Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos

Ilustraciones, gráficos, mapas

Autores:
Pineda Galindo, Lina María
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86987
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86987
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Bioremediación
Biodegradación
Insecticidas
Microorganismos intestinales
Insectos útiles y perjudiciales
Bacterias
Spodoptera frugiperda
Bacterias intestinales
Biotipo arroz y maíz
Degradación de insecticidas
Lambda-cialotrina
Metomil
Cromatografía
Spodoptera frugiperda
Gut bacteria
Rice and maize strain
Iinsecticide degradation
Lambda-cyhalothrin
Methomyl
Chromatography
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_22685fa880cb609776336c4837c3eb17
oai_identifier_str oai:repositorio.unal.edu.co:unal/86987
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
dc.title.translated.eng.fl_str_mv Evaluation of the degradation of the insecticides lambda-cyhalothrin and methomyl by intestinal bacteria from Spodoptera frugiperda as potential biodegraders of xenobiotic compounds
title Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
spellingShingle Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Bioremediación
Biodegradación
Insecticidas
Microorganismos intestinales
Insectos útiles y perjudiciales
Bacterias
Spodoptera frugiperda
Bacterias intestinales
Biotipo arroz y maíz
Degradación de insecticidas
Lambda-cialotrina
Metomil
Cromatografía
Spodoptera frugiperda
Gut bacteria
Rice and maize strain
Iinsecticide degradation
Lambda-cyhalothrin
Methomyl
Chromatography
title_short Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
title_full Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
title_fullStr Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
title_full_unstemmed Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
title_sort Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticos
dc.creator.fl_str_mv Pineda Galindo, Lina María
dc.contributor.advisor.none.fl_str_mv Cadavid Restrepo, Gloria Ester
dc.contributor.author.none.fl_str_mv Pineda Galindo, Lina María
dc.contributor.educationalvalidator.none.fl_str_mv Saldamando Benjumea, Clara Ines
dc.contributor.researchgroup.spa.fl_str_mv Microbiodiversidad y Bioprospección
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
topic 600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
570 - Biología::579 - Historia natural microorganismos, hongos, algas
Bioremediación
Biodegradación
Insecticidas
Microorganismos intestinales
Insectos útiles y perjudiciales
Bacterias
Spodoptera frugiperda
Bacterias intestinales
Biotipo arroz y maíz
Degradación de insecticidas
Lambda-cialotrina
Metomil
Cromatografía
Spodoptera frugiperda
Gut bacteria
Rice and maize strain
Iinsecticide degradation
Lambda-cyhalothrin
Methomyl
Chromatography
dc.subject.lemb.none.fl_str_mv Bioremediación
Biodegradación
Insecticidas
Microorganismos intestinales
Insectos útiles y perjudiciales
Bacterias
dc.subject.proposal.spa.fl_str_mv Spodoptera frugiperda
Bacterias intestinales
Biotipo arroz y maíz
Degradación de insecticidas
Lambda-cialotrina
Metomil
Cromatografía
dc.subject.proposal.eng.fl_str_mv Spodoptera frugiperda
Gut bacteria
Rice and maize strain
Iinsecticide degradation
Lambda-cyhalothrin
Methomyl
Chromatography
description Ilustraciones, gráficos, mapas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-18T13:12:17Z
dc.date.available.none.fl_str_mv 2024-10-18T13:12:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86987
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86987
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abdelkader, A. A., Khalil, M. S., & Mohamed, M. S. M. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01383-0
Acevedo, F. E., Peiffer, M., Tan, C. W., Stanley, B. A., Stanley, A., Wang, J., Jones, A. G., Hoover, K., Rosa, C., Luthe, D., & Felton, G. (2017). Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137. https://doi.org/10.1094/MPMI-11-16-0240-R
Álvarez Yepes, D. A. (2019). Controladores de los biotipos de arroz y maíz de Spodoptera frugiperda en especies de Meliaceae. Universidad Nacional de Colombia
Ayres, J. S., & Schneider, D. S. (2012). Tolerance of infections. In Annual Review of Immunology (Vol. 30, pp. 271–294). https://doi.org/10.1146/annurev-immunol-020711-075030
Badii, M. H., & Garza-Almanza, V. (2015). Resistencia en Insectos, Plantas y Microorganismos. Cultura Científica Y Tecnológica, (18). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/460
Bajkul, M. M., & Mahavidyalaya, M. (2019). Effect of Lambda-cyhalothrin (LCT) and toxicity on human with preventive measure. In Article in International Journal of Scientific and Engineering Research. https://www.researchgate.net/publication/342145139
Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015-7186-9
Bezerra, A., Gonzales Rodrigues, J., Kanno, R., Amaral, F., Malaquias, J., Silva-Brandão, K., Consoli, F., & Omoto, C. (2021). Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. https://doi.org/10.1101/2021.11.17.469006
Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. In Chemosphere (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2019.125507
Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. In Critical Reviews in Biotechnology (Vol. 41, Issue 3, pp. 317–338). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1853032
Birolli, W. G., Dos Santos, A., Pilau, E., & Rodrigues-Filho, E. (2021). New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin. Environmental Science and Technology, 55(8), 4792–4803. https://doi.org/10.1021/acs.est.0c06907
Birolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014
Birolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-y
Birolli, W. G., Vacondio, B., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2018). Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere, 197, 651–660. https://doi.org/10.1016/j.chemosphere.2018.01.054
Blanton, A. G., & Peterson, B. F. (2020). Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.547108
Breckenridge, C. B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D. M., Choi, J. S., Symington, S., Clark, J. M., Burr, S., & Ray, D. (2009). Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology, 30(SUPPL.). https://doi.org/10.1016/j.neuro.2009.09.002
Calonge, M., Pérez Pertejo, Y., Ordóñez, C., Reguera, R., Balaña Fouce, R., & Ordóñez, D. (2002). Determinación de residuos de siete insecticidas organofosforados en frutas mediante cromatografía de gases con detector de nitrógeno fósforo y confirmación por espectrometría de masas. Revista de Toxicología.
Cano-Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.
Cano-Calle, D., R. E. Arango-Isaza, and C. I. Saldamando-Benjumea. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (For Rice). Ann. Entomol. Soc. Am. 108: 172-180. https://doi.org/10.1093/aesa/sav001.
Cañas-Hoyos, N., Lobo-Echeverri, T. & Saldamando-Benjumea, C.I. (2017). Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwestern Entomologist 42: 375–394. https://doi.org/10.3958/059.042.0207.
Castañeda Molina, Y. del P. (2021). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis.
Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX,Cadavid- Restrepo G. (2023). Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 11:e15916. https://doi.org/10.7717/peerj.15916
Cavichiolli De Oliveira, N. (2021). Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function.Escuela superior de agricultura Luiz de Queiroz. https://doi.org/10.11606/T.11.2021.tde-09092021-151537
Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5. https://doi.org/10.1038/srep08784
Cheng, D., Chen, S., Huang, Y., Pierce, N. E., Riegler, M., Yang, F., Zeng, L., Lu, Y., Liang, G., & Xu, Y. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 15(7). https://doi.org/10.1371/journal.ppat.1007942
Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: A major player in the toxicity of environmental pollutants? In npj Biofilms and Microbiomes (Vol. 2). Nature Publishing Group. https://doi.org/10.1038/npjbiofilms.2016.3
Colman, D. R., Toolson, E. C., & Takacs-Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.x
da Silva, D. M., Bueno, A. de F., Andrade, K., Stecca, C. dos S., Neves, P. M. O. J., & de Oliveira, M. C. N. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18–31. https://doi.org/10.1590/1678-992x-2015-0160
Dantán González, E., & Salgado-Morales, R. (2021). El Hologenoma, una herramienta para el estudio de los problemas ambientales ocasionados por xenobióticos. Revista Del Centro de Investigación de La Universidad La Salle, 14(56), 17–36. https://doi.org/10.26457/recein.v14i56.2862
de Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174754
Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., & Mota-Sanchez, D. (2020). Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Floria Entomologist. https://doi.org/10.1653/024.103.0211
Devine, G. J., Eza, D., Ogusuku, E., & Furlong, M. J. (2008). Uso de insecticidas: Contexto y consecuencias ecológicas. In Rev Peru Med Exp Salud Publica (Vol. 25, Issue 1).
Dillon, R. J., & Dillon, V. M. (2004). The Gut Bacteria of Insects: Nonpathogenic Interactions. In Annual Review of Entomology (Vol. 49, pp. 71–92). https://doi.org/10.1146/annurev.ento.49.061802.123416
dos Santos, K. B., Neves, P., Meneguim, A. M., dos Santos, R. B., dos Santos, W. J., Boas, G. V., Dumas, V., Martins, E., Praça, L. B., Queiroz, P., Berry, C., & Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157–163. https://doi.org/10.1016/j.biocontrol.2009.03.014
Dowd, P. F., & Shen, S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata, 56(3), 241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.x
ElKraly, O. A., Awad, M., El-Saadany, H. M., Hassanein, S. E., Elrahman, T. A., & Elnagdy, S. M. (2023). Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-023-00264-6
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025
FAO. (2021) Mapa de la propagación mundial del gusano cogollero del maíz desde 2016. https://www.ippc.int/es/news/preparing-countries-to-keep-fall-armyworm-away-from-their-territories/
FAO, & CABI. (n.d.). Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management. 2019.
Fonseca, I., & Quiñones, M. L. (2005). Resistencia a insecticidas en mosquitos Mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 107–115. https://doi.org/10.25100/socolen.v31i2.9429
Frago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. In Trends in Ecology and Evolution https://doi.org/10.1016/j.tree.2012.08.013
Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. Arch Insect Biochem Physiol. (2022) Mar;109(3):E21869. doi: 10.1002/arch.21869. Epub 2022 Jan 28. PMID: 35088911.
Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. In Engineering in Life Sciences (Vol. 5, Issue 6, pp. 497–526). Wiley-VCH Verlag. https://doi.org/10.1002/elsc.200520098
Giambó, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and microbiota: How do pesticides influence gut microbiota? a review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 11). MDPI. https://doi.org/10.3390/ijerph18115510
Gichuhi, J., Sevgan, S., Khamis, F., Van Den Berg, J., Du Plessis, H., Ekesi, S., & Herren, J. K. (2020). Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8701
Gimenez, S., Abdelgaffar, H., Goff, G. Le, Hilliou, F., Blanco, C. A., Hänniger, S. Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3, 664.
Gomes, S.I.F., Kielak, A.M., Hannula, S.E. et al. (2020a). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. anim microbiome 2, 37. https://doi.org/10.1186/s42523-020-00055-3
Gomes, A. F. F., Omoto, C., & Cônsoli, F. L. (2020b). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science, 93(2), 833–851. https://doi.org/10.1007/s10340-020-01202-0
González Maldonado, M. B., Gurrola Reyes, J. N., & Chaírez Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda. Revista Colombiana de Entomología, 200–204.
Gutiérrez, M. C., Droguet, M., Carmen, M., Bouzán, G., & En Química, D. (2002). La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. Universitat Politecnica de Catalunya. Boletín Intexter No 122.
Hafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M. M., Xu, F., Fernández-Grandon, G. M., Zaluchi, M. P., & Lu, Y. (2021). De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% ec (Lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects, 12(2), 1–16. https://doi.org/10.3390/insects12020132
Haine, E. R., Moret, Y., Siva-jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. In Science (Vol. 322, Issue 5905, pp. 1198–1199). https://doi.org/10.1126/science.1166844
Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.
Hammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1–14. https://doi.org/10.1007/s00442-015-3327-1
He, L.-M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. https://doi.org/10.1007/978-0-387-77030-7_3
Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid- Restrepo GE, Moreno-Herrera CX. (2021). Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. Journal of Insect Science 21:10.111. https://doi.org/10.1093/jisesa/ieab076
Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2009). Methods of Analysis-Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. https://doi.org/10.1016/j.talanta.2009.11.050
Hou, J., Yu, J., Qin, Z., Liu, X., Zhao, X., Hu, X., Yu, R., Wang, Q., Yang, J., Shi, Y., & Chen, L. (2021). Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117531
Hu, W., Lu, Q., Zhong, G., Hu, M., & Yi, X. (2019). Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030477
Huang, Y., Chen, S. F., Chen, W. J., Zhu, X., Mishra, S., Bhatt, P., & Chen, S. (2023). Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469. https://doi.org/10.1016/j.cej.2023.143863
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. In Molecules (Vol. 23, Issue 9). MDPI AG. https://doi.org/10.3390/molecules23092313
Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., … White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234
ICA. (2024). Productos Nacionales de Plaguicidas. Plaguicidas Químicos. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos.aspx
Jaenike, J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115
Jaramillo-Barrios, C. I., Varón-Devia, E. H., & Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.e. smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomia Medellin, 73(1), 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824
Jiang, B., Zhang, N., Xing, Y., Lian, L., Chen, Y., Zhang, D., Li, G., Sun, G., & Song, Y. (2019). Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 26(21), 21668–21681. https://doi.org/10.1007/s11356-019-05135-9
Jilani, S., Khan, M. A., & Altaf Khan, M. (2006). Biodegradation of Cypermethrin by pseudomonas in a batch activated sludge process 1*. J. Environ. Sci. Tech, 3(4), 371–380. https://doi.org/10.1007/bf03325946
Jing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00823-y
Jones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39163-9
Khan, M. M., Khan, A. H., Ali, M. W., Hafeez, M., Ali, S., Du, C., Fan, Z., Sattar, M., & Hua, H. (2021). Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera: Staphylinidae) at the sublethal concentration. Ecotoxicology, 30(6), 1227–1241. https://doi.org/10.1007/s10646-021-02426-1.
Kim, D. H., Han, S. A., Kim, H. N., Shin, B. C., & Park, Y. (2016). A Case of Methomyl-induced Acute Allergic Tubulointerstitial Nephritis (Vol. 27, Issue 4).
Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences (China), 25(11), 2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5
Kulkarni, A. G., & Kaliwal, B. B. (2018). Bioremediation of methomyl by Escherichia coli. In Methods in Pharmacology and Toxicology (Issue 9781493974245, pp. 75–86). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7425-2_4
León García, I., Rodríguez Leyva, E., Ortega Arenas, L. D., & Solís Aguilar, J. F. (2012). Susceptibilidad de Spodoptera frugiperda a insecticidas asociada a césped en quintana roo, Mexico. Red de revistas científicas de América Latina. Agrociencias, vol. 46.
Li, W., Jin, D., Shi, C., & Li, F. (2017). Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02138-9
Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420. https://doi.org/10.1021/jf051460k
Lin, Z., Pang, S., Zhou, Z., Wu, X., Li, J., Huang, Y., Zhang, W., Lei, Q., Bhatt, P., Mishra, S., & Chen, S. (2022). Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 426. https://doi.org/10.1016/j.jhazmat.2021.127841
Lin, Z., Zhang, W., Pang, S., Huang, Y., Mishra, S., Bhatt, P., & Chen, S. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. In Molecules (Vol. 25, Issue 3). MDPI AG. https://doi.org/10.3390/molecules25030738
Liu, J., Hao, Z., Yang, S., Lin, Y., Zhong, H., & Jin, T. (2022). Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (J. E. Smith) from Hainan Island, China. Phytoparasitica, 50(4), 933–945. https://doi.org/10.1007/s12600-022-01004-3
Liu, S., Yao, K., Jia, D., Zhao, N., Lai, W., & Yuan, H. (2012). A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. Journal of Chromatographic Science, 50(6), 469–476. https://doi.org/10.1093/chromsci/bms030
M. T. Madigan, J. M. Martinko, J. Parker. Brock. Biología de los Microorganismos. 12a (2009) Ed. Prentice Hall-Pearson Education.
Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. In Analytica Chimica Acta (Vol. 1035, pp. 1–13). Elsevier B.V. https://doi.org/10.1016/j.aca.2018.06.056
Marulanda-Moreno, S. M. (2022). Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae). Universidad Nacional de Colombia, Sede Medellín.
Marulanda-Moreno, S. M., Saldamando-Benjumea, C. I., Vivero Gomez, R., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ, 12, e17087. https://doi.org/10.7717/peerj.17087
Mason, C. J., St Clair, A., Peiffer, M., Gomez, E., Jones, A. G., Felton, G. W., & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS One, 15(3), e0229848. https://doi.org/10.1371/journal.pone.0229848
McCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announcements, 3(4). https://doi.org/10.1128/genomeA.00777-15
McCoy, M. R., Yang, Z., Fu, X., Ahn, K. C., Gee, S. J., Bom, D. C., Zhong, P., Chang, D., & Hammock, B. D. (2012). Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. Journal of Agricultural and Food Chemistry, 60(20), 5065–5070. https://doi.org/10.1021/jf2051653
Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.
Moreno-García, M., Condé, R., Bello-Bedoy, R., & Lanz-Mendoza, H. (2014). The damage threshold hypothesis and the immune strategies of insects. In Infection, Genetics and Evolution (Vol. 24, pp. 25–33). https://doi.org/10.1016/j.meegid.2014.02.010
Morgan, J., Salcedo-Sora, J. E., Triana-Chavez, O., & Strode, C. (2022). Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 59(1), 192–212. https://doi.org/10.1093/jme/tjab179
Morillo, F., & Notz, A. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. 16(2), 79–87.
Morillo, F., & Notz, A. (2004). Efecto de lambdacihalotrina y metomil sobre la biología de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). 19(1), 7–14.
Muthabathula, P., & Biruduganti, S. (2022). Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Current Microbiology, 79(2). https://doi.org/10.1007/s00284-021-02744-x
Muturi, E. J., Dunlap, C., Smartt, C. T., & Shin, D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-93725-4
Nagoshi, R. N., & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. In Insect Molecular Biology (Vol. 12, Issue 5).
Nagoshi, R. N., Meagher, & Robert L. (n.d.). Behavior and distribution of the two fall armyworm host strains in Florida. 2004. https://doi.org/10.1653/0015
Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, NagoshiB Y, Mota-Sanchez D. (2020). Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Science Reports 0:1421 DOI 10.1038/s41598-020-58249-3.
Navarro, S., Barba, A., & Camara, M. A. (1978). Determinación de insecticidas por cromatografía líquida de alta resolución (CLAR).
Nayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M, Chaudhary M,Bakthavatsalam N, Venkatesan T. (2021). Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Scientifc Reports 11:7760
NIST/EPA/NIH Mass Spectral Database, S.R.D., 2011. SRD Program, National Institute of Standards and Technology, Gaithersburg, MD.
Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102
OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. http://apps.who.int/bookorders.
Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. In Crop Protection (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.cropro.2021.105641
Pais, P., Moyano, E., Puignou, L., & Galceran, M. T. (1997). Liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a routine method for the analysis of mutagenic amines in beef extracts. In Journal of Chromatography A (Vol. 778).
Palmer-Brown, W., de Melo Souza, P. L., & Murphy, C. D. (2019). Cyhalothrin biodegradation in Cunninghamella elegans. Environmental Science and Pollution Research, 26(2), 1414–1421. https://doi.org/10.1007/s11356-018-3689-0
Pang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452. https://doi.org/10.1016/j.jhazmat.2023.131287
Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). MDPI. https://doi.org/10.3390/molecules26185587
Pashley Prowell, D., Mcmichael, M., & Ois Silvain, J. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). In Ann. Entomol. Soc. Am (Vol. 97, Issue 5). https://academic.oup.com/aesa/article/97/5/1034/63036
Peña García, Y. (2016). Degradación microbiana de compuestos xenobióticos.
Pinto Carvajal, L. P. (2017). Alternativas para el tratamiento de aguas contaminadas por plaguicidas utilizadas en los cultivos de arroz en Colombia. Universidad Nacional Abierta y a Distancia.
Podlesky, E., & Alfonso, G. (1994). Determinación de plaguicidas en muestras ambientales, biológicas y de alimentos.
Polenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., Klementeva, T. N., Andrejeva, J., Khodyrev, V. P., Kabilov, M. R., Kryukov, V. Y., & Glupov, V. V. (2021). Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248704
Poveda Arias, J. (2019). The microorganisms associated with insects and their application in agriculture. Revista Digital Universitaria, 20(1). https://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2
Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. In Critical Reviews in Toxicology (Vol. 51, Issue 2, pp. 117–140). Taylor and Francis Ltd. https://doi.org/10.1080/10408444.2021.1879007
Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021a). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121
Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021b). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121
Rigolin, F., Leite, C., Birolli, W., Porto, A., & Seleghim, M. (2024). Biodegradation of the Pyrethroid Pesticide Gamma-Cyhalothrin by Fungi from a Brazilian Cave. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20240026
Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079
Ríos-Díez, J. D., B. Siegfried, and C. I. Saldamando-Benjumea. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from Central Colombia to Cry1Ac and Cry1Ab. Southwest Entomol. 7: 281-293.
Rodríguez Martínez, C. & Zhurbenko, R. (2018). Manual de medios de cultivo. www.biocen.cu
Romo Ibáñez, M. (2017). Actividad fenilvalerato esterasa en la buirilcolinesterasa humana. Universidad Miguel Hernández de Elche.
ROTAM. (2020). Ficha técnica Rotam Lash. https://croper.com/products/4957-insecticida-lash-216-sl-x-20-lt-rotam
Roy, T., & Das, N. (2017). Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology (Russian Federation), 86(6), 753–764. https://doi.org/10.1134/S0026261717060145
Ruiz Benitez, M. L. (2020). Cromatografía líquida de alto rendimiento (HPLC) y cromatografía de gases (CG).
Rupawate, P. S., Roylawar, P., Khandagale, K., Gawande, S., Ade, A. B., Jaiswal, D. K., & Borgave, S. (2023). Role of gut symbionts of insect pests: A novel target for insect-pest control. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1146390
SAAT AG. (2022). Ficha técnica Saat Lambada. https://www.saat-ag.com/wp-content/uploads/2023/03/Ficha_Tecnica_Saat_LAMBADA
Saldamando-Benjumea, C. I., K. Estrada-Piedrahíta, M. I. Velásquez-Vélez, and R. I. Bailey. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27: 555-566.
Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. In Cell Host and Microbe (Vol. 17, Issue 5, pp. 565–576). Cell Press. https://doi.org/10.1016/j.chom.2015.04.011
Santos-Amaya, O., Delgado-Restrepo O, Arguelles J, Aguilera-Garramuño E. (2009). Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica Ciencia y Tecnología Agropecuaria 10(1):24-32.
Schneider, D. S., & Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. https://doi.org/10.1038/nri2432
Shu, B., Zou, Y., Yu, H., Zhang, W., Li, X., Cao, L., & Lin, J. (2021). Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07726-8
Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. In Frontiers in Physiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1112278
Siddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I., & Xu, Y. (2022). Role of Insect Gut Microbiota in Pesticide Degradation: A Review. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.870462
Siripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., & Singkibut, S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320–328. https://doi.org/10.1007/s11356-014-3354-1
Staetz, C. A. (2013). Directrices sobre la Prevención y Manejo de la Resistencia a los Plaguicidas. www.fao.org/publications
Stashenko, E. E., & René Martínez, J. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Industrial University of Santander.
Suarez Ospina, D., & Morales Hernández, Y. (2018). Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basic principles of high performance liquid chromatography for the separation and analysis of mixtures. América Revista Semilleros: Formación Investigativa, 4.
Tamimi, M., Qourzal, S., Assabbane, A., Chovelon, J. M., Ferronato, C., & Ait-Ichou, Y. (2006). Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochemical and Photobiological Sciences, 5(5), 477–482. https://doi.org/10.1039/b517105a
Tang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., Andersen, G., Westermann, M., Heckel, D. G., & Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0036978
Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera guenee from the Western Hemisphere 1. In ABSTRACT Ann. Entomol. Soc. Am (Vol. 73).
Ugwu, J. A., Liu, M., Sun, H., & Asiegbu, F. O. (2020). Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776. https://doi.org/10.1111/jen.12821
Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112141
Van Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2013). Environmental fate and toxicology of methomyl. Reviews of Environmental Contamination and Toxicology, 222, 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3
Velásquez-Vélez, M. I., C. I. Saldamando-Benjumea, and J. D. Ríos- Díez. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera, Noctuidae) collected in corn and rice fields from Central Colombia. Ann. Entomol. Soc. Am. 104: 826-833.
Vélez Arango, A. M., Arango I., R. E., Villanueva M., D., Aguilera G., E., & Saldamando B., C. I. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología.
Visôtto, L. E., Oliveira, M. G. A., Ribon, A. O. B., Mares-Guia, T. R., & Guedes, R. N. C. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085. https://doi.org/10.1603/022.038.0415
Wan, J., Huang, C., Li, C., Zhou, H. Xu, REN, Y. Lin, Li, Z. Yuan, Xing, L. Sheng, Zhang, B., Qiao, X., Liu, B., Liu, C. Hui, Xi, Y., Liu, W. Xue, Wang, W. Kai, Qian, W. Qiang, Mckirdy, S., & Wan, F. Hao. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Journal of Integrative Agriculture (Vol. 20, Issue 3, pp. 646–663). Editorial Department of Scientia Agricultura Sinica. https://doi.org/10.1016/S2095-3119(20)63367-6
Wendeborn, S., Godineau, E., Mondière, R., Smejkal, T., & Smits, H. (2012). Chirality in Agrochemicals. In Comprehensive Chirality (Vol. 1, pp. 120–166). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095167-6.00102-6
Worku, M., & Ebabuye, Y. (2019). Evaluation of efficacy of insecticides against the fall armyworm Spodoptera frugiperda. Indian Journal of Entomology, 81(1), 13. https://doi.org/10.5958/0974-8172.2019.00076.2
Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00663
Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the Diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9(JAN). https://doi.org/10.3389/fmicb.2018.00025
Xie, S., Liu, J., Li, L., & Qiao, C. (2009). Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21(1), 76–82. https://doi.org/10.1016/S1001-0742(09)60014-0
Yamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. In Applied and environmental microbiology (Vol. 61, Issue 3).
Yingjie, Y., Qianru, C., Naila, I., Ping, Z., Changliang, J., Bin, L., & Yiqiang, L. (2022). Synergism in microbial communities facilitate the biodegradation of pesticides. In Microbial Syntrophy-mediated Eco-enterprising (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-323-99900-7.00011-0
Yuning, L., Luyang, L., Xueming, C., Xianmei, Y., Jintian, L., & Benshui, S. (2022). The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-17278-w
Zhang, C., Yang, Z., Jin, W., Wang, X., Zhang, Y., Zhu, S., Yu, X., Hu, G., & Hong, Q. (2017). Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology, 64(4), 289–296. https://doi.org/10.1111/lam.12715
Zhao, M., Lin, X., & Guo, X. (2022). The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. In Insects (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/insects13070583
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 126 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86987/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86987/2/1015456655.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86987/3/1015456655.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c4ae15d1840f039201491f4c860d5e71
46ede81b09d887600d1fdb42f180bfdd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090102547152896
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadavid Restrepo, Gloria Ester7c388362ed6525149dadb913c484777dPineda Galindo, Lina María1e5d12d28ee0ea00b064efdec3c642ddSaldamando Benjumea, Clara InesMicrobiodiversidad y Bioprospección2024-10-18T13:12:17Z2024-10-18T13:12:17Z2023https://repositorio.unal.edu.co/handle/unal/86987Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficos, mapasLa búsqueda de microorganismos capaces de degradar insecticidas es necesaria en procesos de biorremediación. Para ello, los insectos plaga son un nicho alternativo al compartir una historia evolutiva de asociación con la microbiota intestinal, la cual cumple funciones vitales para el hospedero como la nutrición, defensa, desarrollo, y participa en la degradación de moléculas orgánicas naturales y sintéticas, incluyendo los insecticidas. En Colombia, las principales estrategias de control de insectos plaga incluyen el uso de insecticidas de síntesis química, sin embargo, su aplicación conlleva a la resistencia del insecto, tanto como a generar afectaciones en la salud del ser humano y a nivel ambiental. En este estudio se evaluó la capacidad de degradación de los insecticidas lambdacialotrina y metomil por cepas bacterianas provenientes del intestino de diferentes estadíos de desarrollo, del gusano cogollero, Spodoptera frugiperda de los biotipos maíz y arroz, desafiados naturalmente en campo a altas concentraciones de insecticidas, entre ellos la lambda-cialotrina y el metomil. De un total de 31 cepas bacterianas evaluadas, 11 de ellas toleraron alguno de los dos o los dos insecticidas evaluados. De éstas, dos cepas de Enterobacter tabaci del biotipo arroz (RLL1C7 y RLL2C5) crecieron en medio MM9 a 40 μg/mL con lambdacialotrina, Enterococcus casseliflavus (CYL2C2) obtenida del biotipo maíz) y Staphylococcus capitis (RE1C4 obtenida del biotipo arroz) crecieron en medio MM9 a 40 μg/mL con metomil. Enterococcus mundtii (CYL2C1 obtenida del biotipo maíz) creció en MM9 a 80 μg/mL de lambda-cialotrina y Enterococcus mundtii (RMA1C2 obtenida del biotipo arroz) en MM9 a 80 μg/mL con metomil. Por otro lado, Staphylococcus warneri (CE1C5 del biotipo maíz) y Enterococcus mundtii (RP1C1 del biotipo arroz) fueron capaces de crecer en medio mínimo MM9 a 160 μg/mL de lambda-cialotrina y Cellulomonas pakistanensis (CE2C6 obtenida del biotipo maíz) a 160 μg/mL de metomil. Por último, Leclercia adecarboxylata (CE1C3 obtenida del biotipo maíz) y Staphylococcus pasteuri (RLL1C6 obtenida del biotipo arroz) crecieron tanto en lambda-cialotrina como en metomil a 40 μg/mL en medio MM9. Todas estas cepas utilizaron los insecticidas mencionados como única fuente de carbono, implicando su capacidad de sobrevivir en presencia de los mismos. Por otro lado, análisis cromatográficos demuestran que a partir de la biodegradación mediada por Enterococcus mundtii (RP1C1, biotipo arroz) con lambda-cialotrina a 80 μg/mL en MM9 se lograron identificar metabolitos como fenol, ácido fenil acético, 3-fenoxibenzaldehído, éster metílico del ácido fenilacético, éster metílico del ácido 3-fenoxibenzoico, ácido 3-fenoxibenzoico, 3- fenoxibencenoacetonitrilo y α-hidroxi-3-fenoxibencenoacetonitrilo como producto de la degradación de este insecticida. Basado en la estructura de los metabolitos identificados, se propone una ruta metabólica de biodegradación para lambdacialotrina por E. mundtii. Con relación a la degradación del metomil, el análisis cromatográfico no fue concluyente pues se obtuvo degradación asociada tanto a la cepa evaluada como a los controles usados, por lo que se debe afinar el ensayo realizado. Este trabajo es un primer acercamiento a la comprensión del rol de las bacterias intestinales encontrada en plagas de importancia económica y su respuesta de resistencia a insecticidas, ya que a pesar de que la resistencia de S. frugiperda tiene una base genética, la microbiota puede contribuir en la respuesta del insecto. Es por esto que esta investigación demuestra que especies como E. mundtii presentan capacidad de tolerar y degradar el insecticida lambda-cialotrina in vitro y se convierte en una bacteria promisoria para evaluar su potencial biodegradador. (Tomado de la fuente)The search for microorganisms capable of degrading insecticides is necessary in bioremediation processes. For this purpose, pest insects are an alternative niche as they share an evolutionary history of association with the intestinal microbiota, which performs vital functions for the host such as nutrition, defense, development, and participates in the degradation of natural and synthetic organic molecules, including insecticides. In Colombia, the main insect pest control strategies include the use of chemically synthesized insecticides; however, their application leads to insect resistance, as well as to human and environmental health problems. This study evaluated the degradation capacity of the insecticides lambdacyhalothrin and methomyl by bacterial strains from the gut of different stages of development of the codling moth, Spodoptera frugiperda of corn and rice strains, naturally challenged in the field to high concentrations of insecticides, including lambda-cyhalothrin and methomyl. Out of a total of 31 bacterial strains evaluated,11 of them tolerated any of the insecticides tested: lambda-cyhalothrin and methomyl. Additionally, two strains of Enterobacter tabaci from the rice strain (RLL1C7 and RLL2C5) grew on MM9 medium at 40 μg/mL with lambda-cyhalothrin, Enterococcus casseliflavus (CYL2C2) obtained ¿ from the maize strain) and Staphylococcus capitis (RE1C4 obtained from the rice strain) grew on MM9 medium at 40 μg/mL with methomyl. Enterococcus mundtii (CYL2C1 obtained from the maize strain) grew in MM9 at 80 μg/mL lambda-cyhalothrin and Enterococcus mundtii (RMA1C2 obtained from the rice strain) in MM9 at 80 μg/mL with methomyl. On the other hand, Staphylococcus warneri (CE1C5 from the maize strain) and Enterococcus mundtii (RP1C1 from the rice strain) were able to grow in MM9 minimal medium at 160 μg/mL lambda-cyhalothrin and Cellulomonas pakistanensis (CE2C6 obtained from the maize strain) at 160 μg/mL methomyl. Finally, Leclercia adecarboxylata (CE1C3 obtained from the maize strain) and Staphylococcus pasteuri (RLL1C6 obtained from the rice strain) grew in both lambda-cyhalothrin and methomyl at 40 μg/mL in MM9 medium. All these strains used the above insecticides as their sole carbon source, implying their ability to survive in the presence of these insecticides. On the other hand, chromatographic analyses show that from the biodegradation mediated by Enterococcus mundtii (RP1C1, rice strain) with lambda-cyhalothrin at 80 μg/mL in MM9, it was possible to identify metabolites such as phenol, phenyl acetic acid, 3-phenoxybenzaldehyde, phenylacetic acid methyl ester, 3-phenoxybenzoic acid methyl ester, 3- phenoxybenzoic acid, 3-phenoxybenzeneacetonitrile and α-hydroxy-3- phenoxybenzeneacetonitrile as a degradation product of this insecticide. Based on the structure of the identified metabolites, a metabolic pathway of biodegradation for lambda-cyhalothrin by E. mundtii is proposed. Regarding the biodegradation of methomyl, the chromatographic analysis was not conclusive since degradation associated with both the strain evaluated and the controls used was obtained, so the test performed should be refined. This work is a first approach to the understanding of the role of the microbiota found in pests of economic importance and their resistance response to insecticides, because although the resistance of S. frugiperda has a genetic basis, the microbiota can contribute to the insect's response. Therefore, this research demonstrates that species such as E. mundtii have the ability to tolerate and degrade the insecticide lambda-cyhalothrin in vitro becomes a promising bacterium to evaluate its biodegradation potential.Sistema de Investigación de la Universidad Nacional de Colombia – SIUN Códigos Hermes: 53792 y 57720.proyecto de MinCiencias titulado: “Bioprospección de la microbiota asociada a insectos plaga de cultivos de interés agrícola en Colombia: Spodoptera frugiperda (Biotipos Maíz y arroz) y Trips del aguacate para el desarrollo de alternativas de manejo de su control” (2019-2023)DoctoradoMagíster en Ciencias - BiotecnologíaPara la metodología se utilizaron métodos dependientes e independientes de cultivo, así como técnicas cromatográficasEl grupo de Microbiodiversidad y Bioprospección tiene la capacidad de investigar diferentes aspectos de la Microbiología, en su fundamentación básica y en sus aplicaciones biotecnológicas, con posibilidad de emplear los resultados al servicio de la sociedad.Biotecnología.Sede Medellín126 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados570 - Biología::579 - Historia natural microorganismos, hongos, algasBioremediaciónBiodegradaciónInsecticidasMicroorganismos intestinalesInsectos útiles y perjudicialesBacteriasSpodoptera frugiperdaBacterias intestinalesBiotipo arroz y maízDegradación de insecticidasLambda-cialotrinaMetomilCromatografíaSpodoptera frugiperdaGut bacteriaRice and maize strainIinsecticide degradationLambda-cyhalothrinMethomylChromatographyEvaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticosEvaluation of the degradation of the insecticides lambda-cyhalothrin and methomyl by intestinal bacteria from Spodoptera frugiperda as potential biodegraders of xenobiotic compoundsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbdelkader, A. A., Khalil, M. S., & Mohamed, M. S. M. (2022). Simultaneous biodegradation of λ-cyhalothrin pesticide and Vicia faba growth promotion under greenhouse conditions. AMB Express, 12(1). https://doi.org/10.1186/s13568-022-01383-0Acevedo, F. E., Peiffer, M., Tan, C. W., Stanley, B. A., Stanley, A., Wang, J., Jones, A. G., Hoover, K., Rosa, C., Luthe, D., & Felton, G. (2017). Fall armyworm-associated gut bacteria modulate plant defense responses. Molecular Plant-Microbe Interactions, 30(2), 127–137. https://doi.org/10.1094/MPMI-11-16-0240-RÁlvarez Yepes, D. A. (2019). Controladores de los biotipos de arroz y maíz de Spodoptera frugiperda en especies de Meliaceae. Universidad Nacional de ColombiaAyres, J. S., & Schneider, D. S. (2012). Tolerance of infections. In Annual Review of Immunology (Vol. 30, pp. 271–294). https://doi.org/10.1146/annurev-immunol-020711-075030Badii, M. H., & Garza-Almanza, V. (2015). Resistencia en Insectos, Plantas y Microorganismos. Cultura Científica Y Tecnológica, (18). Recuperado a partir de https://erevistas.uacj.mx/ojs/index.php/culcyt/article/view/460Bajkul, M. M., & Mahavidyalaya, M. (2019). Effect of Lambda-cyhalothrin (LCT) and toxicity on human with preventive measure. In Article in International Journal of Scientific and Engineering Research. https://www.researchgate.net/publication/342145139Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015-7186-9Bezerra, A., Gonzales Rodrigues, J., Kanno, R., Amaral, F., Malaquias, J., Silva-Brandão, K., Consoli, F., & Omoto, C. (2021). Susceptibility monitoring and the molecular characterization of resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to lambda-cyhalothrin and chlorpyrifos. https://doi.org/10.1101/2021.11.17.469006Bhatt, P., Bhatt, K., Huang, Y., Lin, Z., & Chen, S. (2020). Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. In Chemosphere (Vol. 244). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2019.125507Bhatt, P., Bhatt, K., Sharma, A., Zhang, W., Mishra, S., & Chen, S. (2021). Biotechnological basis of microbial consortia for the removal of pesticides from the environment. In Critical Reviews in Biotechnology (Vol. 41, Issue 3, pp. 317–338). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2020.1853032Birolli, W. G., Dos Santos, A., Pilau, E., & Rodrigues-Filho, E. (2021). New Role for a Commercially Available Bioinsecticide: Bacillus thuringiensis Berliner Biodegrades the Pyrethroid Cypermethrin. Environmental Science and Technology, 55(8), 4792–4803. https://doi.org/10.1021/acs.est.0c06907Birolli, W. G., Arai, M. S., Nitschke, M., & Porto, A. L. M. (2019). The pyrethroid (±)-lambda-cyhalothrin enantioselective biodegradation by a bacterial consortium. Pesticide Biochemistry and Physiology, 156, 129–137. https://doi.org/10.1016/j.pestbp.2019.02.014Birolli, W. G., Borges, E. M., Nitschke, M., Romão, L. P. C., & Porto, A. L. M. (2016). Biodegradation Pathway of the Pyrethroid Pesticide Esfenvalerate by Bacteria from Different Biomes. Water, Air, and Soil Pollution, 227(8). https://doi.org/10.1007/s11270-016-2968-yBirolli, W. G., Vacondio, B., Alvarenga, N., Seleghim, M. H. R., & Porto, A. L. M. (2018). Enantioselective biodegradation of the pyrethroid (±)-lambda-cyhalothrin by marine-derived fungi. Chemosphere, 197, 651–660. https://doi.org/10.1016/j.chemosphere.2018.01.054Blanton, A. G., & Peterson, B. F. (2020). Symbiont-Mediated Insecticide Detoxification as an Emerging Problem in Insect Pests. In Frontiers in Microbiology (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2020.547108Breckenridge, C. B., Holden, L., Sturgess, N., Weiner, M., Sheets, L., Sargent, D., Soderlund, D. M., Choi, J. S., Symington, S., Clark, J. M., Burr, S., & Ray, D. (2009). Evidence for a separate mechanism of toxicity for the Type I and the Type II pyrethroid insecticides. NeuroToxicology, 30(SUPPL.). https://doi.org/10.1016/j.neuro.2009.09.002Calonge, M., Pérez Pertejo, Y., Ordóñez, C., Reguera, R., Balaña Fouce, R., & Ordóñez, D. (2002). Determinación de residuos de siete insecticidas organofosforados en frutas mediante cromatografía de gases con detector de nitrógeno fósforo y confirmación por espectrometría de masas. Revista de Toxicología.Cano-Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.Cano-Calle, D., R. E. Arango-Isaza, and C. I. Saldamando-Benjumea. (2015). Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the mitochondrial gene cytochrome oxydase I (COI) and a PCR of the gene FR (For Rice). Ann. Entomol. Soc. Am. 108: 172-180. https://doi.org/10.1093/aesa/sav001.Cañas-Hoyos, N., Lobo-Echeverri, T. & Saldamando-Benjumea, C.I. (2017). Chemical composition of female sexual glands of Spodoptera frugiperda corn and rice strains from Tolima, Colombia. Southwestern Entomologist 42: 375–394. https://doi.org/10.3958/059.042.0207.Castañeda Molina, Y. del P. (2021). Evaluación de la microbiota del tracto gastrointestinal del biotipo de maíz de Spodoptera frugiperda en presencia de endotoxinas del Bacillus thuringiensis.Castañeda-Molina Y, Marulanda-Moreno SM, Saldamando-Benjumea C, Junca H, Moreno-Herrera CX,Cadavid- Restrepo G. (2023). Microbiome analysis of Spodoptera frugiperda (Lepidoptera, Noctuidae) larvae exposed to Bacillus thuringiensis (Bt) endotoxins. PeerJ 11:e15916. https://doi.org/10.7717/peerj.15916Cavichiolli De Oliveira, N. (2021). Gut microbiota of the rice and corn strains of Spodoptera frugiperda: diversity and function.Escuela superior de agricultura Luiz de Queiroz. https://doi.org/10.11606/T.11.2021.tde-09092021-151537Chen, S., Deng, Y., Chang, C., Lee, J., Cheng, Y., Cui, Z., Zhou, J., He, F., Hu, M., & Zhang, L. H. (2015). Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 5. https://doi.org/10.1038/srep08784Cheng, D., Chen, S., Huang, Y., Pierce, N. E., Riegler, M., Yang, F., Zeng, L., Lu, Y., Liang, G., & Xu, Y. (2019). Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathogens, 15(7). https://doi.org/10.1371/journal.ppat.1007942Claus, S. P., Guillou, H., & Ellero-Simatos, S. (2016). The gut microbiota: A major player in the toxicity of environmental pollutants? In npj Biofilms and Microbiomes (Vol. 2). Nature Publishing Group. https://doi.org/10.1038/npjbiofilms.2016.3Colman, D. R., Toolson, E. C., & Takacs-Vesbach, C. D. (2012). Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294X.2012.05752.xda Silva, D. M., Bueno, A. de F., Andrade, K., Stecca, C. dos S., Neves, P. M. O. J., & de Oliveira, M. C. N. (2017). Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food sources. Scientia Agricola, 74(1), 18–31. https://doi.org/10.1590/1678-992x-2015-0160Dantán González, E., & Salgado-Morales, R. (2021). El Hologenoma, una herramienta para el estudio de los problemas ambientales ocasionados por xenobióticos. Revista Del Centro de Investigación de La Universidad La Salle, 14(56), 17–36. https://doi.org/10.26457/recein.v14i56.2862de Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3). https://doi.org/10.1371/journal.pone.0174754Deshmukh, S., Pavithra, H. B., Kalleshwaraswamy, C. M., Shivanna, B. K., & Mota-Sanchez, D. (2020). Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) on maize in India. Floria Entomologist. https://doi.org/10.1653/024.103.0211Devine, G. J., Eza, D., Ogusuku, E., & Furlong, M. J. (2008). Uso de insecticidas: Contexto y consecuencias ecológicas. In Rev Peru Med Exp Salud Publica (Vol. 25, Issue 1).Dillon, R. J., & Dillon, V. M. (2004). The Gut Bacteria of Insects: Nonpathogenic Interactions. In Annual Review of Entomology (Vol. 49, pp. 71–92). https://doi.org/10.1146/annurev.ento.49.061802.123416dos Santos, K. B., Neves, P., Meneguim, A. M., dos Santos, R. B., dos Santos, W. J., Boas, G. V., Dumas, V., Martins, E., Praça, L. B., Queiroz, P., Berry, C., & Monnerat, R. (2009). Selection and characterization of the Bacillus thuringiensis strains toxic to Spodoptera eridania (Cramer), Spodoptera cosmioides (Walker) and Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). Biological Control, 50(2), 157–163. https://doi.org/10.1016/j.biocontrol.2009.03.014Dowd, P. F., & Shen, S. K. (1990). The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne). Entomologia Experimentalis et Applicata, 56(3), 241–248. https://doi.org/10.1111/j.1570-7458.1990.tb01402.xElKraly, O. A., Awad, M., El-Saadany, H. M., Hassanein, S. E., Elrahman, T. A., & Elnagdy, S. M. (2023). Impact of gut microbiota composition on black cutworm, Agrotis ipsilon (hufnagel) metabolic indices and pesticide degradation. Animal Microbiome, 5(1). https://doi.org/10.1186/s42523-023-00264-6Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025FAO. (2021) Mapa de la propagación mundial del gusano cogollero del maíz desde 2016. https://www.ippc.int/es/news/preparing-countries-to-keep-fall-armyworm-away-from-their-territories/FAO, & CABI. (n.d.). Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management. 2019.Fonseca, I., & Quiñones, M. L. (2005). Resistencia a insecticidas en mosquitos Mecanismos, detección y vigilancia en salud pública. Revista Colombiana de Entomología, 107–115. https://doi.org/10.25100/socolen.v31i2.9429Frago, E., Dicke, M., & Godfray, H. C. J. (2012). Insect symbionts as hidden players in insect-plant interactions. In Trends in Ecology and Evolution https://doi.org/10.1016/j.tree.2012.08.013Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. Arch Insect Biochem Physiol. (2022) Mar;109(3):E21869. doi: 10.1002/arch.21869. Epub 2022 Jan 28. PMID: 35088911.Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. In Engineering in Life Sciences (Vol. 5, Issue 6, pp. 497–526). Wiley-VCH Verlag. https://doi.org/10.1002/elsc.200520098Giambó, F., Teodoro, M., Costa, C., & Fenga, C. (2021). Toxicology and microbiota: How do pesticides influence gut microbiota? a review. In International Journal of Environmental Research and Public Health (Vol. 18, Issue 11). MDPI. https://doi.org/10.3390/ijerph18115510Gichuhi, J., Sevgan, S., Khamis, F., Van Den Berg, J., Du Plessis, H., Ekesi, S., & Herren, J. K. (2020). Diversity of fall armyworm, Spodoptera frugiperda and their gut bacterial community in Kenya. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8701Gimenez, S., Abdelgaffar, H., Goff, G. Le, Hilliou, F., Blanco, C. A., Hänniger, S. Nam, K. (2020). Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Communications Biology, 3, 664.Gomes, S.I.F., Kielak, A.M., Hannula, S.E. et al. (2020a). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. anim microbiome 2, 37. https://doi.org/10.1186/s42523-020-00055-3Gomes, A. F. F., Omoto, C., & Cônsoli, F. L. (2020b). Gut bacteria of field-collected larvae of Spodoptera frugiperda undergo selection and are more diverse and active in metabolizing multiple insecticides than laboratory-selected resistant strains. Journal of Pest Science, 93(2), 833–851. https://doi.org/10.1007/s10340-020-01202-0González Maldonado, M. B., Gurrola Reyes, J. N., & Chaírez Hernández, I. (2015). Productos biológicos para el control de Spodoptera frugiperda. Revista Colombiana de Entomología, 200–204.Gutiérrez, M. C., Droguet, M., Carmen, M., Bouzán, G., & En Química, D. (2002). La cromatografía de gases y la espectrometría de masas: Identificación de compuestos causantes de mal olor. Universitat Politecnica de Catalunya. Boletín Intexter No 122.Hafeez, M., Li, X., Zhang, Z., Huang, J., Wang, L., Zhang, J., Shah, S., Khan, M. M., Xu, F., Fernández-Grandon, G. M., Zaluchi, M. P., & Lu, Y. (2021). De novo transcriptomic analyses revealed some detoxification genes and related pathways responsive to Noposion Yihaogong® 5% ec (Lambda-cyhalothrin 5%) exposure in Spodoptera frugiperda third-instar larvae. Insects, 12(2), 1–16. https://doi.org/10.3390/insects12020132Haine, E. R., Moret, Y., Siva-jothy, M. T., & Rolff, J. (2008). Antimicrobial defense and persistent infection in insects. In Science (Vol. 322, Issue 5905, pp. 1198–1199). https://doi.org/10.1126/science.1166844Hammer, D. A. T., Ryan, P. D., Hammer, Ø., & Harper, D. A. T. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. In Palaeontologia Electronica (Vol. 4, Issue 1). http://palaeo-electronica.orghttp://palaeo-electronica.org/2001_1/past/issue1_01.htm.Hammer, T. J., & Bowers, M. D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia, 179(1), 1–14. https://doi.org/10.1007/s00442-015-3327-1He, L.-M., Troiano, J., Wang, A., & Goh, K. (2008). Environmental Chemistry, Ecotoxicity, and Fate of Lambda-Cyhalothrin. https://doi.org/10.1007/978-0-387-77030-7_3Higuita Palacio MF, Montoya OI, Saldamando CI, García-Bonilla E, Junca H, Cadavid- Restrepo GE, Moreno-Herrera CX. (2021). Dry and rainy seasons significantly alter the gut microbiome composition and reveal a key enterococcus sp. (Lactobacillales: Enterococcaceae) core component in Spodoptera frugiperda (Lepidoptera: Noctuidae) corn strain from Northwestern Colombia. Journal of Insect Science 21:10.111. https://doi.org/10.1093/jisesa/ieab076Hladik, M. L., Smalling, K. L., & Kuivila, K. M. (2009). Methods of Analysis-Determination of Pyrethroid Insecticides in Water and Sediment Using Gas Chromatography/Mass Spectrometry. https://doi.org/10.1016/j.talanta.2009.11.050Hou, J., Yu, J., Qin, Z., Liu, X., Zhao, X., Hu, X., Yu, R., Wang, Q., Yang, J., Shi, Y., & Chen, L. (2021). Guadipyr, a new insecticide, induces microbiota dysbiosis and immune disorders in the midgut of silkworms (Bombyx mori). Environmental Pollution, 286. https://doi.org/10.1016/j.envpol.2021.117531Hu, W., Lu, Q., Zhong, G., Hu, M., & Yi, X. (2019). Biodegradation of pyrethroids by a hydrolyzing carboxylesterase EstA from Bacillus cereus BCC01. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030477Huang, Y., Chen, S. F., Chen, W. J., Zhu, X., Mishra, S., Bhatt, P., & Chen, S. (2023). Efficient biodegradation of multiple pyrethroid pesticides by Rhodococcus pyridinivorans strain Y6 and its degradation mechanism. Chemical Engineering Journal, 469. https://doi.org/10.1016/j.cej.2023.143863Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. In Molecules (Vol. 23, Issue 9). MDPI AG. https://doi.org/10.3390/molecules23092313Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., Fitzgerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., … White, O. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234ICA. (2024). Productos Nacionales de Plaguicidas. Plaguicidas Químicos. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos.aspxJaenike, J. (2010). Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science, 329(5988), 210–212. https://doi.org/10.1126/science.1187115Jaramillo-Barrios, C. I., Varón-Devia, E. H., & Monje-Andrade, B. (2020). Economic injury level and action thresholds for Spodoptera frugiperda (J.e. smith) (Lepidoptera: Noctuidae) in maize crops. Revista Facultad Nacional de Agronomia Medellin, 73(1), 9065–9076. https://doi.org/10.15446/rfnam.v73n1.78824Jiang, B., Zhang, N., Xing, Y., Lian, L., Chen, Y., Zhang, D., Li, G., Sun, G., & Song, Y. (2019). Microbial degradation of organophosphorus pesticides: novel degraders, kinetics, functional genes, and genotoxicity assessment. Environmental Science and Pollution Research, 26(21), 21668–21681. https://doi.org/10.1007/s11356-019-05135-9Jilani, S., Khan, M. A., & Altaf Khan, M. (2006). Biodegradation of Cypermethrin by pseudomonas in a batch activated sludge process 1*. J. Environ. Sci. Tech, 3(4), 371–380. https://doi.org/10.1007/bf03325946Jing, T. Z., Qi, F. H., & Wang, Z. Y. (2020). Most dominant roles of insect gut bacteria: Digestion, detoxification, or essential nutrient provision? Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00823-yJones, A. G., Mason, C. J., Felton, G. W., & Hoover, K. (2019). Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39163-9Khan, M. M., Khan, A. H., Ali, M. W., Hafeez, M., Ali, S., Du, C., Fan, Z., Sattar, M., & Hua, H. (2021). Emamectin benzoate induced enzymatic and transcriptional alternation in detoxification mechanism of predatory beetle Paederus fuscipes (Coleoptera: Staphylinidae) at the sublethal concentration. Ecotoxicology, 30(6), 1227–1241. https://doi.org/10.1007/s10646-021-02426-1.Kim, D. H., Han, S. A., Kim, H. N., Shin, B. C., & Park, Y. (2016). A Case of Methomyl-induced Acute Allergic Tubulointerstitial Nephritis (Vol. 27, Issue 4).Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. Journal of Environmental Sciences (China), 25(11), 2257–2264. https://doi.org/10.1016/S1001-0742(12)60288-5Kulkarni, A. G., & Kaliwal, B. B. (2018). Bioremediation of methomyl by Escherichia coli. In Methods in Pharmacology and Toxicology (Issue 9781493974245, pp. 75–86). Humana Press Inc. https://doi.org/10.1007/978-1-4939-7425-2_4León García, I., Rodríguez Leyva, E., Ortega Arenas, L. D., & Solís Aguilar, J. F. (2012). Susceptibilidad de Spodoptera frugiperda a insecticidas asociada a césped en quintana roo, Mexico. Red de revistas científicas de América Latina. Agrociencias, vol. 46.Li, W., Jin, D., Shi, C., & Li, F. (2017). Midgut bacteria in deltamethrin-resistant, deltamethrin-susceptible, and field-caught populations of Plutella xylostella, and phenomics of the predominant midgut bacterium Enterococcus mundtii. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02138-9Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., Cao, L. X., & Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of Agricultural and Food Chemistry, 53(19), 7415–7420. https://doi.org/10.1021/jf051460kLin, Z., Pang, S., Zhou, Z., Wu, X., Li, J., Huang, Y., Zhang, W., Lei, Q., Bhatt, P., Mishra, S., & Chen, S. (2022). Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. Journal of Hazardous Materials, 426. https://doi.org/10.1016/j.jhazmat.2021.127841Lin, Z., Zhang, W., Pang, S., Huang, Y., Mishra, S., Bhatt, P., & Chen, S. (2020). Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments. In Molecules (Vol. 25, Issue 3). MDPI AG. https://doi.org/10.3390/molecules25030738Liu, J., Hao, Z., Yang, S., Lin, Y., Zhong, H., & Jin, T. (2022). Insecticide resistance and its underlying synergism in field populations of Spodoptera frugiperda (J. E. Smith) from Hainan Island, China. Phytoparasitica, 50(4), 933–945. https://doi.org/10.1007/s12600-022-01004-3Liu, S., Yao, K., Jia, D., Zhao, N., Lai, W., & Yuan, H. (2012). A pretreatment method for HPLC analysis of cypermethrin in microbial degradation systems. Journal of Chromatographic Science, 50(6), 469–476. https://doi.org/10.1093/chromsci/bms030M. T. Madigan, J. M. Martinko, J. Parker. Brock. Biología de los Microorganismos. 12a (2009) Ed. Prentice Hall-Pearson Education.Majchrzak, T., Wojnowski, W., Lubinska-Szczygeł, M., Różańska, A., Namieśnik, J., & Dymerski, T. (2018). PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. In Analytica Chimica Acta (Vol. 1035, pp. 1–13). Elsevier B.V. https://doi.org/10.1016/j.aca.2018.06.056Marulanda-Moreno, S. M. (2022). Caracterización de la microbiota asociada a los biotipos de Spodoptera frugiperda SMITH (Lepidoptera: Noctuidae). Universidad Nacional de Colombia, Sede Medellín.Marulanda-Moreno, S. M., Saldamando-Benjumea, C. I., Vivero Gomez, R., Cadavid-Restrepo, G., & Moreno-Herrera, C. X. (2024). Comparative analysis of Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) corn and rice strains microbiota revealed minor changes across life cycle and strain endosymbiont association. PeerJ, 12, e17087. https://doi.org/10.7717/peerj.17087Mason, C. J., St Clair, A., Peiffer, M., Gomez, E., Jones, A. G., Felton, G. W., & Hoover, K. (2020). Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PloS One, 15(3), e0229848. https://doi.org/10.1371/journal.pone.0229848McCarthy, C. B., Cabrera, N. A., & Virla, E. G. (2015). Metatranscriptomic analysis of larval guts from field-collected and laboratory-reared Spodoptera frugiperda from the South American subtropical region. Genome Announcements, 3(4). https://doi.org/10.1128/genomeA.00777-15McCoy, M. R., Yang, Z., Fu, X., Ahn, K. C., Gee, S. J., Bom, D. C., Zhong, P., Chang, D., & Hammock, B. D. (2012). Monitoring of total type II pyrethroid pesticides in citrus oils and water by converting to a common product 3-phenoxybenzoic acid. Journal of Agricultural and Food Chemistry, 60(20), 5065–5070. https://doi.org/10.1021/jf2051653Montllor, C. B., Maxmen, A., & Purcell, A. H. (2002). Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress.Moreno-García, M., Condé, R., Bello-Bedoy, R., & Lanz-Mendoza, H. (2014). The damage threshold hypothesis and the immune strategies of insects. In Infection, Genetics and Evolution (Vol. 24, pp. 25–33). https://doi.org/10.1016/j.meegid.2014.02.010Morgan, J., Salcedo-Sora, J. E., Triana-Chavez, O., & Strode, C. (2022). Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. Journal of Medical Entomology, 59(1), 192–212. https://doi.org/10.1093/jme/tjab179Morillo, F., & Notz, A. (2001). Resistencia de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) a lambdacihalotrina y metomil. 16(2), 79–87.Morillo, F., & Notz, A. (2004). Efecto de lambdacihalotrina y metomil sobre la biología de Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae). 19(1), 7–14.Muthabathula, P., & Biruduganti, S. (2022). Analysis of Biodegradation of the Synthetic Pyrethroid Cypermethrin by Beauveria bassiana. Current Microbiology, 79(2). https://doi.org/10.1007/s00284-021-02744-xMuturi, E. J., Dunlap, C., Smartt, C. T., & Shin, D. (2021). Resistance to permethrin alters the gut microbiota of Aedes aegypti. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-93725-4Nagoshi, R. N., & Meagher, R. (2003). Fall armyworm FR sequences map to sex chromosomes and their distribution in the wild indicate limitations in interstrain mating. In Insect Molecular Biology (Vol. 12, Issue 5).Nagoshi, R. N., Meagher, & Robert L. (n.d.). Behavior and distribution of the two fall armyworm host strains in Florida. 2004. https://doi.org/10.1653/0015Nagoshi RN, Htain NN, Boughton D, Zhang L, Xiao Y, NagoshiB Y, Mota-Sanchez D. (2020). Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Science Reports 0:1421 DOI 10.1038/s41598-020-58249-3.Navarro, S., Barba, A., & Camara, M. A. (1978). Determinación de insecticidas por cromatografía líquida de alta resolución (CLAR).Nayyar N, Gracy RG, Ashika TR, Mohan G, Swathi RS, Mohan M, Chaudhary M,Bakthavatsalam N, Venkatesan T. (2021). Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Scientifc Reports 11:7760NIST/EPA/NIH Mass Spectral Database, S.R.D., 2011. SRD Program, National Institute of Standards and Technology, Gaithersburg, MD.Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102OMS. (2019). Clasificación recomendada por la OMS de los plaguicidas por el peligro que presentan y directrices para la clasificación 2019. http://apps.who.int/bookorders.Overton, K., Maino, J. L., Day, R., Umina, P. A., Bett, B., Carnovale, D., Ekesi, S., Meagher, R., & Reynolds, O. L. (2021). Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review. In Crop Protection (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.cropro.2021.105641Pais, P., Moyano, E., Puignou, L., & Galceran, M. T. (1997). Liquid chromatography-atmospheric-pressure chemical ionization mass spectrometry as a routine method for the analysis of mutagenic amines in beef extracts. In Journal of Chromatography A (Vol. 778).Palmer-Brown, W., de Melo Souza, P. L., & Murphy, C. D. (2019). Cyhalothrin biodegradation in Cunninghamella elegans. Environmental Science and Pollution Research, 26(2), 1414–1421. https://doi.org/10.1007/s11356-018-3689-0Pang, S., Lin, Z., Chen, W. J., Chen, S. F., Huang, Y., Lei, Q., Bhatt, P., Mishra, S., Chen, S., & Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452. https://doi.org/10.1016/j.jhazmat.2023.131287Paredes-Sánchez, F. A., Rivera, G., Bocanegra-García, V., Martínez-Padrón, H. Y., Berrones-Morales, M., Niño-García, N., & Herrera-Mayorga, V. (2021). Advances in control strategies against Spodoptera frugiperda. A review. In Molecules (Vol. 26, Issue 18). MDPI. https://doi.org/10.3390/molecules26185587Pashley Prowell, D., Mcmichael, M., & Ois Silvain, J. (2004). Multilocus Genetic Analysis of Host Use, Introgression, and Speciation in Host Strains of Fall Armyworm (Lepidoptera: Noctuidae). In Ann. Entomol. Soc. Am (Vol. 97, Issue 5). https://academic.oup.com/aesa/article/97/5/1034/63036Peña García, Y. (2016). Degradación microbiana de compuestos xenobióticos.Pinto Carvajal, L. P. (2017). Alternativas para el tratamiento de aguas contaminadas por plaguicidas utilizadas en los cultivos de arroz en Colombia. Universidad Nacional Abierta y a Distancia.Podlesky, E., & Alfonso, G. (1994). Determinación de plaguicidas en muestras ambientales, biológicas y de alimentos.Polenogova, O. V., Noskov, Y. A., Yaroslavtseva, O. N., Kryukova, N. A., Alikina, T., Klementeva, T. N., Andrejeva, J., Khodyrev, V. P., Kabilov, M. R., Kryukov, V. Y., & Glupov, V. V. (2021). Influence of Bacillus thuringiensis and avermectins on gut physiology and microbiota in Colorado potato beetle: Impact of enterobacteria on susceptibility to insecticides. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248704Poveda Arias, J. (2019). The microorganisms associated with insects and their application in agriculture. Revista Digital Universitaria, 20(1). https://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides–chemical and biological aspects. In Critical Reviews in Toxicology (Vol. 51, Issue 2, pp. 117–140). Taylor and Francis Ltd. https://doi.org/10.1080/10408444.2021.1879007Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021a). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121Rigby, L. M., Johnson, B. J., Rašić, G., Peatey, C. L., Hugo, L. E., Beebe, N. W., Hartel, G. F., & Devine, G. J. (2021b). The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, aedes aegypti. PLoS Neglected Tropical Diseases, 15(2), 1–13. https://doi.org/10.1371/journal.pntd.0009121Rigolin, F., Leite, C., Birolli, W., Porto, A., & Seleghim, M. (2024). Biodegradation of the Pyrethroid Pesticide Gamma-Cyhalothrin by Fungi from a Brazilian Cave. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20240026Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from central Colombia to two insecticides, methomyl and lambda-cyhalothrin: A study of the genetic basis of resistance. Journal of Economic Entomology, 104(5), 1698–1705. https://doi.org/10.1603/EC11079Ríos-Díez, J. D., B. Siegfried, and C. I. Saldamando-Benjumea. (2012). Susceptibility of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from Central Colombia to Cry1Ac and Cry1Ab. Southwest Entomol. 7: 281-293.Rodríguez Martínez, C. & Zhurbenko, R. (2018). Manual de medios de cultivo. www.biocen.cuRomo Ibáñez, M. (2017). Actividad fenilvalerato esterasa en la buirilcolinesterasa humana. Universidad Miguel Hernández de Elche.ROTAM. (2020). Ficha técnica Rotam Lash. https://croper.com/products/4957-insecticida-lash-216-sl-x-20-lt-rotamRoy, T., & Das, N. (2017). Isolation, characterization, and identification of two methomyl-degrading bacteria from a pesticide-treated crop field in West Bengal, India. Microbiology (Russian Federation), 86(6), 753–764. https://doi.org/10.1134/S0026261717060145Ruiz Benitez, M. L. (2020). Cromatografía líquida de alto rendimiento (HPLC) y cromatografía de gases (CG).Rupawate, P. S., Roylawar, P., Khandagale, K., Gawande, S., Ade, A. B., Jaiswal, D. K., & Borgave, S. (2023). Role of gut symbionts of insect pests: A novel target for insect-pest control. In Frontiers in Microbiology (Vol. 14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1146390SAAT AG. (2022). Ficha técnica Saat Lambada. https://www.saat-ag.com/wp-content/uploads/2023/03/Ficha_Tecnica_Saat_LAMBADASaldamando-Benjumea, C. I., K. Estrada-Piedrahíta, M. I. Velásquez-Vélez, and R. I. Bailey. (2014). Assortative mating and lack of temporality between corn and rice strains of Spodoptera frugiperda (Lepidoptera, Noctuidae) from central Colombia. J. Insect Behav. 27: 555-566.Sampson, T. R., & Mazmanian, S. K. (2015). Control of brain development, function, and behavior by the microbiome. In Cell Host and Microbe (Vol. 17, Issue 5, pp. 565–576). Cell Press. https://doi.org/10.1016/j.chom.2015.04.011Santos-Amaya, O., Delgado-Restrepo O, Arguelles J, Aguilera-Garramuño E. (2009). Evaluación del comportamiento del complejo Spodoptera con la introducción de algodón transgénico al Tolima, Colombia. Revista Corpoica Ciencia y Tecnología Agropecuaria 10(1):24-32.Schneider, D. S., & Ayres, J. S. (2008). Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. https://doi.org/10.1038/nri2432Shu, B., Zou, Y., Yu, H., Zhang, W., Li, X., Cao, L., & Lin, J. (2021). Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07726-8Siddiqui, J. A., Fan, R., Naz, H., Bamisile, B. S., Hafeez, M., Ghani, M. I., Wei, Y., Xu, Y., & Chen, X. (2023). Insights into insecticide-resistance mechanisms in invasive species: Challenges and control strategies. In Frontiers in Physiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fphys.2022.1112278Siddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I., & Xu, Y. (2022). Role of Insect Gut Microbiota in Pesticide Degradation: A Review. In Frontiers in Microbiology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2022.870462Siripattanakul-Ratpukdi, S., Vangnai, A. S., Sangthean, P., & Singkibut, S. (2014). Profenofos insecticide degradation by novel microbial consortium and isolates enriched from contaminated chili farm soil. Environmental Science and Pollution Research, 22(1), 320–328. https://doi.org/10.1007/s11356-014-3354-1Staetz, C. A. (2013). Directrices sobre la Prevención y Manejo de la Resistencia a los Plaguicidas. www.fao.org/publicationsStashenko, E. E., & René Martínez, J. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Industrial University of Santander.Suarez Ospina, D., & Morales Hernández, Y. (2018). Principios básicos de la cromatografía líquida de alto rendimiento para la separación y análisis de mezclas basic principles of high performance liquid chromatography for the separation and analysis of mixtures. América Revista Semilleros: Formación Investigativa, 4.Tamimi, M., Qourzal, S., Assabbane, A., Chovelon, J. M., Ferronato, C., & Ait-Ichou, Y. (2006). Photocatalytic degradation of pesticide methomyl: Determination of the reaction pathway and identification of intermediate products. Photochemical and Photobiological Sciences, 5(5), 477–482. https://doi.org/10.1039/b517105aTang, X., Freitak, D., Vogel, H., Ping, L., Shao, Y., Cordero, E. A., Andersen, G., Westermann, M., Heckel, D. G., & Boland, W. (2012). Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0036978Todd, E. L., & Poole, R. W. (1980). Keys and illustrations for the armyworm moths of the noctuid genus Spodoptera guenee from the Western Hemisphere 1. In ABSTRACT Ann. Entomol. Soc. Am (Vol. 73).Ugwu, J. A., Liu, M., Sun, H., & Asiegbu, F. O. (2020). Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. Journal of Applied Entomology, 144(9), 764–776. https://doi.org/10.1111/jen.12821Valbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286. https://doi.org/10.1016/j.jenvman.2021.112141Van Scoy, A. R., Yue, M., Deng, X., & Tjeerdema, R. S. (2013). Environmental fate and toxicology of methomyl. Reviews of Environmental Contamination and Toxicology, 222, 93–109. https://doi.org/10.1007/978-1-4614-4717-7_3Velásquez-Vélez, M. I., C. I. Saldamando-Benjumea, and J. D. Ríos- Díez. (2011). Reproductive isolation between two populations of Spodoptera frugiperda (Lepidoptera, Noctuidae) collected in corn and rice fields from Central Colombia. Ann. Entomol. Soc. Am. 104: 826-833.Vélez Arango, A. M., Arango I., R. E., Villanueva M., D., Aguilera G., E., & Saldamando B., C. I. (2008). Identificación de biotipos de Spodoptera frugiperda (Lepidoptera: Noctuidae) mediante marcadores mitocondriales y nucleares. Revista Colombiana de Entomología.Visôtto, L. E., Oliveira, M. G. A., Ribon, A. O. B., Mares-Guia, T. R., & Guedes, R. N. C. (2009). Characterization and identification of proteolytic bacteria from the gut of the velvetbean caterpillar (Lepidoptera: Noctuidae). Environmental Entomology, 38(4), 1078–1085. https://doi.org/10.1603/022.038.0415Wan, J., Huang, C., Li, C., Zhou, H. Xu, REN, Y. Lin, Li, Z. Yuan, Xing, L. Sheng, Zhang, B., Qiao, X., Liu, B., Liu, C. Hui, Xi, Y., Liu, W. Xue, Wang, W. Kai, Qian, W. Qiang, Mckirdy, S., & Wan, F. Hao. (2021). Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). In Journal of Integrative Agriculture (Vol. 20, Issue 3, pp. 646–663). Editorial Department of Scientia Agricultura Sinica. https://doi.org/10.1016/S2095-3119(20)63367-6Wendeborn, S., Godineau, E., Mondière, R., Smejkal, T., & Smits, H. (2012). Chirality in Agrochemicals. In Comprehensive Chirality (Vol. 1, pp. 120–166). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-095167-6.00102-6Worku, M., & Ebabuye, Y. (2019). Evaluation of efficacy of insecticides against the fall armyworm Spodoptera frugiperda. Indian Journal of Entomology, 81(1), 13. https://doi.org/10.5958/0974-8172.2019.00076.2Xia, X., Gurr, G. M., Vasseur, L., Zheng, D., Zhong, H., Qin, B., Lin, J., Wang, Y., Song, F., Li, Y., Lin, H., & You, M. (2017). Metagenomic Sequencing of Diamondback Moth Gut Microbiome Unveils Key Holobiont Adaptations for Herbivory. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00663Xia, X., Sun, B., Gurr, G. M., Vasseur, L., Xue, M., & You, M. (2018). Gut microbiota mediate insecticide resistance in the Diamondback moth, Plutella xylostella (L.). Frontiers in Microbiology, 9(JAN). https://doi.org/10.3389/fmicb.2018.00025Xie, S., Liu, J., Li, L., & Qiao, C. (2009). Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates. Journal of Environmental Sciences, 21(1), 76–82. https://doi.org/10.1016/S1001-0742(09)60014-0Yamamoto, S., & Harayama, S. (1995). PCR Amplification and Direct Sequencing of gyrB Genes with Universal Primers and Their Application to the Detection and Taxonomic Analysis of Pseudomonas putida Strains. In Applied and environmental microbiology (Vol. 61, Issue 3).Yingjie, Y., Qianru, C., Naila, I., Ping, Z., Changliang, J., Bin, L., & Yiqiang, L. (2022). Synergism in microbial communities facilitate the biodegradation of pesticides. In Microbial Syntrophy-mediated Eco-enterprising (pp. 259–273). Elsevier. https://doi.org/10.1016/B978-0-323-99900-7.00011-0Yuning, L., Luyang, L., Xueming, C., Xianmei, Y., Jintian, L., & Benshui, S. (2022). The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-17278-wZhang, C., Yang, Z., Jin, W., Wang, X., Zhang, Y., Zhu, S., Yu, X., Hu, G., & Hong, Q. (2017). Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Letters in Applied Microbiology, 64(4), 289–296. https://doi.org/10.1111/lam.12715Zhao, M., Lin, X., & Guo, X. (2022). The Role of Insect Symbiotic Bacteria in Metabolizing Phytochemicals and Agrochemicals. In Insects (Vol. 13, Issue 7). MDPI. https://doi.org/10.3390/insects13070583Evaluación de la degradación de los insecticidas lambda-cialotrina y metomil por bacterias intestinales provenientes de Spodoptera frugiperda como potenciales biodegradadoras de compuestos xenobióticosUniversidad Nacional de ColombiaMinCienciasEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86987/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015456655.2024.pdf1015456655.2024.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf2840921https://repositorio.unal.edu.co/bitstream/unal/86987/2/1015456655.2024.pdfc4ae15d1840f039201491f4c860d5e71MD52THUMBNAIL1015456655.2024.pdf.jpg1015456655.2024.pdf.jpgGenerated Thumbnailimage/jpeg6047https://repositorio.unal.edu.co/bitstream/unal/86987/3/1015456655.2024.pdf.jpg46ede81b09d887600d1fdb42f180bfddMD53unal/86987oai:repositorio.unal.edu.co:unal/869872024-10-19 00:10:53.654Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=