Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)

ilustraciones, diagramas, mapas

Autores:
Omen Bolaños, Jesús Leonardo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81384
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81384
https://repositorio.unal.edu.co/
Palabra clave:
690 - Construcción de edificios::691 - Materiales de construcción
720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
Sostenibilidad
Industria de la construcción
Residuos de construcción y demolición
RCDs
Agregado fino reciclado
FRA
Materiales cementantes suplementarios
Durabilidad
Propiedades mecánicas
Concreto hidráulico
Sustainability
Construction industry
Construction and demolition waste
Recycled fine aggregate
Supplementary cementitious materials
Durability
Mechanical properties
Hydraulic concrete
Materiales de construcción
Industria de la construcción
Hormigón
Building materials
Construction industry
Concrete
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_21f08f4f91bf6eb931769da969a5d4ec
oai_identifier_str oai:repositorio.unal.edu.co:unal/81384
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
dc.title.translated.eng.fl_str_mv Influence of supplementary cementitious materials (SCMs) on recycled aggregate concretes (RAC)
title Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
spellingShingle Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
690 - Construcción de edificios::691 - Materiales de construcción
720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
Sostenibilidad
Industria de la construcción
Residuos de construcción y demolición
RCDs
Agregado fino reciclado
FRA
Materiales cementantes suplementarios
Durabilidad
Propiedades mecánicas
Concreto hidráulico
Sustainability
Construction industry
Construction and demolition waste
Recycled fine aggregate
Supplementary cementitious materials
Durability
Mechanical properties
Hydraulic concrete
Materiales de construcción
Industria de la construcción
Hormigón
Building materials
Construction industry
Concrete
title_short Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
title_full Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
title_fullStr Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
title_full_unstemmed Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
title_sort Influencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)
dc.creator.fl_str_mv Omen Bolaños, Jesús Leonardo
dc.contributor.advisor.spa.fl_str_mv Ríos Fresneda, Camilo
dc.contributor.author.spa.fl_str_mv Omen Bolaños, Jesús Leonardo
dc.subject.ddc.spa.fl_str_mv 690 - Construcción de edificios::691 - Materiales de construcción
720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
topic 690 - Construcción de edificios::691 - Materiales de construcción
720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
Sostenibilidad
Industria de la construcción
Residuos de construcción y demolición
RCDs
Agregado fino reciclado
FRA
Materiales cementantes suplementarios
Durabilidad
Propiedades mecánicas
Concreto hidráulico
Sustainability
Construction industry
Construction and demolition waste
Recycled fine aggregate
Supplementary cementitious materials
Durability
Mechanical properties
Hydraulic concrete
Materiales de construcción
Industria de la construcción
Hormigón
Building materials
Construction industry
Concrete
dc.subject.proposal.spa.fl_str_mv Sostenibilidad
Industria de la construcción
Residuos de construcción y demolición
RCDs
Agregado fino reciclado
FRA
Materiales cementantes suplementarios
Durabilidad
Propiedades mecánicas
Concreto hidráulico
dc.subject.proposal.eng.fl_str_mv Sustainability
Construction industry
Construction and demolition waste
Recycled fine aggregate
Supplementary cementitious materials
Durability
Mechanical properties
Hydraulic concrete
dc.subject.unesco.spa.fl_str_mv Materiales de construcción
Industria de la construcción
Hormigón
dc.subject.unesco.eng.fl_str_mv Building materials
Construction industry
Concrete
description ilustraciones, diagramas, mapas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-25T13:01:28Z
dc.date.available.none.fl_str_mv 2022-03-25T13:01:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81384
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81384
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abukersh, S. A., & Fairfield, C. A. (2011). Recycled aggregate concrete produced with red granite dust as a partial cement replacement. Construction and Building Materials, 25(10), 4088–4094. https://doi.org/10.1016/j.conbuildmat.2011.04.047
ACI. (2000). Cement and Concrete Terminology Reported. 1–73
Adams, K. T., Osmani, M., Thorpe, T., & Thornback, J. (2017). Circular economy in construction: current awareness, challenges and enablers. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 170(1), 15–24. https://doi.org/10.1680/jwarm.16.00011
Adnan, S. H., & Omar, A. (2016). Improvement of the compressive strength and water absorption of recycled aggregate concrete by using uncontrolled burnt rice husk ash. 11(3), 1504–1509.
Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete : A global perspective. Journal of Cleaner Production, 186, 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085
Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alqedra, M. A., Mo, K. H., & Sumesh, M. (2017). Evaluation of industrial by-products as sustainable pozzolanic materials in recycled aggregate concrete. Sustainability (Switzerland), 9(5). https://doi.org/10.3390/su9050767
Anike, E., Saidani, M., Ganjian, E., Tyrer, M., & Olubanwo, A. (2019). The potency of recycled aggregate in new concrete: A review
Aprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010
Arifi, E., & Cahya, E. N. (2020). Evaluation of fly ash as supplementary cementitious material to the mechanical properties of recycled aggregate pervious concrete. International Journal of GEOMATE, 18(66), 44–49. https://doi.org/10.21660/2020.66.9270
Armitage, A., & Keeble-Allen, D. (2008). Undertaking a structured literature review or structuring a literature review: Tales from the field. Electronic Journal of Business Research Methods, 6(2), 103–114.
Assas, M. M. (2016). Durability of green concrete with ternary cementitious system containing recycled aggregate concrete and tire rubber wastes. 11(6), 899–915.
Baikerikar, A. (2014). A Review on Green Concrete. (November 2014)
Bedoya, C. (2003). El concreto reciclado con escombros como generador de hábitats urbanos sostenibles. Universidad Nacional de Colombia-Sede Medellín
Bedoya, C., & Dzul, L. (2015). El concreto con agregados reciclados como proyecto de sostenibilidad urbana. Revista Ingenieria de Construccion, 30(2), 99–108
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C & D waste & its use in concrete – A breakthrough towards sustainability in construction sector : A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
Bhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for sustainable development : A review. Renewable and Sustainable Energy Reviews, 71(December 2015), 796–813. https://doi.org/10.1016/j.rser.2016.12.105
Brito, J. De, Ferreira, J., Pacheco, J., Soares, D., & Guerreiro, M. (2016). Structural , material , mechanical and durability properties and behaviour of recycled aggregates concrete. Journal of Building Engineering, 6, 1–16. https://doi.org/10.1016/j.jobe.2016.02.003
Çakır, Ö., & Sofyanlı, Ö. Ö. (2015). Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC Journal, 11(2), 157–166. https://doi.org/10.1016/j.hbrcj.2014.06.002
Cantero, B., Sáez, I. F., Matías, A., Rojas, M. I. S. De, & Medina, C. (2019). Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design. Archives of Civil and Mechanical Engineering, 19(4), 1338–1352. https://doi.org/10.1016/j.acme.2019.08.004
Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., & Pan, Z. (2019). Adopting recycled aggregates as sustainable construction materials : A review of the scientific literature. 218, 483–496. https://doi.org/10.1016/j.conbuildmat.2019.05.130
Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., … Yang, Y. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, 483–496.
Corinaldesi, V., & Moriconi, G. (2009). Influence of mineral additions on the performance of 100% recycled aggregate concrete. Construction and Building Materials, 23(8), 2869–2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004
Creswell, J. (1994). El procedimiento cualitativo. Diseño de Investigación. Aproximaciones Cualitativas y Cuantitativas. Sage., 143–171.
DANE. (2020). Estadísticas de concreto Premezclado. 1–15.
Dimitriou, G., Savva, P., & Petrou, M. F. (2018). Enhancing mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 158, 228–235. https://doi.org/10.1016/j.conbuildmat.2017.09.137
El-Hassan, H., Kianmehr, P., & Zouaoui, S. (2019). Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction and Building Materials, 212, 164–175. https://doi.org/10.1016/j.conbuildmat.2019.03.325
Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161
Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161
Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161
Flower, D. J. M., & Sanjayan, J. G. (2007). Green House Gas Emissions due to Concrete Manufacture *. 12(5), 282–288
Fonseca Medina, E. E. (2018). Evaluación comparativa de concreto con agregado natural y concreto a partir de agregado reciclado de prefabricados de concreto, bajo un análisis de ciclo de vida
Gonzalez, A., Etxeberria, M., & Poon, C. (2017). Influence of the Quality of Recycled Aggregates on the Mechanical and Durability Properties of High Performance Concrete. Waste and Biomass Valorization, 8(5), 1421–1432. https://doi.org/10.1007/s12649-016-9637-7
González, B., & Martínez, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429–437. https://doi.org/10.1016/j.buildenv.2007.01.008
Guo, Z., Zhang, J., Jiang, T., Jiang, T., Chen, C., Bo, R., & Sun, Y. (2020). Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume. European Journal of Environmental and Civil Engineering, 0(0), 1–22. https://doi.org/10.1080/19648189.2020.1715847
Gurdián, H., García-Alcocel, E., Baeza-Brotons, F., Garcés, P., & Zornoza, E. (2014). Corrosion behavior of steel reinforcement in concrete with recycled aggregates, fly ash and spent cracking catalyst. Materials, 7(4), 3176–3197. https://doi.org/10.3390/ma7043176
Gutiérrez, L. (2003). El concreto y otros materiales para la construcción (2nd ed.). MANIZALES: Centro de Publicaciones Universidad Nacional de Colombia Sede Manizales
Henry, M., Pardo, G., Nishimura, T., & Kato, Y. (2011). Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures. Resources, Conservation and Recycling, 55(11), 1060–1069. https://doi.org/10.1016/j.resconrec.2011.05.020
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la Investigación (Sexta). México
Jadhav, R., Jhadao, P., & Shantanu, P. (2015). A Study on behavior of metakaolin base recycled aggregate concrete. 12(5), 521–538
Jin, R., & Chen, Q. (2013). An Investigation of Current Status of " Green " Concrete in the Construction Industry An Investigation of Current Status of “ Green ” Concrete in the Construction Industry. 49 Th ASC Annual International Conference Proceedings
Juenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122(February), 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008
Kalaiarase, S., & Subramanian, K. (2006). Properties of recycled aggrerate concrete with silica fume. Journal of Applied Sciences
Kou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032
Kou, Shi-cong, & Poon, C. (2015). Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Construction and Building Materials, 77, 501–508. https://doi.org/10.1016/j.conbuildmat.2014.12.035
Kou, Shi Cong, Poon, C. S., & Chan, D. (2008). Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures/Materiaux et Constructions, 41(7), 1191–1201. https://doi.org/10.1617/s11527-007-9317-y
Kou, Shicong, & C S Poon. (2006). Compressive Strength , Pore Size Distribution and Chloride-ion Penetration of Recycled Aggregate Concrete Incorporating Class-F Fly Ash 1 Introduction 2 Experimental. 21(4)
Kubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172(December), 595–603. https://doi.org/10.1016/j.proeng.2017.02.186
Kumar, R. (2011). RESEARCH METHODOLOGY. A step by step guide for beginners. (3rd editio). London: SAGE Publications Ltd
Kurda, R., de Brito, J., & Silvestre, J. D. (2018). Combined economic and mechanical performance optimization of recycled aggregate concrete with high volume of fly ash. Applied Sciences (Switzerland), 8(7). https://doi.org/10.3390/app8071189
Kurda, R., de Brito, J., & Silvestre, J. D. (2019). Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 95(August 2018), 169–182. https://doi.org/10.1016/j.cemconcomp.2018.10.004
Lasso, A., & Misle, R. (2012). Evaluacion Tecnica, Economica e Institucional de la gestion de residuos de construccion y demolicion en Bogota D.C (Pontificia Universidad Javeriana). https://doi.org/10.1017/CBO9781107415324.004
Laverde, J., & Torres, N. (2017). Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados. 15–23
Law, A. S. L., Koh, K. H., Hejazi, F., & Jaafar, M. S. (2019). A review on waste materials usage as partial substitution in self-compacting concrete. IOP Conference Series: Earth and Environmental Science, 357(1). https://doi.org/10.1088/1755-1315/357/1/012020
Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458
Li, Z. (2011). Advanced concrete technology. Hoboken New Jersey: John Wiley & Sons, Inc.
Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008
Lima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., & Realfonzo, R. (2013). Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 47, 547–559. https://doi.org/10.1016/j.conbuildmat.2013.04.051
Limbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Construction and Building Materials, 27(1), 439–449. https://doi.org/10.1016/j.conbuildmat.2011.07.023
Liu, K., Yan, J., Hu, Q., Sun, Y., & Zou, C. (2016). Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete. Construction and Building Materials, 106, 264–273. https://doi.org/10.1016/j.conbuildmat.2015.12.074
Marie, I., & Mujalli, R. (2019). Effect of design properties of parent concrete on the morphological properties of recycled concrete aggregates. Engineering Science and Technology, an International Journal, 22(1), 334–345. https://doi.org/10.1016/j.jestch.2018.08.014
Masood, B., Elahi, A., Barbhuiya, S., & Ali, B. (2020). Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117760
Massaro, M., Dumay, J., & Guthrie, J. (2016). On the shoulders of giants: undertaking a structured literature review in accounting. Accounting, Auditing and Accountability Journal, 29(5), 767–801. https://doi.org/10.1108/AAAJ-01-2015-1939
Mattey, P., Robayo, R., Silva, Y., Álvarez, N., & Delvastro, S. (2014). Caracterización física y mecánica de agregados reciclados obtenidos a partir de escombros de la construcción. Informador Técnico, 121–127
McNeil, K., & Kang, T. H. K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5
Megat, M. A., Zeyad, A. M., Muhamad, N., & Ariffin, K. S. (2012). Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Construction and Building Materials, 30, 281–288. https://doi.org/10.1016/j.conbuildmat.2011.12.007
Muduli, R., & Mukharjee, B. B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete. Journal of Cleaner Production, 209, 398–414. https://doi.org/10.1016/j.jclepro.2018.10.221
Muduli, R., & Mukharjee, B. B. (2020). Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Construction and Building Materials, 233, 1–22. https://doi.org/10.1016/j.conbuildmat.2019.117223
Omary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174. https://doi.org/10.1016/j.conbuildmat.2016.01.042
Omrane, M., Kenai, S., Kadri, E. H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415–430. https://doi.org/10.1016/j.jclepro.2017.07.139
Pacheco Torgal, F., Miraldo, S., Labrincha, J. A., & De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, 141–150. https://doi.org/10.1016/j.conbuildmat.2012.04.066
Padmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23(2), 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006
Pan, Z., Zhou, J., Jiang, X., Xu, Y., Jin, R., Ma, J., … Chen, W. (2019). Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials, 200, 570–577. https://doi.org/10.1016/j.conbuildmat.2018.12.150
Panesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866
Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18
Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18
Pedro, D., de Brito, J., & Evangelista, L. (2017a). Mechanical characterization of high performance concrete prepared with recycled aggregates and silica fume from precast industry. Journal of Cleaner Production, 164, 939–949. https://doi.org/10.1016/j.jclepro.2017.06.249
Pedro, D., de Brito, J., & Evangelista, L. (2017b). Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Construction and Building Materials, 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215
Poon, C. S., & Kou, S. C. (2004). Properties of steam cured recycled aggregate concrete. Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste, (January 2004), 1–12.
Radonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. https://doi.org/10.1016/j.conbuildmat.2013.06.076
Rattanachu, P., Karntong, I., Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2018). Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Materiales de Construccion, 68(330), 1–12. https://doi.org/10.3989/mc.2018.04717
Rattanashotinunt, C., Tangchirapat, W., Jaturapitakkul, C., Cheewaket, T., & Chindaprasirt, P. (2018). Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. Journal of Cleaner Production, 172, 1691–1698. https://doi.org/10.1016/j.jclepro.2017.12.044
RILEM. (1994). Specifications for concrete with recycled aggregates. 557–559
Romero, H. (2004). Viabilidad técnica y económica del uso del concreto reciclado como agregado. Universidad Nacional de Colombia-Sede Bogotá, Bogotá
Saravanakumar, P., Dhinakaran, G., & Marimuthu, K. (2014). Performance of sustainable concrete containing HVFA and RCA. Asian Journal of Applied Sciences, Vol. 7, pp. 194–204. https://doi.org/10.3923/ajaps.2014.194.204
SDA, S. D. de A. (2019). Sector Ambiente. Diagnóstico Sectorial. Bogotá D.C.
Silva, R. V., De Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19(7), 825–849. https://doi.org/10.1080/19648189.2014.974831
Sim, J., & Park, C. (2011). Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Management, 31(11), 2352–2360. https://doi.org/10.1016/j.wasman.2011.06.014
Singh, N., & Singh, S. P. (2016). Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Construction and Building Materials, 127, 828–842. https://doi.org/10.1016/j.conbuildmat.2016.10.067
Somna, R., Jaturapitakkul, C., & Amde, A. M. (2012). Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cement and Concrete Composites, 34(7), 848–854. https://doi.org/10.1016/j.cemconcomp.2012.03.003
Somna, R., Jaturapitakkul, C., Rattanachu, P., & Chalee, W. (2012). Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Materials and Design, 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065
Sumanth, C., & Rathish, P. (2013). Recycling of construction and demolition waste for sustainability - an overview of the use of recycled concrete aggregates. International Journal of 3 R´s
Tang, W., Khavarian, M., Yousefi, A., Chan, R. W. K., & Cui, H. (2019). Influence of Surface Treatment of Recycled Aggregates on Mechanical Properties and Bond Strength of Self-Compacting Concrete. Sustainability, 11(15), 4182. https://doi.org/10.3390/su11154182
Tangchirapat, W., Buranasing, R., Jaturapitakkul, C., & Chindaprasirt, P. (2008). Influence of rice husk-bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 22(8), 1812–1819. https://doi.org/10.1016/j.conbuildmat.2007.05.004
Tangchirapat, W., Khamklai, S., & Jaturapitakkul, C. (2012). Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates. Materials and Design, 41, 150–157. https://doi.org/10.1016/j.matdes.2012.04.054
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375
U.S.G.S. (2020). MINERAL COMMODITY SUMMARIES 2020. Virginia
Verian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133(October 2017), 30–49. https://doi.org/10.1016/j.resconrec.2018.02.005
Wang, L., Wang, J., Qian, X., Chen, P., Xu, Y., & Guo, J. (2017). An environmentally friendly method to improve the quality of recycled concrete aggregates. Construction and Building Materials, 144, 432–441. https://doi.org/10.1016/j.conbuildmat.2017.03.191
Wang, Q., Geng, Y., Wang, Y., & Zhang, H. (2020). Drying shrinkage model for recycled aggregate concrete accounting for the in fl uence of parent concrete. Engineering Structures, 202(May 2019), 109888. https://doi.org/10.1016/j.engstruct.2019.109888
Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Construction and demolition waste research: a bibliometric analysis. Architectural Science Review, 62(4), 354–365. https://doi.org/10.1080/00038628.2018.1564646
Xie, T., Yang, G., Zhao, X., Xu, J., & Fang, C. (2020). A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119752
Xuan, D., Zhan, B., & Poon, C. S. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67–74. https://doi.org/10.1016/j.cemconcomp.2015.10.018
Yuan, H., & Shen, L. (2010, April). Trend of the research on construction and demolition waste management. Waste Management, Vol. 31, pp. 670–679. https://doi.org/10.1016/j.wasman.2010.10.030
Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679. https://doi.org/10.1016/j.wasman.2010.10.030
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 129 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Artes - Maestría en Construcción
dc.publisher.faculty.spa.fl_str_mv Facultad de Artes
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81384/3/1024539178.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81384/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81384/5/1024539178.2021.pdf.jpg
bitstream.checksum.fl_str_mv 478a61e8297a2cff9872d734fead2075
8153f7789df02f0a4c9e079953658ab2
ead173721c44cd5efda5420f3b9d81f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886250555113472
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ríos Fresneda, Camilo1608aea9271edc7b7c64cc10e12ec090Omen Bolaños, Jesús Leonardofbb696fc22c46bfa44badaa6854220122022-03-25T13:01:28Z2022-03-25T13:01:28Z2021https://repositorio.unal.edu.co/handle/unal/81384Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasLa sostenibilidad es un tema de gran preocupación en la industria de la construcción debido a los múltiples impactos negativos que esta tiene en el medio ambiente. La elevada huella de carbono de la industria de la construcción producto del consumo insostenible de materias primas, la producción de residuos de construcción y demolición (RCDs), la disposición de dichos residuos, las emisiones de dióxido de carbono en la producción de cemento portland son sólo algunos de los marcados impactos negativos de la industria. Siendo el concreto el material más usado en la industria de la construcción a nivel global, se hacen imperativos el pensamiento de economía circular y la gestión sostenible de los recursos naturales. En el presente trabajo de investigación se llevó a cabo una revisión sistemática de literatura en donde se obtuvieron 129 artículos a los cuales se les realizó análisis bibliométrico y metaanálisis. De la identificación de los vacíos en el conocimiento se propuso la fase experimental la cual comprendió la combinación de agregado fino reciclado (FRA) y materiales cementantes suplementarios (SCMs) –Ceniza volante (FA) y Humo de sílice (SF)- en ensayos de durabilidad como carbonatación, reacción álcali-sílice (RAS) y absorción; propiedades mecánicas y físicas entre ellas módulo de elasticidad, resistencia a compresión y densidad; y ensayos de manejabilidad. En este documento se expone el estado del arte de los RAC combinados con SCMs, su influencia en las propiedades en estado fresco, endurecido y en la durabilidad del concreto hidráulico; y las líneas futuras de investigación producto de la identificación de los vacíos en el conocimiento. (Texto tomado de la fuente).Sustainability is an issue of great concern in the construction industry due to the multiple negative impacts it has on the environment. The high carbon footprint of the construction industry as a result of the unsustainable consumption of raw materials, the production of construction and demolition waste (RCDs), the disposal of this waste, the carbon dioxide emissions in the production of Portland cement are just some of the marked negative impacts of the industry. Since concrete is the most used material in the construction industry globally, it is mandatory to think about circular economy and the sustainable management of natural resources. In the present research work, a systematic literature review was carried out in which 129 articles were obtained. Bibliometric analysis and meta-analysis were conducted. Thanks to the identification of the gaps in knowledge, the experimental phase was proposed, which included the combination of recycled fine aggregate (FRA) and supplementary cementitious materials (SCMs) - Fly ash (FA) and Silica fume (SF) -durability properties such as carbonation, alkali-silica reaction (RAS) and absorption were studied; mechanical and physical properties including modulus of elasticity, compressive strength and density; and workability were also investigated. This document presents the state of the art of RACs combined with SCMs, their influence on the properties in fresh, hardened state and on the durability of hydraulic concrete; and future lines of research resulting from the identification of gaps in knowledge.MaestríaMagister en ConstrucciónRevisión sistemática de literaturaMateriales y sostenibilidadArquitectura y Urbanismoxx, 129 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Artes - Maestría en ConstrucciónFacultad de ArtesBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá690 - Construcción de edificios::691 - Materiales de construcción720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructuralesSostenibilidadIndustria de la construcciónResiduos de construcción y demoliciónRCDsAgregado fino recicladoFRAMateriales cementantes suplementariosDurabilidadPropiedades mecánicasConcreto hidráulicoSustainabilityConstruction industryConstruction and demolition wasteRecycled fine aggregateSupplementary cementitious materialsDurabilityMechanical propertiesHydraulic concreteMateriales de construcciónIndustria de la construcciónHormigónBuilding materialsConstruction industryConcreteInfluencia de los materiales cementantes suplementarios (SCMs) en concretos con agregados reciclados (RAC)Influence of supplementary cementitious materials (SCMs) on recycled aggregate concretes (RAC)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbukersh, S. A., & Fairfield, C. A. (2011). Recycled aggregate concrete produced with red granite dust as a partial cement replacement. Construction and Building Materials, 25(10), 4088–4094. https://doi.org/10.1016/j.conbuildmat.2011.04.047ACI. (2000). Cement and Concrete Terminology Reported. 1–73Adams, K. T., Osmani, M., Thorpe, T., & Thornback, J. (2017). Circular economy in construction: current awareness, challenges and enablers. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 170(1), 15–24. https://doi.org/10.1680/jwarm.16.00011Adnan, S. H., & Omar, A. (2016). Improvement of the compressive strength and water absorption of recycled aggregate concrete by using uncontrolled burnt rice husk ash. 11(3), 1504–1509.Akhtar, A., & Sarmah, A. K. (2018). Construction and demolition waste generation and properties of recycled aggregate concrete : A global perspective. Journal of Cleaner Production, 186, 262–281. https://doi.org/10.1016/j.jclepro.2018.03.085Alnahhal, M. F., Alengaram, U. J., Jumaat, M. Z., Alqedra, M. A., Mo, K. H., & Sumesh, M. (2017). Evaluation of industrial by-products as sustainable pozzolanic materials in recycled aggregate concrete. Sustainability (Switzerland), 9(5). https://doi.org/10.3390/su9050767Anike, E., Saidani, M., Ganjian, E., Tyrer, M., & Olubanwo, A. (2019). The potency of recycled aggregate in new concrete: A reviewAprianti, E., Shafigh, P., Bahri, S., & Farahani, J. N. (2015). Supplementary cementitious materials origin from agricultural wastes - A review. Construction and Building Materials, 74, 176–187. https://doi.org/10.1016/j.conbuildmat.2014.10.010Arifi, E., & Cahya, E. N. (2020). Evaluation of fly ash as supplementary cementitious material to the mechanical properties of recycled aggregate pervious concrete. International Journal of GEOMATE, 18(66), 44–49. https://doi.org/10.21660/2020.66.9270Armitage, A., & Keeble-Allen, D. (2008). Undertaking a structured literature review or structuring a literature review: Tales from the field. Electronic Journal of Business Research Methods, 6(2), 103–114.Assas, M. M. (2016). Durability of green concrete with ternary cementitious system containing recycled aggregate concrete and tire rubber wastes. 11(6), 899–915.Baikerikar, A. (2014). A Review on Green Concrete. (November 2014)Bedoya, C. (2003). El concreto reciclado con escombros como generador de hábitats urbanos sostenibles. Universidad Nacional de Colombia-Sede MedellínBedoya, C., & Dzul, L. (2015). El concreto con agregados reciclados como proyecto de sostenibilidad urbana. Revista Ingenieria de Construccion, 30(2), 99–108Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014a). Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014b). Recycled aggregate from C & D waste & its use in concrete – A breakthrough towards sustainability in construction sector : A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003Bhowmik, C., Bhowmik, S., Ray, A., & Pandey, K. M. (2017). Optimal green energy planning for sustainable development : A review. Renewable and Sustainable Energy Reviews, 71(December 2015), 796–813. https://doi.org/10.1016/j.rser.2016.12.105Brito, J. De, Ferreira, J., Pacheco, J., Soares, D., & Guerreiro, M. (2016). Structural , material , mechanical and durability properties and behaviour of recycled aggregates concrete. Journal of Building Engineering, 6, 1–16. https://doi.org/10.1016/j.jobe.2016.02.003Çakır, Ö., & Sofyanlı, Ö. Ö. (2015). Influence of silica fume on mechanical and physical properties of recycled aggregate concrete. HBRC Journal, 11(2), 157–166. https://doi.org/10.1016/j.hbrcj.2014.06.002Cantero, B., Sáez, I. F., Matías, A., Rojas, M. I. S. De, & Medina, C. (2019). Inclusion of construction and demolition waste as a coarse aggregate and a cement addition in structural concrete design. Archives of Civil and Mechanical Engineering, 19(4), 1338–1352. https://doi.org/10.1016/j.acme.2019.08.004Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., & Pan, Z. (2019). Adopting recycled aggregates as sustainable construction materials : A review of the scientific literature. 218, 483–496. https://doi.org/10.1016/j.conbuildmat.2019.05.130Chen, W., Jin, R., Xu, Y., Wanatowski, D., Li, B., Yan, L., … Yang, Y. (2019). Adopting recycled aggregates as sustainable construction materials: A review of the scientific literature. Construction and Building Materials, 218, 483–496.Corinaldesi, V., & Moriconi, G. (2009). Influence of mineral additions on the performance of 100% recycled aggregate concrete. Construction and Building Materials, 23(8), 2869–2876. https://doi.org/10.1016/j.conbuildmat.2009.02.004Creswell, J. (1994). El procedimiento cualitativo. Diseño de Investigación. Aproximaciones Cualitativas y Cuantitativas. Sage., 143–171.DANE. (2020). Estadísticas de concreto Premezclado. 1–15.Dimitriou, G., Savva, P., & Petrou, M. F. (2018). Enhancing mechanical and durability properties of recycled aggregate concrete. Construction and Building Materials, 158, 228–235. https://doi.org/10.1016/j.conbuildmat.2017.09.137El-Hassan, H., Kianmehr, P., & Zouaoui, S. (2019). Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction and Building Materials, 212, 164–175. https://doi.org/10.1016/j.conbuildmat.2019.03.325Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161Estanqueiro, B., Dinis, J., de Brito, J., & Duarte, M. (2018). Environmental life cycle assessment of coarse natural and recycled aggregates for concrete. European Journal of Environmental and Civil Engineering, 22(4), 429–449. https://doi.org/10.1080/19648189.2016.1197161Flower, D. J. M., & Sanjayan, J. G. (2007). Green House Gas Emissions due to Concrete Manufacture *. 12(5), 282–288Fonseca Medina, E. E. (2018). Evaluación comparativa de concreto con agregado natural y concreto a partir de agregado reciclado de prefabricados de concreto, bajo un análisis de ciclo de vidaGonzalez, A., Etxeberria, M., & Poon, C. (2017). Influence of the Quality of Recycled Aggregates on the Mechanical and Durability Properties of High Performance Concrete. Waste and Biomass Valorization, 8(5), 1421–1432. https://doi.org/10.1007/s12649-016-9637-7González, B., & Martínez, F. (2008). Concretes with aggregates from demolition waste and silica fume. Materials and mechanical properties. Building and Environment, 43(4), 429–437. https://doi.org/10.1016/j.buildenv.2007.01.008Guo, Z., Zhang, J., Jiang, T., Jiang, T., Chen, C., Bo, R., & Sun, Y. (2020). Development of sustainable self-compacting concrete using recycled concrete aggregate and fly ash, slag, silica fume. European Journal of Environmental and Civil Engineering, 0(0), 1–22. https://doi.org/10.1080/19648189.2020.1715847Gurdián, H., García-Alcocel, E., Baeza-Brotons, F., Garcés, P., & Zornoza, E. (2014). Corrosion behavior of steel reinforcement in concrete with recycled aggregates, fly ash and spent cracking catalyst. Materials, 7(4), 3176–3197. https://doi.org/10.3390/ma7043176Gutiérrez, L. (2003). El concreto y otros materiales para la construcción (2nd ed.). MANIZALES: Centro de Publicaciones Universidad Nacional de Colombia Sede ManizalesHenry, M., Pardo, G., Nishimura, T., & Kato, Y. (2011). Balancing durability and environmental impact in concrete combining low-grade recycled aggregates and mineral admixtures. Resources, Conservation and Recycling, 55(11), 1060–1069. https://doi.org/10.1016/j.resconrec.2011.05.020Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la Investigación (Sexta). MéxicoJadhav, R., Jhadao, P., & Shantanu, P. (2015). A Study on behavior of metakaolin base recycled aggregate concrete. 12(5), 521–538Jin, R., & Chen, Q. (2013). An Investigation of Current Status of " Green " Concrete in the Construction Industry An Investigation of Current Status of “ Green ” Concrete in the Construction Industry. 49 Th ASC Annual International Conference ProceedingsJuenger, M. C. G., Snellings, R., & Bernal, S. A. (2019). Supplementary cementitious materials: New sources, characterization, and performance insights. Cement and Concrete Research, 122(February), 257–273. https://doi.org/10.1016/j.cemconres.2019.05.008Kalaiarase, S., & Subramanian, K. (2006). Properties of recycled aggrerate concrete with silica fume. Journal of Applied SciencesKou, S. C., & Poon, C. S. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69–76. https://doi.org/10.1016/j.conbuildmat.2012.02.032Kou, Shi-cong, & Poon, C. (2015). Effect of the quality of parent concrete on the properties of high performance recycled aggregate concrete. Construction and Building Materials, 77, 501–508. https://doi.org/10.1016/j.conbuildmat.2014.12.035Kou, Shi Cong, Poon, C. S., & Chan, D. (2008). Influence of fly ash as a cement addition on the hardened properties of recycled aggregate concrete. Materials and Structures/Materiaux et Constructions, 41(7), 1191–1201. https://doi.org/10.1617/s11527-007-9317-yKou, Shicong, & C S Poon. (2006). Compressive Strength , Pore Size Distribution and Chloride-ion Penetration of Recycled Aggregate Concrete Incorporating Class-F Fly Ash 1 Introduction 2 Experimental. 21(4)Kubissa, W., Simon, T., Jaskulski, R., Reiterman, P., & Supera, M. (2017). Ecological High Performance Concrete. Procedia Engineering, 172(December), 595–603. https://doi.org/10.1016/j.proeng.2017.02.186Kumar, R. (2011). RESEARCH METHODOLOGY. A step by step guide for beginners. (3rd editio). London: SAGE Publications LtdKurda, R., de Brito, J., & Silvestre, J. D. (2018). Combined economic and mechanical performance optimization of recycled aggregate concrete with high volume of fly ash. Applied Sciences (Switzerland), 8(7). https://doi.org/10.3390/app8071189Kurda, R., de Brito, J., & Silvestre, J. D. (2019). Water absorption and electrical resistivity of concrete with recycled concrete aggregates and fly ash. Cement and Concrete Composites, 95(August 2018), 169–182. https://doi.org/10.1016/j.cemconcomp.2018.10.004Lasso, A., & Misle, R. (2012). Evaluacion Tecnica, Economica e Institucional de la gestion de residuos de construccion y demolicion en Bogota D.C (Pontificia Universidad Javeriana). https://doi.org/10.1017/CBO9781107415324.004Laverde, J., & Torres, N. (2017). Propiedades mecánicas, eléctricas y de durabilidad de concretos con agregados reciclados. 