Quantum randomness and quantum measurement in a unitary setting

ilustraciones

Autores:
Rodríguez Villalba, Óscar Eduardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83268
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83268
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
500 - Ciencias naturales y matemáticas
Formas (matemáticas)
Forms (mathematics)
Randomness
Quantum measurement
Unitary time-evolution
Spin-boson model
Aletoriedad
Medición cuántica
Evolución temporal unitaria
Sistema espín-boson
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_218a6bcd35cae6e747a160e8b5a4ae84
oai_identifier_str oai:repositorio.unal.edu.co:unal/83268
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Quantum randomness and quantum measurement in a unitary setting
dc.title.translated.spa.fl_str_mv Aletoriedad cuántica y medición cuántica desde un enfoque unitario
title Quantum randomness and quantum measurement in a unitary setting
spellingShingle Quantum randomness and quantum measurement in a unitary setting
530 - Física
500 - Ciencias naturales y matemáticas
Formas (matemáticas)
Forms (mathematics)
Randomness
Quantum measurement
Unitary time-evolution
Spin-boson model
Aletoriedad
Medición cuántica
Evolución temporal unitaria
Sistema espín-boson
title_short Quantum randomness and quantum measurement in a unitary setting
title_full Quantum randomness and quantum measurement in a unitary setting
title_fullStr Quantum randomness and quantum measurement in a unitary setting
title_full_unstemmed Quantum randomness and quantum measurement in a unitary setting
title_sort Quantum randomness and quantum measurement in a unitary setting
dc.creator.fl_str_mv Rodríguez Villalba, Óscar Eduardo
dc.contributor.advisor.none.fl_str_mv Dittrich, Thomas
dc.contributor.author.none.fl_str_mv Rodríguez Villalba, Óscar Eduardo
dc.contributor.researchgroup.spa.fl_str_mv Caos y Complejidad
dc.subject.ddc.spa.fl_str_mv 530 - Física
500 - Ciencias naturales y matemáticas
topic 530 - Física
500 - Ciencias naturales y matemáticas
Formas (matemáticas)
Forms (mathematics)
Randomness
Quantum measurement
Unitary time-evolution
Spin-boson model
Aletoriedad
Medición cuántica
Evolución temporal unitaria
Sistema espín-boson
dc.subject.lemb.spa.fl_str_mv Formas (matemáticas)
dc.subject.lemb.eng.fl_str_mv Forms (mathematics)
dc.subject.proposal.eng.fl_str_mv Randomness
Quantum measurement
Unitary time-evolution
Spin-boson model
dc.subject.proposal.spa.fl_str_mv Aletoriedad
Medición cuántica
Evolución temporal unitaria
Sistema espín-boson
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-02-03T14:04:47Z
dc.date.available.none.fl_str_mv 2023-02-03T14:04:47Z
dc.date.issued.none.fl_str_mv 2023-02-01
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83268
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83268
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv W. Gerlach and O. Stern. Das magnetische moment des silberatoms. Zeitschrift für Physik, 9(1):353–355, 1922.
J. J. Sakurai. Modern quantum mechanics. Addison-Wesley, 1994.
H. M. Wiseman and G. J. Milburn. Quantum measurement and control. Cambridge university press, 2009.
W. H. Zurek. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Physical review D, 24(6):1516, 1981.
W. H. Zurek. Environment-induced superselection rules. Physical review D, 26(8): 1862, 1982.
E. Joos and H. D. Zeh. The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2):223–243, 1985.
T. Konrad. Less is more: on the Theory and Application of Weak and Unsharp Measurements in Quantum Mechanics. PhD thesis, Universität Konstanz, 2003.
C.-M. Goletz, W. Koch, and F. Grossmann. Semiclassical dynamics of open quantum systems: Comparing the finite with the infinite perspective. Chemical Physics, 375 (2-3):227–233, 2010.
M. Galiceanu, M. W. Beims, and W. T. Strunz. Quantum energy and coherence exchange with discrete baths. Physica A: Statistical Mechanics and its Applications, 415:294–306, 2014.
M. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University press, 2002.
A. Peres. When is a quantum measurement? American Journal of Physics, 54(8): 688–692, 1986. ISSN 0002-9505. doi: 10.1119/1.14505.
A. Peres. Quantum Measurements Are Reversible. American Journal of Physics, 42 (10):886–891, 1974. ISSN 0002-9505. doi: 10.1119/1.1987884.
N. G. Van Kampen. Ten theorems about quantum mechanical measurements. Physica A: Statistical Mechanics and its Applications, 153(1):97–113, 1988. ISSN 03784371. doi: 10.1016/0378-4371(88)90105-7.
J. Von Neumann. Mathematical foundations of quantum mechanics. Princeton uni- versity press, 1955.
M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4):1267–1305, 2004. ISSN 00346861. doi: 10.1103/RevModPhys.76.1267.
W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3):715–775, 2003. ISSN 00346861. doi: 10.1103/ RevModPhys.75.715.
M. Schlosshauer. Decoherence: and the quantum-to-classical transition. Springer Science & Business Media, 2007.
W. G. Unruh. Analysis of quantum-nondemolition measurement. Physical Review D, 18(6):1764–1772, 1978. ISSN 05562821. doi: 10.1103/PhysRevD.18.1764.
S. Weigert. Chaos and quantum-nondemolition measurements. Physical Review A, 43(12):6597, 1991.
A. De Pasquale, C. Foti, A. Cuccoli, V. Giovannetti, and P. Verrucchi. Dynamical model for positive-operator-valued measures. Physical Review A, 100(1):1–9, 2019. ISSN 24699934. doi: 10.1103/PhysRevA.100.012130.
M. Ozawa. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25(1):79–87, 1984. ISSN 00222488. doi: 10.1063/1.526000.
O. Pessoa. Can the decoherence approach help to solve the measurement problem? Synthese, 113(3):323–346, 1997.
W. H. Zurek. Reduction of the wavepacket: How long does it take? In Frontiers of Nonequilibrium Statistical Physics, pages 145–149. Springer, 1986.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entangle- ment. Reviews of modern physics, 81(2):865, 2009.
A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical review, 47(10):777, 1935.
M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs. Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications. Reviews of Modern Physics, 81(4):1727, 2009.
N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Reviews of Modern Physics, 86(2):419, 2014.
E. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. A full quantum analysis of the Stern–Gerlach experiment using the evolution operator method: An- alyzing current issues in teaching quantum mechanics. European Journal of Physics, 38(2):025403, 2017.
A. P. French and E. F. Taylor. An introduction to quantum physics. W. W. Norton & Company, 1978.
A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 82(2):1155, 2010.
D. E. Platt. A modern analysis of the Stern–Gerlach experiment. American Journal of Physics, 60(4):306–308, 1992.
S. Cruz-Barrios and J. Gómez-Camacho. Semiclassical description of Stern–Gerlach experiments. Physical Review A, 63(1):012101, 2000.
S. R. Gautam, T. N. Sherry, and E. C. G. Sudarshan. Interaction between classical and quantum systems: A new approach to quantum measurement. iii. illustration. Physical Review D, 20(12):3081, 1979.
G. Potel, F. Barranco, S. Cruz-Barrios, and J. Gómez-Camacho. Quantum me- chanical description of Stern–Gerlach experiments. Physical Review A, 71(5):052106, 2005.
H. Wennerström and P. O. Westlund. A quantum description of the Stern–Gerlach experiment. Entropy, 19(5):186, 2017.
A. Venugopalan, D. Kumar, and R. Ghosh. Environment–induced decoherence i. the Stern–Gerlach measurement. Physica A: Statistical Mechanics and its Applications, 220(3-4):563–575, 1995.
A. Venugopalan. Decoherence and Schrödinger–cat states in a Stern–Gerlach–type experiment. Physical Review A, 56(5):4307, 1997.
P. Gomis and A. Pérez. Decoherence effects in the Stern–Gerlach experiment using matrix Wigner functions. Physical Review A, 94(1):012103, 2016.
B. G. Englert, J. Schwinger, and M. O. Scully. Is spin coherence like Humpty- Dumpty? i. simplified treatment. Foundations of physics, 18(10):1045–1056, 1988.
E. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments. Physical Re- view A, 103(4):042217, 2021.
A. Y. Khrennikov. Probability and randomness: quantum versus classical. World Scientific, 2016.
T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A fast and compact quantum random number generator. Review of Scientific Instruments, 71 (4):1675–1680, 2000.
P. Diaconis, S. Holmes, and R. Montgomery. Dynamical bias in the coin toss. SIAM review, 49(2):211–235, 2007.
A. Nitzan. Chemical dynamics in condensed phases: relaxation, transfer and reactions in condensed molecular systems. Oxford university press, 2006.
M. N. Bera, A. Acín, M. Kuś, M. W. Mitchell, and M. Lewenstein. Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics, 80(12):124001, 2017.
P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y. K. Liu, B. Christensen, S. W. Nam, et al. Experimentally generated randomness certified by the impossibility of superluminal signals. Nature, 556(7700):223–226, 2018.
M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri. True random numbers from amplified quantum vacuum. Optics express, 19(21):20665–20672, 2011.
P. Grangier and A. Auffeves. What is quantum in quantum randomness? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170322, 2018.
I. V. Volovich. Randomness in classical mechanics and quantum mechanics. Foundations of Physics, 41(3):516–528, 2011.
A. Zeilinger. A foundational principle for quantum mechanics. Foundations of Physics, 29(4):631–643, 1999
U. Weiss. Quantum dissipative systems. World Scientific, 2012.
R. P. Feynman and F. L. Vernon. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics, 24(C):118–173, 1963. ISSN 1096035X. doi: 10.1016/0003-4916(63)90068-X.
H. -P. Breuer, F. Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.
R. Hartmann and W. T. Strunz. Accuracy assessment of perturbative master equations: Embracing nonpositivity. Physical Review A, 101(1):012103, 2020.
E. J. Heller. Frozen Gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923–2931, 1981.
M. F. Herman and E. Kluk. A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27–34, 1984.
H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time- dependent Hartree theory. The Journal of chemical physics, 119(3):1289–1299, 2003.
D. V. Shalashilin and I. Burghardt. Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables. The Journal of chemical physics, 129(8):084104, 2008.
M. Werther, S. L. Choudhury, and F. Grossmann. Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle. International Reviews in Physical Chemistry, 40(1):81–125, 2021.
V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. On the completeness of the coherent states. Reports on Mathematical Physics, 2(4):221–228, 1971.
W. P. Schleich. Quantum optics in phase space. John Wiley & Sons, 2011.
A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Annals of physics, 149(2):374–456, 1983.
H. Wang and M. Thoss. From coherent motion to localization: Ii. dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature. Chemical Physics, 370(1-3):78–86, 2010.
S. T. Smith and R. Onofrio. Thermalization in open classical systems with finite heat baths. The European Physical Journal B, 61(3):271–275, 2008.
Jane Rosa and Marcus W Beims. Dissipation and transport dynamics in a ratchet coupled to a discrete bath. Physical Review E, 78(3):031126, 2008.
F. Q. Potiguar and U. M. S. Costa. Numerical calculation of the energy-relative fluctuation for a system in contact with a finite heat bath. Physica A: Statistical Mechanics and its Applications, 342(1-2):145–150, 2004.
H. Hasegawa. Classical small systems coupled to finite baths. Physical Review E, 83 (2):021104, 2011.
C. Manchein, J. Rosa, and M. W. Beims. Chaotic motion at the emergence of the time averaged energy decay. Physica D: Nonlinear Phenomena, 238(16):1688–1694, 2009.
M. A. Marchiori and M. A. M. de Aguiar. Energy dissipation via coupling with a finite chaotic environment. Physical Review E, 83(6):061112, 2011.
A. S. Davydov. The theory of contraction of proteins under their excitation. Journal of Theoretical Biology, 38(3):559–569, 1973.
A. S. Davydov and N. I. Kislukha. Solitary excitons in one-dimensional molecular chains. physica status solidi (b), 59(2):465–470, 1973.
A. S. Davydov et al. Solitons in molecular systems. Springer, 1985.
M. Werther and F. Grossmann. The Davydov d1. 5 ansatz for the quantum Rabi model. Physica Scripta, 93(7):074001, 2018.
J. Frenkel. Wave mechanics: advanced general theory, volume 1. Oxford University Press, 1934.
M. Werther. The multi Davydov-ansatz: Apoptosis of moving Gaussian functions with applications to open quantum system dynamics. PhD thesis, Technische Universität Dresden, April 2020.
T. Dittrich and R. Graham. Continuous quantum measurements and chaos. Physical Review A, 42(8):4647, 1990.
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59 (1):1, 1987.
R. A. Marcus and N. Sutin. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 811(3):265–322, 1985.
C. Gerry, P. Knight, and P. L. Knight. Introductory quantum optics. Cambridge university press, 2005.
H. Wang. Basis set approach to the quantum dissipative dynamics: Application of the multiconfiguration time-dependent Hartree method to the spin-boson problem. The Journal of Chemical Physics, 113(22):9948–9956, 2000.
A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Physical Chemistry Chemical Physics, 12(27):7319–7337, 2010.
B. W. Shore and P. L. Knight. The Jaynes-Cummings model. Journal of Modern Optics, 40(7):1195–1238, 1993.
J. Larson. Dynamics of the Jaynes–Cummings and Rabi models: old wine in new bottles. Physica Scripta, 76(2):146, 2007.
D. Braak. Integrability of the Rabi model. Physical Review Letters, 107(10):100401, 2011.
E. K. Irish. Generalized rotating-wave approximation for arbitrarily large coupling. Physical review letters, 99(17):173601, 2007.
E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab. Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Physical Review B, 72(19):195410, 2005.
T. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bôas. Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Physical Review A, 78(5):053805, 2008.
G. A. Finney and J. Gea-Banacloche. Quantum suppression of chaos in the spin-boson model. Physical Review E, 54(2):1449, 1996.
J. Gea-Banacloche. Atom-and field-state evolution in the Jaynes-Cummings model for large initial fields. Physical Review A, 44(9):5913, 1991.
L. E. Ballentine. States of a dynamically driven spin. i. quantum-mechanical model. Physical Review A, 44(7):4126, 1991.
L. E. Ballentine. States of a dynamically driven spin. ii. classical model and the quantum-to-classical limit. Physical Review A, 44(7):4133, 1991.
B. Gardas. Exact solution of the Schrödinger equation with the spin-boson Hamiltonian. Journal of Physics A: Mathematical and Theoretical, 44(19):195301, 2011.
M. Thoss, H. Wang, and W. H. Miller. Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density. The Journal of Chemical Physics, 115(7):2991–3005, 2001.
H. Wang and M. Thoss. From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New Journal of Physics, 10(11):115005, 2008.
R. Bulla, N. H. Tong, and M. Vojta. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model. Physical review letters, 91(17):170601, 2003.
D. Kast and J. Ankerhold. Persistence of coherent quantum dynamics at strong dissipation. Physical review letters, 110(1):010402, 2013.
T. Dittrich and S. Peña-Martínez. Toppling pencils — macroscopic randomness from microscopic fluctuations. Entropy, 22(9):1046, 2020.
R. Hartmann, M. Werther, F. Grossmann, and W. T. Strunz. Exact open quantum system dynamics: Optimal frequency vs time representation of bath correlations. The Journal of Chemical Physics, 150(23):234105, 2019.
T. Dittrich. Quantum chaos and quantum randomness: Paradigms of entropy production on the smallest scales. Entropy, 21(3):286, 2019.
O. C. Stoica. Quantum measurement and initial conditions. International Journal of Theoretical Physics, 55(3):1897–1911, 2016.
C. Gardiner and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer, 1999.
L. Wang, Y. Fujihashi, L. Chen, and Y. Zhao. Finite-temperature time-dependent variation with multiple davydov states. The Journal of chemical physics, 146(12): 124127, 2017.
G. Lindblad. Entropy, information and quantum measurements. Communications in Mathematical Physics, 33(4):305–322, 1973.
W. H. Zurek. Information transfer in quantum measurements: Irreversibility and amplification. In Quantum Optics, Experimental Gravity, and Measurement Theory, pages 87–116. Springer, 1983.
W. H. Zurek. Einselection and decoherence from an information theory perspective. In Quantum Communication, Computing, and Measurement 3, pages 115–125. Springer, 2002.
R. Blume-Kohout and W. H. Zurek. A simple example of “quantum darwinism”: Redundant information storage in many-spin environments. Foundations of Physics, 35(11):1857–1876, 2005.
R. Blume-Kohout and W. H. Zurek. Quantum darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Physical review A, 73(6):062310, 2006.
H. Ollivier and W. H. Zurek. Quantum discord: a measure of the quantumness of correlations. Physical review letters, 88(1):017901, 2001.
V. Vedral. Foundations of quantum discord. In Lectures on General Quantum Correlations and their Applications, pages 3–7. Springer, 2017.
L. Henderson and V. Vedral. Classical, quantum and total correlations. Journal of physics A: mathematical and general, 34(35):6899, 2001.
V. Vedral. Classical correlations and entanglement in quantum measurements. Physical review letters, 90(5):050401, 2003.
J. Machta. Entropy, information, and computation. American Journal of Physics, 67(12):1074–1077, 1999
V. Vedral. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74(1):197, 2002.
V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying entanglement. Physical Review Letters, 78(12):2275, 1997.
J. M. Raimond, M. Brune, and S. Haroche. Reversible decoherence of a mesoscopic superposition of field states. Physical review letters, 79(11):1964, 1997.
Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret. To catch and reverse a quantum jump mid-flight. Nature, 570(7760):200–204, 2019.
S. L. Choudhury and F. Grossmann. Quantum approach to the thermalization of the toppling pencil interacting with a finite bath. Physical Review A, 105(2):022201, 2022.
J. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. Journal of High Energy Physics, 2016(8):1–17, 2016.
D. J. Luitz and Y. B. Lev. Information propagation in isolated quantum systems. Physical Review B, 96(2):020406, 2017.
J. Rammensee, J. D. Urbina, and K. Richter. Many-body quantum interference and the saturation of out-of-time-order correlators. Physical Review Letters, 121(12): 124101, 2018.
B. Swingle. Unscrambling the physics of out-of-time-order correlators. Nature Physics, 14(10):988–990, 2018.
R. C. Ge, M. Gong, C. F. Li, J. S. Xu, and G. C. Guo. Quantum correlation and classical correlation dynamics in the spin-boson model. Physical Review A, 81(6): 064103, 2010.
H. Ollivier, D. Poulin, and W. H. Zurek. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A - Atomic, Molecular, and Optical Physics, 72(4):1–19, 2005. ISSN 10502947. doi: 10.1103/PhysRevA.72.042113.
F. Haake and D. F. Walls. Overdamped and amplifying meters in the quantum theory of measurement. Physical Review A, 36(2):730–739, 1987. ISSN 10502947. doi: 10.1103/PhysRevA.36.730.
R. B. Griffiths. What quantum measurements measure. Physical Review A, 96(3): 1–20, 2017. ISSN 24699934. doi: 10.1103/PhysRevA.96.032110.
M. Hannout, S. Hoyt, A. Kryowonos, and A. Widom. Quantum measurement theory and the Stern–Gerlach experiment. American Journal of Physics, 66(5):377–379, 1998.
M. Werther and F. Grossmann. Apoptosis of moving nonorthogonal basis functions in many-particle quantum dynamics. Physical Review B, 101(17):174315, 2020.
C. Duan, Z. Tang, J. Cao, and J. Wu. Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Physical Review B, 95(21):214308, 2017.
Y. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical review letters, 60(14):1351, 1988.
C. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379–423, 1948.
J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral. Classical and quantum correlations under decoherence. Physical Review A, 80(4):044102, 2009.
W. Gerlach and O. Stern. Der experimentelle nachweis der richtungsquantelung im magnetfeld. Zeitschrift für Physik, 9(1):349–352, 1922.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 81 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83268/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83268/2/1030576470.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83268/3/1030576470.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ae10aa39e89d9ecf24166f7100b5f5f2
28cf9a6672e2fe876edffcdc3c7d8df2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089336202723328
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dittrich, Thomasd38288a14be0b1627e62a8e4b2a28342Rodríguez Villalba, Óscar Eduardo5f4b82c53a2fe8c37bab17c82699a979Caos y Complejidad2023-02-03T14:04:47Z2023-02-03T14:04:47Z2023-02-01https://repositorio.unal.edu.co/handle/unal/83268Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesIn this thesis a novel approach towards quantum measurement and quantum randomness, within the framework of unitary time evolution, is proposed. Spin measurements are simulated by coupling the spin to an environment modeled as a heat bath comprising a finite number of boson modes with initial states represented in terms of coherent states. The time evolution of the entire system is achieved by means of the multi-Davydov ansatz. In order to simulate measurements with equally likely outcomes, the spin is prepared in a neutral polarized state prior the measurement. The uncontrollable nature of the environment is captured in its initial state by preparing each mode in a coherent state sampled from a random distribution. An environment that does not introduce a deliberate bias is set by centering the random distribution in the origin of the phase space. Before considering unbiased measurements, the most appropriate parameters of the model are identified by means of simulations with intermediate initial conditions between the ground state and thermal states compatible with the time evolution method. Different measurement protocols are modeled by turning on and off the self-energy of the spin and the coupling with the environment with time-dependent modulations. The outcome of the measurement is assessed by the long-term behavior of the spin. Due to its interaction with the environment, the spin gets entangled with it losing its coherence, thus reproducing the “first state vector collapse”. Quantum randomness is observed as the tendency of the final state to approach either one of two possible eigenstates of the spin measured operator, recovering an almost pure state. The entire process is characterized by the exchange of energy and entropy between the spin and the environment. It leads to the observation of a prominent role of low-frequency modes in the long-term behavior of the spin. The measurement process is also analyzed from the information theory perspective. The information dynamics during the entire process is followed using the partial entropy of the spin. A round trip of the spin state from a pure state through a mixed state back to a final state close to a pure state is identified. With this approach the entire measurement process is reproduced in an approximate way. (Texto tomado de la fuente)En esta tesis se propone un enfoque novedoso hacia la medición cuántica y la aleatoriedad cuántica, en el marco de la evolución temporal unitaria. Las mediciones de espín se simulan acoplando el espín a un entorno modelado como un baño de calor que comprende un número finito de modos bosónicos con estados iniciales representados en términos de estados coherentes. La evolución temporal de todo el sistema se logra mediante el multi-Davydov ansatz. Para simular mediciones con resultados igualmente probables, el espín se prepara en un estado polarizado neutral antes de la medición. La naturaleza incontrolable del entorno se captura en su estado inicial al preparar cada modo en un estado coherente muestreado a partir de una distribución aleatoria. Un entorno que no introduce un sesgo deliberado se establece centrando la distribución aleatoria en el origen del espacio de fase. Antes de considerar medidas no sesgadas, se identifican los parámetros más apropiados del modelo mediante simulaciones con condiciones iniciales intermedias entre el estado fundamental y los estados térmicos compatibles con elmétodo de evolución temporal. Se modelan diferentes protocolos de medición activando y desactivando la autoenergía del espín y el acoplamiento con el entorno con modulaciones dependientes del tiempo. El resultado de la medición se evalúa por el comportamiento a largo plazo del espín. Debido a su interacción con el entorno, el espín se enreda con él perdiendo su coherencia, reproduciendo así el “primer colapso del vector de estado”. La aleatoriedad cuántica se observa como la tendencia del estado final a acercarse a uno de los dos posibles estados propios del operador medido de espín, recuperando un estado casi puro. Todo el proceso se caracteriza por el intercambio de energía y entropía entre el espín y el entorno. Esto conduce a la observación de un papel destacado de los modos de baja frecuencia en el comportamiento a largo plazo del espín. El proceso de medición también se analiza desde la perspectiva de la teoría de la información. Se sigue la dinámica de la información durante todo el proceso utilizando la entropía parcial del espín. Se identifica un viaje de ida y vuelta del estado de espín desde un estado puro a través de un estado mixto hasta un estado final cercano a un estado puro. Con este enfoque, todo el proceso de medición se reproduce de forma aproximada.DoctoradoDoctor en Ciencias - Físicaxiv, 81 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física500 - Ciencias naturales y matemáticasFormas (matemáticas)Forms (mathematics)RandomnessQuantum measurementUnitary time-evolutionSpin-boson modelAletoriedadMedición cuánticaEvolución temporal unitariaSistema espín-bosonQuantum randomness and quantum measurement in a unitary settingAletoriedad cuántica y medición cuántica desde un enfoque unitarioTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDW. Gerlach and O. Stern. Das magnetische moment des silberatoms. Zeitschrift für Physik, 9(1):353–355, 1922.J. J. Sakurai. Modern quantum mechanics. Addison-Wesley, 1994.H. M. Wiseman and G. J. Milburn. Quantum measurement and control. Cambridge university press, 2009.W. H. Zurek. Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse? Physical review D, 24(6):1516, 1981.W. H. Zurek. Environment-induced superselection rules. Physical review D, 26(8): 1862, 1982.E. Joos and H. D. Zeh. The emergence of classical properties through interaction with the environment. Zeitschrift für Physik B Condensed Matter, 59(2):223–243, 1985.T. Konrad. Less is more: on the Theory and Application of Weak and Unsharp Measurements in Quantum Mechanics. PhD thesis, Universität Konstanz, 2003.C.-M. Goletz, W. Koch, and F. Grossmann. Semiclassical dynamics of open quantum systems: Comparing the finite with the infinite perspective. Chemical Physics, 375 (2-3):227–233, 2010.M. Galiceanu, M. W. Beims, and W. T. Strunz. Quantum energy and coherence exchange with discrete baths. Physica A: Statistical Mechanics and its Applications, 415:294–306, 2014.M. A. Nielsen and I. Chuang. Quantum computation and quantum information. Cambridge University press, 2002.A. Peres. When is a quantum measurement? American Journal of Physics, 54(8): 688–692, 1986. ISSN 0002-9505. doi: 10.1119/1.14505.A. Peres. Quantum Measurements Are Reversible. American Journal of Physics, 42 (10):886–891, 1974. ISSN 0002-9505. doi: 10.1119/1.1987884.N. G. Van Kampen. Ten theorems about quantum mechanical measurements. Physica A: Statistical Mechanics and its Applications, 153(1):97–113, 1988. ISSN 03784371. doi: 10.1016/0378-4371(88)90105-7.J. Von Neumann. Mathematical foundations of quantum mechanics. Princeton uni- versity press, 1955.M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics, 76(4):1267–1305, 2004. ISSN 00346861. doi: 10.1103/RevModPhys.76.1267.W. H. Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3):715–775, 2003. ISSN 00346861. doi: 10.1103/ RevModPhys.75.715.M. Schlosshauer. Decoherence: and the quantum-to-classical transition. Springer Science & Business Media, 2007.W. G. Unruh. Analysis of quantum-nondemolition measurement. Physical Review D, 18(6):1764–1772, 1978. ISSN 05562821. doi: 10.1103/PhysRevD.18.1764.S. Weigert. Chaos and quantum-nondemolition measurements. Physical Review A, 43(12):6597, 1991.A. De Pasquale, C. Foti, A. Cuccoli, V. Giovannetti, and P. Verrucchi. Dynamical model for positive-operator-valued measures. Physical Review A, 100(1):1–9, 2019. ISSN 24699934. doi: 10.1103/PhysRevA.100.012130.M. Ozawa. Quantum measuring processes of continuous observables. Journal of Mathematical Physics, 25(1):79–87, 1984. ISSN 00222488. doi: 10.1063/1.526000.O. Pessoa. Can the decoherence approach help to solve the measurement problem? Synthese, 113(3):323–346, 1997.W. H. Zurek. Reduction of the wavepacket: How long does it take? In Frontiers of Nonequilibrium Statistical Physics, pages 145–149. Springer, 1986.R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki. Quantum entangle- ment. Reviews of modern physics, 81(2):865, 2009.A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Physical review, 47(10):777, 1935.M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs. Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications. Reviews of Modern Physics, 81(4):1727, 2009.N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Reviews of Modern Physics, 86(2):419, 2014.E. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. A full quantum analysis of the Stern–Gerlach experiment using the evolution operator method: An- alyzing current issues in teaching quantum mechanics. European Journal of Physics, 38(2):025403, 2017.A. P. French and E. F. Taylor. An introduction to quantum physics. W. W. Norton & Company, 1978.A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 82(2):1155, 2010.D. E. Platt. A modern analysis of the Stern–Gerlach experiment. American Journal of Physics, 60(4):306–308, 1992.S. Cruz-Barrios and J. Gómez-Camacho. Semiclassical description of Stern–Gerlach experiments. Physical Review A, 63(1):012101, 2000.S. R. Gautam, T. N. Sherry, and E. C. G. Sudarshan. Interaction between classical and quantum systems: A new approach to quantum measurement. iii. illustration. Physical Review D, 20(12):3081, 1979.G. Potel, F. Barranco, S. Cruz-Barrios, and J. Gómez-Camacho. Quantum me- chanical description of Stern–Gerlach experiments. Physical Review A, 71(5):052106, 2005.H. Wennerström and P. O. Westlund. A quantum description of the Stern–Gerlach experiment. Entropy, 19(5):186, 2017.A. Venugopalan, D. Kumar, and R. Ghosh. Environment–induced decoherence i. the Stern–Gerlach measurement. Physica A: Statistical Mechanics and its Applications, 220(3-4):563–575, 1995.A. Venugopalan. Decoherence and Schrödinger–cat states in a Stern–Gerlach–type experiment. Physical Review A, 56(5):4307, 1997.P. Gomis and A. Pérez. Decoherence effects in the Stern–Gerlach experiment using matrix Wigner functions. Physical Review A, 94(1):012103, 2016.B. G. Englert, J. Schwinger, and M. O. Scully. Is spin coherence like Humpty- Dumpty? i. simplified treatment. Foundations of physics, 18(10):1045–1056, 1988.E. Benítez Rodríguez, E. Piceno Martínez, and L. M. Arévalo Aguilar. Single-particle steering and nonlocality: The consecutive Stern-Gerlach experiments. Physical Re- view A, 103(4):042217, 2021.A. Y. Khrennikov. Probability and randomness: quantum versus classical. World Scientific, 2016.T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A fast and compact quantum random number generator. Review of Scientific Instruments, 71 (4):1675–1680, 2000.P. Diaconis, S. Holmes, and R. Montgomery. Dynamical bias in the coin toss. SIAM review, 49(2):211–235, 2007.A. Nitzan. Chemical dynamics in condensed phases: relaxation, transfer and reactions in condensed molecular systems. Oxford university press, 2006.M. N. Bera, A. Acín, M. Kuś, M. W. Mitchell, and M. Lewenstein. Randomness in quantum mechanics: philosophy, physics and technology. Reports on Progress in Physics, 80(12):124001, 2017.P. Bierhorst, E. Knill, S. Glancy, Y. Zhang, A. Mink, S. Jordan, A. Rommal, Y. K. Liu, B. Christensen, S. W. Nam, et al. Experimentally generated randomness certified by the impossibility of superluminal signals. Nature, 556(7700):223–226, 2018.M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri. True random numbers from amplified quantum vacuum. Optics express, 19(21):20665–20672, 2011.P. Grangier and A. Auffeves. What is quantum in quantum randomness? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2123):20170322, 2018.I. V. Volovich. Randomness in classical mechanics and quantum mechanics. Foundations of Physics, 41(3):516–528, 2011.A. Zeilinger. A foundational principle for quantum mechanics. Foundations of Physics, 29(4):631–643, 1999U. Weiss. Quantum dissipative systems. World Scientific, 2012.R. P. Feynman and F. L. Vernon. The theory of a general quantum system interacting with a linear dissipative system. Annals of Physics, 24(C):118–173, 1963. ISSN 1096035X. doi: 10.1016/0003-4916(63)90068-X.H. -P. Breuer, F. Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002.R. Hartmann and W. T. Strunz. Accuracy assessment of perturbative master equations: Embracing nonpositivity. Physical Review A, 101(1):012103, 2020.E. J. Heller. Frozen Gaussians: A very simple semiclassical approximation. The Journal of Chemical Physics, 75(6):2923–2931, 1981.M. F. Herman and E. Kluk. A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations. Chemical Physics, 91(1):27–34, 1984.H. Wang and M. Thoss. Multilayer formulation of the multiconfiguration time- dependent Hartree theory. The Journal of chemical physics, 119(3):1289–1299, 2003.D. V. Shalashilin and I. Burghardt. Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables. The Journal of chemical physics, 129(8):084104, 2008.M. Werther, S. L. Choudhury, and F. Grossmann. Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle. International Reviews in Physical Chemistry, 40(1):81–125, 2021.V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. On the completeness of the coherent states. Reports on Mathematical Physics, 2(4):221–228, 1971.W. P. Schleich. Quantum optics in phase space. John Wiley & Sons, 2011.A. O. Caldeira and A. J. Leggett. Quantum tunnelling in a dissipative system. Annals of physics, 149(2):374–456, 1983.H. Wang and M. Thoss. From coherent motion to localization: Ii. dynamics of the spin-boson model with sub-Ohmic spectral density at zero temperature. Chemical Physics, 370(1-3):78–86, 2010.S. T. Smith and R. Onofrio. Thermalization in open classical systems with finite heat baths. The European Physical Journal B, 61(3):271–275, 2008.Jane Rosa and Marcus W Beims. Dissipation and transport dynamics in a ratchet coupled to a discrete bath. Physical Review E, 78(3):031126, 2008.F. Q. Potiguar and U. M. S. Costa. Numerical calculation of the energy-relative fluctuation for a system in contact with a finite heat bath. Physica A: Statistical Mechanics and its Applications, 342(1-2):145–150, 2004.H. Hasegawa. Classical small systems coupled to finite baths. Physical Review E, 83 (2):021104, 2011.C. Manchein, J. Rosa, and M. W. Beims. Chaotic motion at the emergence of the time averaged energy decay. Physica D: Nonlinear Phenomena, 238(16):1688–1694, 2009.M. A. Marchiori and M. A. M. de Aguiar. Energy dissipation via coupling with a finite chaotic environment. Physical Review E, 83(6):061112, 2011.A. S. Davydov. The theory of contraction of proteins under their excitation. Journal of Theoretical Biology, 38(3):559–569, 1973.A. S. Davydov and N. I. Kislukha. Solitary excitons in one-dimensional molecular chains. physica status solidi (b), 59(2):465–470, 1973.A. S. Davydov et al. Solitons in molecular systems. Springer, 1985.M. Werther and F. Grossmann. The Davydov d1. 5 ansatz for the quantum Rabi model. Physica Scripta, 93(7):074001, 2018.J. Frenkel. Wave mechanics: advanced general theory, volume 1. Oxford University Press, 1934.M. Werther. The multi Davydov-ansatz: Apoptosis of moving Gaussian functions with applications to open quantum system dynamics. PhD thesis, Technische Universität Dresden, April 2020.T. Dittrich and R. Graham. Continuous quantum measurements and chaos. Physical Review A, 42(8):4647, 1990.A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern Physics, 59 (1):1, 1987.R. A. Marcus and N. Sutin. Electron transfers in chemistry and biology. Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics, 811(3):265–322, 1985.C. Gerry, P. Knight, and P. L. Knight. Introductory quantum optics. Cambridge university press, 2005.H. Wang. Basis set approach to the quantum dissipative dynamics: Application of the multiconfiguration time-dependent Hartree method to the spin-boson problem. The Journal of Chemical Physics, 113(22):9948–9956, 2000.A. Ishizaki, T. R. Calhoun, G. S. Schlau-Cohen, and G. R. Fleming. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Physical Chemistry Chemical Physics, 12(27):7319–7337, 2010.B. W. Shore and P. L. Knight. The Jaynes-Cummings model. Journal of Modern Optics, 40(7):1195–1238, 1993.J. Larson. Dynamics of the Jaynes–Cummings and Rabi models: old wine in new bottles. Physica Scripta, 76(2):146, 2007.D. Braak. Integrability of the Rabi model. Physical Review Letters, 107(10):100401, 2011.E. K. Irish. Generalized rotating-wave approximation for arbitrarily large coupling. Physical review letters, 99(17):173601, 2007.E. K. Irish, J. Gea-Banacloche, I. Martin, and K. C. Schwab. Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator. Physical Review B, 72(19):195410, 2005.T. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J. Villas-Bôas. Rabi model beyond the rotating-wave approximation: Generation of photons from vacuum through decoherence. Physical Review A, 78(5):053805, 2008.G. A. Finney and J. Gea-Banacloche. Quantum suppression of chaos in the spin-boson model. Physical Review E, 54(2):1449, 1996.J. Gea-Banacloche. Atom-and field-state evolution in the Jaynes-Cummings model for large initial fields. Physical Review A, 44(9):5913, 1991.L. E. Ballentine. States of a dynamically driven spin. i. quantum-mechanical model. Physical Review A, 44(7):4126, 1991.L. E. Ballentine. States of a dynamically driven spin. ii. classical model and the quantum-to-classical limit. Physical Review A, 44(7):4133, 1991.B. Gardas. Exact solution of the Schrödinger equation with the spin-boson Hamiltonian. Journal of Physics A: Mathematical and Theoretical, 44(19):195301, 2011.M. Thoss, H. Wang, and W. H. Miller. Self-consistent hybrid approach for complex systems: Application to the spin-boson model with Debye spectral density. The Journal of Chemical Physics, 115(7):2991–3005, 2001.H. Wang and M. Thoss. From coherent motion to localization: dynamics of the spin-boson model at zero temperature. New Journal of Physics, 10(11):115005, 2008.R. Bulla, N. H. Tong, and M. Vojta. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model. Physical review letters, 91(17):170601, 2003.D. Kast and J. Ankerhold. Persistence of coherent quantum dynamics at strong dissipation. Physical review letters, 110(1):010402, 2013.T. Dittrich and S. Peña-Martínez. Toppling pencils — macroscopic randomness from microscopic fluctuations. Entropy, 22(9):1046, 2020.R. Hartmann, M. Werther, F. Grossmann, and W. T. Strunz. Exact open quantum system dynamics: Optimal frequency vs time representation of bath correlations. The Journal of Chemical Physics, 150(23):234105, 2019.T. Dittrich. Quantum chaos and quantum randomness: Paradigms of entropy production on the smallest scales. Entropy, 21(3):286, 2019.O. C. Stoica. Quantum measurement and initial conditions. International Journal of Theoretical Physics, 55(3):1897–1911, 2016.C. Gardiner and P. Zoller. Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer, 1999.L. Wang, Y. Fujihashi, L. Chen, and Y. Zhao. Finite-temperature time-dependent variation with multiple davydov states. The Journal of chemical physics, 146(12): 124127, 2017.G. Lindblad. Entropy, information and quantum measurements. Communications in Mathematical Physics, 33(4):305–322, 1973.W. H. Zurek. Information transfer in quantum measurements: Irreversibility and amplification. In Quantum Optics, Experimental Gravity, and Measurement Theory, pages 87–116. Springer, 1983.W. H. Zurek. Einselection and decoherence from an information theory perspective. In Quantum Communication, Computing, and Measurement 3, pages 115–125. Springer, 2002.R. Blume-Kohout and W. H. Zurek. A simple example of “quantum darwinism”: Redundant information storage in many-spin environments. Foundations of Physics, 35(11):1857–1876, 2005.R. Blume-Kohout and W. H. Zurek. Quantum darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information. Physical review A, 73(6):062310, 2006.H. Ollivier and W. H. Zurek. Quantum discord: a measure of the quantumness of correlations. Physical review letters, 88(1):017901, 2001.V. Vedral. Foundations of quantum discord. In Lectures on General Quantum Correlations and their Applications, pages 3–7. Springer, 2017.L. Henderson and V. Vedral. Classical, quantum and total correlations. Journal of physics A: mathematical and general, 34(35):6899, 2001.V. Vedral. Classical correlations and entanglement in quantum measurements. Physical review letters, 90(5):050401, 2003.J. Machta. Entropy, information, and computation. American Journal of Physics, 67(12):1074–1077, 1999V. Vedral. The role of relative entropy in quantum information theory. Reviews of Modern Physics, 74(1):197, 2002.V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying entanglement. Physical Review Letters, 78(12):2275, 1997.J. M. Raimond, M. Brune, and S. Haroche. Reversible decoherence of a mesoscopic superposition of field states. Physical review letters, 79(11):1964, 1997.Z. K. Minev, S. O. Mundhada, S. Shankar, P. Reinhold, R. Gutiérrez-Jáuregui, R. J. Schoelkopf, M. Mirrahimi, H. J. Carmichael, and M. H. Devoret. To catch and reverse a quantum jump mid-flight. Nature, 570(7760):200–204, 2019.S. L. Choudhury and F. Grossmann. Quantum approach to the thermalization of the toppling pencil interacting with a finite bath. Physical Review A, 105(2):022201, 2022.J. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. Journal of High Energy Physics, 2016(8):1–17, 2016.D. J. Luitz and Y. B. Lev. Information propagation in isolated quantum systems. Physical Review B, 96(2):020406, 2017.J. Rammensee, J. D. Urbina, and K. Richter. Many-body quantum interference and the saturation of out-of-time-order correlators. Physical Review Letters, 121(12): 124101, 2018.B. Swingle. Unscrambling the physics of out-of-time-order correlators. Nature Physics, 14(10):988–990, 2018.R. C. Ge, M. Gong, C. F. Li, J. S. Xu, and G. C. Guo. Quantum correlation and classical correlation dynamics in the spin-boson model. Physical Review A, 81(6): 064103, 2010.H. Ollivier, D. Poulin, and W. H. Zurek. Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A - Atomic, Molecular, and Optical Physics, 72(4):1–19, 2005. ISSN 10502947. doi: 10.1103/PhysRevA.72.042113.F. Haake and D. F. Walls. Overdamped and amplifying meters in the quantum theory of measurement. Physical Review A, 36(2):730–739, 1987. ISSN 10502947. doi: 10.1103/PhysRevA.36.730.R. B. Griffiths. What quantum measurements measure. Physical Review A, 96(3): 1–20, 2017. ISSN 24699934. doi: 10.1103/PhysRevA.96.032110.M. Hannout, S. Hoyt, A. Kryowonos, and A. Widom. Quantum measurement theory and the Stern–Gerlach experiment. American Journal of Physics, 66(5):377–379, 1998.M. Werther and F. Grossmann. Apoptosis of moving nonorthogonal basis functions in many-particle quantum dynamics. Physical Review B, 101(17):174315, 2020.C. Duan, Z. Tang, J. Cao, and J. Wu. Zero-temperature localization in a sub-ohmic spin-boson model investigated by an extended hierarchy equation of motion. Physical Review B, 95(21):214308, 2017.Y. Aharonov, D. Z. Albert, and L. Vaidman. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Physical review letters, 60(14):1351, 1988.C. E. Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):379–423, 1948.J. Maziero, L. C. Celeri, R. M. Serra, and V. Vedral. Classical and quantum correlations under decoherence. Physical Review A, 80(4):044102, 2009.W. Gerlach and O. Stern. Der experimentelle nachweis der richtungsquantelung im magnetfeld. Zeitschrift für Physik, 9(1):349–352, 1922.AdministradoresBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83268/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1030576470.2023.pdf1030576470.2023.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf1937349https://repositorio.unal.edu.co/bitstream/unal/83268/2/1030576470.2023.pdfae10aa39e89d9ecf24166f7100b5f5f2MD52THUMBNAIL1030576470.2023.pdf.jpg1030576470.2023.pdf.jpgGenerated Thumbnailimage/jpeg4370https://repositorio.unal.edu.co/bitstream/unal/83268/3/1030576470.2023.pdf.jpg28cf9a6672e2fe876edffcdc3c7d8df2MD53unal/83268oai:repositorio.unal.edu.co:unal/832682023-08-15 23:03:49.042Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=