Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia

Los Llanos Orientales de Colombia corresponden a un sistema de cuenca antepaís que registró el inicio del pulso tectónico más reciente a partir del Mioceno (Campos, 2011) influenciado en gran medida por la colisión y acreción del bloque Chocó en el Noroeste de Suramérica en el Mioceno medio (Vargas...

Full description

Autores:
Alva Carmona, Maria Rosa
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79347
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79347
Palabra clave:
550 - Ciencias de la tierra
Modelo Flexural 3D
Cuenca antepaís
Isostasia
Espesor elástico
Rigidez de la Litosfera
Evolución tectonoestratigráfica
Llanos Orientales de Colombia
3D Flexural Modeling
Foreland basin
Isostasy
Elastic thickness
Lithosphere rigidity
Tectonostratigraphic evolution
Eastern Llanos
Colombia
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_21158cbaae77d60d33c30fb19ea406c7
oai_identifier_str oai:repositorio.unal.edu.co:unal/79347
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
title Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
spellingShingle Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
550 - Ciencias de la tierra
Modelo Flexural 3D
Cuenca antepaís
Isostasia
Espesor elástico
Rigidez de la Litosfera
Evolución tectonoestratigráfica
Llanos Orientales de Colombia
3D Flexural Modeling
Foreland basin
Isostasy
Elastic thickness
Lithosphere rigidity
Tectonostratigraphic evolution
Eastern Llanos
Colombia
title_short Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
title_full Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
title_fullStr Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
title_full_unstemmed Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
title_sort Modelado Flexural 3D de la cuenca Llanos Orientales de Colombia
dc.creator.fl_str_mv Alva Carmona, Maria Rosa
dc.contributor.advisor.spa.fl_str_mv Vargas J., Carlos A.
Bayona, Germán
dc.contributor.author.spa.fl_str_mv Alva Carmona, Maria Rosa
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
Modelo Flexural 3D
Cuenca antepaís
Isostasia
Espesor elástico
Rigidez de la Litosfera
Evolución tectonoestratigráfica
Llanos Orientales de Colombia
3D Flexural Modeling
Foreland basin
Isostasy
Elastic thickness
Lithosphere rigidity
Tectonostratigraphic evolution
Eastern Llanos
Colombia
dc.subject.proposal.none.fl_str_mv Modelo Flexural 3D
Cuenca antepaís
Isostasia
Espesor elástico
Rigidez de la Litosfera
Evolución tectonoestratigráfica
Llanos Orientales de Colombia
3D Flexural Modeling
Foreland basin
Isostasy
Elastic thickness
Lithosphere rigidity
Tectonostratigraphic evolution
Eastern Llanos
Colombia
description Los Llanos Orientales de Colombia corresponden a un sistema de cuenca antepaís que registró el inicio del pulso tectónico más reciente a partir del Mioceno (Campos, 2011) influenciado en gran medida por la colisión y acreción del bloque Chocó en el Noroeste de Suramérica en el Mioceno medio (Vargas & Mann, 2013). La deformación litosférica resultante fue representada mediante el primer modelo Flexural 3D de la cuenca de antepaís Llanos Orientales de Colombia, discretizado en 5 intervalos de tiempo desde el Mioceno medio al Presente. Con este trabajo se pretende ampliar el conocimiento en cuanto a la evolución tectonoestratigráfica de la cuenca de antepaís, mediante la identificación de las variaciones de espesor elástico (Te), modelamiento de la ubicación de las depozonas y predicciones de la configuración y movimiento del orógeno (Cordillera Oriental). Se empleó el código FLEX3DV, desarrollado en MatLab por Cardozo (2009). Este código se basa en una solución por diferencias finitas centradas a la ecuación de deflexión de una placa de espesor variable (Ventsel & Krauthammer, 2001). En el modelado Flexural 3D se integraron datos de estudios previos (e.g. mapas de espesores, secciones estructurales evolutivas). Los resultados consisten en mapas que muestran áreas de levantamiento y subsidencia del sistema Cordillera Oriental- Llanos Orientales. Estos mapas fueron comparados con modelos flexurales 2D previos realizados en el área de Los Llanos y en cuencas de antepaís adyacentes. Los modelados flexurales 3D para cada intervalo de tiempo permitieron ver una una estrecha relación entre la dirección de desplazamiento de la onda flexural modelada y los diferentes procesos del bloque que subduce desde el Mioceno medio al Presente.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020
dc.date.accessioned.spa.fl_str_mv 2021-03-10T14:39:26Z
dc.date.available.spa.fl_str_mv 2021-03-10T14:39:26Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_fa2ee174bc00049f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79347
url https://repositorio.unal.edu.co/handle/unal/79347
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alberty, M. W. (1994). Standard interpretation; part 4—wireline methods. (pp. 180–185; D. Morton-Thompson & A. M. Woods, Eds.). pp. 180–185. Retrieved from https://wiki.aapg.org/Density-neutron_log_porosity
Ali, M. Y., & Watts, A. B. (2009). Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin. GeoArabia, 14(2), 17–44.
Allen, P. A., & Allen, J. R. (2013). Basin Analysis. Principles and application to petroleum play assessment. In Appl. Phys. A (Third Edit, Vol. 73). Blackwell Publishing, Ltd.
Amante, C., & Eakins, B. W. (2009). ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. https://doi.org/10.7289/V5C8276M
Amorocho, P. R., & Badillo, J. (2012). Influencia De La Composición Mineral. Boletín de Geología, 34(enero-junio), 81–88.
ANH. (2010). Información General de cuencas sedimentarias de Colombia. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Cuencas Sedimentarias de Colombia (PDF).pdf
ANH. (2019). Datos y estadísticas de producción de hidrocarburos. Retrieved from https://webalternoanh.wpcomstaging.com/content/datos-y-estadisticas-2/#produccion
Arnaiz-Rodríguez, M. S., & Audemard, F. (2014). Variations in elastic thickness and flexure of the Maracaibo block. Journal of South American Earth Sciences, 56, 251–264. https://doi.org/10.1016/j.jsames.2014.09.014
Arnaiz-Rodríguez, M. S., Rodríguez-Millán, I., & Audemard, F. (2011). Análisis gravimétrico y flexural del occidente de Venezuela. Revista Mexicana de Ciencias Geologicas, 28(3), 420–438.
Arres, N. F. (2013). Flexural Modeling of the Himalayan Forebulge Basin: implications for the presence of a forebulge and formation of basement ridges.
Athy, L. F. (1930). Vacation motives and personal value systems. Bulletin of American Association of Petroleum Geologists, 14(1), 1–24. https://doi.org/10.1177/135676679700300305
Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632
Bayona, G., Cardona, A., Jaramillo, C., Montes, C., Caballero, V., Mahecha, H., … Jimenez, G. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin ; response to Caribbean − South American convergence in early Palaeogene time. Geological Society, London, Special Publications, (October), 284–314. https://doi.org/10.1144/SP377.5
Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008a). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bulletin of the Geological Society of America, 120(9–10), 1171–1197. https://doi.org/10.1130/B26187.1
Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008b). An integrated analysis of an orogen – sedimentary basin pair: Latest Cretaceous – Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bulletin, 120(September/October), 1171–1197. https://doi.org/10.1130/B26187.1
Bayona, G., Jaramillo, C., Rueda, M., Reyes-Harker, A., & Torres, V. (2007). of the nonmarine Llanos foreland basin of Colombia. 3, 141–160.
Bayona, G., Reyes-Harker, A., Jaramillo, C., Rueda, M., Aristizabal, J., Cortes, M., & Gamba, N. (2006). Distinguishing tectonic versus eustatic flooding surfaces in the Llanos Basin of Colombia, and implications for stratigraphic correlations. ResearchGate, (January 2006), 13. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17612
Bayona, G., Valencia, A., Mora, A., Rueda, M., Ortiz, J., & Montenegro, O. (2008c). Estratigrafía y procedencia de las rocas del Mioceno en la parte distal de la cuenca de los Llanos.
Bayona, G., Villamarín, P., Mora, A., Ojeda, G., Cortés, M., Valencia, A., … Torres, V. (2009). Exploratory Implications of Forebulge Geometry and Migration in the Llanos Basin. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas.
Bechtel, T. D., Forsyth, D. W., Sharpton, V. L., & Grieve, R. A. F. (1990). Variations in effective elastic thickness of the North American lithosphere. Nature, 343(6259), 636–638. https://doi.org/10.1038/343636a0
Bermudez, M. A. (2010). Cenozoic exhumation patterns across the Venezuelan Andes : insights from fission-track thermochronology. Université Joseph Fourier-Grenoble.
Blair, T., & McPherson, J. (1994). Historical adjustment by Walker River to lake-level fill over a tectonically tilted half-graben floor, Walker lake Basin, Nevada. Sedimentary Geology, 92, 7–16.
Buiter, S. (2000). Surface deformation resulting from subduction and slab detachment. In Geologica Ultraiectina (Vol. 191).
Burov, E. B., & Diament, M. (1995). The effective elastic thickness (Te) of continental lithosphere: what does it really mean? Journal of Geophysical Research, 100(B3), 3905–3927. https://doi.org/10.1029/94JB02770
Caballero, V., Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick-skin orogens: A case study in the Magdalena Valley, Colombia. Geological Society Special Publication, 377(1), 343–367. https://doi.org/10.1144/SP377.4
Campbell, J. C., & Bürgl, H. (1965). Section through the Eastern Cordillera of Colombia, South America. Geological Society of America Bulletin, (76), 567–590.
Campbell, K. E., Frailey, C. D., & Romero-Pittman, L. (2006). The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(1–2), 166–219. https://doi.org/10.1016/j.palaeo.2006.01.020
Campos, H. (2011). Tectonostratigraphic and subsidence history of the northern Llanos foreland basin of Colombia. University of Texas at Austin.
Cardozo, N. (2009). Flex3DV. Retrieved from http://www.ux.uis.no/~nestor/Public/flex3dv.zip
Cardozo, N., & Jordan, T. (2001). Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research, 13(3), 335–357. https://doi.org/10.1046/j.0950-091X.2001.00154.x
Catuneanu, O. (2018). First-order foreland cycles: Interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129(March), 290–298. https://doi.org/10.1016/j.jog.2018.03.001
Cediel, F., & Shaw, P. (2019). Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction (F. Cediel & P. Shaw, Eds.). Springer.
Chen, B., Liu, J., Chen, C., Du, J., & Sun, Y. (2015). Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth and Planetary Science Letters, 409(February 2019), 1–14. https://doi.org/10.1016/j.epsl.2014.10.039
Chen, J. (2015). The Influence of Lithospheric Flexure Induced by Volcano Loading on Neogene Basin Evolution in McMurdo Sound ,. 154.
Colletta, B., Hébrard, F., Letouzey, J., Werner, P., & Rudkiewikz, J. L. (1990). Petroleum and tectonics in mobile belts. Tectonic style and crustal structure of the Eastern Cordillera (Colombia), from a balanced cross section. (Technip; J. Letouzey, Ed.).
Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., … Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421–1443. Retrieved from http://archives.datapages.com/data/bulletns/1994-96/data/pg/0079/0010/1400/1421.htm
Cortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1–4), 29–58. https://doi.org/10.1016/j.tecto.2005.03.020
Cortes, M., Bayona, G., Aristizabal, J., Ojeda, G., Reyes-Harker, A., & Gamba, N. (2006). Structure and kinematics of the Eastern Foothills of the Eastern Cordillera of Colombia from balanced cross-sections and forward modeling. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas, (4). Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/83.pdf
Crain, R. (2019). Crain´s Petrophysical Handbook. Retrieved from https://www.spec2000.net/12-phicmplx.htm
Curry, M. E., van der Beek, P., Huismans, R. S., Wolf, S. G., & Muñoz, J. A. (2019). Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515(December 2017), 26–37. https://doi.org/10.1016/j.epsl.2019.03.009
Delgado, A., Mora, A., & Reyes-Harker, A. (2012). Deformation partitioning in the Llanos foreland basin during the Cenozoic and its correlation with mountain building in the hinterland. Journal of South American Earth Sciences, 39, 228–244. https://doi.org/10.1016/j.jsames.2012.04.011
Duarte, E., Bayona, G., Jaramillo, C., Parra, M., Romero, I., & Mora, J. A. (2017). Identificación de los máximos eventos de inundación marina Miocenos y su uso en la correlación y análisis de la cuenca de antepaís de los Llanos Orientales de Colombia. 39.
Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-W
Duque-Caro, H. (1997). The Llanos Basin (Colombia): In search of greater stratigraphic resolution. Journal of Petroleum Geology, 20(1), 96–99. https://doi.org/10.1111/j.1747-5457.1997.tb00758.x
ECOPETROL & BEICIP. (1995). Cuenca de los Llanos Orientales: estudio geológico regional. Ecopetrol.
Egbue, O., Kellogg, J., Aguirre, H., & Torres, C. (2014). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58, 8–21. https://doi.org/10.1016/j.jsg.2013.10.004
Forero Suarez, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in north western South America. Journal of South American Earth Sciences, 3(2), 141–151.
Frailey, C. D., Luiz Lavina, E., Rancy, A., & Pereira de Souza Filho, J. (1988). A proposed Pleistocene/Holocene lake in the Amazon basin and its significance to Amazonian geology and biogeography. 8.
Garcia-Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14(2), 89–104. https://doi.org/10.1046/j.1365-2117.2002.00174.x
Gómez, E., Jordan, T. E., Allmendinger, R. W., & Cardozo, N. (2005). Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes. Bulletin of the Geological Society of America, 117(9–10), 1272–1292. https://doi.org/10.1130/B25456.1
Gómez, J., Montes, N. E., Nivia, Á., Diederix, H., & Compiladores. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Bogotá.: Servicio Geológico Colombiano.
Gonzalez-Peñagos, F., Moretti, I., France-Lanord, C., & Guichet, X. (2014). Origins of formation waters in the Llanos foreland basin of Colombia: Geochemical variation and fluid flow history. Geofluids, 14(4), 443–458. https://doi.org/10.1111/gfl.12086
Hackley, P. C., Urbani, F., Karlsen, A. W., & Garrity, C. P. (2006). Mapa Geológico de Venezuela a Escala 1: 750 000 (p. 2). p. 2. https://doi.org/10.3133/ofr20061109
Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156
Helmens, K. F., & Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International, 21, 41–61. https://doi.org/10.1016/1040-6182(94)90020-5
Hermeston, S., & Nemčok, M. (2013). Thick-skin orogen-foreland interactions and their controlling factors, Northern Andes of Colombia. Geological Society Special Publication, 377(1), 443–471. https://doi.org/10.1144/SP377.16
Hodgetts, D., Egan, S. S., & Williams, G. D. (1998). Flexural modelling of continental lithosphere deformation: A comparison of 2D and 3D techniques. Tectonophysics, 294(1–2), 1–20. https://doi.org/10.1016/S0040-1951(98)00084-5
Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4
Hoorn, C. (2006). Mangrove Forests and Marine Incursions in Neogene Amazonia (Lower Apaporis River, Colombia). Palaios, 21(2), 197–209. https://doi.org/10.2110/palo.2005.p05-131
Hovikoski, J., Gingras, M., Räsänen, M., Rebata, L. A., Guerrero, J., Ranzi, A., … Lopez, S. (2007). The nature of Miocene Amazonian epicontinental embayment: High-frequency shifts of the low-gradient coastline. Bulletin of the Geological Society of America, 119(11–12), 1506–1520. https://doi.org/10.1130/0016-7606(2007)119[1506:TNOMAE]2.0.CO;2
Irving, E. M. (1975). Structural Evolution of the Northernmost Andes, Colombia. In U.S. Geological Survey Profesional Paper (Vol. 846). https://doi.org/10.1016/0003-6870(73)90259-7
Jaramillo, C., Ortiz, J., Bayona, G., D’Apolito, C., Wesselingh, F. P., Romero, I., … Duarte, E. (2017a). Miocene flooding events of western Amazonia. Science Advances, 3(5), e1601693. https://doi.org/10.1126/sciadv.1601693
Jaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., … Wesselingh, F. P. (2017b). Supplementary Materials for Miocene flooding events of western Amazonia. Science Advances, 3(5). https://doi.org/10.1126/sciadv.1601693
Jiménez-Díaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J. F., Álvarez-Gómez, J. A., Tejero, R., & Capote, R. (2014). Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 391, 55–66. https://doi.org/10.1016/j.epsl.2014.01.042
Julivert, M. (1970). Cover and basement tectonics in the Cordillera Oriental of Colombia, and a comparison with other folded chains. Geological Society of America Bulletin, (81), 3623-3646.
Kluth, C. F., Ladd, R., De-Aras, M., Gomez, L., & Tilander, N. (1997). Different structural styles and histories of the Colombian foreland: Castilla and Chichimene oil fields areas, east-central Colombia. VI Simpolsio Bolivariano Exploracion En Las Cuencas Subandinas: Cartagena de Indias. Mem., II, 185–197.
Latrubesse, E. M., Bocquentin-villanueva, J., Santos, J. C. R., & Ramonell, C. G. (1997). Paleoenvironmental model for the Late Cenozoic Of Southwestern Amazonia : Paleontology and geology. Acta Amazonica, 27(3000), 103–1178. Retrieved from http://www.scielo.br/pdf/aa/v27n2/1809-4392-aa-27-2-0103.pdf
Latrubesse, E. M., da Silva, S. A. F., Cozzuol, M., & Absy, M. L. (2007). Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: Biotic and geological evidence. Journal of South American Earth Sciences, 23(1), 61–80. https://doi.org/10.1016/j.jsames.2006.09.021
Lee, E. Y. (2015). Integrated basin analysis of the Vienna basin, Central Europe. Universitat Wien.
Londoño, J. (2004). Foreland basins: Lithospheric flexure, plate strength and regional stratigraphy. 175. Retrieved from http://proquest.umi.com/pqdweb?did=1115100681&Fmt=7&clientId=13346&RQT=309&VName=PQD
McGirr, R., Seton, M., & Williams, S. (2020). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. GSA Bulletin, 1–18. https://doi.org/10.1130/b35595.1
McKenzie, D. (2003). Estimating Te in the presence of internal loads. Journal of Geophysical Research: Solid Earth, 108(B9), 1–21. https://doi.org/10.1029/2002jb001766
McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. Journal of Geophysical Research, 89(B13), 11180–11194. https://doi.org/10.1029/JB089iB13p11180
Medina, O., & Izarra, C. (2009). Anomalías Gravimétricas y Estimación de Espesor Elástico Efectivo de la Litosfera en Cuencas Antepaís: Cuenca Barinas - Apure. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas. ACGGP.
Medina, O., Izarra, C., & Jácome, M. (2006). Modelado Numérico 2D de Corrimientos y Formación de Cuencas Antepaís Usando Teoría Elástica de Deformación. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17602
Miall, A. D. (1999). Principles of sedimentary basin analysis (3rd ed.). Berlin, Germany: Springer-Verlag.
Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., … Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89(November 2018), 76–91. https://doi.org/10.1016/j.jsames.2018.11.002
Mora-Páez, H., Mencin, D. J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J. R., & Corchuelo-Cuervo, Y. (2016). GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett., (43), 8407–8416. https://doi.org/10.1002/2013GL058740.Received
Mora, A., Casallas, W., Ketcham, R. A., Gomez, D., Parra, M., Namson, J., … Ghorbal, B. (2015). Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8), 1575–1598. https://doi.org/10.1306/04281411108
Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L. I., … Strecker, M. R. (2009). The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of lower cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1), 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.x
Mora, A., Parra, M., Strecker, M. R., Sobel, E. R., Zeilinger, G., Jaramillo, C., … Blanco, M. (2010). The eastern foothills of the eastern cordillera of colombia: An example of multiple factors controlling structural styles and active tectonics. Bulletin of the Geological Society of America, 122(11–12), 1846–1864. https://doi.org/10.1130/B30033.1
Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., … Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publication, 377(1), 411–442. https://doi.org/10.1144/SP377.6
Moreno, C. (2012). Evolution of the southern Llanos basin, Colombia. University of Stavanger.
Nivia, A. (1987). The geochemistry and origin of the Amáime and volcanic sequences, SW Colombia. University of Leicester, UK.
Ojeda, G. Y., Bayona, G., Pinilla, J., Cortés, M., & Gamba, N. (2006). Subsidence and geodynamic analysis of The Llanos Basin: Linking mountain building and basin filling processes. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/89.pdf
Ojeda, G. Y., & Whitman, D. (2002). Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America. Journal of Geophysical Research: Solid Earth, 107(B11), ETG 3-1-ETG 3-12. https://doi.org/10.1029/2000jb000114
Pachón-Parra, L. F. (2013). Subsurface mapping and 3D Flexural modeling of the Putumayo foreland basin, Colombia. University of Houston.
Parra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., … Torres, V. (2009a). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, (April 2009), 780–800. https://doi.org/10.1130/B26257.1
Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research, 22(6), 874–903. https://doi.org/10.1111/j.1365-2117.2009.00459.x
Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Horton, B. K. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2), 175–178. https://doi.org/10.1130/G32519.1
Parra, M., Mora, A., Sobel, E. R., Strecker, M. R., & González, R. (2009b). Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4). https://doi.org/10.1029/2008TC002423
Ramos, V. A., & Moreno, M. (2006). Tectonic evolution of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 319–321. https://doi.org/10.1016/j.jsames.2006.07.008
Reyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., … Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. In AAPG Bulletin (Vol. 99). https://doi.org/10.1306/06181411110
Roddaz, M., Brusset, S., Baby, P., & Hérail, G. (2006). Miocene tidal-influenced sedimentation to continental Pliocene sedimentation in the forebulge-backbulge depozones of the Beni-Mamore foreland Basin (northern Bolivia). Journal of South American Earth Sciences, 20(4), 351–368. https://doi.org/10.1016/j.jsames.2005.11.004
Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., … Espurt, N. (2010). Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System. Amazonia, Landscape and Species Evolution: A Look into the Past, (July), 61–88. https://doi.org/10.1002/9781444306408.ch5
Rondón, F. J. (2016). Modelo gravimétrico cortical 2D del perfil Sur Proyecto GIAME, ubicado en la región Andina de Venezuela. Universidad Simón Bolívar.
Sánchez, N., Mora, A., Parra, M., Garcia, D., Cortes, M., Shanahan, T. M., … Guzman, M. (2015). Petroleum system modeling in the Eastern Cordillera of Colombia using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99(8), 1537–1556. https://doi.org/10.1306/04161511107
Sarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411. https://doi.org/10.1016/j.jsames.2006.07.003
Sarmiento, L. F. (2011). Geology and hydrocarbon potential Llanos Basin. In Fondo Editorial Universidad EAFIT (Ed.), Petroleum Geology of Colombia (Vol. 9). ANH.
Sarmiento Rojas, L. F. (2001). Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes. Inferences From Tectonic Models. Vrije Universiteit Amsterdam.
Saylor, J. E., Horton, B., Stockli, D. F., Mora, A. &, & Corredor, J. (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39(November), 202–215. Retrieved from http://www.sciencedirect.com/science/journal/aip/%0A08959811
Saylor, J. E., Stockli, D. F., Horton, B., Nie, J. &, & Mora, A. (2012). Discriminating rapid exhumation Zircon, from syndepositional volcanism using detrital Of, double dating: implications for the tectonic history the Eastern Cordillera, Colombia. Geological Society of America Bulletin, (124), 762–779.
Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739.
Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002
Stewart, J., & Watts, A. B. (1997). Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. Journal of Geophysical Research: Solid Earth, 102(B3), 5327–5352. https://doi.org/10.1029/96jb03664
Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., … Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society Special Publication, 377(1), 257–283. https://doi.org/10.1144/SP377.10
Toro, J., Roure, F., Bordas-Le Flonch, N., Le Cornec-Lance, S., & Sassu, W. (2004). Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia, in Swennen, R., Roure, F., and Granath, J.W., eds., Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belt Colombia. 1, 79– 115.
Turcotte, D. L., & Schubert, G. (1982). Geodynamics (Second Edi). Cambridge.
Van der Hammen, T. (1960). Estratigrafía del Terciario y Maestrichtiano Continentales y Tectonogenésis de los Andes Colombianos. Bogotá, Colombia: Servicio Geológico Nacional.
Vargas, C. A. (2011). Potencial de hidrocarburos en Colombia (pp. 1–79). pp. 1–79. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Potencial de hidrocarburos en Colombia, Prof. Carlos A. Vargas (PDF).pdf
Vargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted slabs as the result of collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328
Vayssaire, A., Abdallah, H., Hermoza, W., & Figari, E. (2014). Regional Study and Petroleum System Modeling of the Eastern Llanos Basin. AAPG International Conference & Exhibition, 10564, 1–9.
Velásquez, A. (2018). Observaciones sobre niveles de compensación isostática en el Piedemonte Llanero. Geología Norandina, 14, 23–28.
Ventsel, E., & Krauthammer, T. (2001). Thin Plates and Shells Theory, Análisis, and Applications. New York: Marcel Dekker, Inc.
Villamil, T. (1999). Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4), 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9
Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017GL073981
Watts, A. B. (2001). Isostasy and flexure of the lithosphere. In Journal of Geophysical Research (Vol. 84). https://doi.org/10.1029/JB084iB10p05599
Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9
Webb, S. D. (1995). Biological implications of the Middle Miocene Amazon seaway. Science, 269(5222), 361–362. https://doi.org/10.1126/science.269.5222.361
Wesselingh, F. P., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, (133), 439–458.
Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Bulletin of the Geological Society of America, 121(1–2), 55–64. https://doi.org/10.1130/B26398.1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (133 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geología
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias
Departamento de Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79347/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79347/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79347/4/456561.2020.pdf.txt
https://repositorio.unal.edu.co/bitstream/unal/79347/5/456561.2020.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/79347/1/456561.2020.pdf
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
cccfe52f796b7c63423298c2d3365fc6
28fc0a21449c7853ed5cf581db57e289
731f268363e20b57f6134d825bbd32ab
1d7148811b5af2410fda6dd6105ccc4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089246922768384
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas J., Carlos A.a6ff1eda-1201-48ce-95f3-d8daf4a5e9afBayona, Germán9b0d4143-1d62-4af2-88bc-63fb9d65c44bAlva Carmona, Maria Rosa51172264-23f4-4b91-9221-73b6f24ed1662021-03-10T14:39:26Z2021-03-10T14:39:26Z2020https://repositorio.unal.edu.co/handle/unal/79347Los Llanos Orientales de Colombia corresponden a un sistema de cuenca antepaís que registró el inicio del pulso tectónico más reciente a partir del Mioceno (Campos, 2011) influenciado en gran medida por la colisión y acreción del bloque Chocó en el Noroeste de Suramérica en el Mioceno medio (Vargas & Mann, 2013). La deformación litosférica resultante fue representada mediante el primer modelo Flexural 3D de la cuenca de antepaís Llanos Orientales de Colombia, discretizado en 5 intervalos de tiempo desde el Mioceno medio al Presente. Con este trabajo se pretende ampliar el conocimiento en cuanto a la evolución tectonoestratigráfica de la cuenca de antepaís, mediante la identificación de las variaciones de espesor elástico (Te), modelamiento de la ubicación de las depozonas y predicciones de la configuración y movimiento del orógeno (Cordillera Oriental). Se empleó el código FLEX3DV, desarrollado en MatLab por Cardozo (2009). Este código se basa en una solución por diferencias finitas centradas a la ecuación de deflexión de una placa de espesor variable (Ventsel & Krauthammer, 2001). En el modelado Flexural 3D se integraron datos de estudios previos (e.g. mapas de espesores, secciones estructurales evolutivas). Los resultados consisten en mapas que muestran áreas de levantamiento y subsidencia del sistema Cordillera Oriental- Llanos Orientales. Estos mapas fueron comparados con modelos flexurales 2D previos realizados en el área de Los Llanos y en cuencas de antepaís adyacentes. Los modelados flexurales 3D para cada intervalo de tiempo permitieron ver una una estrecha relación entre la dirección de desplazamiento de la onda flexural modelada y los diferentes procesos del bloque que subduce desde el Mioceno medio al Presente.The Eastern Llanos of Colombia foreland basin system recorded the beginning of the most recent tectonic pulse from the Miocene (Campos, 2011). This tectonic pulse was mainly triggered by the Panama Arc accretion in Northwestern South America in the Middle Miocene (Vargas & Mann, 2013). The resulting lithospheric deformation was represented by the first 3D Flexural modeling of the Llanos Orientales basin, discretized in 5 time intervals from the Middle Miocene to the Present. This work aims to expand knowledge regarding the tectonostratigraphic evolution of the foreland basin, by identifying the variations in elastic thickness (Te), modeling the location of the depozones and making predictions about how the orogen (Eastern Cordillera) developed in the last 16 Ma. 3D flexural models were generated by using the code FLEX3DV, developed in MatLab by Cardozo (2009). This code solves the flexural equation by a centered finite differences solution for a variable thickness plate (Ventsel & Krauthammer, 2001). Data from previous studies were integrated into 3D flexural modeling (e.g. thickness maps, balanced cross-sections). The results consist of maps showing uplift and subsidence areas in the Eastern Cordillera-Eastern Llanos region. These maps were compared with previous 2D flexural model results in the study area and in adjacent foreland basins. The 3D flexural models for each time step showed a correlation between the flexural wavelength displacement direction and the slab processes from the middle Miocene until the Present.MaestríaProcesos Geodinámicos y Cuencas Sedimentarias1 recurso en línea (133 páginas)application/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeologíaDepartamento de GeocienciasDepartamento de GeocienciasFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraModelo Flexural 3DCuenca antepaísIsostasiaEspesor elásticoRigidez de la LitosferaEvolución tectonoestratigráficaLlanos Orientales de Colombia3D Flexural ModelingForeland basinIsostasyElastic thicknessLithosphere rigidityTectonostratigraphic evolutionEastern LlanosColombiaModelado Flexural 3D de la cuenca Llanos Orientales de ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/version/c_fa2ee174bc00049fTexthttp://purl.org/redcol/resource_type/TMAlberty, M. W. (1994). Standard interpretation; part 4—wireline methods. (pp. 180–185; D. Morton-Thompson & A. M. Woods, Eds.). pp. 180–185. Retrieved from https://wiki.aapg.org/Density-neutron_log_porosityAli, M. Y., & Watts, A. B. (2009). Subsidence history, gravity anomalies and flexure of the United Arab Emirates (UAE) foreland basin. GeoArabia, 14(2), 17–44.Allen, P. A., & Allen, J. R. (2013). Basin Analysis. Principles and application to petroleum play assessment. In Appl. Phys. A (Third Edit, Vol. 73). Blackwell Publishing, Ltd.Amante, C., & Eakins, B. W. (2009). ETOPO1, 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. https://doi.org/10.7289/V5C8276MAmorocho, P. R., & Badillo, J. (2012). Influencia De La Composición Mineral. Boletín de Geología, 34(enero-junio), 81–88.ANH. (2010). Información General de cuencas sedimentarias de Colombia. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Cuencas Sedimentarias de Colombia (PDF).pdfANH. (2019). Datos y estadísticas de producción de hidrocarburos. Retrieved from https://webalternoanh.wpcomstaging.com/content/datos-y-estadisticas-2/#produccionArnaiz-Rodríguez, M. S., & Audemard, F. (2014). Variations in elastic thickness and flexure of the Maracaibo block. Journal of South American Earth Sciences, 56, 251–264. https://doi.org/10.1016/j.jsames.2014.09.014Arnaiz-Rodríguez, M. S., Rodríguez-Millán, I., & Audemard, F. (2011). Análisis gravimétrico y flexural del occidente de Venezuela. Revista Mexicana de Ciencias Geologicas, 28(3), 420–438.Arres, N. F. (2013). Flexural Modeling of the Himalayan Forebulge Basin: implications for the presence of a forebulge and formation of basement ridges.Athy, L. F. (1930). Vacation motives and personal value systems. Bulletin of American Association of Petroleum Geologists, 14(1), 1–24. https://doi.org/10.1177/135676679700300305Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(165), 364. https://doi.org/10.18257/raccefyn.632Bayona, G., Cardona, A., Jaramillo, C., Montes, C., Caballero, V., Mahecha, H., … Jimenez, G. (2013). Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin ; response to Caribbean − South American convergence in early Palaeogene time. Geological Society, London, Special Publications, (October), 284–314. https://doi.org/10.1144/SP377.5Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008a). An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bulletin of the Geological Society of America, 120(9–10), 1171–1197. https://doi.org/10.1130/B26187.1Bayona, G., Cortés, M., Jaramillo, C., Ojeda, G., Aristizabal, J. J., & Reyes-Harker, A. (2008b). An integrated analysis of an orogen – sedimentary basin pair: Latest Cretaceous – Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. GSA Bulletin, 120(September/October), 1171–1197. https://doi.org/10.1130/B26187.1Bayona, G., Jaramillo, C., Rueda, M., Reyes-Harker, A., & Torres, V. (2007). of the nonmarine Llanos foreland basin of Colombia. 3, 141–160.Bayona, G., Reyes-Harker, A., Jaramillo, C., Rueda, M., Aristizabal, J., Cortes, M., & Gamba, N. (2006). Distinguishing tectonic versus eustatic flooding surfaces in the Llanos Basin of Colombia, and implications for stratigraphic correlations. ResearchGate, (January 2006), 13. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17612Bayona, G., Valencia, A., Mora, A., Rueda, M., Ortiz, J., & Montenegro, O. (2008c). Estratigrafía y procedencia de las rocas del Mioceno en la parte distal de la cuenca de los Llanos.Bayona, G., Villamarín, P., Mora, A., Ojeda, G., Cortés, M., Valencia, A., … Torres, V. (2009). Exploratory Implications of Forebulge Geometry and Migration in the Llanos Basin. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas.Bechtel, T. D., Forsyth, D. W., Sharpton, V. L., & Grieve, R. A. F. (1990). Variations in effective elastic thickness of the North American lithosphere. Nature, 343(6259), 636–638. https://doi.org/10.1038/343636a0Bermudez, M. A. (2010). Cenozoic exhumation patterns across the Venezuelan Andes : insights from fission-track thermochronology. Université Joseph Fourier-Grenoble.Blair, T., & McPherson, J. (1994). Historical adjustment by Walker River to lake-level fill over a tectonically tilted half-graben floor, Walker lake Basin, Nevada. Sedimentary Geology, 92, 7–16.Buiter, S. (2000). Surface deformation resulting from subduction and slab detachment. In Geologica Ultraiectina (Vol. 191).Burov, E. B., & Diament, M. (1995). The effective elastic thickness (Te) of continental lithosphere: what does it really mean? Journal of Geophysical Research, 100(B3), 3905–3927. https://doi.org/10.1029/94JB02770Caballero, V., Parra, M., Mora, A., Lopez, C., Rojas, L. E., & Quintero, I. (2013). Factors controlling selective abandonment and reactivation in thick-skin orogens: A case study in the Magdalena Valley, Colombia. Geological Society Special Publication, 377(1), 343–367. https://doi.org/10.1144/SP377.4Campbell, J. C., & Bürgl, H. (1965). Section through the Eastern Cordillera of Colombia, South America. Geological Society of America Bulletin, (76), 567–590.Campbell, K. E., Frailey, C. D., & Romero-Pittman, L. (2006). The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239(1–2), 166–219. https://doi.org/10.1016/j.palaeo.2006.01.020Campos, H. (2011). Tectonostratigraphic and subsidence history of the northern Llanos foreland basin of Colombia. University of Texas at Austin.Cardozo, N. (2009). Flex3DV. Retrieved from http://www.ux.uis.no/~nestor/Public/flex3dv.zipCardozo, N., & Jordan, T. (2001). Causes of spatially variable tectonic subsidence in the Miocene Bermejo Foreland Basin, Argentina. Basin Research, 13(3), 335–357. https://doi.org/10.1046/j.0950-091X.2001.00154.xCatuneanu, O. (2018). First-order foreland cycles: Interplay of flexural tectonics, dynamic loading, and sedimentation. Journal of Geodynamics, 129(March), 290–298. https://doi.org/10.1016/j.jog.2018.03.001Cediel, F., & Shaw, P. (2019). Geology and Tectonics of Northwestern South America. The Pacific-Caribbean-Andean Junction (F. Cediel & P. Shaw, Eds.). Springer.Chen, B., Liu, J., Chen, C., Du, J., & Sun, Y. (2015). Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth and Planetary Science Letters, 409(February 2019), 1–14. https://doi.org/10.1016/j.epsl.2014.10.039Chen, J. (2015). The Influence of Lithospheric Flexure Induced by Volcano Loading on Neogene Basin Evolution in McMurdo Sound ,. 154.Colletta, B., Hébrard, F., Letouzey, J., Werner, P., & Rudkiewikz, J. L. (1990). Petroleum and tectonics in mobile belts. Tectonic style and crustal structure of the Eastern Cordillera (Colombia), from a balanced cross section. (Technip; J. Letouzey, Ed.).Cooper, M. A., Addison, F. T., Alvarez, R., Coral, M., Graham, R. H., Hayward, A. B., … Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421–1443. Retrieved from http://archives.datapages.com/data/bulletns/1994-96/data/pg/0079/0010/1400/1421.htmCortés, M., & Angelier, J. (2005). Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1–4), 29–58. https://doi.org/10.1016/j.tecto.2005.03.020Cortes, M., Bayona, G., Aristizabal, J., Ojeda, G., Reyes-Harker, A., & Gamba, N. (2006). Structure and kinematics of the Eastern Foothills of the Eastern Cordillera of Colombia from balanced cross-sections and forward modeling. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas, (4). Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/83.pdfCrain, R. (2019). Crain´s Petrophysical Handbook. Retrieved from https://www.spec2000.net/12-phicmplx.htmCurry, M. E., van der Beek, P., Huismans, R. S., Wolf, S. G., & Muñoz, J. A. (2019). Evolving paleotopography and lithospheric flexure of the Pyrenean Orogen from 3D flexural modeling and basin analysis. Earth and Planetary Science Letters, 515(December 2017), 26–37. https://doi.org/10.1016/j.epsl.2019.03.009Delgado, A., Mora, A., & Reyes-Harker, A. (2012). Deformation partitioning in the Llanos foreland basin during the Cenozoic and its correlation with mountain building in the hinterland. Journal of South American Earth Sciences, 39, 228–244. https://doi.org/10.1016/j.jsames.2012.04.011Duarte, E., Bayona, G., Jaramillo, C., Parra, M., Romero, I., & Mora, J. A. (2017). Identificación de los máximos eventos de inundación marina Miocenos y su uso en la correlación y análisis de la cuenca de antepaís de los Llanos Orientales de Colombia. 39.Duque-Caro, H. (1990). The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3(1), 71–84. https://doi.org/10.1016/0895-9811(90)90019-WDuque-Caro, H. (1997). The Llanos Basin (Colombia): In search of greater stratigraphic resolution. Journal of Petroleum Geology, 20(1), 96–99. https://doi.org/10.1111/j.1747-5457.1997.tb00758.xECOPETROL & BEICIP. (1995). Cuenca de los Llanos Orientales: estudio geológico regional. Ecopetrol.Egbue, O., Kellogg, J., Aguirre, H., & Torres, C. (2014). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 58, 8–21. https://doi.org/10.1016/j.jsg.2013.10.004Forero Suarez, A. (1990). The basement of the Eastern Cordillera, Colombia: An allochthonous terrane in north western South America. Journal of South American Earth Sciences, 3(2), 141–151.Frailey, C. D., Luiz Lavina, E., Rancy, A., & Pereira de Souza Filho, J. (1988). A proposed Pleistocene/Holocene lake in the Amazon basin and its significance to Amazonian geology and biogeography. 8.Garcia-Castellanos, D. (2002). Interplay between lithospheric flexure and river transport in foreland basins. Basin Research, 14(2), 89–104. https://doi.org/10.1046/j.1365-2117.2002.00174.xGómez, E., Jordan, T. E., Allmendinger, R. W., & Cardozo, N. (2005). Development of the Colombian foreland-basin system as a consequence of diachronous exhumation of the northern Andes. Bulletin of the Geological Society of America, 117(9–10), 1272–1292. https://doi.org/10.1130/B25456.1Gómez, J., Montes, N. E., Nivia, Á., Diederix, H., & Compiladores. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Bogotá.: Servicio Geológico Colombiano.Gonzalez-Peñagos, F., Moretti, I., France-Lanord, C., & Guichet, X. (2014). Origins of formation waters in the Llanos foreland basin of Colombia: Geochemical variation and fluid flow history. Geofluids, 14(4), 443–458. https://doi.org/10.1111/gfl.12086Hackley, P. C., Urbani, F., Karlsen, A. W., & Garrity, C. P. (2006). Mapa Geológico de Venezuela a Escala 1: 750 000 (p. 2). p. 2. https://doi.org/10.3133/ofr20061109Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167. https://doi.org/10.1126/science.235.4793.1156Helmens, K. F., & Van der Hammen, T. (1994). The Pliocene and Quaternary of the high plain of Bogotá (Colombia): A history of tectonic uplift, basin development and climatic change. Quaternary International, 21, 41–61. https://doi.org/10.1016/1040-6182(94)90020-5Hermeston, S., & Nemčok, M. (2013). Thick-skin orogen-foreland interactions and their controlling factors, Northern Andes of Colombia. Geological Society Special Publication, 377(1), 443–471. https://doi.org/10.1144/SP377.16Hodgetts, D., Egan, S. S., & Williams, G. D. (1998). Flexural modelling of continental lithosphere deformation: A comparison of 2D and 3D techniques. Tectonophysics, 294(1–2), 1–20. https://doi.org/10.1016/S0040-1951(98)00084-5Hoorn, C. (1994). An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeography, Palaeoclimatology, Palaeoecology, 112(3–4), 187–238. https://doi.org/10.1016/0031-0182(94)90074-4Hoorn, C. (2006). Mangrove Forests and Marine Incursions in Neogene Amazonia (Lower Apaporis River, Colombia). Palaios, 21(2), 197–209. https://doi.org/10.2110/palo.2005.p05-131Hovikoski, J., Gingras, M., Räsänen, M., Rebata, L. A., Guerrero, J., Ranzi, A., … Lopez, S. (2007). The nature of Miocene Amazonian epicontinental embayment: High-frequency shifts of the low-gradient coastline. Bulletin of the Geological Society of America, 119(11–12), 1506–1520. https://doi.org/10.1130/0016-7606(2007)119[1506:TNOMAE]2.0.CO;2Irving, E. M. (1975). Structural Evolution of the Northernmost Andes, Colombia. In U.S. Geological Survey Profesional Paper (Vol. 846). https://doi.org/10.1016/0003-6870(73)90259-7Jaramillo, C., Ortiz, J., Bayona, G., D’Apolito, C., Wesselingh, F. P., Romero, I., … Duarte, E. (2017a). Miocene flooding events of western Amazonia. Science Advances, 3(5), e1601693. https://doi.org/10.1126/sciadv.1601693Jaramillo, C., Romero, I., D’Apolito, C., Bayona, G., Duarte, E., Louwye, S., … Wesselingh, F. P. (2017b). Supplementary Materials for Miocene flooding events of western Amazonia. Science Advances, 3(5). https://doi.org/10.1126/sciadv.1601693Jiménez-Díaz, A., Ruiz, J., Pérez-Gussinyé, M., Kirby, J. F., Álvarez-Gómez, J. A., Tejero, R., & Capote, R. (2014). Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth and Planetary Science Letters, 391, 55–66. https://doi.org/10.1016/j.epsl.2014.01.042Julivert, M. (1970). Cover and basement tectonics in the Cordillera Oriental of Colombia, and a comparison with other folded chains. Geological Society of America Bulletin, (81), 3623-3646.Kluth, C. F., Ladd, R., De-Aras, M., Gomez, L., & Tilander, N. (1997). Different structural styles and histories of the Colombian foreland: Castilla and Chichimene oil fields areas, east-central Colombia. VI Simpolsio Bolivariano Exploracion En Las Cuencas Subandinas: Cartagena de Indias. Mem., II, 185–197.Latrubesse, E. M., Bocquentin-villanueva, J., Santos, J. C. R., & Ramonell, C. G. (1997). Paleoenvironmental model for the Late Cenozoic Of Southwestern Amazonia : Paleontology and geology. Acta Amazonica, 27(3000), 103–1178. Retrieved from http://www.scielo.br/pdf/aa/v27n2/1809-4392-aa-27-2-0103.pdfLatrubesse, E. M., da Silva, S. A. F., Cozzuol, M., & Absy, M. L. (2007). Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: Biotic and geological evidence. Journal of South American Earth Sciences, 23(1), 61–80. https://doi.org/10.1016/j.jsames.2006.09.021Lee, E. Y. (2015). Integrated basin analysis of the Vienna basin, Central Europe. Universitat Wien.Londoño, J. (2004). Foreland basins: Lithospheric flexure, plate strength and regional stratigraphy. 175. Retrieved from http://proquest.umi.com/pqdweb?did=1115100681&Fmt=7&clientId=13346&RQT=309&VName=PQDMcGirr, R., Seton, M., & Williams, S. (2020). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. GSA Bulletin, 1–18. https://doi.org/10.1130/b35595.1McKenzie, D. (2003). Estimating Te in the presence of internal loads. Journal of Geophysical Research: Solid Earth, 108(B9), 1–21. https://doi.org/10.1029/2002jb001766McNutt, M. K. (1984). Lithospheric flexure and thermal anomalies. Journal of Geophysical Research, 89(B13), 11180–11194. https://doi.org/10.1029/JB089iB13p11180Medina, O., & Izarra, C. (2009). Anomalías Gravimétricas y Estimación de Espesor Elástico Efectivo de la Litosfera en Cuencas Antepaís: Cuenca Barinas - Apure. X Simposio Bolivariano Exploración Petrolera En Cuencas Subandinas. ACGGP.Medina, O., Izarra, C., & Jácome, M. (2006). Modelado Numérico 2D de Corrimientos y Formación de Cuencas Antepaís Usando Teoría Elástica de Deformación. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://www.earthdoc.org/publication/publicationdetails/?publication=17602Miall, A. D. (1999). Principles of sedimentary basin analysis (3rd ed.). Berlin, Germany: Springer-Verlag.Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M. S., Diederix, H., … Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 89(November 2018), 76–91. https://doi.org/10.1016/j.jsames.2018.11.002Mora-Páez, H., Mencin, D. J., Molnar, P., Diederix, H., Cardona-Piedrahita, L., Peláez-Gaviria, J. R., & Corchuelo-Cuervo, Y. (2016). GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophys. Res. Lett., (43), 8407–8416. https://doi.org/10.1002/2013GL058740.ReceivedMora, A., Casallas, W., Ketcham, R. A., Gomez, D., Parra, M., Namson, J., … Ghorbal, B. (2015). Kinematic restoration of contractional basement structures using thermokinematic models: A key tool for petroleum system modeling. AAPG Bulletin, 99(8), 1575–1598. https://doi.org/10.1306/04281411108Mora, A., Gaona, T., Kley, J., Montoya, D., Parra, M., Quiroz, L. I., … Strecker, M. R. (2009). The role of inherited extensional fault segmentation and linkage in contractional orogenesis: A reconstruction of lower cretaceous inverted rift basins in the Eastern Cordillera of Colombia. Basin Research, 21(1), 111–137. https://doi.org/10.1111/j.1365-2117.2008.00367.xMora, A., Parra, M., Strecker, M. R., Sobel, E. R., Zeilinger, G., Jaramillo, C., … Blanco, M. (2010). The eastern foothills of the eastern cordillera of colombia: An example of multiple factors controlling structural styles and active tectonics. Bulletin of the Geological Society of America, 122(11–12), 1846–1864. https://doi.org/10.1130/B30033.1Mora, A., Reyes-Harker, A., Rodriguez, G., Tesón, E., Ramirez-Arias, J. C., Parra, M., … Stockli, D. F. (2013). Inversion tectonics under increasing rates of shortening and sedimentation: Cenozoic example from the Eastern Cordillera of Colombia. Geological Society, London, Special Publication, 377(1), 411–442. https://doi.org/10.1144/SP377.6Moreno, C. (2012). Evolution of the southern Llanos basin, Colombia. University of Stavanger.Nivia, A. (1987). The geochemistry and origin of the Amáime and volcanic sequences, SW Colombia. University of Leicester, UK.Ojeda, G. Y., Bayona, G., Pinilla, J., Cortés, M., & Gamba, N. (2006). Subsidence and geodynamic analysis of The Llanos Basin: Linking mountain building and basin filling processes. 9th Simposio Bolivariano-Exploracion Petrolera En Las Cuencas Subandinas. Retrieved from http://archives.datapages.com/data/colombia_acggp/simp9/89.pdfOjeda, G. Y., & Whitman, D. (2002). Effect of windowing on lithosphere elastic thickness estimates obtained via the coherence method: Results from northern South America. Journal of Geophysical Research: Solid Earth, 107(B11), ETG 3-1-ETG 3-12. https://doi.org/10.1029/2000jb000114Pachón-Parra, L. F. (2013). Subsurface mapping and 3D Flexural modeling of the Putumayo foreland basin, Colombia. University of Houston.Parra, M., Mora, A., Jaramillo, C., Strecker, M. R., Sobel, E. R., Quiroz, L., … Torres, V. (2009a). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia. Geological Society of America Bulletin, (April 2009), 780–800. https://doi.org/10.1130/B26257.1Parra, M., Mora, A., Jaramillo, C., Torres, V., Zeilinger, G., & Strecker, M. R. (2010). Tectonic controls on Cenozoic foreland basin development in the north-eastern Andes, Colombia. Basin Research, 22(6), 874–903. https://doi.org/10.1111/j.1365-2117.2009.00459.xParra, M., Mora, A., Lopez, C., Rojas, L. E., & Horton, B. K. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology, 40(2), 175–178. https://doi.org/10.1130/G32519.1Parra, M., Mora, A., Sobel, E. R., Strecker, M. R., & González, R. (2009b). Episodic orogenic front migration in the northern Andes: Constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia. Tectonics, 28(4). https://doi.org/10.1029/2008TC002423Ramos, V. A., & Moreno, M. (2006). Tectonic evolution of the Colombian Andes. Journal of South American Earth Sciences, 21(4), 319–321. https://doi.org/10.1016/j.jsames.2006.07.008Reyes-Harker, A., Ruiz-Valdivieso, C. F., Mora, A., Ramírez-Arias, J. C., Rodriguez, G., De La Parra, F., … Blanco, V. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia. In AAPG Bulletin (Vol. 99). https://doi.org/10.1306/06181411110Roddaz, M., Brusset, S., Baby, P., & Hérail, G. (2006). Miocene tidal-influenced sedimentation to continental Pliocene sedimentation in the forebulge-backbulge depozones of the Beni-Mamore foreland Basin (northern Bolivia). Journal of South American Earth Sciences, 20(4), 351–368. https://doi.org/10.1016/j.jsames.2005.11.004Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., … Espurt, N. (2010). Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System. Amazonia, Landscape and Species Evolution: A Look into the Past, (July), 61–88. https://doi.org/10.1002/9781444306408.ch5Rondón, F. J. (2016). Modelo gravimétrico cortical 2D del perfil Sur Proyecto GIAME, ubicado en la región Andina de Venezuela. Universidad Simón Bolívar.Sánchez, N., Mora, A., Parra, M., Garcia, D., Cortes, M., Shanahan, T. M., … Guzman, M. (2015). Petroleum system modeling in the Eastern Cordillera of Colombia using geochemistry and timing of thrusting and deformation. AAPG Bulletin, 99(8), 1537–1556. https://doi.org/10.1306/04161511107Sarmiento-Rojas, L. F., Van Wess, J. D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4), 383–411. https://doi.org/10.1016/j.jsames.2006.07.003Sarmiento, L. F. (2011). Geology and hydrocarbon potential Llanos Basin. In Fondo Editorial Universidad EAFIT (Ed.), Petroleum Geology of Colombia (Vol. 9). ANH.Sarmiento Rojas, L. F. (2001). Mesozoic rifting and Cenozoic basin inversion history of the Eastern Cordillera, Colombian Andes. Inferences From Tectonic Models. Vrije Universiteit Amsterdam.Saylor, J. E., Horton, B., Stockli, D. F., Mora, A. &, & Corredor, J. (2012). Structural and thermochronological evidence for Paleogene basement-involved shortening in the axial Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 39(November), 202–215. Retrieved from http://www.sciencedirect.com/science/journal/aip/%0A08959811Saylor, J. E., Stockli, D. F., Horton, B., Nie, J. &, & Mora, A. (2012). Discriminating rapid exhumation Zircon, from syndepositional volcanism using detrital Of, double dating: implications for the tectonic history the Eastern Cordillera, Colombia. Geological Society of America Bulletin, (124), 762–779.Sclater, J. G., & Christie, P. A. F. (1980). Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the Central North Sea basin. Journal of Geophysical Research, 85(B7), 3711–3739.Siravo, G., Faccenna, C., Gérault, M., Becker, T. W., Fellin, M. G., Herman, F., & Molin, P. (2019). Slab flattening and the rise of the Eastern Cordillera, Colombia. Earth and Planetary Science Letters, 512, 100–110. https://doi.org/10.1016/j.epsl.2019.02.002Stewart, J., & Watts, A. B. (1997). Gravity anomalies and spatial variations of flexural rigidity at mountain ranges. Journal of Geophysical Research: Solid Earth, 102(B3), 5327–5352. https://doi.org/10.1029/96jb03664Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., … Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society Special Publication, 377(1), 257–283. https://doi.org/10.1144/SP377.10Toro, J., Roure, F., Bordas-Le Flonch, N., Le Cornec-Lance, S., & Sassu, W. (2004). Thermal and kinematic evolution of the Eastern Cordillera fold and thrust belt, Colombia, in Swennen, R., Roure, F., and Granath, J.W., eds., Deformation, fluid flow, and reservoir appraisal in foreland fold and thrust belt Colombia. 1, 79– 115.Turcotte, D. L., & Schubert, G. (1982). Geodynamics (Second Edi). Cambridge.Van der Hammen, T. (1960). Estratigrafía del Terciario y Maestrichtiano Continentales y Tectonogenésis de los Andes Colombianos. Bogotá, Colombia: Servicio Geológico Nacional.Vargas, C. A. (2011). Potencial de hidrocarburos en Colombia (pp. 1–79). pp. 1–79. Retrieved from http://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Estudios-Integrados-y-Modelamientos/Presentaciones y Poster Tcnicos/Potencial de hidrocarburos en Colombia, Prof. Carlos A. Vargas (PDF).pdfVargas, C. A., & Mann, P. (2013). Tearing and Breaking Off of Subducted slabs as the result of collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328Vayssaire, A., Abdallah, H., Hermoza, W., & Figari, E. (2014). Regional Study and Petroleum System Modeling of the Eastern Llanos Basin. AAPG International Conference & Exhibition, 10564, 1–9.Velásquez, A. (2018). Observaciones sobre niveles de compensación isostática en el Piedemonte Llanero. Geología Norandina, 14, 23–28.Ventsel, E., & Krauthammer, T. (2001). Thin Plates and Shells Theory, Análisis, and Applications. New York: Marcel Dekker, Inc.Villamil, T. (1999). Campanian-Miocene tectonostratigraphy, depocenter evolution and basin development of Colombia and western Venezuela. Palaeogeography, Palaeoclimatology, Palaeoecology, 153(1–4), 239–275. https://doi.org/10.1016/S0031-0182(99)00075-9Wagner, L. S., Jaramillo, J. S., Ramírez-Hoyos, L. F., Monsalve, G., Cardona, A., & Becker, T. W. (2017). Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616–6623. https://doi.org/10.1002/2017GL073981Watts, A. B. (2001). Isostasy and flexure of the lithosphere. In Journal of Geophysical Research (Vol. 84). https://doi.org/10.1029/JB084iB10p05599Watts, A. B., & Burov, E. B. (2003). Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth and Planetary Science Letters, 213(1–2), 113–131. https://doi.org/10.1016/S0012-821X(03)00289-9Webb, S. D. (1995). Biological implications of the Middle Miocene Amazon seaway. Science, 269(5222), 361–362. https://doi.org/10.1126/science.269.5222.361Wesselingh, F. P., & Salo, J. A. (2006). A Miocene perspective on the evolution of the Amazonian biota. Scripta Geologica, (133), 439–458.Xie, X., & Heller, P. L. (2009). Plate tectonics and basin subsidence history. Bulletin of the Geological Society of America, 121(1–2), 55–64. https://doi.org/10.1130/B26398.1aaaaaa Contenido de pruebaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79347/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79347/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52TEXT456561.2020.pdf.txt456561.2020.pdf.txttext/plain183616https://repositorio.unal.edu.co/bitstream/unal/79347/4/456561.2020.pdf.txt28fc0a21449c7853ed5cf581db57e289MD54THUMBNAIL456561.2020.pdf.jpg456561.2020.pdf.jpgimage/jpeg2108https://repositorio.unal.edu.co/bitstream/unal/79347/5/456561.2020.pdf.jpg731f268363e20b57f6134d825bbd32abMD55ORIGINAL456561.2020.pdf456561.2020.pdfapplication/pdf13066478https://repositorio.unal.edu.co/bitstream/unal/79347/1/456561.2020.pdf1d7148811b5af2410fda6dd6105ccc4aMD51unal/79347oai:repositorio.unal.edu.co:unal/793472023-01-22 18:02:53.515Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==