15–23Law, A. S. L., Koh, K. H., Hejazi, F., & Jaafar, M. S. (2019). A review on waste materials usage as partial substitution in self-compacting concrete. IOP Conference Series: Earth and Environmental Science, 357(1). https://doi.org/10.1088/1755-1315/357/1/012020Li, C. Z., Zhao, Y., Xiao, B., Yu, B., Tam, V. W. Y., Chen, Z., & Ya, Y. (2020). Research trend of the application of information technologies in construction and demolition waste management. Journal of Cleaner Production, 263. https://doi.org/10.1016/j.jclepro.2020.121458Li, Z. (2011). Advanced concrete technology. Hoboken New Jersey: John Wiley & Sons, Inc.Liew, K. M., Sojobi, A. O., & Zhang, L. W. (2017). Green concrete: Prospects and challenges. Construction and Building Materials, 156, 1063–1095. https://doi.org/10.1016/j.conbuildmat.2017.09.008Lima, C., Caggiano, A., Faella, C., Martinelli, E., Pepe, M., & Realfonzo, R. (2013). Physical properties and mechanical behaviour of concrete made with recycled aggregates and fly ash. Construction and Building Materials, 47, 547–559. https://doi.org/10.1016/j.conbuildmat.2013.04.051Limbachiya, M., Meddah, M. S., & Ouchagour, Y. (2012). Use of recycled concrete aggregate in fly-ash concrete. Construction and Building Materials, 27(1), 439–449. https://doi.org/10.1016/j.conbuildmat.2011.07.023Liu, K., Yan, J., Hu, Q., Sun, Y., & Zou, C. (2016). Effects of parent concrete and mixing method on the resistance to freezing and thawing of air-entrained recycled aggregate concrete. Construction and Building Materials, 106, 264–273. https://doi.org/10.1016/j.conbuildmat.2015.12.074Marie, I., & Mujalli, R. (2019). Effect of design properties of parent concrete on the morphological properties of recycled concrete aggregates. Engineering Science and Technology, an International Journal, 22(1), 334–345. https://doi.org/10.1016/j.jestch.2018.08.014Masood, B., Elahi, A., Barbhuiya, S., & Ali, B. (2020). Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite. Construction and Building Materials, 237. https://doi.org/10.1016/j.conbuildmat.2019.117760Massaro, M., Dumay, J., & Guthrie, J. (2016). On the shoulders of giants: undertaking a structured literature review in accounting. Accounting, Auditing and Accountability Journal, 29(5), 767–801. https://doi.org/10.1108/AAAJ-01-2015-1939Mattey, P., Robayo, R., Silva, Y., Álvarez, N., & Delvastro, S. (2014). Caracterización física y mecánica de agregados reciclados obtenidos a partir de escombros de la construcción. Informador Técnico, 121–127McNeil, K., & Kang, T. H. K. (2013). Recycled Concrete Aggregates: A Review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5Megat, M. A., Zeyad, A. M., Muhamad, N., & Ariffin, K. S. (2012). Engineering and transport properties of high-strength green concrete containing high volume of ultrafine palm oil fuel ash. Construction and Building Materials, 30, 281–288. https://doi.org/10.1016/j.conbuildmat.2011.12.007Muduli, R., & Mukharjee, B. B. (2019). Effect of incorporation of metakaolin and recycled coarse aggregate on properties of concrete. Journal of Cleaner Production, 209, 398–414. https://doi.org/10.1016/j.jclepro.2018.10.221Muduli, R., & Mukharjee, B. B. (2020). Performance assessment of concrete incorporating recycled coarse aggregates and metakaolin: A systematic approach. Construction and Building Materials, 233, 1–22. https://doi.org/10.1016/j.conbuildmat.2019.117223Omary, S., Ghorbel, E., & Wardeh, G. (2016). Relationships between recycled concrete aggregates characteristics and recycled aggregates concretes properties. Construction and Building Materials, 108, 163–174. https://doi.org/10.1016/j.conbuildmat.2016.01.042Omrane, M., Kenai, S., Kadri, E. H., & Aït-Mokhtar, A. (2017). Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. Journal of Cleaner Production, 165, 415–430. https://doi.org/10.1016/j.jclepro.2017.07.139Pacheco Torgal, F., Miraldo, S., Labrincha, J. A., & De Brito, J. (2012). An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, 141–150. https://doi.org/10.1016/j.conbuildmat.2012.04.066Padmini, A. K., Ramamurthy, K., & Mathews, M. S. (2009). Influence of parent concrete on the properties of recycled aggregate concrete. Construction and Building Materials, 23(2), 829–836. https://doi.org/10.1016/j.conbuildmat.2008.03.006Pan, Z., Zhou, J., Jiang, X., Xu, Y., Jin, R., Ma, J., … Chen, W. (2019). Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials, 200, 570–577. https://doi.org/10.1016/j.conbuildmat.2018.12.150Panesar, D. K., & Zhang, R. (2020). Performance comparison of cement replacing materials in concrete: Limestone fillers and supplementary cementing materials – A review. Construction and Building Materials, 251, 118866. https://doi.org/10.1016/j.conbuildmat.2020.118866Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18Paris, J. M., Roessler, J. G., Ferraro, C. C., Deford, H. D., & Townsend, T. G. (2016). A review of waste products utilized as supplements to Portland cement in concrete. Journal of Cleaner Production, 121, 1–18Pedro, D., de Brito, J., & Evangelista, L. (2017a). Mechanical characterization of high performance concrete prepared with recycled aggregates and silica fume from precast industry. Journal of Cleaner Production, 164, 939–949. https://doi.org/10.1016/j.jclepro.2017.06.249Pedro, D., de Brito, J., & Evangelista, L. (2017b). Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Construction and Building Materials, 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215Poon, C. S., & Kou, S. C. (2004). Properties of steam cured recycled aggregate concrete. Proceedings of the International Conference on Sustainable Waste Management and Recycling: Construction Demolition Waste, (January 2004), 1–12.Radonjanin, V., Malešev, M., Marinković, S., & Al Malty, A. E. S. (2013). Green recycled aggregate concrete. Construction and Building Materials, 47, 1503–1511. https://doi.org/10.1016/j.conbuildmat.2013.06.076Rattanachu, P., Karntong, I., Tangchirapat, W., Jaturapitakkul, C., & Chindaprasirt, P. (2018). Influence of bagasse ash and recycled concrete aggregate on hardened properties of high-strength concrete. Materiales de Construccion, 68(330), 1–12. https://doi.org/10.3989/mc.2018.04717Rattanashotinunt, C., Tangchirapat, W., Jaturapitakkul, C., Cheewaket, T., & Chindaprasirt, P. (2018). Investigation on the strength, chloride migration, and water permeability of eco-friendly concretes from industrial by-product materials. Journal of Cleaner Production, 172, 1691–1698. https://doi.org/10.1016/j.jclepro.2017.12.044RILEM. (1994). Specifications for concrete with recycled aggregates. 557–559Romero, H. (2004). Viabilidad técnica y económica del uso del concreto reciclado como agregado. Universidad Nacional de Colombia-Sede Bogotá, BogotáSaravanakumar, P., Dhinakaran, G., & Marimuthu, K. (2014). Performance of sustainable concrete containing HVFA and RCA. Asian Journal of Applied Sciences, Vol. 7, pp. 194–204. https://doi.org/10.3923/ajaps.2014.194.204SDA, S. D. de A. (2019). Sector Ambiente. Diagnóstico Sectorial. Bogotá D.C.Silva, R. V., De Brito, J., & Dhir, R. K. (2015). The influence of the use of recycled aggregates on the compressive strength of concrete: A review. European Journal of Environmental and Civil Engineering, 19(7), 825–849. https://doi.org/10.1080/19648189.2014.974831Sim, J., & Park, C. (2011). Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate. Waste Management, 31(11), 2352–2360. https://doi.org/10.1016/j.wasman.2011.06.014Singh, N., & Singh, S. P. (2016). Carbonation resistance and microstructural analysis of Low and High Volume Fly Ash Self Compacting Concrete containing Recycled Concrete Aggregates. Construction and Building Materials, 127, 828–842. https://doi.org/10.1016/j.conbuildmat.2016.10.067Somna, R., Jaturapitakkul, C., & Amde, A. M. (2012). Effect of ground fly ash and ground bagasse ash on the durability of recycled aggregate concrete. Cement and Concrete Composites, 34(7), 848–854. https://doi.org/10.1016/j.cemconcomp.2012.03.003Somna, R., Jaturapitakkul, C., Rattanachu, P., & Chalee, W. (2012). Effect of ground bagasse ash on mechanical and durability properties of recycled aggregate concrete. Materials and Design, 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065Sumanth, C., & Rathish, P. (2013). Recycling of construction and demolition waste for sustainability - an overview of the use of recycled concrete aggregates. International Journal of 3 R´sTang, W., Khavarian, M., Yousefi, A., Chan, R. W. K., & Cui, H. (2019). Influence of Surface Treatment of Recycled Aggregates on Mechanical Properties and Bond Strength of Self-Compacting Concrete. Sustainability, 11(15), 4182. https://doi.org/10.3390/su11154182Tangchirapat, W., Buranasing, R., Jaturapitakkul, C., & Chindaprasirt, P. (2008). Influence of rice husk-bark ash on mechanical properties of concrete containing high amount of recycled aggregates. Construction and Building Materials, 22(8), 1812–1819. https://doi.org/10.1016/j.conbuildmat.2007.05.004Tangchirapat, W., Khamklai, S., & Jaturapitakkul, C. (2012). Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates. Materials and Design, 41, 150–157. https://doi.org/10.1016/j.matdes.2012.04.054Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14(3), 207–222. https://doi.org/10.1111/1467-8551.00375U.S.G.S. (2020). MINERAL COMMODITY SUMMARIES 2020. VirginiaVerian, K. P., Ashraf, W., & Cao, Y. (2018). Properties of recycled concrete aggregate and their influence in new concrete production. Resources, Conservation and Recycling, 133(October 2017), 30–49. https://doi.org/10.1016/j.resconrec.2018.02.005Wang, L., Wang, J., Qian, X., Chen, P., Xu, Y., & Guo, J. (2017). An environmentally friendly method to improve the quality of recycled concrete aggregates. Construction and Building Materials, 144, 432–441. https://doi.org/10.1016/j.conbuildmat.2017.03.191Wang, Q., Geng, Y., Wang, Y., & Zhang, H. (2020). Drying shrinkage model for recycled aggregate concrete accounting for the in fl uence of parent concrete. Engineering Structures, 202(May 2019), 109888. https://doi.org/10.1016/j.engstruct.2019.109888Wu, H., Zuo, J., Zillante, G., Wang, J., & Yuan, H. (2019). Construction and demolition waste research: a bibliometric analysis. Architectural Science Review, 62(4), 354–365. https://doi.org/10.1080/00038628.2018.1564646Xie, T., Yang, G., Zhao, X., Xu, J., & Fang, C. (2020). A unified model for predicting the compressive strength of recycled aggregate concrete containing supplementary cementitious materials. Journal of Cleaner Production, 251. https://doi.org/10.1016/j.jclepro.2019.119752Xuan, D., Zhan, B., & Poon, C. S. (2016). Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement and Concrete Composites, 65, 67–74. https://doi.org/10.1016/j.cemconcomp.2015.10.018Yuan, H., & Shen, L. (2010, April). Trend of the research on construction and demolition waste management. Waste Management, Vol. 31, pp. 670–679. https://doi.org/10.1016/j.wasman.2010.10.030Yuan, H., & Shen, L. (2011). Trend of the research on construction and demolition waste management. Waste Management, 31(4), 670–679. https://doi.org/10.1016/j.wasman.2010.10.030EstudiantesInvestigadoresMaestrosORIGINAL1024539178.2021.pdf1024539178.2021.pdfTesis de Maestría en Construcciónapplication/pdf4845270https://repositorio.unal.edu.co/bitstream/unal/81384/3/1024539178.2021.pdf478a61e8297a2cff9872d734fead2075MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81384/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1024539178.2021.pdf.jpg1024539178.2021.pdf.jpgGenerated Thumbnailimage/jpeg5200https://repositorio.unal.edu.co/bitstream/unal/81384/5/1024539178.2021.pdf.jpgead173721c44cd5efda5420f3b9d81f7MD55unal/81384oai:repositorio.unal.edu.co:unal/813842024-08-05 23:10:16.514Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK