Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings

Alzheimer’s disease (AD) is the most common cause of dementia, which generally affects people over 65 years old. Some genetic mutations induce early onset of AD and help to track the evolution of the symptoms and the physiological changes at different stages of the disease. In Colombia there is a la...

Full description

Autores:
Suárez-Revelo, Jazmín X.
Ochoa-Gómez, John F.
Duque-Grajales, Jon E.
Tobón-Quintero, Carlos A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/67598
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/67598
http://bdigital.unal.edu.co/68627/
Palabra clave:
62 Ingeniería y operaciones afines / Engineering
Familial Alzheimer disease
Electroencephalography
Effective connectivity
Brain graphs
Enfermedad de Alzheimer familiar
Electroencefalografía
Conectividad efectiva
Grafos cerebrales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_225a3ade1802c3b5d6155c10938df72b
oai_identifier_str oai:repositorio.unal.edu.co:unal/67598
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
title Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
spellingShingle Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
62 Ingeniería y operaciones afines / Engineering
Familial Alzheimer disease
Electroencephalography
Effective connectivity
Brain graphs
Enfermedad de Alzheimer familiar
Electroencefalografía
Conectividad efectiva
Grafos cerebrales
title_short Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
title_full Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
title_fullStr Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
title_full_unstemmed Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
title_sort Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings
dc.creator.fl_str_mv Suárez-Revelo, Jazmín X.
Ochoa-Gómez, John F.
Duque-Grajales, Jon E.
Tobón-Quintero, Carlos A.
dc.contributor.author.spa.fl_str_mv Suárez-Revelo, Jazmín X.
Ochoa-Gómez, John F.
Duque-Grajales, Jon E.
Tobón-Quintero, Carlos A.
dc.subject.ddc.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
topic 62 Ingeniería y operaciones afines / Engineering
Familial Alzheimer disease
Electroencephalography
Effective connectivity
Brain graphs
Enfermedad de Alzheimer familiar
Electroencefalografía
Conectividad efectiva
Grafos cerebrales
dc.subject.proposal.spa.fl_str_mv Familial Alzheimer disease
Electroencephalography
Effective connectivity
Brain graphs
Enfermedad de Alzheimer familiar
Electroencefalografía
Conectividad efectiva
Grafos cerebrales
description Alzheimer’s disease (AD) is the most common cause of dementia, which generally affects people over 65 years old. Some genetic mutations induce early onset of AD and help to track the evolution of the symptoms and the physiological changes at different stages of the disease. In Colombia there is a large family group with the PSEN1 E280A mutation with a median age of 46,8 years old for onset of symptoms. AD has been defined as a disconnection syndrome; consequently, network approaches could help to capture different features of the disease. The aim of the current work is to identify a biomarker in AD that helps in the tracking of the neurodegenerative process. Electroencephalography (EEG) was recorded during the encoding of visual information for four groups of individuals: asymptomatic and mild cognitive impairment carriers of the PSEN1 E280A mutation, and two non-carrier control groups. For each individual, the effective connectivity was estimated using the direct Directed Transfer Function and three measurements from graph theory were extracted: input strength, output strength and total strength. A relation between the cognitive status and age of the participants with the connectivity features was calculated. For those connectivity measures in which there is a relation with the age or the clinical scale, the performance as a diagnostic feature was evaluated. We found that output strength connectivity in the right occipito-parietal region is related to age of the carrier groups (r=−0,54, p=0,0036) and has a high sensitivity and high specificity to distinguish between carriers and non-carriers (67% sensitivity and 80% specificity in asymptomatic cases, and 83% sensitivity and 67% specificity in symptomatic cases). This relationship indicates that output strength connectivity could be related to the neurodegenerative process of the disease and could help to track the conversion from the asymptomatic stage to dementia.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-09-01
dc.date.accessioned.spa.fl_str_mv 2019-07-03T04:38:26Z
dc.date.available.spa.fl_str_mv 2019-07-03T04:38:26Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv ISSN: 2248-8723
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/67598
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/68627/
identifier_str_mv ISSN: 2248-8723
url https://repositorio.unal.edu.co/handle/unal/67598
http://bdigital.unal.edu.co/68627/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unal.edu.co/index.php/ingeinv/article/view/54037
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.references.spa.fl_str_mv Suárez-Revelo, Jazmín X. and Ochoa-Gómez, John F. and Duque-Grajales, Jon E. and Tobón-Quintero, Carlos A. (2016) Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings. Ingeniería e Investigación, 36 (3). pp. 50-57. ISSN 2248-8723
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/67598/1/54037-313276-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/67598/2/54037-313276-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 12d9fd9854c8c7af8714b6c12d03b606
6050180bcc4f0345b231cf5c1ddac18b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090138498629632
