Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva

ilustraciones, graficas, tablas

Autores:
Nava García, Paola Andrea
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81509
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81509
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::661 - Tecnología de químicos industriales
Distillation
Lactic acid
DESTILACION
ACIDO LACTICO
Destilación reactiva
Alcohol butílico
Lactato de n-butilo
Diseño conceptual
Optimización
Control
Reactive distillation
Butyl alcohol
N-butyl lactate
Conceptual design
Optimization and control
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_214dd61253ca44199b07ed6495a66a73
oai_identifier_str oai:repositorio.unal.edu.co:unal/81509
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
dc.title.translated.eng.fl_str_mv Esterification between lactic acid and butyl alcohol to obtain n-butyl lactate by reactive distillation
title Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
spellingShingle Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
660 - Ingeniería química::661 - Tecnología de químicos industriales
Distillation
Lactic acid
DESTILACION
ACIDO LACTICO
Destilación reactiva
Alcohol butílico
Lactato de n-butilo
Diseño conceptual
Optimización
Control
Reactive distillation
Butyl alcohol
N-butyl lactate
Conceptual design
Optimization and control
title_short Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
title_full Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
title_fullStr Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
title_full_unstemmed Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
title_sort Esterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactiva
dc.creator.fl_str_mv Nava García, Paola Andrea
dc.contributor.advisor.none.fl_str_mv Gil Chaves, Iván Darío
dc.contributor.author.none.fl_str_mv Nava García, Paola Andrea
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::661 - Tecnología de químicos industriales
topic 660 - Ingeniería química::661 - Tecnología de químicos industriales
Distillation
Lactic acid
DESTILACION
ACIDO LACTICO
Destilación reactiva
Alcohol butílico
Lactato de n-butilo
Diseño conceptual
Optimización
Control
Reactive distillation
Butyl alcohol
N-butyl lactate
Conceptual design
Optimization and control
dc.subject.lemb.eng.fl_str_mv Distillation
Lactic acid
dc.subject.lemb.spa.fl_str_mv DESTILACION
ACIDO LACTICO
dc.subject.proposal.spa.fl_str_mv Destilación reactiva
Alcohol butílico
Lactato de n-butilo
Diseño conceptual
Optimización
Control
dc.subject.proposal.eng.fl_str_mv Reactive distillation
Butyl alcohol
N-butyl lactate
Conceptual design
Optimization and control
description ilustraciones, graficas, tablas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-06T16:36:00Z
dc.date.available.none.fl_str_mv 2022-06-06T16:36:00Z
dc.date.issued.none.fl_str_mv 2022-04-22
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81509
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81509
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res., 5251−5257.
Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res., 5251-5257.
Barbosa, D., & Doherty, M. F. (1988). Chemical Engineering Science, 1523-1537.
Behroozsarand, A., & Shafiei, S. (2011). Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. Nat Gas Sci Eng, 365–374.
Castillo, F., Eduardo, M., Salgado, J., Domínguez, J., Convertí, A., & Pinheiro, S. (2013). Lactic acid properties, applications and production: A review. . Trends in Food Science & Technology, 70-83.
Castro Aguirre, Iñiguez Franco, F., Samsudinb, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, , and end of life. Advanced Drug Delivery Reviews, 333–366.
Chandrakant R., K., & Kailas L., W. (2018). Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Springer.
Chaves , I., López , J., Zapata , J., Robayo , A., & Niño , G. (2016). Chemical Reactors. En Process Analysis and Simulation in Chemical Engineering (págs. 195-240). Springer, Cham.
Chaves , I., López , J., Zapata, J., Robayo, A., & Niño, G. (2016). Process Optimization in Chemical Engineering. En Process Analysis and Simulation in Chemical Engineering (págs. 343-369). Springer, Cham.
Chaves, I. D., López , J. R., Zapata, J. L., Robayo , A. L., & Niño , G. R. (2016). Thermodynamic and Property Models. En Process Analysis and Simulation in Chemical Engineering. (págs. 53-102). Springer, Cham.
Chaves, I., López, J., Zapata, J., Robayo, A., & Niño, G. (2016). Dynamic Process Analysis. En Process Analysis and Simulation in Chemical Engineering. (págs. 371-424). Springer, Cham.
Daful, A., Halgh, K., Vaskan, P., & Görgens, J. (2016). (2016). Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food and Bioproducts Processing, 58-70.
Dassy, S., Wiame, H., & Thyrion, F. C. (1994). Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalysed by Cation-Exchange Resin. J. Chem. Tech. Biotechnol., 149-156.
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective-optimization: NSGA-II, KanGAL report 200001. Kanpur: Indian Institute of Technology.
Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 17-23.
Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 111–118.
Delgado, P., Sanz, M. T., Beltrán, S., & Núñez, L. A. (2010). Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chemical Engineering Journal, 693–700.
Dey, P., & Pal, P. (2012). Direct production of L(þ) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 355-362.
Doble, M., & Kruthiventi, A. K. (2007). Green Chemistry & Engineering. Academic Press, Burlington, MA.
Domingues , L., Pinheiro , C., & Oliveira , N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng , 81–94.
Domingues, L., Cussolin, P. A., Lopes da Silva Jr, J., Hadlich de Oliveira, L., & Aznar, M. (2013). Liquid–liquid equilibrium data for ternary systems of water + lactic acid + C4–C7 alcohols at 298.2 K and atmospheric pressure. Fluid Phase Equilibria, 12-18.
Domingues, L., Pinheiro, C., & Oliveira, N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng, 81–94.
Edgar, T. F., Himmelblau, D. M., & Lasdon, L. S. (2001). Optimization of chemical processes. McGraw-Hill, New York.
FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 8915-8922.
Fogler, H. (2008). Elementos de Ingeniería de las Reacciones Químicas. Naucalpan: Pearson Prentice Hall.
Gezae, A., & Görgens, J. (2017). Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chemical Engineering Science, 53-65.
Goedecke , R. (2011). Fluidverfahrenstechnik: Grundlagen, Methodik, Technik. Wiley, Praxis.
Halvorsen, I., & Skogestad, S. (2011). Energy Efficient Distillation. Journal of Natural Gas Science and Engineering.
Hernández Rodríguez, M. A., & Hernández Zárate, J. A. (2015). Verdades y Mitos de los Biocombustibles. Ciencia y Cultura, 15-88.
Jenkins, S. (20 de Marzo de 2020). 2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE. Obtenido de https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/
Jiménez, L., Wanhschafft, O., & Julka, V. (2001). Analysis of residue curve maps of reactive and extractive distillation units. Computers and Chemical Engineering, 635-642.
Joglekar, H. G., Rahman, I., Babu, S., Kulkarni, B. D., & Joshi, A. (2006). Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 1-17.
Kasinathan, P., Lee, U., Hwang, D. W., & Chang, J.-S. (2011). Effect of solvent and impurity on synthesis of ethyl lactate from fermentation-derived ammonium lactate. Chemical Engineering Science, 4549-4554.
Kiss, A., Segovia-Hernández, J., Bildea, C., Miranda-Galindo, E., & Hernández, S. (2012). Reactive DWC leading the way to FAME and fortune. Fuel, 352–359.
Kister, H. Z. (1992). Distillation Design. United Kingdom: McGraw-Hill.
Komescu, A., Wolf Maciel, M., Rocah de Oliveira, J. A., da Silva Martins, L. H., & Maciel Filho, R. (2017). Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Separation and Purification Reviews, 1-14.
Kumar, R., & Mahajani, S. M. (2007). Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res, 6873−6882.
Kumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distllation. Journal of Chemical Technology and Biotechnology, 1767-1777.
Lancheros, S. (2015). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.
Li, K.-T., Wanga, C.-K., Wang, I., & Wang, C.-M. (2011). Esterification of lactic acid over TiO2–ZrO2 catalysts. Elsevier B.V., 180–183.
Luyben, W. (2006). Distillation design and control using AspenTM simulation. Wiley, Hoboken, 232–250.
Luyben, W. L. (1992). Practical Distillation Control. New York: Van Nostrand Reinhold.
Luyben, W. L. (2002). Plantwide dynamic simulators in chemical processing and control. New York: Marcel Dekker.
LUYBEN, W. L., & YU, C.-C. (2008). REACTIVE DISTILLATION DESIGN AND CONTROL. Hoboken, New Jersey: John Wiley & Sons, Inc.
Luyben, W. L., Tyréus, D. B., & Luyben, M. L. (1998). Plantwide process control. New York: McGraw-Hill.
Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 506-577.
Malone, M. F., & Doherty, M. F. (2000). Reactive distillation. Industrial and Engineering Chemistry Research, 3953-3957.
MathWorks. (18 de 06 de 2021). Particle Swarm Optimization Algorithm. Obtenido de https://la.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html
MathWorks. (18 de 06 de 2021). What Is Particle Swarm Optimization? Obtenido de https://la.mathworks.com/help/gads/what-is-particle-swarm-optimization.html
Matsumoto, M., Takahashi, T., & Fukushima, K. (2003). Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation Purification Technology, 89-93.
Maya-Yescas, R., Aguilar-López, R., & Jiménez-García, G. (2016). Dynamics, Controllability, and Control of Intensified Processes. En J. Segovia-Hernández, & A. Bonilla-Petriciolet, Process Intensification in Chemical Engineering (págs. 293-325). Mexico: Springer, Cham.
Merck. (06 de 12 de 2020). Amberlyst® 15 hydrogen form. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/216399
Merck. (18 de 06 de 2021). Butyl lactate. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/283320
Miranda-Galindo, E., Segovia-Hernández, J., Hernández, S., Gutiérrez-Antonio, C., & Briones-Ramírez, A. (2011). Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res, 926–938.
Nova Institute. (2016). Obtenido de http://www.nova-institut.de/bio/index.php?tpl=startlist&lng=en
Orjuela, Á., Santaella, M. A., & Molano , P. A. (2016). Process Intensification by Reactive Distillation. Process Intensification in Chemical Engineering.
Parrado, E. (2016). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.
Peña Tejedor, S., Murga, R., Sanz, M. T., & Beltrán, S. (2005). Vapor–liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa. Fluid Phase Equilibria, 197–203.
Pereira M., C. S., Silva, V., & Rodrígues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chemistry.
QU , Y., PENG , S., WANG , S., ZHANG , Z., & WANG , J. (2009). Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chin. J. Chem. Eng., 773-780.
Quiroga, I. G. (1995). Introducción a la Ingeniería Química. Bogotá: Universidad Nacional de Colombia.
Rangaiah, G. P. (2009). Multi-Objective Optimization- Techniques and Applications in Chemical Engineering. Singapur: World Scientific.
Rangaiah, G. P. (2010). Stochastic Global Optimization. Singapore: World Scientific Publishing.
Rathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor. Procedia Engineering, 456 – 460.
Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1978). The properties of gases and liquids. McGraw-Hill.
Satyro, M. A. (2008). Thermodynamics and the simulation engineer. Chem Prod Process Model , 1–41.
Schembecker, G., & Tlatlik, S. (2003). Process synthesis for reactive separations. Chemical Engineering and Processing, 179-189.
Segovia-Hernández , J., Hernández-Vargas, E., Márquez-Muñoz, J., Hernández , S., & Jiménez, A. (2005). Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chem Biochem Eng, 325–332.
Seider, J., & Warren, D. (2003). roduct & process design principles: synthesis, analysis and evaluation. Wiley, Somerset.
Seider, W. D., Seader, J., & Lewin, D. R. (2003). Product & Process Design Principles: Synthesis, Analysis and Evaluation. Pennsylvania: Wiley.
Shatma, N., & Singh, K. (2010). Control of reactive distillation column: a review. Int J Chem React Eng, 1542–6580.
Smith, J., Van Ness, H., & Abbot, M. (2007). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill.
Stichlmair, J., & Frey, T. (1999). Review: Reactive distillation process. Chemical Engineering and Technology, 95-103.
Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2013). Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res., 11070−11083.
Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2015). Control of Highly Interconnected Reactive Distillation Processes: Purification of Raw Lactic Acid by Esterification and Hydrolysis. Industrial & Engineering Chemistry Research, 6932−6940.
Subawalla, H., & Fair, J. (1999). Design guidelines for solid-catalyzed reactive distillation systems. Industrial and Engineering Chemistry Research, 3696-3709.
Sundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and future directions.
Tsai, M.-L., & Chien, I.-L. (2021). Design and control of an energy-efficient process for the separation of benzene/isopropanol/water ternary mixture. Separation and Purification Technology, 255.
Urselmann , M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng, 787–805.
Vázquez-Ojeda, M., Segovia-Hernández, J., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Ind Eng Chem, 5856–5865.
Yadav, G. D., & Kulkarni, H. B. (2000). Ion-exchange resin catalysis in the synthesis of isopropyl lactate. Reactive & Functional Polymers, 153 –165.
Zhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive & Functional Polymers, 101–114.
Zhongkai, J., Jumei , X., Zuoxiang , Z., Weilan , X., & Shating , L. (2018). Kinetics of the Esterification between Lactic Acid and Isoamyl Alcohol in the Presence of Silica Gel-Supported Sodium Hydrogen Sulphate. Can. J. Chem. Eng., 1–7.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 134 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81509/1/1075670829.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81509/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81509/3/1075670829.2022.pdf.jpg
bitstream.checksum.fl_str_mv 0cfa4f479867cd6159f79c4002097102
8153f7789df02f0a4c9e079953658ab2
97ed73d4bb20190cf50d3c105b789c3c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089614874378240
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gil Chaves, Iván Darío945272ed7aaf4f698acbf2849ce9b360Nava García, Paola Andreab62e3a09b192b0578fa89cef950b4e37Grupo de Investigación en Procesos Químicos y Bioquímicos2022-06-06T16:36:00Z2022-06-06T16:36:00Z2022-04-22https://repositorio.unal.edu.co/handle/unal/81509Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, tablasLa destilación reactiva es una operación unitaria que combina la reacción y la separación en un solo equipo, la cual la convierte en una propuesta económica y energéticamente viable. En este trabajo se estudia el proceso de producción del lactato de n-butilo por medio de la destilación reactiva, desde los fundamentos de la operación, como el equilibrio de fases y la cinética de reacción, hasta un diseño completo a partir de un enfoque conceptual. Se evaluó información experimental del equilibrio de fases y se describieron adecuadamente las interacciones de la mezcla cuaternaria usando un modelo de coeficientes de actividad para la fase líquida (NRTL, α=0,3), mientras que para la fase vapor se asumió ideal. Una expresión cinética con base en ecuaciones pseudo-homogéneas se empleó para describir el proceso de esterificación con un catalizador heterogéneo. Posteriormente, se desarrolló el diseño conceptual del proceso de destilación reactiva, empleando simultáneamente el equilibrio de fases y la cinética previamente seleccionada utilizando el simulador Aspen Plus. Finalmente, con un caso base de una simulación rigurosa de la operación, se estudió la optimización y el control del proceso de destilación reactiva, para obtener las condiciones de operación más adecuadas para la producción del lactato de n-butilo a escala industrial. (Texto tomado de la fuente)Reactive distillation is a unitary operation that combines reaction and separation into a single unit, thus making this technology an economic and energy-efficient proposal. This work studies the reactive distillation process for the production of n-butyl lactate, from the fundamentals of the operation, such as phase equilibria and reaction kinetics, to a complete design using a conceptual approach. Equilibrium data of the experimental phase was evaluated and the quaternary mixture interactions were accurately described using a model of activity coefficients for the liquid phase (NRTL, α=0,3), while the vapor phase was assumed to be ideal. A kinetic expression based on pseudo-homogeneous equations was used to describe the esterification process with a heterogeneous catalyst. Subsequently, the conceptual design of the reactive distillation process was developed using simultaneously the previously selected phase equilibrium and kinetics with the Aspen Plus simulator. Finally, with a base case of a rigorous simulation of the operation, optimization and control of the reactive distillation process were studied to obtain the best operating conditions for n-butyl lactate production at industrial scale.MaestríaMagíster en Ingeniería - Ingeniería QuímicaDiseño, Optimización y Control de Procesos134 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::661 - Tecnología de químicos industrialesDistillationLactic acidDESTILACIONACIDO LACTICODestilación reactivaAlcohol butílicoLactato de n-butiloDiseño conceptualOptimizaciónControlReactive distillationButyl alcoholN-butyl lactateConceptual designOptimization and controlEsterificación entre el ácido láctico y el alcohol butílico para la obtención del lactato de N-Butilo mediante destilación reactivaEsterification between lactic acid and butyl alcohol to obtain n-butyl lactate by reactive distillationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAsthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A kinetic model for the esterification of lactic acid and its oligomers. Ind. Eng. Chem. Res., 5251−5257.Asthana, N. S., Kolah, A. K., Vu, D. T., Lira, C. T., & Miller, D. J. (2006). A Kinetic Model for the Esterification of Lactic Acid and Its Oligomers. Ind. Eng. Chem. Res., 5251-5257.Barbosa, D., & Doherty, M. F. (1988). Chemical Engineering Science, 1523-1537.Behroozsarand, A., & Shafiei, S. (2011). Multiobjective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II. Nat Gas Sci Eng, 365–374.Castillo, F., Eduardo, M., Salgado, J., Domínguez, J., Convertí, A., & Pinheiro, S. (2013). Lactic acid properties, applications and production: A review. . Trends in Food Science & Technology, 70-83.Castro Aguirre, Iñiguez Franco, F., Samsudinb, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, , and end of life. Advanced Drug Delivery Reviews, 333–366.Chandrakant R., K., & Kailas L., W. (2018). Kinetic study of liquid phase esterification of lactic acid with n-amyl alcohol catalyzed by cation exchange resins: experimental and statistical modeling. Springer.Chaves , I., López , J., Zapata , J., Robayo , A., & Niño , G. (2016). Chemical Reactors. En Process Analysis and Simulation in Chemical Engineering (págs. 195-240). Springer, Cham.Chaves , I., López , J., Zapata, J., Robayo, A., & Niño, G. (2016). Process Optimization in Chemical Engineering. En Process Analysis and Simulation in Chemical Engineering (págs. 343-369). Springer, Cham.Chaves, I. D., López , J. R., Zapata, J. L., Robayo , A. L., & Niño , G. R. (2016). Thermodynamic and Property Models. En Process Analysis and Simulation in Chemical Engineering. (págs. 53-102). Springer, Cham.Chaves, I., López, J., Zapata, J., Robayo, A., & Niño, G. (2016). Dynamic Process Analysis. En Process Analysis and Simulation in Chemical Engineering. (págs. 371-424). Springer, Cham.Daful, A., Halgh, K., Vaskan, P., & Görgens, J. (2016). (2016). Environmental impact assessment of lignocellulosic lactic acid production: Integrated with existing sugar mills. Food and Bioproducts Processing, 58-70.Dassy, S., Wiame, H., & Thyrion, F. C. (1994). Kinetics of the Liquid Phase Synthesis and Hydrolysis of Butyl Lactate Catalysed by Cation-Exchange Resin. J. Chem. Tech. Biotechnol., 149-156.Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multiobjective-optimization: NSGA-II, KanGAL report 200001. Kanpur: Indian Institute of Technology.Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Isobaric vapor–liquid equilibria for the quaternary reactive system: Ethanol + water + ethyl lactate + lactic acid at 101.33 kPa. Fluid Phase Equilibria, 17-23.Delgado, P., Sanz, M. T., & Beltrán, S. (2007). Kinetic study for esterification of lactic acid with ethanol and hydrolysis of ethyl lactate using an ion-exchange resin catalyst. Chemical Engineering Journal, 111–118.Delgado, P., Sanz, M. T., Beltrán, S., & Núñez, L. A. (2010). Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chemical Engineering Journal, 693–700.Dey, P., & Pal, P. (2012). Direct production of L(þ) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 355-362.Doble, M., & Kruthiventi, A. K. (2007). Green Chemistry & Engineering. Academic Press, Burlington, MA.Domingues , L., Pinheiro , C., & Oliveira , N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng , 81–94.Domingues, L., Cussolin, P. A., Lopes da Silva Jr, J., Hadlich de Oliveira, L., & Aznar, M. (2013). Liquid–liquid equilibrium data for ternary systems of water + lactic acid + C4–C7 alcohols at 298.2 K and atmospheric pressure. Fluid Phase Equilibria, 12-18.Domingues, L., Pinheiro, C., & Oliveira, N. (2014). Optimal design of reactive distillation systems: application to the production of ethyl tert-butyl ether (ETBE). Comput Chem Eng, 81–94.Edgar, T. F., Himmelblau, D. M., & Lasdon, L. S. (2001). Optimization of chemical processes. McGraw-Hill, New York.FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 8915-8922.Fogler, H. (2008). Elementos de Ingeniería de las Reacciones Químicas. Naucalpan: Pearson Prentice Hall.Gezae, A., & Görgens, J. (2017). Techno-economic analysis and environmental impact assessment of lignocellulosic lactic acid production. Chemical Engineering Science, 53-65.Goedecke , R. (2011). Fluidverfahrenstechnik: Grundlagen, Methodik, Technik. Wiley, Praxis.Halvorsen, I., & Skogestad, S. (2011). Energy Efficient Distillation. Journal of Natural Gas Science and Engineering.Hernández Rodríguez, M. A., & Hernández Zárate, J. A. (2015). Verdades y Mitos de los Biocombustibles. Ciencia y Cultura, 15-88.Jenkins, S. (20 de Marzo de 2020). 2019 CHEMICAL ENGINEERING PLANT COST INDEX ANNUAL AVERAGE. Obtenido de https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/Jiménez, L., Wanhschafft, O., & Julka, V. (2001). Analysis of residue curve maps of reactive and extractive distillation units. Computers and Chemical Engineering, 635-642.Joglekar, H. G., Rahman, I., Babu, S., Kulkarni, B. D., & Joshi, A. (2006). Comparative assessment of downstream processing options for lactic acid. Separation and Purification Technology, 1-17.Kasinathan, P., Lee, U., Hwang, D. W., & Chang, J.-S. (2011). Effect of solvent and impurity on synthesis of ethyl lactate from fermentation-derived ammonium lactate. Chemical Engineering Science, 4549-4554.Kiss, A., Segovia-Hernández, J., Bildea, C., Miranda-Galindo, E., & Hernández, S. (2012). Reactive DWC leading the way to FAME and fortune. Fuel, 352–359.Kister, H. Z. (1992). Distillation Design. United Kingdom: McGraw-Hill.Komescu, A., Wolf Maciel, M., Rocah de Oliveira, J. A., da Silva Martins, L. H., & Maciel Filho, R. (2017). Purification of lactic acid produced by fermentation: focus on non-traditional distillation processes. Separation and Purification Reviews, 1-14.Kumar, R., & Mahajani, S. M. (2007). Esterification of lactic acid with n-butanol by reactive distillation. Ind. Eng. Chem. Res, 6873−6882.Kumar, R., Nanavati, H., Noronha, S. B., & Mahajani, S. M. (2006). A continuous process for the recovery of lactic acid by reactive distllation. Journal of Chemical Technology and Biotechnology, 1767-1777.Lancheros, S. (2015). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.Li, K.-T., Wanga, C.-K., Wang, I., & Wang, C.-M. (2011). Esterification of lactic acid over TiO2–ZrO2 catalysts. Elsevier B.V., 180–183.Luyben, W. (2006). Distillation design and control using AspenTM simulation. Wiley, Hoboken, 232–250.Luyben, W. L. (1992). Practical Distillation Control. New York: Van Nostrand Reinhold.Luyben, W. L. (2002). Plantwide dynamic simulators in chemical processing and control. New York: Marcel Dekker.LUYBEN, W. L., & YU, C.-C. (2008). REACTIVE DISTILLATION DESIGN AND CONTROL. Hoboken, New Jersey: John Wiley & Sons, Inc.Luyben, W. L., Tyréus, D. B., & Luyben, M. L. (1998). Plantwide process control. New York: McGraw-Hill.Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 506-577.Malone, M. F., & Doherty, M. F. (2000). Reactive distillation. Industrial and Engineering Chemistry Research, 3953-3957.MathWorks. (18 de 06 de 2021). Particle Swarm Optimization Algorithm. Obtenido de https://la.mathworks.com/help/gads/particle-swarm-optimization-algorithm.htmlMathWorks. (18 de 06 de 2021). What Is Particle Swarm Optimization? Obtenido de https://la.mathworks.com/help/gads/what-is-particle-swarm-optimization.htmlMatsumoto, M., Takahashi, T., & Fukushima, K. (2003). Synergistic extraction of lactic acid with alkylamine and tri-nbutylphosphate: effects of amines, diluents and temperature. Separation Purification Technology, 89-93.Maya-Yescas, R., Aguilar-López, R., & Jiménez-García, G. (2016). Dynamics, Controllability, and Control of Intensified Processes. En J. Segovia-Hernández, & A. Bonilla-Petriciolet, Process Intensification in Chemical Engineering (págs. 293-325). Mexico: Springer, Cham.Merck. (06 de 12 de 2020). Amberlyst® 15 hydrogen form. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/216399Merck. (18 de 06 de 2021). Butyl lactate. Obtenido de https://www.sigmaaldrich.com/CO/es/product/aldrich/283320Miranda-Galindo, E., Segovia-Hernández, J., Hernández, S., Gutiérrez-Antonio, C., & Briones-Ramírez, A. (2011). Reactive thermally coupled distillation sequences: pareto front. Ind Eng Chem Res, 926–938.Nova Institute. (2016). Obtenido de http://www.nova-institut.de/bio/index.php?tpl=startlist&lng=enOrjuela, Á., Santaella, M. A., & Molano , P. A. (2016). Process Intensification by Reactive Distillation. Process Intensification in Chemical Engineering.Parrado, E. (2016). Evaluación de bacterias ácido lácticas nativas para la producción de ácido láctico a escala laboratorio y bioreactor. Bogotá, Colombia.: Departamento de Ing. Química, Universidad Nacional de Colombia.Peña Tejedor, S., Murga, R., Sanz, M. T., & Beltrán, S. (2005). Vapor–liquid equilibria and excess volumes of the binary systems ethanol + ethyl lactate, isopropanol + isopropyl lactate and n-butanol + n-butyl lactate at 101.325 kPa. Fluid Phase Equilibria, 197–203.Pereira M., C. S., Silva, V., & Rodrígues, A. E. (2011). Ethyl lactate as a solvent: Properties, applications and production processes - a review. Green Chemistry.QU , Y., PENG , S., WANG , S., ZHANG , Z., & WANG , J. (2009). Kinetic Study of Esterification of Lactic Acid with Isobutanol and n-Butanol Catalyzed by Ion-exchange Resins. Chin. J. Chem. Eng., 773-780.Quiroga, I. G. (1995). Introducción a la Ingeniería Química. Bogotá: Universidad Nacional de Colombia.Rangaiah, G. P. (2009). Multi-Objective Optimization- Techniques and Applications in Chemical Engineering. Singapur: World Scientific.Rangaiah, G. P. (2010). Stochastic Global Optimization. Singapore: World Scientific Publishing.Rathod, A. P., Wasewar, K. L., & Sonawane, S. S. (2013). Intensification of esterification reaction of lactic acid with iso-propanol using pervaporation reactor. Procedia Engineering, 456 – 460.Reid, R. C., Prausnitz, J. M., & Sherwood, T. K. (1978). The properties of gases and liquids. McGraw-Hill.Satyro, M. A. (2008). Thermodynamics and the simulation engineer. Chem Prod Process Model , 1–41.Schembecker, G., & Tlatlik, S. (2003). Process synthesis for reactive separations. Chemical Engineering and Processing, 179-189.Segovia-Hernández , J., Hernández-Vargas, E., Márquez-Muñoz, J., Hernández , S., & Jiménez, A. (2005). Control properties and thermodynamic analysis of two alternatives to thermally coupled distillation systems with side columns. Chem Biochem Eng, 325–332.Seider, J., & Warren, D. (2003). roduct & process design principles: synthesis, analysis and evaluation. Wiley, Somerset.Seider, W. D., Seader, J., & Lewin, D. R. (2003). Product & Process Design Principles: Synthesis, Analysis and Evaluation. Pennsylvania: Wiley.Shatma, N., & Singh, K. (2010). Control of reactive distillation column: a review. Int J Chem React Eng, 1542–6580.Smith, J., Van Ness, H., & Abbot, M. (2007). Introduction to Chemical Engineering Thermodynamics. McGraw-Hill.Stichlmair, J., & Frey, T. (1999). Review: Reactive distillation process. Chemical Engineering and Technology, 95-103.Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2013). Plant-Wide Economic Comparison of Lactic Acid Recovery Processes by Reactive Distillation with Different Alcohols. Ind. Eng. Chem. Res., 11070−11083.Su, C.-Y., Yu, C.-C., Chien, I.-L., & Ward, J. D. (2015). Control of Highly Interconnected Reactive Distillation Processes: Purification of Raw Lactic Acid by Esterification and Hydrolysis. Industrial & Engineering Chemistry Research, 6932−6940.Subawalla, H., & Fair, J. (1999). Design guidelines for solid-catalyzed reactive distillation systems. Industrial and Engineering Chemistry Research, 3696-3709.Sundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and future directions.Tsai, M.-L., & Chien, I.-L. (2021). Design and control of an energy-efficient process for the separation of benzene/isopropanol/water ternary mixture. Separation and Purification Technology, 255.Urselmann , M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Comput Chem Eng, 787–805.Vázquez-Ojeda, M., Segovia-Hernández, J., Hernández, S., Hernández-Aguirre, A., & Maya-Yescas, R. (2012). Optimization and controllability analysis of thermally coupled reactive distillation arrangements with minimum use of reboilers. Ind Eng Chem, 5856–5865.Yadav, G. D., & Kulkarni, H. B. (2000). Ion-exchange resin catalysis in the synthesis of isopropyl lactate. Reactive & Functional Polymers, 153 –165.Zhang, Y., Ma, L., & Yang, J. (2004). Kinetics of esterification of lactic acid with ethanol catalyzed by cation-exchange resins. Reactive & Functional Polymers, 101–114.Zhongkai, J., Jumei , X., Zuoxiang , Z., Weilan , X., & Shating , L. (2018). Kinetics of the Esterification between Lactic Acid and Isoamyl Alcohol in the Presence of Silica Gel-Supported Sodium Hydrogen Sulphate. Can. J. Chem. Eng., 1–7.EstudiantesInvestigadoresMaestrosORIGINAL1075670829.2022.pdf1075670829.2022.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf3834517https://repositorio.unal.edu.co/bitstream/unal/81509/1/1075670829.2022.pdf0cfa4f479867cd6159f79c4002097102MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81509/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1075670829.2022.pdf.jpg1075670829.2022.pdf.jpgGenerated Thumbnailimage/jpeg4895https://repositorio.unal.edu.co/bitstream/unal/81509/3/1075670829.2022.pdf.jpg97ed73d4bb20190cf50d3c105b789c3cMD53unal/81509oai:repositorio.unal.edu.co:unal/815092024-08-05 23:10:45.836Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK