Algorithmic representation of wermus' constructions of ordinal numbers

In his paper [3] Wermus defines ordinal numbers as "Z - symbols" of the form [a1n ..., ak   κ, ≥ 1 and [a1] , where the aj, 1≤ j, ≤ κ, are natural numbers or  Z -symbols. It wi II be demonstrated that Wermus' constructions can be described by means of a special Neumer algorithm, the c...

Full description

Autores:
Fuchs, Hartwig
Tipo de recurso:
Article of journal
Fecha de publicación:
1971
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42189
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42189
http://bdigital.unal.edu.co/32286/
Palabra clave:
Wermus
ordinal numbers
natural numbers
constructive algorithm
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_20e8c3a8eda22cc5d8eae61c48c65217
oai_identifier_str oai:repositorio.unal.edu.co:unal/42189
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fuchs, Hartwigf2db45fe-a679-42d8-a7ab-0b9c086298043002019-06-28T10:36:23Z2019-06-28T10:36:23Z1971https://repositorio.unal.edu.co/handle/unal/42189http://bdigital.unal.edu.co/32286/In his paper [3] Wermus defines ordinal numbers as "Z - symbols" of the form [a1n ..., ak   κ, ≥ 1 and [a1] , where the aj, 1≤ j, ≤ κ, are natural numbers or  Z -symbols. It wi II be demonstrated that Wermus' constructions can be described by means of a special Neumer algorithm, the constructive algorithm of [1], part I and V resp. a descriptive algorithm of  [2], part III ; more precisely:  that there can be established a 1-1 correspondence between Z- symbolsi [a1n ..., ak ] and algorithmic symbols T[a1n ..., ak ] such that [a1n ..., ak ] and T[a1n ..., ak ] represent  the same ordinal number. This comparision of the two systems further allows the determination of the least ordinal number which is inaccesible by Wermus' constructions in [3].application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/31776Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 5, núm. 1 (1971); 10-16 0034-7426Fuchs, Hartwig (1971) Algorithmic representation of wermus' constructions of ordinal numbers. Revista Colombiana de Matemáticas; Vol. 5, núm. 1 (1971); 10-16 0034-7426 .Algorithmic representation of wermus' constructions of ordinal numbersArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTWermusordinal numbersnatural numbersconstructive algorithmORIGINAL31776-116043-1-PB.pdfapplication/pdf2080174https://repositorio.unal.edu.co/bitstream/unal/42189/1/31776-116043-1-PB.pdf9e6efcf5fd5209eb9682532a9ddd11eaMD51THUMBNAIL31776-116043-1-PB.pdf.jpg31776-116043-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7606https://repositorio.unal.edu.co/bitstream/unal/42189/2/31776-116043-1-PB.pdf.jpg04c39c47fa30baab19654f72feed1753MD52unal/42189oai:repositorio.unal.edu.co:unal/421892023-02-06 23:14:59.998Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Algorithmic representation of wermus' constructions of ordinal numbers
title Algorithmic representation of wermus' constructions of ordinal numbers
spellingShingle Algorithmic representation of wermus' constructions of ordinal numbers
Wermus
ordinal numbers
natural numbers
constructive algorithm
title_short Algorithmic representation of wermus' constructions of ordinal numbers
title_full Algorithmic representation of wermus' constructions of ordinal numbers
title_fullStr Algorithmic representation of wermus' constructions of ordinal numbers
title_full_unstemmed Algorithmic representation of wermus' constructions of ordinal numbers
title_sort Algorithmic representation of wermus' constructions of ordinal numbers
dc.creator.fl_str_mv Fuchs, Hartwig
dc.contributor.author.spa.fl_str_mv Fuchs, Hartwig
dc.subject.proposal.spa.fl_str_mv Wermus
ordinal numbers
natural numbers
constructive algorithm
topic Wermus
ordinal numbers
natural numbers
constructive algorithm
description In his paper [3] Wermus defines ordinal numbers as "Z - symbols" of the form [a1n ..., ak   κ, ≥ 1 and [a1] , where the aj, 1≤ j, ≤ κ, are natural numbers or  Z -symbols. It wi II be demonstrated that Wermus' constructions can be described by means of a special Neumer algorithm, the constructive algorithm of [1], part I and V resp. a descriptive algorithm of  [2], part III ; more precisely:  that there can be established a 1-1 correspondence between Z- symbolsi [a1n ..., ak ] and algorithmic symbols T[a1n ..., ak ] such that [a1n ..., ak ] and T[a1n ..., ak ] represent  the same ordinal number. This comparision of the two systems further allows the determination of the least ordinal number which is inaccesible by Wermus' constructions in [3].
publishDate 1971
dc.date.issued.spa.fl_str_mv 1971
dc.date.accessioned.spa.fl_str_mv 2019-06-28T10:36:23Z
dc.date.available.spa.fl_str_mv 2019-06-28T10:36:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42189
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32286/
url https://repositorio.unal.edu.co/handle/unal/42189
http://bdigital.unal.edu.co/32286/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/31776
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 5, núm. 1 (1971); 10-16 0034-7426
dc.relation.references.spa.fl_str_mv Fuchs, Hartwig (1971) Algorithmic representation of wermus' constructions of ordinal numbers. Revista Colombiana de Matemáticas; Vol. 5, núm. 1 (1971); 10-16 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42189/1/31776-116043-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42189/2/31776-116043-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 9e6efcf5fd5209eb9682532a9ddd11ea
04c39c47fa30baab19654f72feed1753
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089845471969280