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Suárez-Revelo, Jazmín X.1b566e61-e395-4c8e-b492-98c55e152e89300Ochoa-Gómez, John F.18f06b43-58e3-4d56-adc1-18bedbc90dc8300Duque-Grajales, Jon E.ea53c2a9-0d9d-4a4c-a66c-90f647f86993300Tobón-Quintero, Carlos A.c280ada8-d0c3-4128-8902-485c49d4581a3002019-07-03T04:38:26Z2019-07-03T04:38:26Z2016-09-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67598http://bdigital.unal.edu.co/68627/Alzheimer’s disease (AD) is the most common cause of dementia, which generally affects people over 65 years old. Some genetic mutations induce early onset of AD and help to track the evolution of the symptoms and the physiological changes at different stages of the disease. In Colombia there is a large family group with the PSEN1 E280A mutation with a median age of 46,8 years old for onset of symptoms. AD has been defined as a disconnection syndrome; consequently, network approaches could help to capture different features of the disease. The aim of the current work is to identify a biomarker in AD that helps in the tracking of the neurodegenerative process. Electroencephalography (EEG) was recorded during the encoding of visual information for four groups of individuals: asymptomatic and mild cognitive impairment carriers of the PSEN1 E280A mutation, and two non-carrier control groups. For each individual, the effective connectivity was estimated using the direct Directed Transfer Function and three measurements from graph theory were extracted: input strength, output strength and total strength. A relation between the cognitive status and age of the participants with the connectivity features was calculated. For those connectivity measures in which there is a relation with the age or the clinical scale, the performance as a diagnostic feature was evaluated. We found that output strength connectivity in the right occipito-parietal region is related to age of the carrier groups (r=−0,54, p=0,0036) and has a high sensitivity and high specificity to distinguish between carriers and non-carriers (67% sensitivity and 80% specificity in asymptomatic cases, and 83% sensitivity and 67% specificity in symptomatic cases). This relationship indicates that output strength connectivity could be related to the neurodegenerative process of the disease and could help to track the conversion from the asymptomatic stage to dementia.La enfermedad de Alzheimer (EA) es la causa más común de demencia, la cual afecta generalmente a personas después de los 65 años de edad. Algunas mutaciones genéticas inducen la aparición temprana de EA ayudando a monitorear la evolución de los síntomas y los cambios fisiológicos en diferentes etapas de la enfermedad. En Colombia existe un gran grupo familiar con la mutación PSEN1 E280A, con una edad media de aparición de los síntomas de 46,8 años. La EA ha sido definida como un síndrome de desconexión; en consecuencia, enfoques de redes podrían ayudar a capturar diferentes características de la enfermedad. El objetivo del presente trabajo es identificar un biomarcador en la EA que permita realizar el seguimiento del proceso neurodegenerativo. Se registró una electroencefalografía (EEG) durante la codificación de información visual en cuatro grupos de sujetos: portadores de la mutación PSEN1 E280A asintomáticos y con deterioro cognitivo leve y dos grupos control de no portadores. Para cada sujeto se estimó la conectividad efectiva utilizando la Función de Transferencia Directa dirigida y se extrajeron tres medidas de grafos: fuerza de entrada, fuerza de salida y fuerza total. Se calculó una relación entre el estado cognitivo y la edad de los participantes con las características de conectividad.Para aquellas medidas de conectividad que tuvieran una relación con la edad o la escala clínica, se evaluó su desempeño como variable de diagnóstico. Se encontró que la fuerza de conectividad saliente en la región parieto-occipital derecha está relacionada con la edad del grupo de los portadores (r=−0,54, p=0,0036), y que tiene alta sensibilidad y especificidad para distinguir entre portadores y no portadores (67% de sensibilidad y 80% de especificidad en casos asintomáticos, y 83% de sensibilidad y 67% de especificidad en casos sintomáticos). Esta relación indica que la fuerza de conectividad saliente podría estar relacionada con el proceso neurodegenerativo de la enfermedad y podría ayudar a realizar un seguimiento de la conversión desde la etapa asintomática hacia la demencia.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/54037Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónSuárez-Revelo, Jazmín X. and Ochoa-Gómez, John F. and Duque-Grajales, Jon E. and Tobón-Quintero, Carlos A. (2016) Biomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordings. Ingeniería e Investigación, 36 (3). pp. 50-57. ISSN 2248-872362 Ingeniería y operaciones afines / EngineeringFamilial Alzheimer diseaseElectroencephalographyEffective connectivityBrain graphsEnfermedad de Alzheimer familiarElectroencefalografíaConectividad efectivaGrafos cerebralesBiomarkers identification in Alzheimer’s disease using effective connectivity analysis from electroencephalography recordingsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL54037-313276-1-PB.pdfapplication/pdf551763https://repositorio.unal.edu.co/bitstream/unal/67598/1/54037-313276-1-PB.pdf12d9fd9854c8c7af8714b6c12d03b606MD51THUMBNAIL54037-313276-1-PB.pdf.jpg54037-313276-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8825https://repositorio.unal.edu.co/bitstream/unal/67598/2/54037-313276-1-PB.pdf.jpg6050180bcc4f0345b231cf5c1ddac18bMD52unal/67598oai:repositorio.unal.edu.co:unal/675982024-05-22 23:33:53.835Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co