. 1951. A Monograph of the Echinoidea. V, 2. Spatangoida II. Amphisternata II. Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ. Copenhagen (C. A. Reitzel). 593 p.Müller-Karger, F. E., R. Varela, R. Thunell, Y. Astor, H. Zhang, R. Luerssen and C. Hu. 2004. Processes of coastal upwelling and carbon flux in the Cariaco Basin. Deep-Sea. Res., II 51:927–943, doi:10.1016/j.dsr2.2003.10.010.Muthiga, N. A. 1996. The role of early life history strategies on the population dynamics of the sea urchin Echinometra mathaei (De Blainville) on reefs in Kenya. PhD Thesis. University of Nairobi. 273 p.Muthiga, N. A. and V. Jaccarini. 2005. Effects of seasonality and population density on the reproduction of the Indo-Pacific echinoid Echinometra mathaei in Kenyan coral reef lagoons. Mar. Biol., 146:445–453.Nagelkerken, I., G. Smith and E. Snelders. 1999. Sea urchin Meoma ventricosa die-off in Curaçao (Netherlands Antilles) associated with a pathogenic bacterium. Dis. Aquati. Org., 38:71-74.Narváez, J. C., Orozco, G., Aguirre, J. C., E. Muñoz., J. Quintero., F. Bolívar., T. Narváez., R. Mendoza, L. Castro and L. O. Duarte. 2015a. Estudio Piloto del efecto de desborde en Áreas Marinas Protegidas (AMP) del Caribe de Colombia. Estado genético y conectividad de la población del pargo rayado Lutjanus synagris en sitios dentro y fuera de las Áreas Marinas Protegidas (AMP) de Parques Nacionales Naturales De La Territorial Caribe. Programas de Ingeniería Pesquera y Biología, Vicerrectoría de Investigación, Universidad del Magdalena. 25 pp.Narváez, J. C., Orozco, G., Aguirre, J. C., E. Muñoz., J. Quintero., F. Bolívar., T. Narváez., R. Mendoza, L. Castro y L. O. Duarte. 2015b. Estudio Piloto del efecto de desborde en Áreas Marinas Protegidas (AMP) del Caribe de Colombia. Estado genético de la población del lebranche Mugil liza en sitios dentro y fuera de las Áreas Marinas Protegidas (AMP) de Parques Nacionales Naturales De La Territorial Caribe. Programas de Ingeniería Pesquera y Biología, Vicerrectoría de Investigación, Universidad del Magdalena. 20 pp.Odgen, J. C. 1976. Some aspects of herbivore plants relationships on Caribbean reefs and sea grass beds. Aqua. Bot., 2:103-116.Odgen, J. C. 1977. Carbonate Sediment Production by Parrot Fish and Sea Urchins on Caribbean Reefs. Stud. In Geol. (Am. Assoc. Petrol. Geol)., 4:281-288.Ogden, J. C., D. P. Abbott and I. Abbott (eds). 1973. Studies on the activity and food of the echinoid Diadema antillarum Philippi on a West Indian patch reef: West Indies Lab. Spec. Pub. 2, 96 p.Orozco Berdugo, G. and J. C. Narváez Barandica. 2014. Genetic diversity and population structure of bocachico Prochilodus magdalenae (Pisces, Prochilodontidae) in the Magdalena River basin and its tributaries, Colombia. Genet. Mol. Biol., 37(1):37–45 DOI 10.1590/s1415-47572014000100008.Ospina-Guerrero, S. P., R. M. Landínez-García, D. J. Rodríguez Castro, R. Arango and E. Márquez. 2008. Conectividad genética de Stegaster partitus en el Caribe sur evidenciada por análisis microsatellite. Cienc. Mar., 34(2):155-163.Ovenden, J. R., D. J. Brasher and R. W. White. 1992. Mitochondrial DNA analyses of the red rock lobster Jasus edwardsii supports an apparent absence of population subdivision throughout Australasia. Mar. Biol., 112:319–326.Palumbi, S. R and A. C. Wilson. 1990. Mitochondrial DNA diversity in the sea urchins Strongylocentrotus purpuratus and S. droebachiensis. Evol., 44:403–415.Palumbi, S. R. 1996. Macrospatial genetic structure and speciation in marine taxa with high dispersal abilities. In: Ferraris, J. D., Palumbi, S. R., ed. Molecular Zoology: Advances, Strategies, and Protocols. New York: Wiley-Liss, 101-117.Palumbi, S. R. 1999. All males are not created equal: fertility differences depend on gametic polymorphisms in sea urchins. Evol., 96:12632–12637.Palumbi, S. R. 2004. Marine reserves and Ocean neighborhoods: The spatial scale of marine populations and their management. Annu. Rev. Environ. Resour., 29:31‐68.Palumbi, S. R., G. Grabowsky, T. Duda, L. Geyer and N. Tachino. 1997. Speciation and population genetic structure in tropical Pacific sea urchins. Evol., 51:1506-1517.Paris, C. B. and R. K. Cowen. 2004. Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol. Oceanogr., 49:1964–1979.Peakall, R. and P. E: Smouse. 2006. Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288–295 DOI 10.1111/j.1471-8286.2005.01155.x.Pearse, J. S. 1969. Reproductive periodicities of Indo-pacific invertebrates in the Gulf of Suez. II. The echinoid Echinometra mathaei (de Blainville). Bull. Mar. Sci., 19:580–613.Pearse, J. S. and R. Cameron. 1991. Echinodermata: Echinoidea. In: Giese, A.C., Pearse, J.S., Pearse, V.B. (Eds.), Reproduction of Marine Invertebrates, Echinoderms and Lophophorates, volume VI. Boxwood Press, Pacific Grove, pp. 513–662.Pérez-Portela, R., O. S. Wangensteen, A. Garcia-Cisneros, C. Valero-Jiménez, C. Palacin and X. Turon. 2018. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity., 122:244-259.Pérez-Ruzafa, A., J. J. Alvarado, F. A. Solís-Marín, J. C. Hernández, A. Morata, C. Marcos, M. Abreu-Pérez, O. Aguilera, J. Alió, J. J. Bacallado-Aránega, E. Barraza, M. Benavides-Serrato, F. Benítez-Villalobos, L. Betancourt- Fernández, M. Borges, M. Brandt, M. I. Brogger, G. H. Borrero-Pérez, B. E. Buitrón-Sánchez, L. S. Campos, J. R. Cantera, S. Clemente, M. Cohen-Renfijo, S. E. Coppard, L. V. Costa-Lotufo, R. del Valle-García, M. E. Díaz de Vivar, J. P. Díaz-Martínez, Y. Díaz, A. Durán-González, L. Epherra, M. Escolar, V. Francisco, C. A. Freire, J. E. García-Arrarás, D. G. Gil, P. Guarderas, V. F. Hadel, A. Hearn, E. A. Hernández-Delgado, A. Herrera-Moreno, M. D Herrero-Pérezrul, Y. Hooker, M. B. I. Honey-Escandón, C. Lodeiros, M. Luzuriaga, C. L. C. Manso, A. Martín, M. I. Martínez, S. Martínez, L. Moro-Abad, E. Mutschke, J. C. Navarro, R. Neira, N. Noriega, J. S. Palleiro-Nayar, A. F. Pérez, E. Prieto-Ríos, J. Reyes, R. Rodríguez-Barreras, T. Rubilar, T. I. Sancho-Mejia, C. Sangil, J. R. M. C. Silva, J. I. Sonnenholzner, C. R. R. Ventura, A. Tablado, Y. Tavares, C. G. Tiago, F. Tuya and S. M. Williams. 2013. Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities. p. 511-542. En: Alvarado, J. J. and F.A. Solís-Marín (eds.). 2013. Echinoderm Research and Diversity in Latin America. Springer, Berlin. 675 p. DOI: 10.1007/978-3-642-20051-9_2.Perricone, V. and R. Collin. 2019. Larvae of Caribbean Echinoids Have Small Warming Tolerances for Chronic Stress in Panama. Biol. Bull., 236:000-000.Pompa, L., A. Prieto and R. Manrique. 1989. Abundancia y distribución espacial en una población del erizo Echinometra lucunter en el Golfo de Cariaco, Venezuela. Acta. Cient. Venez., 40:289-294.Portig, W. H. 1965. Central American rainfall. Geogr. Rev., 55:68–90, doi:10.2307/212856.Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics, 155:945–959.Przeslawski, R., S. Ahyong, M. Byrne, G. Worheide and P. Hutchings. 2008. Beyond corals and fish: the effects of climate change on noncoral benthic invertebrates of tropical reefs. Glob. Chan. Biol., 14:2773-2795.Pujos, M., J. L. Pagliardini, R. Steer, G. Vernette and O. Weber. 1986. Influencia de la contra-corriente norte colombiana para la circulación de las aguas en la plataforma continental su acción sobre la dispersión de los efluentes en suspensión del río Magdalena. Bol. Cient., CIOH, 6:3-15.Rangel-Buitrago N and J. Idárraga-García. Geología General, Morfología submarina y Facies sedimentarias en el Margen Continental y los Fondos Oceánicos del Mar Caribe colombiano. Pp (29-50). En INVEMAR (Eds). 2010. Biodiversidad del Margen Continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar No. 20 p. 458.Raymond, M. and Rousset, F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity, 86:248-249.Ricaurte-Villota, C., M. Murcia-Riaño and S. A. Ordoñez-Zúñiga. 2017. Región 3: insular. 62-82 pp. En Ricaurte-Villota, C. y M. L. Bastidas Salamanca (Eds.). 2017. Regionalización oceanográfica: una visión dinámica del Caribe. Instituto de Investigaciones Marinas y Costeras José Benito Vives De Andréis (INVEMAR). Serie de Publicaciones Especiales de INVEMAR # 14. Santa Marta, Colombia 180 p.Rice, W. R. 1989. Analyzing tables of statistical tests. Evol., 43(1):223–225 DOI 10.2307/2409177.Richardson, P. L. 2005. Caribbean current and eddies as observed by surface drifters. Deep Sea Research Part II: Topical Studies in Oceanography 52(3-4):429-463.Romero, J. E. 2009. Estudio poblacional de Echinometra lucunter (Echinodermata: Echinoidea) en la zona litoral rocoso en la ensenada de Bahía Concha, Parque Natural Nacional Tayrona (PNNT), Caribe colombiano, desde noviembre del 2007 a mayo del 2008. Trabajo de Grado presentado como requisito parcial para optar el Título de Biólogo. Universidad del Atlántico. Facultad de Ciencias Básicas. Programa de Biología. Barranquilla. 48 p.Rosenberg, N. A. 2004. Distruct: a program for the graphical display of population structure. Mol. Ecol. Notes., 4(1):137–138 DOI 10.1046/j.1471-8286.2003.00566.x.Ruppert, E. E. and R. D. Barnes. 1994. Invertebrate zoology. 6th ed. Saunders College Publishers, Philadelphia.Russo, C. A. M., A. M. Solé-Cava and J. P. Thorpe. 1994. Population structure and genetic variation in two tropical sea anemones (Cnidaria, Actinidae) with different reproductive strategies. Mar. Biol., 119:267–276.Sala, E. and N. Knowlton. 2006. Global marine biodiversity trends. Annu. Rev. Environ. Resour., 31:93-122.Salas, E., H. Molina-Ureña, R. P. Walter and D. D. Heath. 2010. Local and regional genetic connectivity in a Caribbean coral reef fish. Mar. Biol., 157:437-445.Sammarco, P., J. Levinton and J. C. Ogden. 1974. Grazing and control of coral reef community structure by Diadema antillarum Philippi (Echinodermata: Echinoidea) -a preliminary study. Jour. Mar. Res., 32:47-53.Schoppe, S. 1993. Die karpose um den felsbohrenden seeigel Echinometra lucunter (L.): Untersuchung der lebensraumbedingungen und der biologie der assoziierten Arten. Dissertation, Justus- Liebig University, Giensen, Alemania. 128 p.Schoppe, S. and B. Werding. 1996. The boreholes of the sea urchin genus Echinometra (Echinodermata: Echinoidea: Echinometridae) as microhabitat in tropical South America. P.S.Z.N.I.: Mar. Ecol., 17:181‐186.Schultz, E. T. and R. K. Cowen. 1994. Recruitment of coral-reef fishes to Bermuda – local retention or long-distance transport. Mar. Ecol. Prog. Ser., 109:15–28.Selkoe, K. A. and R. J. Toonen. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett., 9:615–29.Serafy, D. K. 1979. Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruises., 5:1-120.Sewell, M. A. and C. M. Young. 1999. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. Joun. Exp. Mar. Biol. Ecol., 236:291-305.Shanks, A. L., B. A. Grantham and M. H. Carr. 2003. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl., 13:S159-S169.Shulman, M. J. and E. Bermingham. 1995. Early life histories, ocean currents and the population genetics of Caribbean reef fishes. Evol., 49:897-910.Siegel, D. A., S. Mitarai, C. J. Costello, S. D. Gaines, B. E. Kendall, R. R. Warner and K. B. Winters. 2008. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U. S. A., 105(26):8974-8979.Smith, A. B. and A. Kroh. 2011. The Echinoid Directory. World Wide Web electronic publication. http://www.nhm.ac.uk/research-curation/projects/echinoid-directory [accessed March 2019].Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends Ecol. Evol., 15:199-203.Taylor, M. S. and M. E. Hellberg. 2003. Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science, 299:107–109.Taylor, M. S. and M. E. Hellberg. 2006. Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol. Ecol., 15:695–707.Truelove, N. K., K. Ley-Cooper, I. Segura-García, P. Briones-Fourzán, E. Lozano-Álvarez, B. F. Phillips, S. J. Box and R. F. Preziosi. 2015. Genetic analysis reveals temporal population structure in Caribbean spiny lobster (Panulirus argus) within marine protected areas in Mexico. Fis. Res., 1782: 44-49.Truelove, N. K., A. S. Kough, D. C. Behringer, C. B. Paris-Limouzy, S. J. Box, R. F. Preziosi, and M. J. Butler. 2016. Biophysical connectivity explains population genetic structure in a highly dispersive marine species. Coral Reefs., 36:232-244.Uthicke, S. and J. A. H. Benzie. 2003. Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuroidea) populations from Indo-Pacific. Mol. Ecol., 12:2635–2648.Van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, P. Shipley. 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes., 4(3):535–538 DOI 10.1111/j.1471-8286.2004.00684.x.Ventura, C. R. R., R. S. Varotto, A. L. P. S. Caravalho, A. D. Pereira, S. L. S. Alves and F. S. MacCord. 2003. Interpopulation comparison of the reproductive and morphological traits of Echinometra lucunter (Echinodermata: Echinoidea) from different habitats on Brazilian coast, 289‐293. En: Féral and David (Eds). 2003. Echinoderm Research 2001. Swets & Zeitlinger, Lisse, ISBN 90 5809 528 2.Wangensteen, O. S. 2013. Biology and phylogeography of the black sea urchin Arbacia lixula (Echinoidea: Arbacioida). PhD thesis, University of Barcelona.Wright, S. 1978. Evolution and the genetics of populations - variability within and among natural populations. The University of Chicago Press, Chicago. 590 p.Zigler, K. S. and H. A. Lessios. 2003. 250 million years of bindin evolution. Biol. Bull., 205:8–15.Zigler, K. S., M. A. McCartney, D. R. Levitan and H. A. Lessios. 2005. Sea urchin binding divergence predicts gamete compatibility. Evol., 59:2399.Gene flowCaribbean Seamolecular markersmicrosatellitesechinodermsgenetic population structureFlujo GenéticoMar Caribeestructura genética poblacionalmarcadores molecularesmicrosatélitesequinodermosCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/79147/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53ORIGINAL52261333.2020.pdf52261333.2020.pdfapplication/pdf1780866https://repositorio.unal.edu.co/bitstream/unal/79147/1/52261333.2020.pdf2b64166636e79a4182be919839a673e2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79147/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52THUMBNAIL52261333.2020.pdf.jpg52261333.2020.pdf.jpgGenerated Thumbnailimage/jpeg6110https://repositorio.unal.edu.co/bitstream/unal/79147/4/52261333.2020.pdf.jpg9d5338a54baf28ce60b8751fba89e8beMD54unal/79147oai:repositorio.unal.edu.co:unal/791472023-07-26 23:04:09.812Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |