"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal"
Las comunicaciones inalámbricas en que el canal de transmisión inalámbrico se define por efectos de dispersión por movimiento y obstáculos físicos entre transmisor y receptor, son un claro ejemplo de los retos que se enfrentan para lograr una comunicación efectiva mediante un ambiente ruidoso. La de...
- Autores:
-
Muñoz Morales, Catalina
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/21856
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/21856
http://bdigital.unal.edu.co/12858/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
38 Comercio, comunicaciones, transporte / Commerce, communications and transportation
6 Tecnología (ciencias aplicadas) / Technology
62 Ingeniería y operaciones afines / Engineering
MIMO
OFDM
Predicción de canal
SystemC
Modulación adaptativa
Codificación adaptativa
Channel Prediction
Adaptive modulation
Adaptive coding
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_22b42351148fae491ff5fee2bd5789bb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/21856 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
title |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
spellingShingle |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" 0 Generalidades / Computer science, information and general works 38 Comercio, comunicaciones, transporte / Commerce, communications and transportation 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering MIMO OFDM Predicción de canal SystemC Modulación adaptativa Codificación adaptativa Channel Prediction Adaptive modulation Adaptive coding |
title_short |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
title_full |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
title_fullStr |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
title_full_unstemmed |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
title_sort |
"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal" |
dc.creator.fl_str_mv |
Muñoz Morales, Catalina |
dc.contributor.author.spa.fl_str_mv |
Muñoz Morales, Catalina |
dc.contributor.spa.fl_str_mv |
Eslava G., Sebastián |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 38 Comercio, comunicaciones, transporte / Commerce, communications and transportation 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 38 Comercio, comunicaciones, transporte / Commerce, communications and transportation 6 Tecnología (ciencias aplicadas) / Technology 62 Ingeniería y operaciones afines / Engineering MIMO OFDM Predicción de canal SystemC Modulación adaptativa Codificación adaptativa Channel Prediction Adaptive modulation Adaptive coding |
dc.subject.proposal.spa.fl_str_mv |
MIMO OFDM Predicción de canal SystemC Modulación adaptativa Codificación adaptativa Channel Prediction Adaptive modulation Adaptive coding |
description |
Las comunicaciones inalámbricas en que el canal de transmisión inalámbrico se define por efectos de dispersión por movimiento y obstáculos físicos entre transmisor y receptor, son un claro ejemplo de los retos que se enfrentan para lograr una comunicación efectiva mediante un ambiente ruidoso. La demanda de múltiples servicios de telecomunicaciones, como transmisión de voz, video y datos, ha hecho que la capacidad de transmisión y recepción de los sistemas de comunicaciones aumente para lograr grandes tasas de transmisión de datos con baja cantidad de errores recibidos, que hagan la comunicación confiable y utilizando el mínimo de recursos como espectro radioeléctrico y energía (potencia). Los sistemas de cuarta generación (4G) han llegado en los últimos años, con diversas tecnologías, para cumplir con los requerimientos impuestos; en estos sistemas se utilizan técnicas como el uso de múltiples antenas (Multiple Input – Multiple Output, MIMO), modulación (Orthogonal Frequency Division Multiplexing, OFDM), codificación, estimación y predicción de canal para adaptar el sistema a las condiciones de este, y así lograr el objetivo de obtener una transmisión confiable. En este trabajo se evalúan diferentes técnicas lineales y no lineales de predicción del canal inalámbrico, cuyas muestras con distribución Rayleigh han sido generadas y aplicadas sobre un sistema MIMO-OFDM. El sistema MIMO-OFDM se desarrolló con una descripción a nivel de sistemas usando el lenguaje de SystemC para obtener medidas de desempeño del mismo sobre el canal de comunicaciones, al cual se adapta utilizando la relación señal a ruido del canal estimado y predicho. La adaptación al canal o enlace de comunicaciones (Link Adaptation) se obtuvo en relación a esquemas de modulación para aumentar o disminuir la tasa de transmisión y de errores de bit (BER – Bit Error Rate) de acuerdo con las condiciones de ruido del canal. El análisis de desempeño del sistema y las técnicas de predicción de canal fue determinado por métricas de cantidad de errores, precisión de la predicción realizada, tasa de transmisión, latencia, complejidad computacional y utilización de memoria. A partir de allí se hicieron comparaciones de desempeño entre técnicas lineales y no lineales que permitieron establecer la viabilidad de la implementación de estas en un sistema de comunicaciones real. La investigación fue llevada a cabo usando una descripción del sistema a nivel de capa física cuya evaluación en banda base da la posibilidad de validar el comportamiento del mismo con respecto al procesamiento de señales generadas en forma de trama de datos binaria con distribución uniforme. Los resultados obtenidos muestran que los algoritmos de predicción de canal generan un aumento de aproximadamente el 7% mínimo en la latencia del sistema MIMO-OFDM y además existe una relación entre el funcionamiento y la complejidad computacional de los algoritmos estudiados. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-25T19:54:46Z |
dc.date.available.spa.fl_str_mv |
2019-06-25T19:54:46Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/21856 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/12858/ |
url |
https://repositorio.unal.edu.co/handle/unal/21856 http://bdigital.unal.edu.co/12858/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Muñoz Morales, Catalina (2013) "Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal". Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/21856/1/02822348.2014.pdf https://repositorio.unal.edu.co/bitstream/unal/21856/2/02822348.2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
ec8a40ba94d29f103e1a91e65877d7b1 4130d7018bd9316ea2a974c49caab38e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089601109721088 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Eslava G., SebastiánMuñoz Morales, Catalina561bd3e5-a0b2-4536-b971-39e322510e813002019-06-25T19:54:46Z2019-06-25T19:54:46Z2013https://repositorio.unal.edu.co/handle/unal/21856http://bdigital.unal.edu.co/12858/Las comunicaciones inalámbricas en que el canal de transmisión inalámbrico se define por efectos de dispersión por movimiento y obstáculos físicos entre transmisor y receptor, son un claro ejemplo de los retos que se enfrentan para lograr una comunicación efectiva mediante un ambiente ruidoso. La demanda de múltiples servicios de telecomunicaciones, como transmisión de voz, video y datos, ha hecho que la capacidad de transmisión y recepción de los sistemas de comunicaciones aumente para lograr grandes tasas de transmisión de datos con baja cantidad de errores recibidos, que hagan la comunicación confiable y utilizando el mínimo de recursos como espectro radioeléctrico y energía (potencia). Los sistemas de cuarta generación (4G) han llegado en los últimos años, con diversas tecnologías, para cumplir con los requerimientos impuestos; en estos sistemas se utilizan técnicas como el uso de múltiples antenas (Multiple Input – Multiple Output, MIMO), modulación (Orthogonal Frequency Division Multiplexing, OFDM), codificación, estimación y predicción de canal para adaptar el sistema a las condiciones de este, y así lograr el objetivo de obtener una transmisión confiable. En este trabajo se evalúan diferentes técnicas lineales y no lineales de predicción del canal inalámbrico, cuyas muestras con distribución Rayleigh han sido generadas y aplicadas sobre un sistema MIMO-OFDM. El sistema MIMO-OFDM se desarrolló con una descripción a nivel de sistemas usando el lenguaje de SystemC para obtener medidas de desempeño del mismo sobre el canal de comunicaciones, al cual se adapta utilizando la relación señal a ruido del canal estimado y predicho. La adaptación al canal o enlace de comunicaciones (Link Adaptation) se obtuvo en relación a esquemas de modulación para aumentar o disminuir la tasa de transmisión y de errores de bit (BER – Bit Error Rate) de acuerdo con las condiciones de ruido del canal. El análisis de desempeño del sistema y las técnicas de predicción de canal fue determinado por métricas de cantidad de errores, precisión de la predicción realizada, tasa de transmisión, latencia, complejidad computacional y utilización de memoria. A partir de allí se hicieron comparaciones de desempeño entre técnicas lineales y no lineales que permitieron establecer la viabilidad de la implementación de estas en un sistema de comunicaciones real. La investigación fue llevada a cabo usando una descripción del sistema a nivel de capa física cuya evaluación en banda base da la posibilidad de validar el comportamiento del mismo con respecto al procesamiento de señales generadas en forma de trama de datos binaria con distribución uniforme. Los resultados obtenidos muestran que los algoritmos de predicción de canal generan un aumento de aproximadamente el 7% mínimo en la latencia del sistema MIMO-OFDM y además existe una relación entre el funcionamiento y la complejidad computacional de los algoritmos estudiados.Abstract. Wireless communications, where the channel is defined by spread effects and physical obstacles between transmitter and receiver, are a clear example of the challenges faced in order to have an effective communication in noisy environments. Demand for multiple communication systems, such as voice, video and data, have made transmission and reception capabilities of nowadays communication systems to increase in order to accomplish high transmission and low reception error rates that makes wireless communications more reliable with the use of minimum radio spectrum and power. Fourth generation (4G) systems have come in the recent years with diverse technologies, to fit requirements imposed; in this systems multiple techniques such as multiple antennas at transmitter and receiver, modulation, coding channel estimation and prediction are used to adjust the system to channel conditions. In this work different techniques are evaluated for linear and non-linear prediction of n time spaces of the wireless channel, whose samples have been generated and applied to a MIMO-OFDM system. The MIMO-OFDM system has been developed on a system – level description with SystemC in order to enable performance measures of the communication system adaptation over a noisy wireless channel using Signal to Noise ratio (SNR) measured of the estimated and/or predicted channel. Link adaptation was made around different modulation schemes to increase or decrease transmission data rates and Bit Error Rate (BER) according to channel noise conditions. Performance analysis for the system and its channel prediction techniques was determined by metrics of number of errors, prediction error, transmission rate, latency, computational complexity and memory usage. Comparison between linear and non-linear prediction techniques in order to establish the viability of implementation of such techniques in real communication systems was also performed as one of the main goals for this work. Research on this topic was performed using a system level description of the physical layer of the MIMO-OFDM system whose evaluation in base band gives the possibility to validate system behaviour in relation to signal processing of randomly generated bit frames with a uniform distribution. Results show that channel prediction algorithms increase latency of the MIMO-OFDM system in about 7%, and also that there is a relationship between performance and computational complexity for the studied algorithms.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialMuñoz Morales, Catalina (2013) "Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal". Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works38 Comercio, comunicaciones, transporte / Commerce, communications and transportation6 Tecnología (ciencias aplicadas) / Technology62 Ingeniería y operaciones afines / EngineeringMIMOOFDMPredicción de canalSystemCModulación adaptativaCodificación adaptativaChannel PredictionAdaptive modulationAdaptive coding"Análisis de Desempeño de un Sistema MIMO-OFDM con Predicción de Canal"Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL02822348.2014.pdfapplication/pdf17536231https://repositorio.unal.edu.co/bitstream/unal/21856/1/02822348.2014.pdfec8a40ba94d29f103e1a91e65877d7b1MD51THUMBNAIL02822348.2014.pdf.jpg02822348.2014.pdf.jpgGenerated Thumbnailimage/jpeg4748https://repositorio.unal.edu.co/bitstream/unal/21856/2/02822348.2014.pdf.jpg4130d7018bd9316ea2a974c49caab38eMD52unal/21856oai:repositorio.unal.edu.co:unal/218562022-11-02 18:40:52.846Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |