Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia)
ilustraciones, diagramas, figuras, fotografías
- Autores:
-
Barragán Barrera, Heidy Natalia
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85604
- Palabra clave:
- 590 - Animales::595 - Artrópodos
630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos
570 - Biología::577 - Ecología
570 - Biología::578 - Historia natural de los organismos y temas relacionados
Abejas-Morfología
Honeybee - Morphology
Ecología
Factores ambientales
Factores abióticos
Apidae
Factores climáticos
Altitud
Morfometría
Apis mellifera
Alometría
Environmental factors
Abiotic factors
Ecology
Climatic factors
Altitude
Morphometrics
Allometry
Abejas
Sociedades de insectos
Bees
Insect societies
Tamaño
Morfología
Sensibilidad
Ecología sensorial
Altitud
Percepción
Size
Morphology
Sensitivity
Sensory ecology
Altitude
Perception
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_2177902e6b3558751ac63f7f04bcb3d9 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85604 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
dc.title.translated.eng.fl_str_mv |
Effects of elevation on sensory allometry in Apis mellifera within an altitudinal cline (Cundinamarca, Colombia) |
title |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
spellingShingle |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) 590 - Animales::595 - Artrópodos 630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos 570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados Abejas-Morfología Honeybee - Morphology Ecología Factores ambientales Factores abióticos Apidae Factores climáticos Altitud Morfometría Apis mellifera Alometría Environmental factors Abiotic factors Ecology Climatic factors Altitude Morphometrics Allometry Abejas Sociedades de insectos Bees Insect societies Tamaño Morfología Sensibilidad Ecología sensorial Altitud Percepción Size Morphology Sensitivity Sensory ecology Altitude Perception |
title_short |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
title_full |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
title_fullStr |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
title_full_unstemmed |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
title_sort |
Efectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia) |
dc.creator.fl_str_mv |
Barragán Barrera, Heidy Natalia |
dc.contributor.advisor.none.fl_str_mv |
Riveros Rivera, Andre Josafat Ospina Torres, Rodulfo |
dc.contributor.author.none.fl_str_mv |
Barragán Barrera, Heidy Natalia |
dc.contributor.researchgroup.spa.fl_str_mv |
CANNON, Laboratorio de Investigación en Abejas LABUN |
dc.subject.ddc.spa.fl_str_mv |
590 - Animales::595 - Artrópodos 630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos 570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados |
topic |
590 - Animales::595 - Artrópodos 630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos 570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados Abejas-Morfología Honeybee - Morphology Ecología Factores ambientales Factores abióticos Apidae Factores climáticos Altitud Morfometría Apis mellifera Alometría Environmental factors Abiotic factors Ecology Climatic factors Altitude Morphometrics Allometry Abejas Sociedades de insectos Bees Insect societies Tamaño Morfología Sensibilidad Ecología sensorial Altitud Percepción Size Morphology Sensitivity Sensory ecology Altitude Perception |
dc.subject.lcc.spa.fl_str_mv |
Abejas-Morfología |
dc.subject.lcc.eng.fl_str_mv |
Honeybee - Morphology |
dc.subject.agrovoc.spa.fl_str_mv |
Ecología Factores ambientales Factores abióticos Apidae Factores climáticos Altitud Morfometría Apis mellifera Alometría |
dc.subject.agrovoc.eng.fl_str_mv |
Environmental factors Abiotic factors Ecology Climatic factors Altitude Morphometrics Allometry |
dc.subject.lemb.spa.fl_str_mv |
Abejas Sociedades de insectos |
dc.subject.lemb.eng.fl_str_mv |
Bees Insect societies |
dc.subject.proposal.spa.fl_str_mv |
Tamaño Morfología Sensibilidad Ecología sensorial Altitud Percepción |
dc.subject.proposal.eng.fl_str_mv |
Size Morphology Sensitivity Sensory ecology Altitude Perception |
description |
ilustraciones, diagramas, figuras, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-02-02T16:24:23Z |
dc.date.available.none.fl_str_mv |
2024-02-02T16:24:23Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85604 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85604 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Al-Lawati, H., & Bienefeld, K. (2009). Maternal Age Effects on Embryo Mortality and Juvenile Development of Offspring in the Honey Bee (Hymenoptera: Apidae). Annals of the Entomological Society of America, 102(5), 881–888. https://doi.org/10.1603/008.102.0514 Alloway, T. M. (1972). Learning and Memory in Insects. Annual Review of Entomology, 17(1). https://doi.org/10.1146/annurev.en.17.010172.000355 Amiri, E., Le, K., Carlos, |, Melendez, V., Strand, M. K., David, |, Tarpy, R., & Rueppell, | Olav. (2020). Egg-size plasticity in s: Honey bee queens alter egg size in response to both genetic and environmental factors. https://doi.org/10.1111/jeb.13589 Apfelbach, R., Russ, D., & Slotnick, B. M. (1991). Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chemical Senses, 16(3), 209–218. https://doi.org/10.1093/CHEMSE/16.3.209 Atkinson, D. (1994). Temperature and Organism Size—A Biological Law for Ectotherms? Advances in Ecological Research, 25(C), 1–58. https://doi.org/10.1016/S0065-2504(08)60212-3 Baird, E., Kreiss, E., Wcislo, W., Warrant, E., & Dacke, M. (2011). Nocturnal insects use optic flow for flight control. Biology Letters, 7(4), 499–501. https://doi.org/10.1098/RSBL.2010.1205 Ben-Shahar, Y., Leung, H. T., Pak, W. L., Sokolowski, M. B., & Robinson, G. E. (2003). cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. The Journal of Experimental Biology, 206(Pt 14), 2507–2515. https://doi.org/10.1242/JEB.00442 Blanckenhorn, W. U. (2000). The quarterly review of biology: The evolution of body size: What keeps organisms small? Quarterly Review of Biology, 75(4), 385–407. https://doi.org/10.1086/393620 Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and Converse Bergmann Latitudinal Clines in Arthropods: Two Ends of a Continuum? Integrative and Comparative Biology, 44(6), 413–424. https://doi.org/10.1093/ICB/44.6.413 Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. In Naturwissenschaften (Vol. 86, Issue 8). https://doi.org/10.1007/s001140050636 Chole, H., Woodard, S. H., & Bloch, G. (2019a). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77–87. https://doi.org/10.1016/j.cois.2019.07.006 Chole, H., Woodard, S. H., & Bloch, G. (2019b). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77–87. https://doi.org/10.1016/J.COIS.2019.07.006 Chown, S. L., & Gaston, K. J. (2010). Body size variation in insects: a macroecological perspective. Biological Reviews, 85(1), 139–169. https://doi.org/10.1111/J.1469-185X.2009.00097.X Clapham, M. E., & Karr, J. A. (2012). Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 10927–10930. https://doi.org/10.1073/PNAS.1204026109/SUPPL_FILE/PNAS.201204026SI.PDF Cohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change 2018 8:3, 8(3), 224–228. https://doi.org/10.1038/s41558-018-0067-3 Corby-Harris, V., Snyder, L., Meador, C., & Ayotte, T. (2018). Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality. PLOS ONE, 13(1), e0191050. https://doi.org/10.1371/JOURNAL.PONE.0191050 Czekońska, K., Łopuch, S., & Miścicki, S. (2023). The effect of meteorological and environmental variables on food collection by honey bees (Apis mellifera). Ecological Indicators, 156, 111140. https://doi.org/10.1016/J.ECOLIND.2023.111140 Degrandi-Hoffman, G., Eckholm, B. J., & Huang, M. H. (2013). A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie, 44(1), 52–63. https://doi.org/10.1007/S13592-012-0154-9 Detrain, C., Deneubourg, J.-L., & Pasteels, J. M. (1999). Decision-making in foraging by social insects. Information Processing in Social Insects, 331–354. https://doi.org/10.1007/978-3-0348-8739-7_18 Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C., Power, E. F., Wright, G. A., & Wilson, K. (2017). Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 185(4), 749–761. https://doi.org/10.1007/S00442-017-3968-3/FIGURES/3 Duan, J. J., Marvier, M., Huesing, J., Dively, G., & Huang, Z. Y. (2008). A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae). PLoS ONE, 3(1), 1415. https://doi.org/10.1371/journal.pone.0001415 Edgar, B. A. (2006). How flies get their size: genetics meets physiology. Nature Reviews Genetics 2006 7:12, 7(12), 907–916. https://doi.org/10.1038/nrg1989 Eisen, J. S., & Youssef, N. N. (1980). Fine structural aspects of the developing compound eye of the honey bee, apis mellifera L. Journal of Ultrasructure Research, 71(1), 79–94. https://doi.org/10.1016/S0022-5320(80)90038-6 Erber, J., Hoormann, J., & Scheiner, R. (2006). Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.). Behavioural Brain Research, 174(1), 174–180. https://doi.org/10.1016/j.bbr.2006.07.023 Fine, J. D., Shpigler, H. Y., Ray, A. M., Beach, N. J., Sankey, A. L., Cash-Ahmed, A., Huang, Z. Y., Astrauskaite, I., Chao, R., Zhao, H., & Robinson, G. E. (2018). Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PLOS ONE, 13(9), e0203444. https://doi.org/10.1371/JOURNAL.PONE.0203444 Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F., & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural Brain Research, 209(2). https://doi.org/10.1016/j.bbr.2010.01.046 Ghosh, S., & Jung, C. (2022). Temporal changes of nutrient composition from pollen patty to bee bread with special emphasis on amino and fatty acids composition. Journal of Asia-Pacific Entomology, 25, 1226–8615. https://doi.org/10.1016/j.aspen.2022.101873 Giurfa, M., Eichmann, B., & Menzel, R. (1996). Symmetry perception in an insect. Nature 1996 382:6590, 382(6590), 458–461. https://doi.org/10.1038/382458a0 Gonzalez-Bellido, P. T., Wardill, T. J., & Juusola, M. (2011). Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4224–4229. https://doi.org/10.1073/PNAS.1014438108/-/DCSUPPLEMENTAL Greenfield, M. D. (2002). Signalers and receivers : mechanisms and evolution of arthropod communication. 414. https://global.oup.com/academic/product/signalers-and-receivers-9780195134520 Greiner, B., Ribi, W. A., & Warrant, E. J. (2004a). Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell and Tissue Research, 316(3), 377–390. https://doi.org/10.1007/S00441-004-0883-9/METRICS Greiner, B., Ribi, W. A., & Warrant, E. J. (2004b). Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell and Tissue Research, 316(3), 377–390. https://doi.org/10.1007/S00441-004-0883-9/METRICS Harrison, J. F., Kaiser, A., & VandenBrooks, J. M. (2010). Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B: Biological Sciences, 277(1690), 1937–1946. https://doi.org/10.1098/RSPB.2010.0001 Haupt, S. S. (2004). Antennal sucrose perception in the honey bee (Apis mellifera L.): behaviour and electrophysiology. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(9), 735–745. https://doi.org/10.1007/S00359-004-0532-5 Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. https://doi.org/10.1111/J.1461-0248.2008.01269.X Hempel De Ibarra, N., Langridge, K. V., & Vorobyev, M. (2015). More than colour attraction: behavioural functions of flower patterns. Current Opinion in Insect Science, 12, 64–70. https://doi.org/10.1016/J.COIS.2015.09.005 Homberg, U. (1984). Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6), 825–836. https://doi.org/10.1007/BF00610683/METRICS Horne, C. R., Hirst, A. G., & Atkinson, D. (2017). Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings. Biological Sciences, 284(1851). https://doi.org/10.1098/RSPB.2017.0238 Horne, C. R., Hirst, A. G., & Atkinson, D. (2018). Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology, 32(4), 948–957. https://doi.org/10.1111/1365-2435.13031/SUPPINFO Jander, U., & Jander, R. (2002). Allometry and resolution of bee eyes (Apoidea). Arthropod Structure & Development, 30(3), 179–193. https://doi.org/10.1016/S1467-8039(01)00035-4 Jung, J. W., Park, K. W., Ahn, Y. J., & Kwon, H. W. (2015). Functional characterization of sugar receptors in the western honeybee, Apis mellifera. Journal of Asia-Pacific Entomology, 18(1), 19–26. https://doi.org/10.1016/J.ASPEN.2014.10.011 Kamm, D. R. (1974). Effects of Temperature, Day Length, and Number of Adults on the Sizes of Cells and Offspring in a Primitively Social Bee (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 47(1), 8–18. http://www.jstor.org/stable/25082614 Karim, F. D., Guild, G. M., & Thummel, C. S. (1993). The Drosophila Broad-Complex plays a key role in controlling ecdysoneregulated gene expression at the onset of metamorphosis. Development, 118(3), 977–988. https://doi.org/10.1242/dev.118.3.977 Kawamura, K., Shibata, T., Saget, O., Peel, D., & Bryant, P. J. (1999). A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development (Cambridge, England), 126(2), 211–219. https://doi.org/10.1242/DEV.126.2.211 Kelber, A., & Somanathan, H. (2019a). Spatial Vision and Visually Guided Behavior in Apidae. Insects 2019, Vol. 10, Page 418, 10(12), 418. https://doi.org/10.3390/INSECTS10120418 Kelber, A., & Somanathan, H. (2019b). Spatial Vision and Visually Guided Behavior in Apidae. Insects, 10(12). https://doi.org/10.3390/INSECTS10120418 Kelber, A., Warrant, E. J., Pfaff, M., Wallén, R., Theobald, J. C., Wcislo, W. T., & Raguso, R. A. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63–72. https://doi.org/10.1093/BEHECO/ARJ001 Kelber, C., Rössler, W., & Kleineidam, C. J. (2006). Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. The Journal of Comparative Neurology, 496(3), 395–405. https://doi.org/10.1002/CNE.20930 Kelemen, E., & Dornhaus, A. (2018). Lower temperatures decrease worker size variation but do not affect fine-grained thermoregulation in bumble bees. Behavioral Ecology and Sociobiology, 72(10). https://doi.org/10.1007/s00265-018-2577-4 Klingenberg, C. P., Badyaev, A. v., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings. American Naturalist, 157(1). https://doi.org/10.1086/317002 Klok, C. J., & Harrison, J. F. (2009). Atmospheric Hypoxia Limits Selection for Large Body Size in Insects. PLOS ONE, 4(1), e3876. https://doi.org/10.1371/JOURNAL.PONE.0003876 Koyama, T., & Mirth, C. K. (2018a). Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion in Insect Science, 25, 1–8. https://doi.org/10.1016/j.cois.2017.11.002 Koyama, T., & Mirth, C. K. (2018b). Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion in Insect Science, 25, 1–8. https://doi.org/10.1016/J.COIS.2017.11.002 Kurata, S., Go, M. J., Artavanis-Tsakonas, S., & Gehring, W. J. (2000). Notch signaling and the determination of appendage identity. Proceedings of the National Academy of Sciences of the United States of America, 97(5), 2117. https://doi.org/10.1073/PNAS.040556497 Levinton, J. S. (2001). Genetics, Paleontology, and Macroevolution. Genetics, Paleontology, and Macroevolution. https://doi.org/10.1017/CBO9780511612961 Lim, S., Jung, J., Yunusbaev, U., Ilyasov, R., & Kwon, H. W. (2019). Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Scientific Reports 2019 9:1, 9(1), 1–13. https://doi.org/10.1038/s41598-019-46738-z Linksvayer, T. A., Kaftanoglu, O., Akyol, E., Blatch, S., Amdam, G. V., & Page, R. E. (2011). Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen–worker dimorphism. Journal of Evolutionary Biology, 24(9), 1939–1948. https://doi.org/10.1111/J.1420-9101.2011.02331.X Makarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005). Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society B: Biological Sciences, 272(1578), 2325–2328. https://doi.org/10.1098/RSPB.2005.3223 Matsumoto, Y., Menzel, R., Sandoz, J. C., & Giurfa, M. (2012). Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. Journal of Neuroscience Methods, 211(1), 159–167. https://doi.org/10.1016/J.JNEUMETH.2012.08.018 Mattu, V. K., & Verma, L. R. (1983). Comparative Morphometric Studies on the Indian Honeybee of the North-West Himalayas 1. Tongue and Antenna. Journal of Apicultural Research, 22(2). https://doi.org/10.1080/00218839.1983.11100563 Mayr, E. (1956). Geographical Character Gradients and Climatic Adaptation. Evolution, 10(1), 105. https://doi.org/10.2307/2406103 Meiri, S., Yom-Tov, Y., & Geffen, E. (2007). What determines conformity to Bergmann’s rule? Global Ecology and Biogeography, 16(6). https://doi.org/10.1111/j.1466-8238.2007.00330.x Menzel, J. G., Wunderer, H., & Stavenga, D. G. (1991a). Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue & Cell, 23(4), 525–535. https://doi.org/10.1016/0040-8166(91)90010-Q Menzel, J. G., Wunderer, H., & Stavenga, D. G. (1991b). Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue and Cell, 23(4), 525–535. https://doi.org/10.1016/0040-8166(91)90010-Q Menzel, R. (1990). Learning, memory, and “cognition” in honey bees. In Neurobiology of Comparative Cognition. Moreno, E., José Corriale, M., & Arenas, A. (2022). Differences in olfactory sensitivity and odor detection correlate with foraging task specialization in honeybees Apis mellifera. Journal of Insect Physiology, 141, 104416. https://doi.org/10.1016/J.JINSPHYS.2022.104416 Nicholls, E., Rossi, M., & Niven, J. E. (2021a). Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. https://doi.org/10.1242/jeb.242393 Nicholls, E., Rossi, M., & Niven, J. E. (2021b). Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. Journal of Experimental Biology, 224(14). https://doi.org/10.1242/JEB.242393/270938 Nijhout, H. F. (2003). The control of body size in insects. In Developmental Biology (Vol. 261, Issue 1). https://doi.org/10.1016/S0012-1606(03)00276-8 Ochieng’, S. A., & Hansson, B. S. (1999). Responses of olfactory receptor neurones to behaviourally important odours in gregarious and solitarious desert locust, Schistocerca gregaria. Physiological Entomology, 24(1), 28–36. https://doi.org/10.1046/J.1365-3032.1999.00107.X Ogilvie, J. E., & Forrest, J. R. (2017). Interactions between bee foraging and floral resource phenology shape bee populations and communities. Current Opinion in Insect Science, 21, 75–82. https://doi.org/10.1016/J.COIS.2017.05.015 Okajima, R. (2008). The controlling factors limiting maximum body size of insects. Lethaia, 41(4), 423–430. https://doi.org/10.1111/J.1502-3931.2008.00094.X Olalla-Tárraga, M. Á. (2011). “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 120(10), 1441–1444. https://doi.org/10.1111/J.1600-0706.2011.19319.X Page, R. E., Erber, J., & Fondrk, M. K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 182(4), 489–500. https://doi.org/10.1007/S003590050196/METRICS Pankiw, T., & Page, R. E. (2000). Response thresholds to sucrose predict foraging division of labor in honeybees. Behavioral Ecology and Sociobiology, 47(4), 265–267. https://doi.org/10.1007/S002650050664/METRICS Prado, A., Requier, F., Crauser, D., Le Conte, Y., Bretagnolle, V., & Alaux, C. (2020). Honeybee lifespan: the critical role of pre-foraging stage. https://doi.org/10.1098/rsos.200998 Raff, R. A. (1996). The shape of life : genes, development, and the evolution of animal form. 520. Reber, T., Vä Hä Kainu, A., Baird, E., Weckstro, M., Warrant, E., & Dacke, M. (2015). Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees. https://doi.org/10.1242/jeb.113886 Riveros, A. J., & Gronenberg, W. (2010). Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behavioral Ecology and Sociobiology, 64(6). https://doi.org/10.1007/s00265-010-0911-6 Roulston, T. H., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49–65. https://doi.org/10.1023/A:1016048526475/METRICS Sandoz, J. C. (2011). Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in Systems Neuroscience, 5(DECEMBER 2011), 14474. https://doi.org/10.3389/FNSYS.2011.00098/BIBTEX Schlichting, C., & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. https://philpapers.org/rec/SCHPEA-2 Schmickl, T., & Karsai, I. (2016). How regulation based on a common stomach leads to economic optimization of honeybee foraging. Journal of Theoretical Biology, 389, 274–286. https://doi.org/10.1016/J.JTBI.2015.10.036 Schwarz, S., Albert, L., Wystrach, A., & Cheng, K. (2011). Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology, 214(6), 901–906. https://doi.org/10.1242/JEB.049262 Shelomi, M. (2012). Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. Https://Doi.Org/10.1086/667595, 180(4), 511–519. https://doi.org/10.1086/667595 Shi, Y. Y., Huang, Z. Y., Zeng, Z. J., Wang, Z. L., Wu, X. B., & Yan, W. Y. (2011). Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (apis mellifera, apidae). PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018808 Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007a). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29(6), 536–548. https://doi.org/10.1002/BIES.20584 Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007b). Size and shape: The developmental regulation of static allometry in insects. In BioEssays (Vol. 29, Issue 6). https://doi.org/10.1002/bies.20584 Siemanowski, J., Richter, T., Dao, V. A., & Bucher, G. (2015). Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Developmental Biology, 408(1), 164–177. https://doi.org/10.1016/J.YDBIO.2015.09.018 Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., & Warrant, E. J. (2009). Visual ecology of Indian carpenter bees II: Adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(6), 571–583. https://doi.org/10.1007/S00359-009-0432-9/METRICS Somanathan, H., Warrant, E. J., Borges, R. M., Wallen, R., & Kelber, A. (2009). Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. Journal of Experimental Biology, 212(15), 2448–2453. https://doi.org/10.1242/JEB.031484 Spaethe, J., Brockmann, A., Halbig, C., & Tautz, J. (2007). Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Die Naturwissenschaften, 94(9), 733–739. https://doi.org/10.1007/S00114-007-0251-1 Spaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology, 206(19), 3447–3453. https://doi.org/10.1242/JEB.00570 Spaethe, J., & Tautz, J. (2014). Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers View project Pollination biology of Ophrys View project. Dera Natung Government College Research Journal, 7(1). https://doi.org/10.1007/s00114-007-0251-1 Switanek, M., Crailsheim, K., Truhetz, H., & Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of The Total Environment, 579, 1581–1587. https://doi.org/10.1016/J.SCITOTENV.2016.11.178 Tang, H. Y., Smith-Caldas, M. S. B., Driscoll, M. v., Salhadar, S., & Shingleton, A. W. (2011). FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila. PLOS Genetics, 7(11), e1002373. https://doi.org/10.1371/JOURNAL.PGEN.1002373 Taylor, G. J., Tichit, P., Schmidt, M. D., Bodey, A. J., Rau, C., & Baird, E. (2019). Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife, 8. https://doi.org/10.7554/ELIFE.40613 Truman, J. W., Hiruma, K., Allee, J. P., MacWhinnie, S. G. B., Champlin, D. T., & Riddiford, L. M. (2006). Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science (New York, N.Y.), 312(5778), 1385–1388. https://doi.org/10.1126/SCIENCE.1123652 Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316 Vareschi, E. (1971). Odor discrimination in the honey bee-single cell and behavioral response. Zeitschrift Für Vergleichende Physiologie, 75(2), 143–173. https://doi.org/10.1007/BF00335260/METRICS Verberk, W. C. E. P., & Bilton, D. T. (2011). Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism? PLOS ONE, 6(7), e22610. https://doi.org/10.1371/JOURNAL.PONE.0022610 Vieira, J., de Paula Freitas, F. C., Santos Cristino, A., Guariz Pinheiro, D., Aguiar, L. R., Framartino Bezerra Laure, M. A., Rosatto Moda, L. M., Paulino Simões, Z. L., & Barchuk, A. R. (2021). Molecular underpinnings of the early brain developmental response to differential feeding in the honey bee Apis mellifera. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1864(9), 194732. https://doi.org/10.1016/J.BBAGRM.2021.194732 Waiker, P., Baral, S., Kennedy, A., Bhatia, S., Rueppell, A., Le, K., Amiri, E., Tsuruda, J., & Rueppell, O. (2019). Foraging and homing behavior of honey bees (Apis mellifera) during a total solar eclipse. Die Naturwissenschaften, 106(1–2). https://doi.org/10.1007/S00114-018-1597-2 Wakakuwa, M., Kurasawa, M., Giurfa, M., & Arikawa, K. (2005). Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften, 92(10), 464–467. https://doi.org/10.1007/S00114-005-0018-5/METRICS Wang, L. Y., Stuart-Fox, D., Walker, G., Roberts, N. W., & Franklin, A. M. (2022). Insect visual sensitivity to long wavelengths enhances colour contrast of insects against vegetation. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-021-04702-w Warrant, E. J. (1999). Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research, 39(9), 1611–1630. https://doi.org/10.1016/S0042-6989(98)00262-4 Webb, B. (2012). Cognition in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2715–2722. https://doi.org/10.1098/RSTB.2012.0218 Whitehead, A. T., & Larsen, J. R. (1976). Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera : Apidae). International Journal of Insect Morphology and Embryology, 5(4–5), 301–315. https://doi.org/10.1016/0020-7322(76)90030-1 Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143(10), 2280–2291. https://doi.org/10.1016/J.BIOCON.2010.03.024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 49 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.coverage.region.none.fl_str_mv |
Cundinamarca |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85604/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/85604/6/1026303851.2023.pdf |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 0040d59631b1522e55d3ca33850e7509 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090078687854592 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Riveros Rivera, Andre Josafat5d994f37f15ad7323f6d8f7bae90280aOspina Torres, Rodulfo66f6853aa3e48497c7d84c1de97c664cBarragán Barrera, Heidy Natalia8a5cbed2dca377a181ae3e4530e0786cCANNON, Laboratorio de Investigación en Abejas LABUN2024-02-02T16:24:23Z2024-02-02T16:24:23Z2023https://repositorio.unal.edu.co/handle/unal/85604Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figuras, fotografíasEl tamaño corporal establece un límite entre el organismo y su entorno, influyendo significativamente en la interacción de con su entorno. La plasticidad en el tamaño y las estructuras sensoriales genera una notable variabilidad en la forma en que se percibe y transduce la información del entorno. Este estudio abordó el efecto de la altitud en el tamaño corporal y las estructuras sensoriales de un mismo nido de Apis mellifera, explorando las relaciones entre las variaciones en el tamaño corporal y estructuras sensoriales, con sus respectivas respuestas comportamentales asociado a los sentidos de la visión y gusto. Se realizaron tres movimientos del nido con una sola reina marcada en diferentes elevaciones: inicialmente a 2975 msnm, luego a 1288 msnm, y finalmente retornando a 2975 msnm. En cada movimiento, se llevaron a cabo pruebas de sensibilidad visual y gustativa, luego se sacrificaron las abejas para tomar datos morfométricos del tamaño corporal y estructuras sensoriales. Los resultados revelaron quelas abejas a 2975 msnm exhibieron un menor tamaño corporal en comparación con las de 1288 msnm. Sin embargo, las estructuras sensoriales mostraron un patrón diferente, evidenciando alometría estática entre las estructuras sensoriales. Del mismo modo, a nivel comportamental se evidenció mayor sensibilidad a la sacarosa en las abejas que se distribuían a los 2975 msnm, mientras que en las pruebas de sensibilidad visual las abejas en todas las elevaciones fueron sensibles a la intensidad relativa de menor magnitud. Estos hallazgos subrayan el impacto de factores abióticos asociados a la altitud, como la presión parcial de oxígeno y disponibilidad de recursos, en la determinación del tamaño y forma de las estructuras sensoriales, afectando indirectamente la sensibilidad visual y gustativa. (Texto tomado de la fuente)Body size establishes a boundary between the organism and its environment, influencing the interaction between individuals and their surroundings. Plasticity in size and sensory structures generates a notable variability in how environmental information is perceived and transduced. We studied the effect of altitude on the body size and sensory structures of a single nest of Apis mellifera, exploring the relationships between variations in body size and sensory structures, along with their respective behavioral responses associated with the senses of vision and taste. Three movements of the nest were conducted, each with the same marked queen, at different elevations: initially at 2975 meters above sea level (masl), then at 1288 masl, and finally returning to 2975 masl. During each movement, tests of visual and gustatory sensitivity were performed, and subsequently, the bees were sacrificed to obtain morphometric data of body size and their sensory structures. The results revealed that bees at 2975 masl exhibited a smaller body size compared to those at 1288 masl. However, sensory structures showed a different pattern, indicating static allometry among these structures. Similarly, at the behavioral level, greater sensitivity to sucrose in bees distributed at 2975 masl, while in visual sensitivity tests, bees at all elevations were sensitive to the relative lower-intensity stimuli. These findings underline the impact of abiotic factors associated with altitude, such as partial pressure of oxygen and resource availability, determining the size and shape of sensory structures, and indirectly affecting visual and gustatory sensitivityMaestríaMagíster en Ciencias - BiologíaEcología cognitivax, 49 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá590 - Animales::595 - Artrópodos630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos570 - Biología::577 - Ecología570 - Biología::578 - Historia natural de los organismos y temas relacionadosAbejas-MorfologíaHoneybee - MorphologyEcologíaFactores ambientalesFactores abióticosApidaeFactores climáticosAltitudMorfometríaApis melliferaAlometríaEnvironmental factorsAbiotic factorsEcologyClimatic factorsAltitudeMorphometricsAllometryAbejasSociedades de insectosBeesInsect societiesTamañoMorfologíaSensibilidadEcología sensorialAltitudPercepciónSizeMorphologySensitivitySensory ecologyAltitudePerceptionEfectos de la elevación sobre la alometría sensorial en Apis mellifera en una clina altitudinal (Cundinamarca, Colombia)Effects of elevation on sensory allometry in Apis mellifera within an altitudinal cline (Cundinamarca, Colombia)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaCundinamarcaAl-Lawati, H., & Bienefeld, K. (2009). Maternal Age Effects on Embryo Mortality and Juvenile Development of Offspring in the Honey Bee (Hymenoptera: Apidae). Annals of the Entomological Society of America, 102(5), 881–888. https://doi.org/10.1603/008.102.0514Alloway, T. M. (1972). Learning and Memory in Insects. Annual Review of Entomology, 17(1). https://doi.org/10.1146/annurev.en.17.010172.000355Amiri, E., Le, K., Carlos, |, Melendez, V., Strand, M. K., David, |, Tarpy, R., & Rueppell, | Olav. (2020). Egg-size plasticity in s: Honey bee queens alter egg size in response to both genetic and environmental factors. https://doi.org/10.1111/jeb.13589Apfelbach, R., Russ, D., & Slotnick, B. M. (1991). Ontogenetic changes in odor sensitivity, olfactory receptor area and olfactory receptor density in the rat. Chemical Senses, 16(3), 209–218. https://doi.org/10.1093/CHEMSE/16.3.209Atkinson, D. (1994). Temperature and Organism Size—A Biological Law for Ectotherms? Advances in Ecological Research, 25(C), 1–58. https://doi.org/10.1016/S0065-2504(08)60212-3Baird, E., Kreiss, E., Wcislo, W., Warrant, E., & Dacke, M. (2011). Nocturnal insects use optic flow for flight control. Biology Letters, 7(4), 499–501. https://doi.org/10.1098/RSBL.2010.1205Ben-Shahar, Y., Leung, H. T., Pak, W. L., Sokolowski, M. B., & Robinson, G. E. (2003). cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. The Journal of Experimental Biology, 206(Pt 14), 2507–2515. https://doi.org/10.1242/JEB.00442Blanckenhorn, W. U. (2000). The quarterly review of biology: The evolution of body size: What keeps organisms small? Quarterly Review of Biology, 75(4), 385–407. https://doi.org/10.1086/393620Blanckenhorn, W. U., & Demont, M. (2004). Bergmann and Converse Bergmann Latitudinal Clines in Arthropods: Two Ends of a Continuum? Integrative and Comparative Biology, 44(6), 413–424. https://doi.org/10.1093/ICB/44.6.413Chittka, L., Thomson, J. D., & Waser, N. M. (1999). Flower constancy, insect psychology, and plant evolution. In Naturwissenschaften (Vol. 86, Issue 8). https://doi.org/10.1007/s001140050636Chole, H., Woodard, S. H., & Bloch, G. (2019a). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77–87. https://doi.org/10.1016/j.cois.2019.07.006Chole, H., Woodard, S. H., & Bloch, G. (2019b). Body size variation in bees: regulation, mechanisms, and relationship to social organization. Current Opinion in Insect Science, 35, 77–87. https://doi.org/10.1016/J.COIS.2019.07.006Chown, S. L., & Gaston, K. J. (2010). Body size variation in insects: a macroecological perspective. Biological Reviews, 85(1), 139–169. https://doi.org/10.1111/J.1469-185X.2009.00097.XClapham, M. E., & Karr, J. A. (2012). Environmental and biotic controls on the evolutionary history of insect body size. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 10927–10930. https://doi.org/10.1073/PNAS.1204026109/SUPPL_FILE/PNAS.201204026SI.PDFCohen, J. M., Lajeunesse, M. J., & Rohr, J. R. (2018). A global synthesis of animal phenological responses to climate change. Nature Climate Change 2018 8:3, 8(3), 224–228. https://doi.org/10.1038/s41558-018-0067-3Corby-Harris, V., Snyder, L., Meador, C., & Ayotte, T. (2018). Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality. PLOS ONE, 13(1), e0191050. https://doi.org/10.1371/JOURNAL.PONE.0191050Czekońska, K., Łopuch, S., & Miścicki, S. (2023). The effect of meteorological and environmental variables on food collection by honey bees (Apis mellifera). Ecological Indicators, 156, 111140. https://doi.org/10.1016/J.ECOLIND.2023.111140Degrandi-Hoffman, G., Eckholm, B. J., & Huang, M. H. (2013). A comparison of bee bread made by Africanized and European honey bees (Apis mellifera) and its effects on hemolymph protein titers. Apidologie, 44(1), 52–63. https://doi.org/10.1007/S13592-012-0154-9Detrain, C., Deneubourg, J.-L., & Pasteels, J. M. (1999). Decision-making in foraging by social insects. Information Processing in Social Insects, 331–354. https://doi.org/10.1007/978-3-0348-8739-7_18Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C., Power, E. F., Wright, G. A., & Wilson, K. (2017). Nutritional composition of honey bee food stores vary with floral composition. Oecologia, 185(4), 749–761. https://doi.org/10.1007/S00442-017-3968-3/FIGURES/3Duan, J. J., Marvier, M., Huesing, J., Dively, G., & Huang, Z. Y. (2008). A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae). PLoS ONE, 3(1), 1415. https://doi.org/10.1371/journal.pone.0001415Edgar, B. A. (2006). How flies get their size: genetics meets physiology. Nature Reviews Genetics 2006 7:12, 7(12), 907–916. https://doi.org/10.1038/nrg1989Eisen, J. S., & Youssef, N. N. (1980). Fine structural aspects of the developing compound eye of the honey bee, apis mellifera L. Journal of Ultrasructure Research, 71(1), 79–94. https://doi.org/10.1016/S0022-5320(80)90038-6Erber, J., Hoormann, J., & Scheiner, R. (2006). Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.). Behavioural Brain Research, 174(1), 174–180. https://doi.org/10.1016/j.bbr.2006.07.023Fine, J. D., Shpigler, H. Y., Ray, A. M., Beach, N. J., Sankey, A. L., Cash-Ahmed, A., Huang, Z. Y., Astrauskaite, I., Chao, R., Zhao, H., & Robinson, G. E. (2018). Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. PLOS ONE, 13(9), e0203444. https://doi.org/10.1371/JOURNAL.PONE.0203444Frasnelli, E., Anfora, G., Trona, F., Tessarolo, F., & Vallortigara, G. (2010). Morpho-functional asymmetry of the olfactory receptors of the honeybee (Apis mellifera). Behavioural Brain Research, 209(2). https://doi.org/10.1016/j.bbr.2010.01.046Ghosh, S., & Jung, C. (2022). Temporal changes of nutrient composition from pollen patty to bee bread with special emphasis on amino and fatty acids composition. Journal of Asia-Pacific Entomology, 25, 1226–8615. https://doi.org/10.1016/j.aspen.2022.101873Giurfa, M., Eichmann, B., & Menzel, R. (1996). Symmetry perception in an insect. Nature 1996 382:6590, 382(6590), 458–461. https://doi.org/10.1038/382458a0Gonzalez-Bellido, P. T., Wardill, T. J., & Juusola, M. (2011). Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4224–4229. https://doi.org/10.1073/PNAS.1014438108/-/DCSUPPLEMENTALGreenfield, M. D. (2002). Signalers and receivers : mechanisms and evolution of arthropod communication. 414. https://global.oup.com/academic/product/signalers-and-receivers-9780195134520Greiner, B., Ribi, W. A., & Warrant, E. J. (2004a). Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell and Tissue Research, 316(3), 377–390. https://doi.org/10.1007/S00441-004-0883-9/METRICSGreiner, B., Ribi, W. A., & Warrant, E. J. (2004b). Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell and Tissue Research, 316(3), 377–390. https://doi.org/10.1007/S00441-004-0883-9/METRICSHarrison, J. F., Kaiser, A., & VandenBrooks, J. M. (2010). Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B: Biological Sciences, 277(1690), 1937–1946. https://doi.org/10.1098/RSPB.2010.0001Haupt, S. S. (2004). Antennal sucrose perception in the honey bee (Apis mellifera L.): behaviour and electrophysiology. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190(9), 735–745. https://doi.org/10.1007/S00359-004-0532-5Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L., & Totland, Ø. (2009). How does climate warming affect plant-pollinator interactions? Ecology Letters, 12(2), 184–195. https://doi.org/10.1111/J.1461-0248.2008.01269.XHempel De Ibarra, N., Langridge, K. V., & Vorobyev, M. (2015). More than colour attraction: behavioural functions of flower patterns. Current Opinion in Insect Science, 12, 64–70. https://doi.org/10.1016/J.COIS.2015.09.005Homberg, U. (1984). Processing of antennal information in extrinsic mushroom body neurons of the bee brain. Journal of Comparative Physiology A, 154(6), 825–836. https://doi.org/10.1007/BF00610683/METRICSHorne, C. R., Hirst, A. G., & Atkinson, D. (2017). Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proceedings. Biological Sciences, 284(1851). https://doi.org/10.1098/RSPB.2017.0238Horne, C. R., Hirst, A. G., & Atkinson, D. (2018). Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology, 32(4), 948–957. https://doi.org/10.1111/1365-2435.13031/SUPPINFOJander, U., & Jander, R. (2002). Allometry and resolution of bee eyes (Apoidea). Arthropod Structure & Development, 30(3), 179–193. https://doi.org/10.1016/S1467-8039(01)00035-4Jung, J. W., Park, K. W., Ahn, Y. J., & Kwon, H. W. (2015). Functional characterization of sugar receptors in the western honeybee, Apis mellifera. Journal of Asia-Pacific Entomology, 18(1), 19–26. https://doi.org/10.1016/J.ASPEN.2014.10.011Kamm, D. R. (1974). Effects of Temperature, Day Length, and Number of Adults on the Sizes of Cells and Offspring in a Primitively Social Bee (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 47(1), 8–18. http://www.jstor.org/stable/25082614Karim, F. D., Guild, G. M., & Thummel, C. S. (1993). The Drosophila Broad-Complex plays a key role in controlling ecdysoneregulated gene expression at the onset of metamorphosis. Development, 118(3), 977–988. https://doi.org/10.1242/dev.118.3.977Kawamura, K., Shibata, T., Saget, O., Peel, D., & Bryant, P. J. (1999). A new family of growth factors produced by the fat body and active on Drosophila imaginal disc cells. Development (Cambridge, England), 126(2), 211–219. https://doi.org/10.1242/DEV.126.2.211Kelber, A., & Somanathan, H. (2019a). Spatial Vision and Visually Guided Behavior in Apidae. Insects 2019, Vol. 10, Page 418, 10(12), 418. https://doi.org/10.3390/INSECTS10120418Kelber, A., & Somanathan, H. (2019b). Spatial Vision and Visually Guided Behavior in Apidae. Insects, 10(12). https://doi.org/10.3390/INSECTS10120418Kelber, A., Warrant, E. J., Pfaff, M., Wallén, R., Theobald, J. C., Wcislo, W. T., & Raguso, R. A. (2006). Light intensity limits foraging activity in nocturnal and crepuscular bees. Behavioral Ecology, 17(1), 63–72. https://doi.org/10.1093/BEHECO/ARJ001Kelber, C., Rössler, W., & Kleineidam, C. J. (2006). Multiple olfactory receptor neurons and their axonal projections in the antennal lobe of the honeybee Apis mellifera. The Journal of Comparative Neurology, 496(3), 395–405. https://doi.org/10.1002/CNE.20930Kelemen, E., & Dornhaus, A. (2018). Lower temperatures decrease worker size variation but do not affect fine-grained thermoregulation in bumble bees. Behavioral Ecology and Sociobiology, 72(10). https://doi.org/10.1007/s00265-018-2577-4Klingenberg, C. P., Badyaev, A. v., Sowry, S. M., & Beckwith, N. J. (2001). Inferring developmental modularity from morphological integration: Analysis of individual variation and asymmetry in bumblebee wings. American Naturalist, 157(1). https://doi.org/10.1086/317002Klok, C. J., & Harrison, J. F. (2009). Atmospheric Hypoxia Limits Selection for Large Body Size in Insects. PLOS ONE, 4(1), e3876. https://doi.org/10.1371/JOURNAL.PONE.0003876Koyama, T., & Mirth, C. K. (2018a). Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion in Insect Science, 25, 1–8. https://doi.org/10.1016/j.cois.2017.11.002Koyama, T., & Mirth, C. K. (2018b). Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion in Insect Science, 25, 1–8. https://doi.org/10.1016/J.COIS.2017.11.002Kurata, S., Go, M. J., Artavanis-Tsakonas, S., & Gehring, W. J. (2000). Notch signaling and the determination of appendage identity. Proceedings of the National Academy of Sciences of the United States of America, 97(5), 2117. https://doi.org/10.1073/PNAS.040556497Levinton, J. S. (2001). Genetics, Paleontology, and Macroevolution. Genetics, Paleontology, and Macroevolution. https://doi.org/10.1017/CBO9780511612961Lim, S., Jung, J., Yunusbaev, U., Ilyasov, R., & Kwon, H. W. (2019). Characterization and its implication of a novel taste receptor detecting nutrients in the honey bee, Apis mellifera. Scientific Reports 2019 9:1, 9(1), 1–13. https://doi.org/10.1038/s41598-019-46738-zLinksvayer, T. A., Kaftanoglu, O., Akyol, E., Blatch, S., Amdam, G. V., & Page, R. E. (2011). Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen–worker dimorphism. Journal of Evolutionary Biology, 24(9), 1939–1948. https://doi.org/10.1111/J.1420-9101.2011.02331.XMakarieva, A. M., Gorshkov, V. G., & Li, B. L. (2005). Gigantism, temperature and metabolic rate in terrestrial poikilotherms. Proceedings of the Royal Society B: Biological Sciences, 272(1578), 2325–2328. https://doi.org/10.1098/RSPB.2005.3223Matsumoto, Y., Menzel, R., Sandoz, J. C., & Giurfa, M. (2012). Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: a step toward standardized procedures. Journal of Neuroscience Methods, 211(1), 159–167. https://doi.org/10.1016/J.JNEUMETH.2012.08.018Mattu, V. K., & Verma, L. R. (1983). Comparative Morphometric Studies on the Indian Honeybee of the North-West Himalayas 1. Tongue and Antenna. Journal of Apicultural Research, 22(2). https://doi.org/10.1080/00218839.1983.11100563Mayr, E. (1956). Geographical Character Gradients and Climatic Adaptation. Evolution, 10(1), 105. https://doi.org/10.2307/2406103Meiri, S., Yom-Tov, Y., & Geffen, E. (2007). What determines conformity to Bergmann’s rule? Global Ecology and Biogeography, 16(6). https://doi.org/10.1111/j.1466-8238.2007.00330.xMenzel, J. G., Wunderer, H., & Stavenga, D. G. (1991a). Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue & Cell, 23(4), 525–535. https://doi.org/10.1016/0040-8166(91)90010-QMenzel, J. G., Wunderer, H., & Stavenga, D. G. (1991b). Functional morphology of the divided compound eye of the honeybee drone (Apis mellifera). Tissue and Cell, 23(4), 525–535. https://doi.org/10.1016/0040-8166(91)90010-QMenzel, R. (1990). Learning, memory, and “cognition” in honey bees. In Neurobiology of Comparative Cognition.Moreno, E., José Corriale, M., & Arenas, A. (2022). Differences in olfactory sensitivity and odor detection correlate with foraging task specialization in honeybees Apis mellifera. Journal of Insect Physiology, 141, 104416. https://doi.org/10.1016/J.JINSPHYS.2022.104416Nicholls, E., Rossi, M., & Niven, J. E. (2021a). Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. https://doi.org/10.1242/jeb.242393Nicholls, E., Rossi, M., & Niven, J. E. (2021b). Larval nutrition impacts survival to adulthood, body size and the allometric scaling of metabolic rate in adult honeybees. Journal of Experimental Biology, 224(14). https://doi.org/10.1242/JEB.242393/270938Nijhout, H. F. (2003). The control of body size in insects. In Developmental Biology (Vol. 261, Issue 1). https://doi.org/10.1016/S0012-1606(03)00276-8Ochieng’, S. A., & Hansson, B. S. (1999). Responses of olfactory receptor neurones to behaviourally important odours in gregarious and solitarious desert locust, Schistocerca gregaria. Physiological Entomology, 24(1), 28–36. https://doi.org/10.1046/J.1365-3032.1999.00107.XOgilvie, J. E., & Forrest, J. R. (2017). Interactions between bee foraging and floral resource phenology shape bee populations and communities. Current Opinion in Insect Science, 21, 75–82. https://doi.org/10.1016/J.COIS.2017.05.015Okajima, R. (2008). The controlling factors limiting maximum body size of insects. Lethaia, 41(4), 423–430. https://doi.org/10.1111/J.1502-3931.2008.00094.XOlalla-Tárraga, M. Á. (2011). “Nullius in Bergmann” or the pluralistic approach to ecogeographical rules: a reply to Watt et al. (2010). Oikos, 120(10), 1441–1444. https://doi.org/10.1111/J.1600-0706.2011.19319.XPage, R. E., Erber, J., & Fondrk, M. K. (1998). The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 182(4), 489–500. https://doi.org/10.1007/S003590050196/METRICSPankiw, T., & Page, R. E. (2000). Response thresholds to sucrose predict foraging division of labor in honeybees. Behavioral Ecology and Sociobiology, 47(4), 265–267. https://doi.org/10.1007/S002650050664/METRICSPrado, A., Requier, F., Crauser, D., Le Conte, Y., Bretagnolle, V., & Alaux, C. (2020). Honeybee lifespan: the critical role of pre-foraging stage. https://doi.org/10.1098/rsos.200998Raff, R. A. (1996). The shape of life : genes, development, and the evolution of animal form. 520.Reber, T., Vä Hä Kainu, A., Baird, E., Weckstro, M., Warrant, E., & Dacke, M. (2015). Effect of light intensity on flight control and temporal properties of photoreceptors in bumblebees. https://doi.org/10.1242/jeb.113886Riveros, A. J., & Gronenberg, W. (2010). Sensory allometry, foraging task specialization and resource exploitation in honeybees. Behavioral Ecology and Sociobiology, 64(6). https://doi.org/10.1007/s00265-010-0911-6Roulston, T. H., & Cane, J. H. (2002). The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evolutionary Ecology, 16(1), 49–65. https://doi.org/10.1023/A:1016048526475/METRICSSandoz, J. C. (2011). Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in Systems Neuroscience, 5(DECEMBER 2011), 14474. https://doi.org/10.3389/FNSYS.2011.00098/BIBTEXSchlichting, C., & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. https://philpapers.org/rec/SCHPEA-2Schmickl, T., & Karsai, I. (2016). How regulation based on a common stomach leads to economic optimization of honeybee foraging. Journal of Theoretical Biology, 389, 274–286. https://doi.org/10.1016/J.JTBI.2015.10.036Schwarz, S., Albert, L., Wystrach, A., & Cheng, K. (2011). Ocelli contribute to the encoding of celestial compass information in the Australian desert ant Melophorus bagoti. Journal of Experimental Biology, 214(6), 901–906. https://doi.org/10.1242/JEB.049262Shelomi, M. (2012). Where Are We Now? Bergmann’s Rule Sensu Lato in Insects. Https://Doi.Org/10.1086/667595, 180(4), 511–519. https://doi.org/10.1086/667595Shi, Y. Y., Huang, Z. Y., Zeng, Z. J., Wang, Z. L., Wu, X. B., & Yan, W. Y. (2011). Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (apis mellifera, apidae). PLoS ONE, 6(4). https://doi.org/10.1371/journal.pone.0018808Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007a). Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29(6), 536–548. https://doi.org/10.1002/BIES.20584Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, D. J. (2007b). Size and shape: The developmental regulation of static allometry in insects. In BioEssays (Vol. 29, Issue 6). https://doi.org/10.1002/bies.20584Siemanowski, J., Richter, T., Dao, V. A., & Bucher, G. (2015). Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Developmental Biology, 408(1), 164–177. https://doi.org/10.1016/J.YDBIO.2015.09.018Somanathan, H., Kelber, A., Borges, R. M., Wallén, R., & Warrant, E. J. (2009). Visual ecology of Indian carpenter bees II: Adaptations of eyes and ocelli to nocturnal and diurnal lifestyles. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(6), 571–583. https://doi.org/10.1007/S00359-009-0432-9/METRICSSomanathan, H., Warrant, E. J., Borges, R. M., Wallen, R., & Kelber, A. (2009). Resolution and sensitivity of the eyes of the Asian honeybees Apis florea, Apis cerana and Apis dorsata. Journal of Experimental Biology, 212(15), 2448–2453. https://doi.org/10.1242/JEB.031484Spaethe, J., Brockmann, A., Halbig, C., & Tautz, J. (2007). Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Die Naturwissenschaften, 94(9), 733–739. https://doi.org/10.1007/S00114-007-0251-1Spaethe, J., & Chittka, L. (2003). Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology, 206(19), 3447–3453. https://doi.org/10.1242/JEB.00570Spaethe, J., & Tautz, J. (2014). Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers View project Pollination biology of Ophrys View project. Dera Natung Government College Research Journal, 7(1). https://doi.org/10.1007/s00114-007-0251-1Switanek, M., Crailsheim, K., Truhetz, H., & Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of The Total Environment, 579, 1581–1587. https://doi.org/10.1016/J.SCITOTENV.2016.11.178Tang, H. Y., Smith-Caldas, M. S. B., Driscoll, M. v., Salhadar, S., & Shingleton, A. W. (2011). FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila. PLOS Genetics, 7(11), e1002373. https://doi.org/10.1371/JOURNAL.PGEN.1002373Taylor, G. J., Tichit, P., Schmidt, M. D., Bodey, A. J., Rau, C., & Baird, E. (2019). Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity. eLife, 8. https://doi.org/10.7554/ELIFE.40613Truman, J. W., Hiruma, K., Allee, J. P., MacWhinnie, S. G. B., Champlin, D. T., & Riddiford, L. M. (2006). Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science (New York, N.Y.), 312(5778), 1385–1388. https://doi.org/10.1126/SCIENCE.1123652Urrea, V., Ochoa, A., & Mesa, O. (2019). Seasonality of Rainfall in Colombia. Water Resources Research, 55(5), 4149–4162. https://doi.org/10.1029/2018WR023316Vareschi, E. (1971). Odor discrimination in the honey bee-single cell and behavioral response. Zeitschrift Für Vergleichende Physiologie, 75(2), 143–173. https://doi.org/10.1007/BF00335260/METRICSVerberk, W. C. E. P., & Bilton, D. T. (2011). Can Oxygen Set Thermal Limits in an Insect and Drive Gigantism? PLOS ONE, 6(7), e22610. https://doi.org/10.1371/JOURNAL.PONE.0022610Vieira, J., de Paula Freitas, F. C., Santos Cristino, A., Guariz Pinheiro, D., Aguiar, L. R., Framartino Bezerra Laure, M. A., Rosatto Moda, L. M., Paulino Simões, Z. L., & Barchuk, A. R. (2021). Molecular underpinnings of the early brain developmental response to differential feeding in the honey bee Apis mellifera. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1864(9), 194732. https://doi.org/10.1016/J.BBAGRM.2021.194732Waiker, P., Baral, S., Kennedy, A., Bhatia, S., Rueppell, A., Le, K., Amiri, E., Tsuruda, J., & Rueppell, O. (2019). Foraging and homing behavior of honey bees (Apis mellifera) during a total solar eclipse. Die Naturwissenschaften, 106(1–2). https://doi.org/10.1007/S00114-018-1597-2Wakakuwa, M., Kurasawa, M., Giurfa, M., & Arikawa, K. (2005). Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften, 92(10), 464–467. https://doi.org/10.1007/S00114-005-0018-5/METRICSWang, L. Y., Stuart-Fox, D., Walker, G., Roberts, N. W., & Franklin, A. M. (2022). Insect visual sensitivity to long wavelengths enhances colour contrast of insects against vegetation. Scientific Reports 2022 12:1, 12(1), 1–11. https://doi.org/10.1038/s41598-021-04702-wWarrant, E. J. (1999). Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Research, 39(9), 1611–1630. https://doi.org/10.1016/S0042-6989(98)00262-4Webb, B. (2012). Cognition in insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1603), 2715–2722. https://doi.org/10.1098/RSTB.2012.0218Whitehead, A. T., & Larsen, J. R. (1976). Ultrastructure of the contact chemoreceptors of Apis mellifera L. (Hymenoptera : Apidae). International Journal of Insect Morphology and Embryology, 5(4–5), 301–315. https://doi.org/10.1016/0020-7322(76)90030-1Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143(10), 2280–2291. https://doi.org/10.1016/J.BIOCON.2010.03.024EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85604/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL1026303851.2023.pdf1026303851.2023.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf778315https://repositorio.unal.edu.co/bitstream/unal/85604/6/1026303851.2023.pdf0040d59631b1522e55d3ca33850e7509MD56unal/85604oai:repositorio.unal.edu.co:unal/856042024-02-02 11:35:32.757Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |