Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana

ilustraciones, diagramas, mapas, tablas

Autores:
Yunis Hazbun, Luz Karime
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86783
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86783
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
Leucemia Mielomonocítica Aguda
Variantes Farmacogenómicas
Resistencia a Antineoplásicos
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos
Leukemia, Myelomonocytic, Acute
Drug Resistance, Neoplasm
Drug-Related Side Effects and Adverse Reactions
Pharmacogenomic Variants
Leucemia mieloide aguda
Genómica
Pediátrica
Colombia
Latinoamérica
ABCB1
DCK
CDA
GSTT1
GSTM1
Citarabina
Antraciclinas
SNV
Ancestría
AIM-InDel
Acute myeloid leukemia
Genomics
Pediatrics
Latin America
Citarabine
Antracyclines
Ancestry
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_209555c0fea0b553036994df39d6247c
oai_identifier_str oai:repositorio.unal.edu.co:unal/86783
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
dc.title.translated.eng.fl_str_mv Molecular and pharmacogenetic characterization in acute myeloid leukemia patients and the correlation with risk stratification and treatment response
title Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
spellingShingle Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
610 - Medicina y salud::615 - Farmacología y terapéutica
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
Leucemia Mielomonocítica Aguda
Variantes Farmacogenómicas
Resistencia a Antineoplásicos
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos
Leukemia, Myelomonocytic, Acute
Drug Resistance, Neoplasm
Drug-Related Side Effects and Adverse Reactions
Pharmacogenomic Variants
Leucemia mieloide aguda
Genómica
Pediátrica
Colombia
Latinoamérica
ABCB1
DCK
CDA
GSTT1
GSTM1
Citarabina
Antraciclinas
SNV
Ancestría
AIM-InDel
Acute myeloid leukemia
Genomics
Pediatrics
Latin America
Citarabine
Antracyclines
Ancestry
title_short Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
title_full Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
title_fullStr Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
title_full_unstemmed Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
title_sort Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana
dc.creator.fl_str_mv Yunis Hazbun, Luz Karime
dc.contributor.advisor.spa.fl_str_mv Yunis Londoño, Juan José
Linares Ballesteros, Teresa Adriana Elvira
dc.contributor.author.spa.fl_str_mv Yunis Hazbun, Luz Karime
dc.contributor.researchgroup.spa.fl_str_mv Patología Molecular
Oncohematologia Pediatrica
dc.contributor.orcid.spa.fl_str_mv Yunis Hazbun, Luz Karime [0000000333655196]
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
570 - Biología::576 - Genética y evolución
610 - Medicina y salud::616 - Enfermedades
Leucemia Mielomonocítica Aguda
Variantes Farmacogenómicas
Resistencia a Antineoplásicos
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos
Leukemia, Myelomonocytic, Acute
Drug Resistance, Neoplasm
Drug-Related Side Effects and Adverse Reactions
Pharmacogenomic Variants
Leucemia mieloide aguda
Genómica
Pediátrica
Colombia
Latinoamérica
ABCB1
DCK
CDA
GSTT1
GSTM1
Citarabina
Antraciclinas
SNV
Ancestría
AIM-InDel
Acute myeloid leukemia
Genomics
Pediatrics
Latin America
Citarabine
Antracyclines
Ancestry
dc.subject.decs.spa.fl_str_mv Leucemia Mielomonocítica Aguda
Variantes Farmacogenómicas
Resistencia a Antineoplásicos
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos
dc.subject.decs.eng.fl_str_mv Leukemia, Myelomonocytic, Acute
Drug Resistance, Neoplasm
Drug-Related Side Effects and Adverse Reactions
dc.subject.lemb.eng.fl_str_mv Pharmacogenomic Variants
dc.subject.proposal.spa.fl_str_mv Leucemia mieloide aguda
Genómica
Pediátrica
Colombia
Latinoamérica
ABCB1
DCK
CDA
GSTT1
GSTM1
Citarabina
Antraciclinas
SNV
Ancestría
AIM-InDel
dc.subject.proposal.eng.fl_str_mv Acute myeloid leukemia
Genomics
Pediatrics
Latin America
Citarabine
Antracyclines
Ancestry
description ilustraciones, diagramas, mapas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-03T16:27:48Z
dc.date.available.none.fl_str_mv 2024-09-03T16:27:48Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86783
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86783
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Hyman DM, Taylor BS, Baselga J. Implementing Genome-Driven Oncology. Cell. 2017;168(4):584-99.
Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online. 2013;15(1):4.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.
Cacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel). 2023;15(16).
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-19.
Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.
Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22(5):915-31.
Megias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.
Bertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.
Strianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, et al. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020;11(7).
Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-22.
Kabbani D, Akika R, Wahid A, Daly AK, Cascorbi I, Zgheib NK. Pharmacogenomics in practice: a review and implementation guide. Front Pharmacol. 2023;14:1189976.
Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187-205.
Lin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019. J Hematol Oncol. 2021;14(1):197.
Olbara G, Martijn HA, Njuguna F, Langat S, Martin S, Skiles J, et al. Influence of health insurance status on childhood cancer treatment outcomes in Kenya. Support Care Cancer. 2020;28(2):917-24.
Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31.
International Agency for Research on Cancer. GLOBOCAN [Internet]. 2023.
Cuenta de Alto Costo FCdEdAC. Situación del cáncer en la población pediátrica atendida en el SGSSS de Colombia 2021. 2022.
Bain BJ. Leukaemia Diagnosis: Wiley; 2017.
Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451-8.
Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-302.
Huber S, Baer C, Hutter S, Dicker F, Meggendorfer M, Pohlkamp C, et al. AML classification in the year 2023: How to avoid a Babylonian confusion of languages. Leukemia. 2023;37(7):1413-20.
Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.
Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2017:1-14.
Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-47.
Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-42.
Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264-78.
Leick MB, Levis MJ. The Future of Targeting FLT3 Activation in AML. Curr Hematol Malig Rep. 2017;12(3):153-67.
Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31-46.
Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods. 2008;5(1):19-21.
Ilyas AM, Ahmad S, Faheem M, Naseer MI, Kumosani TA, Al-Qahtani MH, et al. Next Generation Sequencing of Acute Myeloid Leukemia: Influencing Prognosis. BMC Genomics. 162015. p. S5.
Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66-72.
Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058-66.
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424-33.
Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-74.
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-21.
Merker JD, Valouev A, Gotlib J. Next-generation sequencing in hematologic malignancies: what will be the dividends? Ther Adv Hematol. 2012;3(6):333-9.
Roumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.
Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.
Tomizawa D, Tanaka S, Hasegawa D, Iwamoto S, Hiramatsu H, Kiyokawa N, et al. Evaluation of high-dose cytarabine in induction therapy for children with de novo acute myeloid leukemia: a study protocol of the Japan Children's Cancer Group Multi-Center Seamless Phase II-III Randomized Trial (JPLSG AML-12). Jpn J Clin Oncol. 2018;48(6):587-93.
Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543-52.
Creutzig U, Ritter J, Zimmermann M, Reinhardt D, Hermann J, Berthold F, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol. 2001;19(10):2705-13.
Creutzig U, Zimmermann M, Bourquin JP, Dworzak MN, von Neuhoff C, Sander A, et al. Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood. 2011;118(20):5409-15.
Creutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013;122(1):37-43.
Gibson BE, Webb DK, Howman AJ, De Graaf SS, Harrison CJ, Wheatley K. Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol. 2011;155(3):366-76.
Creutzig U, Ritter J, Zimmermann M, Hermann J, Gadner H, Sawatzki DB, et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia. 2001;15(3):348-54.
Aplenc R, Meshinchi S, Sung L, Alonzo T, Choi J, Fisher B, et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children's Oncology Group. Haematologica. 2020;105(7):1879-86.
Rubnitz JE, Lacayo NJ, Inaba H, Heym K, Ribeiro RC, Taub J, et al. Clofarabine Can Replace Anthracyclines and Etoposide in Remission Induction Therapy for Childhood Acute Myeloid Leukemia: The AML08 Multicenter, Randomized Phase III Trial. J Clin Oncol. 2019;37(23):2072-81.
Gamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB, Raimondi SC, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021-32.
Kim H. Treatments for children and adolescents with AML. Blood Res. 2020;55(S1):S5-s13.
Creutzig U, Dworzak MN, Zimmermann M, Reinhardt D, Sramkova L, Bourquin JP, et al. Characteristics and outcome in patients with central nervous system involvement treated in European pediatric acute myeloid leukemia study groups. Pediatr Blood Cancer. 2017;64(12).
Evans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.
Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.
Cheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.
Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.
Issa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.
Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.
Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.
Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.
De Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.
Sabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.
Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.
Dries DL. Genetic ancestry, population admixture, and the genetic epidemiology of complex disease. Circ Cardiovasc Genet. 2. United States2009. p. 540-3.
Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010;86(5):661-73.
Pereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.
Aplenc R, Alonzo TA, Gerbing RB, Smith FO, Meshinchi S, Ross JA, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children's Oncology Group. Blood. 2006;108(1):74-80.
Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.
www.cuentadealtocosto.org. Capítulo 16. Leucemia Mieloide Aguda. Situación del cáncer en Colombia. Cuenta de Alto Costo. Fondo Colombiano de Enfermedades de Alto Costo. 2015.
CINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.
Ministerio de Salud y Protección Social C, Instituto Nacional de Cancerología, ESE. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Colombia2017.
Karol SE, Coustan-Smith E, Cao X, Shurtleff SA, Raimondi SC, Choi JK, et al. Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy. Br J Haematol. 2015;168(1):94-101.
Balgobind BV, Lugthart S, Hollink IH, Arentsen-Peters STJCM, van Wering ER, de Graaf SSN, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24:942.
Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551-65.
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070-82.
Online Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.
UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.
Online Mendelian Inheritance in Man OM-NIoGM, Johns Hopkins University (Baltimore, MD), {date}. World Wide Web. 2019.
Puumala SE, Ross JA, Aplenc R, Spector LG. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer. 2013;60(5):728-33.
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep. 2021;23(2):16.
Bravo LE, Garcia LS, Collazos P, Aristizabal P, Ramirez O. Descriptive epidemiology of childhood cancer in Cali: Colombia 1977-2011. Colomb Med (Cali). 2013;44(3):155-64.
CINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.
Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.
Creutzig U, Kaspers GJ. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 22. United States2004. p. 3432-3.
Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.
Alexander S, Pole JD, Gibson P, Lee M, Hesser T, Chi SN, et al. Classification of treatment-related mortality in children with cancer: a systematic assessment. Lancet Oncol. 2015;16(16):e604-10.
Arsham MS BM, Lawce HJ. The AGT Cytogenetics Laboratory Manual. Fourth edition. ed. Hoboken, New Jersey: Wiley-Blackwell.; 2017.
Murphy KM, Levis M, Hafez MJ, Geiger T, Cooper LC, Smith BD, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96-102.
Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747-54.
Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66.
Lin LI, Lin TC, Chou WC, Tang JL, Lin DT, Tien HF. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia. 2006;20:1899.
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23.
Llimpe Y. Cytogenetic risk groups for childhood acute myeloid leukemia based on survival analysis in a cancer referral hospital from Perú. Biomedica. 2021;41(2):302-13.
Deana A, Moran L, Fynn A. Resultados del protocolo GATLA 8-LMAP´07. Nuevos desafíos clínicos en leucemia mieloide aguda pediátrica de novo. Revista Hematología. 2019;23(2):82-91.
Tarlock K, Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75-93.
Bolouri H, Farrar JE, Triche T, Jr., Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-12.
Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, et al. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr. 2020;8:586.
Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89-94.
Ishida H, Iguchi A, Aoe M, Nishiuchi R, Matsubara T, Keino D, et al. Panel-based next-generation sequencing facilitates the characterization of childhood acute myeloid leukemia in clinical settings. Biomed Rep. 2020;13(5):46.
Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108(12):3654-61.
Kaburagi T, Yamato G, Shiba N, Yoshida K, Hara Y, Tabuchi K, et al. Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia. Haematologica. 2022;107(3):583-92.
Chen K, Zhang Y, Qian L, Wang P. Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol. 2021;14(1):116.
Cacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).
Ishikawa Y, Kawashima N, Atsuta Y, Sugiura I, Sawa M, Dobashi N, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020;4(1):66-75.
Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, et al. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther. 2017;10(1):1-7.
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer. 2021;68(7):e28979.
Chen J, Glasser CL. New and Emerging Targeted Therapies for Pediatric Acute Myeloid Leukemia (AML). Children (Basel). 2020;7(2).
Elgarten CW, Wood AC, Li Y, Alonzo TA, Brodersen LE, Gerbing RB, et al. Outcomes of intensification of induction chemotherapy for children with high-risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer. 2021;68(12):e29281.
Van Weelderen RE, Klein K, Natawidjaja MD, De Vries R, Kaspers GJ. Outcome of pediatric acute myeloid leukemia (AML) in low- and middle-income countries: a systematic review of the literature. Expert Rev Anticancer Ther. 2021;21(7):765-80.
Evans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.
Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.
Cheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.
Megias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.
Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.
Bertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.
Issa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.
Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.
Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.
Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.
Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.
De Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.
Sabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.
Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.
Lamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther. 2007;323(3):935-45.
Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, et al. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood. 2009;113(10):2145-53.
Cros E, Jordheim L, Dumontet C, Galmarini CM. Problems related to resistance to cytarabine in acute myeloid leukemia. Leuk Lymphoma. 2004;45(6):1123-32.
Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics. 2012;13(11):1257-69.
Kufe DW, Munroe D, Herrick D, Egan E, Spriggs D. Effects of 1-beta-D-arabinofuranosylcytosine incorporation on eukaryotic DNA template function. Mol Pharmacol. 1984;26(1):128-34.
Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics. 2009;10(10):1657-74.
Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61(6):682-99.
Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537-92.
Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2017;58(5):1197-206.
Hyo Kim L, Sub Cheong H, Koh Y, Ahn KS, Lee C, Kim HL, et al. Cytidine deaminase polymorphisms and worse treatment response in normal karyotype AML. J Hum Genet. 2015;60(12):749-54.
Abraham A, Varatharajan S, Abbas S, Zhang W, Shaji RV, Ahmed R, et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13(3):269-82.
Abraham A, Devasia AJ, Varatharajan S, Karathedath S, Balasubramanian P, Mathews V. Effect of cytosine arabinoside metabolizing enzyme expression on drug toxicity in acute myeloid leukemia. Ann Hematol. 2015;94(5):883-5.
Chottiner EG, Shewach DS, Datta NS, Ashcraft E, Gribbin D, Ginsburg D, et al. Cloning and expression of human deoxycytidine kinase cDNA. Proceedings of the National Academy of Sciences. 1991;88(4):1531.
Online Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.
Roumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.
Voso MT, D'Alo F, Putzulu R, Mele L, Scardocci A, Chiusolo P, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood. 2002;100(8):2703-7.
Davies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, Radloff GA, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol. 2001;19(5):1279-87.
Rondón González F, Barreto G. Estructura genética, ancestralidad y su relación con los estudios en salud humana. Médicas UIS. 2013;26(1).
Yunis JJ, Yunis EJ, Yunis E. MHC Class II haplotypes of Colombian Amerindian tribes. Genet Mol Biol. 2013;36(2):158-66.
Pereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.
Yunis JJ, Acevedo LE, Campo DS, Yunis EJ. Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomedica. 2013;33(3):459-67.
Usme-Romero S, Alonso M, Hernandez-Cuervo H, Yunis EJ, Yunis JJ. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia. Genet Mol Biol. 2013;36(2):149-57.
Yunis JJ, Yunis EJ, Yunis E. Genetic relationship of the Guambino, Paez, and Ingano Amerindians of southwest Colombia using major histocompatibility complex class II haplotypes and blood groups. Hum Immunol. 2001;62(9):970-8.
Yunis JJ, Ossa H, Salazar M, Delgado MB, Deulofeut R, de la Hoz A, et al. Major histocompatibility complex class II alleles and haplotypes and blood groups of four Amerindian tribes of northern Colombia. Hum Immunol. 1994;41(4):248-58.
Banklau C, Jindadamrongwech S, Sawangpanich R, Apibal S, Hongeng S, Paisooksantivatana K, et al. Effect of genetic alterations of cytarabine- metabolizing enzymes in childhood acute lymphoblastic leukemia. Hematol Oncol Stem Cell Ther. 2010;3(3):103-8.
Geppert M, Baeta M, Núñez C, Martínez-Jarreta B, Zweynert S, Cruz OW, et al. Hierarchical Y-SNP assay to study the hidden diversity and phylogenetic relationship of native populations in South America. Forensic Sci Int Genet. 2011;5(2):100-4.
Excoffier LaHELL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources; 2010. p. 564-7.
Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources; 2008. p. 103-6.
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59.
Dent A. Earl BMv. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources; 2012. p. 359-61.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611-20.
Mogollón Olivares F, Moncada Madero J, Casas-Vargas A, Zea Montoya S, Suárez Medellín D, Gusmão L, et al. Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. Am J Phys Anthropol. 2020;173(3):437-47.
Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.
Piacentini S, Polimanti R, Porreca F, Martínez-Labarga C, De Stefano GF, Fuciarelli M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol Biol Rep. 2011;38(2):1225-30.
Yunis JJ, Acevedo LE, Campo DS, Yunis EJ. Population data of Y-STR minimal haplotypes in a sample of Caucasian-Mestizo and African descent individuals of Colombia. Forensic Sci Int. 2005;151(2-3):307-13.
Yunis JJ, Garcia O, Baena A, Arboleda G, Uriarte I, Yunis E. Population frequency for the short tandem repeat loci D18S849, D3S1744, and D12S1090 in Caucasian-Mestizo and African descent populations of Colombia. J Forensic Sci. 2000;45(2):429-31.
Norris ET, Rishishwar L, Wang L, Conley AB, Chande AT, Dabrowski AM, et al. Assortative Mating on Ancestry-Variant Traits in Admixed Latin American Populations. Front Genet. 2019;10:359.
Wheeler HE, Gamazon ER, Stark AL, O'Donnell PH, Gorsic LK, Huang RS, et al. Genome-wide meta-analysis identifies variants associated with platinating agent susceptibility across populations. Pharmacogenomics J. 2013;13(1):35-43.
Kim DH, Park JY, Sohn SK, Lee NY, Baek JH, Jeon SB, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer. 2006;118(9):2195-201.
Gréen H, Falk IJ, Lotfi K, Paul E, Hermansson M, Rosenquist R, et al. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharmacogenomics J. 2012;12(2):111-8.
Megías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, et al. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(2):109-18.
He H, Yin J, Li X, Zhang Y, Xu X, Zhai M, et al. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur J Clin Pharmacol. 2015;71(3):293-302.
Megías-Vericat JE, Martínez-Cuadrón D, Herrero MJ, Rodríguez-Veiga R, Solana-Altabella A, Boluda B, et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2021;62(3):659-68.
Mahlknecht U, Dransfeld CL, Bulut N, Kramer M, Thiede C, Ehninger G, et al. SNP analyses in cytarabine metabolizing enzymes in AML patients and their impact on treatment response and patient survival: identification of CDA SNP C-451T as an independent prognostic parameter for survival. Leukemia. 23. England2009. p. 1929-32.
Parmar S, Seeringer A, Denich D, Gärtner F, Pitterle K, Syrovets T, et al. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics. 2011;12(4):503-14.
Medina-Sanson A, Ramirez-Pacheco A, Moreno-Guerrero SS, Dorantes-Acosta EM, Sanchez-Preza M, Reyes-Lopez A. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia. Biomed Res Int. 2015;2015:309491.
Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Martínez-Cuadrón D, et al. Influence of cytarabine metabolic pathway polymorphisms in acute myeloid leukemia induction treatment. Leuk Lymphoma. 2017;58(12):2880-94.
Carpi FM, Vincenzetti S, Ubaldi J, Pucciarelli S, Polzonetti V, Micozzi D, et al. CDA gene polymorphisms and enzyme activity: genotype-phenotype relationship in an Italian-Caucasian population. Pharmacogenomics. 2013;14(7):769-81.
Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 2004;14(11):759-68.
Adema AD, Zuurbier L, Floor K, Hubeek I, Kaspers GJ, Albertoni F, et al. Cellular resistance against troxacitabine in human cell lines and pediatric patient acute myeloid leukemia blast cells. Nucleosides Nucleotides Nucleic Acids. 2006;25(9-11):981-6.
Xie XT, Jiang SY, Li BS, Yang LL. [Relationship between the expression of the genes encoding the key enzymes for cytarabine metabolism and the pharmacokinetics of cytarabine in the treatment of childhood acute leukemia with high-dose cytarabine]. Zhonghua Er Ke Za Zhi. 2008;46(4):276-80.
Hubeek I, Stam RW, Peters GJ, Broekhuizen R, Meijerink JP, van Wering ER, et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 2005;93(12):1388-94.
Bartholomae S, Gruhn B, Debatin KM, Zimmermann M, Creutzig U, Reinhardt D, et al. Coexpression of Multiple ABC-Transporters is Strongly Associated with Treatment Response in Childhood Acute Myeloid Leukemia. Pediatr Blood Cancer. 2016;63(2):242-7.
Andrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, Dos Santos-Bueno FV, Vianna DT, et al. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol. 2021;11:642744.
Den Boer ML, Pieters R, Kazemier KM, Janka-Schaub GE, Henze G, Creutzig U, et al. Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br J Haematol. 1999;104(2):321-7.
Weich N, Nuñez MC, Galimberti G, Elena G, Acevedo S, Larripa I, et al. Polymorphic variants of GSTM1, GSTT1, and GSTP1 genes in childhood acute leukemias: A preliminary study in Argentina. Hematology. 2015;20(9):511-6.
Davies SM, Robison LL, Buckley JD, Radloff GA, Ross JA, Perentesis JP. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children's Cancer Group study. Cancer Epidemiol Biomarkers Prev. 2000;9(6):563-6.
Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, et al. Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010;143(1):13-20.
Xavier C, Builes JJ, Gomes V, Ospino JM, Aquino J, Parson W, et al. Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. PloS one. 2015;10(3):e0120155-e.
Ossa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PLoS One. 2016;11(10):e0164414.
Noguera MC, Schwegler A, Gomes V, Briceño I, Alvarez L, Uricoechea D, et al. Colombia's racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol. 2014;41(5):453-9.
Ibarra A, Freire-Aradas A, Martínez M, Fondevila M, Burgos G, Camacho M, et al. Comparison of the genetic background of different Colombian populations using the SNPforID 52plex identification panel. Int J Legal Med. 2014;128(1):19-25.
Pinto-Merino Á, Labrador J, Zubiaur P, Alcaraz R, Herrero MJ, Montesinos P, et al. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics. 2022;14(3).
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 94 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.spa.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Doctorado en Oncología
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86783/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86783/2/Tesis%20Doctoral%20Luz%20Karime%20Yunis.pdf
https://repositorio.unal.edu.co/bitstream/unal/86783/3/Tesis%20Doctoral%20Luz%20Karime%20Yunis.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
4554660e893e97d7dc5b3b4c912b554e
099c804cd314e29dcbe20c92383b5b5a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090193760681984
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Yunis Londoño, Juan José900883724ed1be45c24ef9e18a9f99dbLinares Ballesteros, Teresa Adriana Elvira56a47e0a2ca74099013ea390ce0bc1a2Yunis Hazbun, Luz Karime9dfd91dfc5a9bb08437e414e3255bbb6Patología MolecularOncohematologia PediatricaYunis Hazbun, Luz Karime [0000000333655196]2024-09-03T16:27:48Z2024-09-03T16:27:48Z2024https://repositorio.unal.edu.co/handle/unal/86783Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapas, tablasIntroducción y objetivo: Existen pocos estudios describiendo las alteraciones genómicas en pacientes pediátricos con leucemia mieloide aguda (LMA) en países latinoamericanos. El objetivo fue identificar alteraciones genómicas, características clínicas y desenlaces en una cohorte de pacientes pediátricos con LMA no promielocítica de Bogotá D.C. Diferentes estudios han demostrado variantes farmacogenéticas relacionadas con la toxicidad de fármacos en pacientes con leucemia mieloide aguda. El desarrollo de resistencia a la quimioterapia es un factor relevante en el tratamiento de la LMA y es responsable en parte de las recaídas y el aumento de la toxicidad en las terapias de segunda línea. Por otro lado, siendo Colombia un país multiétnico y pluricultural, compuesto por tres grupos étnicos principales: población mixta derivada de Europa (Adm-Col), afrodescendientes (Afr-Col) y población amerindia (Amer), es importante determinar los componentes de ancestría en los pacientes pediátricos con LMA, así como en una muestra representativa de los tres grupos étnicos principales del país para conocer si la ancestría podría estar asociada a desenlaces en la muestra analizada. El objetivo fue identificar la frecuencia de alteraciones genómicas (cromosómicas, y genéticas) mediante estudios de citogenómica, pruebas rápidas por PCR-electroforesis capilar y análisis mediante secuencia de próxima generación con un panel de 30 genes recurrentemente alterados en LMA, así como la frecuencia alélica y genotípica de las variantes de algunos genes asociados a respuesta terapéutica o toxicidad como ABCB1, CDA, DCK, GSTT1 y GSTM1 en pacientes pediátricos con LMA y en una muestra representativa de la población colombiana y el análisis de ancestría mediante 46 marcadores informativos de ancestría tipo Indel (AIM-Indel) y evaluar la asociación de estas variantes genéticas con los resultados clínicos y la toxicidad en pacientes pediátricos con leucemia mieloide aguda. Materiales y métodos: Estudio observacional descriptivo de cohorte, se incluyeron 51 pacientes con LMA de novo (no promielocítica) hasta los 18 años de edad. Se realizó análisis de citogenética convencional y FISH, secuencia de nueva generación (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, ZRSR2) utilizando el panel Myeloid Plus kit de SOPHIA Genetics (Sophia Genetics SA, Saint Sulpice, Suiza) y pruebas rápidas de PCR-EC para FLT3, NPM1 y CEBPA. Se evaluó la correlación entre los datos genómicos, la respuesta al tratamiento y los desenlaces. Adicionalmente, se incluyeron 457 muestras de los tres grupos étnicos principales de Colombia (Adm-Col, Afr-Col y Amer). Se utilizó una prueba de SNaPshot™ y una PCR convencional para evaluar las variantes ABCB1 rs1045642 (3435G>A), rs1128503 (1236G>A), rs2032582 (2677C>A/T); CDA rs2072671 (79A>C), rs532545 (-451C>T); DCK rs2306744 (-201C>T), rs3771182313 (72C>T) como control, y genotipo nulo en GSTT1 y GSTM1. El análisis de ancestría se realizó mediante la amplificación de 46 AIM-Indel mediante PCR múltiplex, seguido de electroforesis capilar y comparación con poblaciones de referencia. Los resultados clínicos y las asociaciones de toxicidad se evaluaron utilizando odds ratio y análisis de chi-cuadrado, adicionalmente se evaluó la supervivencia libre de evento. El componente de ancestría se evaluó mediante el programa STRUCTURE. Resultados: El 67,4% de la cohorte presentó una alteración citogenética y el 74,5% variantes genéticas. Se identificaron variantes en FLT3 en el 27,4 %, seguidas de NRAS (21,6 %), KRAS (13,7 %), WT1 y KIT (11,8 %). El 66% de los pacientes fueron estratificados como alto riesgo al final de la inducción. FLT3-ITD presentó una probabilidad mayor a recaída 11,25 OR (IC 95 % 1,89-66,72, p 0,006) y NRAS con muerte durante la inducción 16,71 OR (IC 95 % 1,51-184,59, p 0,022). Los pacientes portadores del genotipo GG en ABCB1 (1236G>A, rs1128503) tuvieron un mayor probabilidad a presentar cardiotoxicidad OR de 6,8 (IC 95 % 1,08-42,73, p 0,044) en comparación con los pacientes portadores de los genotipos AA o GA 0,14 OR (IC 95 % 0,023- 0,92, p 0,044). Para ABCB1 (1236G>A rs1128503/ 2677C>A/T rs2032582/ 3435G>A rs1045642) los genotipos combinados AA/AA/AA tuvieron con una mayor probabilidad a presentar muerte después del trasplante de precursores hematopoyéticos OR 13,73 (IC 95% 1,94-97,17, p 0,009). Los genotipos combinados GG/CC/GG con genotipo CA de CDA (79A>C, rs2072671) o el genotipo CT en CDA (-451C>T rs532545), tuvieron un OR de 4,11 (IC 95% 2,32-725, p 0,007) y OR de 3,8 (IC 95% 2,23-6,47, p 0,027) con enfermedad residual medible >0,1% después del primer ciclo de quimioterapia, respectivamente. Se encontraron frecuencias alélicas y genotípicas diferentes para las variantes genéticas analizadas en los tres principales grupos étnicos de Colombia. En general, se encontraron frecuencias más altas de genotipos asociados con riesgo de toxicidad en Afr-Col en comparación con Adm-Col y población Amer. Por otro lado, el análisis de ancestría en las muestras de pacientes pediátricos con LMA mostró una distribución similar de mezcla étnica a la encontrada en la población Adm-Col. Este resultado por el momento descarta que el componente de ancestría en la muestra de pacientes pediátricos con LMA en esta cohorte esté asociado a un mayor riesgo de eventos adversos y toxicidad en la muestra analizada. Conclusiones: Nuestro estudio destaca la importancia de una rápida incorporación de las pruebas genéticas en el diagnóstico y tratamiento de la LMA pediátrica en Colombia, ya que incide directamente en la estratificación del riesgo y el tratamiento. Por otro lado, estos resultados resaltan la importancia del análisis farmacogenético en la LMA pediátrica, particularmente en poblaciones con un alto grado de mezcla, los cuales podrían ser útiles como una herramienta futura en la estratificación de pacientes para el tratamiento. Por último, los resultados de ancestría obtenidos en la muestra de pacientes pediátricos analizados son similares a los obtenidos para la muestra de población colombiana mezclada derivada de europeos (Adm-Col) de la región andina colombiana, y descartarían la contribución de un componente de ancestría específico (Adm-Col) asociado a eventos adversos o toxicidad (Texto tomado de la fuente).Introduction and objective: There are few studies that describe genomic alterations in pediatric patients with acute myeloid leukemia (AML) in Latin American countries. The objective was to identify genomic alterations, clinical characteristics and outcomes in a cohort of pediatric patients with non-promyelocytic AML from Bogotá D.C. On the other hand, different studies have demonstrated pharmacogenetic variants related to drug toxicity in patients with acute myeloid leukemia. Resistance development to chemotherapy is a relevant factor in the treatment of AML and is partly responsible for relapses and increased toxicity in second-line therapies. On the other hand, Colombia is a multiethnic and pluricultural country, composed of three main ethnic groups: mixed population derived from Europe (Adm-Col), Afro-descendants (Afr-Col) and Amerindian population (Amer); therefore, it was important to determine the ancestry components in pediatric patients with AML, as well as in a representative sample of the three main ethnic groups of the country to know if ancestry could be associated with outcomes in the analyzed sample. The aim was to identify the frequency of genomic alterations (chromosomal and genetic) through cytogenomics studies, rapid PCR-capillary electrophoresis tests, next-generation sequencing analysis with a panel of 30 genes recurrently altered in AML, the allelic frequency and genotypic analysis of the ABCB1, CDA, DCK, GSTT1 and GSTM1 gene variants in pediatric patients with AML and in a representative sample of the Colombian population, ancestry analysis using 46 Indel-type ancestry informative markers (AIM-Indel) and to evaluate the association of these genetic variants with clinical outcomes and toxicity in pediatric patients with acute myeloid leukemia. Materials and methods: Descriptive observational cohort study, 51 patients with de novo AML (non-promyelocytic) up to 18 years of age were included. Conventional cytogenetics and FISH analysis, next generation sequence (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, ZRSR2) using the Myeloid Plus panel kit from SOPHIA Genetics (Sophia Genetics SA, Saint Sulpice, Switzerland) and rapid EC-PCR tests for FLT3, NPM1 and CEBPA was carried out in each sample. The correlation between genomic data, treatment response and outcomes were evaluated. Additionally, 457 samples from the three main ethnic groups of Colombia (Adm-Col, Afr-Col and Amer) were included. A SNaPshot™ test and conventional PCR were used to evaluate the ABCB1 variants rs1045642 (3435G>A), rs1128503 (1236G>A), rs2032582 (2677C>A/T); CDA rs2072671 (79A>C), rs532545 (-451C>T); DCK rs2306744 (-201C>T), rs3771182313 (72C>T) as control, and null genotype in GSTT1 and GSTM1. Ancestry analysis was performed by amplification of 46 AIM-Indels by multiplex PCR, followed by capillary electrophoresis and comparison with reference populations. Clinical outcomes and toxicity associations were evaluated using odds ratios and chi-square analyses. Also, we evaluated event-free survival. The ancestry component was evaluated using the STRUCTURE program. Results: 67.4% of the cohort presented a cytogenetic alteration and 74.5% had genetic variants. Variants in FLT3 were identified in 27.4%, followed by NRAS (21.6%), KRAS (13.7%), WT1, and KIT (11.8%). 66% of patients were stratified as high risk at the end of induction. FLT3-ITD was associated with relapse 11.25 OR (CI 1.89-66.72, p 0.006) and NRAS with death during induction 16.71 OR (CI 1.51-184.59, p 0.022). Patients carrying the GG genotype in ABCB1 (1236G>A, rs1128503) had an OR of 6.8 (95% CI 1.08-42.73, p 0.044) for cardiotoxicity compared to patients carrying the AA or GA 0.14 OR (95% CI 0.023- 0.92, p 0.044). For ABCB1 (1236G>A rs1128503/ 2677C>A/T rs2032582/ 3435G>A rs1045642) the combined AA/AA/AA genotypes were associated with death after transplantation of hematopoietic precursors OR 13.73 (95% CI 1.94- 97.17, p 0.009). The combined GG/CC/GG genotypes with CA genotype of CDA (79A>C, rs2072671) or the CT genotype in CDA (-451C>T rs532545), had an OR of 4.11 (95% CI 2.32-725, p 0.007) and OR of 3.8 (95% CI 2.23-6.47, p 0.027) with measurable residual disease >0.1% after the first cycle of chemotherapy, respectively. Different allelic and genotypic frequencies were found for the genetic variants analyzed in the three main ethnic groups of Colombia. Overall, higher frequencies of genotypes associated with toxicity risk were found in Afr-Col compared to Adm-Col and Amer populations. On the other hand, the ancestry analysis in the samples of pediatric patients with AML showed a similar distribution of ethnic mixture to that found in the Adm-col population. This result, for the moment, rules out that the ancestry component in the sample of pediatric patients with AML in this cohort is associated with a higher risk of adverse events and toxicity in the sample analyzed. Conclusions: Our study highlights the importance of rapid incorporation of genetic testing in the diagnosis and treatment of pediatric AML in Colombia, since it directly affects risk stratification and treatment. On the other hand, these results highlight the importance of pharmacogenetic analysis in pediatric AML, particularly in populations with a high degree of admixture, which could be useful as a future tool in the stratification of patients for treatment. Finally, the ancestry results obtained in the sample of pediatric patients are similar to those obtained for the mixed Colombian population sample derived from Europeans (Adm-Col) from the Colombian Andean region, and would rule out the contribution of a specific ancestry component (Adm-Col) associated with adverse events or toxicity.DoctoradoDoctora en OncologíaAlteraciones moleculares en leucemias y linfomasCáncer Infantil94 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Doctorado en OncologíaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéutica570 - Biología::576 - Genética y evolución610 - Medicina y salud::616 - EnfermedadesLeucemia Mielomonocítica AgudaVariantes FarmacogenómicasResistencia a AntineoplásicosEfectos Colaterales y Reacciones Adversas Relacionados con MedicamentosLeukemia, Myelomonocytic, AcuteDrug Resistance, NeoplasmDrug-Related Side Effects and Adverse ReactionsPharmacogenomic VariantsLeucemia mieloide agudaGenómicaPediátricaColombiaLatinoaméricaABCB1DCKCDAGSTT1GSTM1CitarabinaAntraciclinasSNVAncestríaAIM-InDelAcute myeloid leukemiaGenomicsPediatricsLatin AmericaCitarabineAntracyclinesAncestryCaracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombianaMolecular and pharmacogenetic characterization in acute myeloid leukemia patients and the correlation with risk stratification and treatment responseTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaHyman DM, Taylor BS, Baselga J. Implementing Genome-Driven Oncology. Cell. 2017;168(4):584-99.Shyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online. 2013;15(1):4.Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.Cacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel). 2023;15(16).Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-19.Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727.Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.Renneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22(5):915-31.Megias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.Bertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.Strianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, et al. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020;11(7).Ashley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-22.Kabbani D, Akika R, Wahid A, Daly AK, Cascorbi I, Zgheib NK. Pharmacogenomics in practice: a review and implementation guide. Front Pharmacol. 2023;14:1189976.Creutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187-205.Lin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019. J Hematol Oncol. 2021;14(1):197.Olbara G, Martijn HA, Njuguna F, Langat S, Martin S, Skiles J, et al. Influence of health insurance status on childhood cancer treatment outcomes in Kenya. Support Care Cancer. 2020;28(2):917-24.Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31.International Agency for Research on Cancer. GLOBOCAN [Internet]. 2023.Cuenta de Alto Costo FCdEdAC. Situación del cáncer en la población pediátrica atendida en el SGSSS de Colombia 2021. 2022.Bain BJ. Leukaemia Diagnosis: Wiley; 2017.Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451-8.Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-302.Huber S, Baer C, Hutter S, Dicker F, Meggendorfer M, Pohlkamp C, et al. AML classification in the year 2023: How to avoid a Babylonian confusion of languages. Leukemia. 2023;37(7):1413-20.Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2017:1-14.Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-47.Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-42.Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264-78.Leick MB, Levis MJ. The Future of Targeting FLT3 Activation in AML. Curr Hematol Malig Rep. 2017;12(3):153-67.Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31-46.Wold B, Myers RM. Sequence census methods for functional genomics. Nat Methods. 2008;5(1):19-21.Ilyas AM, Ahmad S, Faheem M, Naseer MI, Kumosani TA, Al-Qahtani MH, et al. Next Generation Sequencing of Acute Myeloid Leukemia: Influencing Prognosis. BMC Genomics. 162015. p. S5.Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66-72.Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058-66.Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424-33.Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-74.Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-21.Merker JD, Valouev A, Gotlib J. Next-generation sequencing in hematologic malignancies: what will be the dividends? Ther Adv Hematol. 2012;3(6):333-9.Roumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.Tomizawa D, Tanaka S, Hasegawa D, Iwamoto S, Hiramatsu H, Kiyokawa N, et al. Evaluation of high-dose cytarabine in induction therapy for children with de novo acute myeloid leukemia: a study protocol of the Japan Children's Cancer Group Multi-Center Seamless Phase II-III Randomized Trial (JPLSG AML-12). Jpn J Clin Oncol. 2018;48(6):587-93.Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543-52.Creutzig U, Ritter J, Zimmermann M, Reinhardt D, Hermann J, Berthold F, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol. 2001;19(10):2705-13.Creutzig U, Zimmermann M, Bourquin JP, Dworzak MN, von Neuhoff C, Sander A, et al. Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood. 2011;118(20):5409-15.Creutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013;122(1):37-43.Gibson BE, Webb DK, Howman AJ, De Graaf SS, Harrison CJ, Wheatley K. Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol. 2011;155(3):366-76.Creutzig U, Ritter J, Zimmermann M, Hermann J, Gadner H, Sawatzki DB, et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia. 2001;15(3):348-54.Aplenc R, Meshinchi S, Sung L, Alonzo T, Choi J, Fisher B, et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children's Oncology Group. Haematologica. 2020;105(7):1879-86.Rubnitz JE, Lacayo NJ, Inaba H, Heym K, Ribeiro RC, Taub J, et al. Clofarabine Can Replace Anthracyclines and Etoposide in Remission Induction Therapy for Childhood Acute Myeloid Leukemia: The AML08 Multicenter, Randomized Phase III Trial. J Clin Oncol. 2019;37(23):2072-81.Gamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB, Raimondi SC, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021-32.Kim H. Treatments for children and adolescents with AML. Blood Res. 2020;55(S1):S5-s13.Creutzig U, Dworzak MN, Zimmermann M, Reinhardt D, Sramkova L, Bourquin JP, et al. Characteristics and outcome in patients with central nervous system involvement treated in European pediatric acute myeloid leukemia study groups. Pediatr Blood Cancer. 2017;64(12).Evans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.Cheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.Issa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.De Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.Sabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.Dries DL. Genetic ancestry, population admixture, and the genetic epidemiology of complex disease. Circ Cardiovasc Genet. 2. United States2009. p. 540-3.Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010;86(5):661-73.Pereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.Aplenc R, Alonzo TA, Gerbing RB, Smith FO, Meshinchi S, Ross JA, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children's Oncology Group. Blood. 2006;108(1):74-80.Grimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.www.cuentadealtocosto.org. Capítulo 16. Leucemia Mieloide Aguda. Situación del cáncer en Colombia. Cuenta de Alto Costo. Fondo Colombiano de Enfermedades de Alto Costo. 2015.CINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.Ministerio de Salud y Protección Social C, Instituto Nacional de Cancerología, ESE. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Colombia2017.Karol SE, Coustan-Smith E, Cao X, Shurtleff SA, Raimondi SC, Choi JK, et al. Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy. Br J Haematol. 2015;168(1):94-101.Balgobind BV, Lugthart S, Hollink IH, Arentsen-Peters STJCM, van Wering ER, de Graaf SSN, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24:942.Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551-65.Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070-82.Online Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.Online Mendelian Inheritance in Man OM-NIoGM, Johns Hopkins University (Baltimore, MD), {date}. World Wide Web. 2019.Puumala SE, Ross JA, Aplenc R, Spector LG. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer. 2013;60(5):728-33.Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep. 2021;23(2):16.Bravo LE, Garcia LS, Collazos P, Aristizabal P, Ramirez O. Descriptive epidemiology of childhood cancer in Cali: Colombia 1977-2011. Colomb Med (Cali). 2013;44(3):155-64.CINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.Cheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.Creutzig U, Kaspers GJ. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 22. United States2004. p. 3432-3.Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.Alexander S, Pole JD, Gibson P, Lee M, Hesser T, Chi SN, et al. Classification of treatment-related mortality in children with cancer: a systematic assessment. Lancet Oncol. 2015;16(16):e604-10.Arsham MS BM, Lawce HJ. The AGT Cytogenetics Laboratory Manual. Fourth edition. ed. Hoboken, New Jersey: Wiley-Blackwell.; 2017.Murphy KM, Levis M, Hafez MJ, Geiger T, Cooper LC, Smith BD, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96-102.Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747-54.Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66.Lin LI, Lin TC, Chou WC, Tang JL, Lin DT, Tien HF. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia. 2006;20:1899.Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23.Llimpe Y. Cytogenetic risk groups for childhood acute myeloid leukemia based on survival analysis in a cancer referral hospital from Perú. Biomedica. 2021;41(2):302-13.Deana A, Moran L, Fynn A. Resultados del protocolo GATLA 8-LMAP´07. Nuevos desafíos clínicos en leucemia mieloide aguda pediátrica de novo. Revista Hematología. 2019;23(2):82-91.Tarlock K, Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75-93.Bolouri H, Farrar JE, Triche T, Jr., Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-12.Molina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, et al. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr. 2020;8:586.Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89-94.Ishida H, Iguchi A, Aoe M, Nishiuchi R, Matsubara T, Keino D, et al. Panel-based next-generation sequencing facilitates the characterization of childhood acute myeloid leukemia in clinical settings. Biomed Rep. 2020;13(5):46.Meshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108(12):3654-61.Kaburagi T, Yamato G, Shiba N, Yoshida K, Hara Y, Tabuchi K, et al. Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia. Haematologica. 2022;107(3):583-92.Chen K, Zhang Y, Qian L, Wang P. Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol. 2021;14(1):116.Cacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).Ishikawa Y, Kawashima N, Atsuta Y, Sugiura I, Sawa M, Dobashi N, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020;4(1):66-75.Ayatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, et al. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther. 2017;10(1):1-7.Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer. 2021;68(7):e28979.Chen J, Glasser CL. New and Emerging Targeted Therapies for Pediatric Acute Myeloid Leukemia (AML). Children (Basel). 2020;7(2).Elgarten CW, Wood AC, Li Y, Alonzo TA, Brodersen LE, Gerbing RB, et al. Outcomes of intensification of induction chemotherapy for children with high-risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer. 2021;68(12):e29281.Van Weelderen RE, Klein K, Natawidjaja MD, De Vries R, Kaspers GJ. Outcome of pediatric acute myeloid leukemia (AML) in low- and middle-income countries: a systematic review of the literature. Expert Rev Anticancer Ther. 2021;21(7):765-80.Evans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.Arbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.Cheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.Megias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.Scott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.Bertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.Issa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.Shastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.Conti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.Rasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.Sutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.De Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.Sabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.Bargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.Lamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther. 2007;323(3):935-45.Hartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, et al. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood. 2009;113(10):2145-53.Cros E, Jordheim L, Dumontet C, Galmarini CM. Problems related to resistance to cytarabine in acute myeloid leukemia. Leuk Lymphoma. 2004;45(6):1123-32.Emadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics. 2012;13(11):1257-69.Kufe DW, Munroe D, Herrick D, Egan E, Spriggs D. Effects of 1-beta-D-arabinofuranosylcytosine incorporation on eukaryotic DNA template function. Mol Pharmacol. 1984;26(1):128-34.Lamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics. 2009;10(10):1657-74.Jones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61(6):682-99.Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537-92.Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2017;58(5):1197-206.Hyo Kim L, Sub Cheong H, Koh Y, Ahn KS, Lee C, Kim HL, et al. Cytidine deaminase polymorphisms and worse treatment response in normal karyotype AML. J Hum Genet. 2015;60(12):749-54.Abraham A, Varatharajan S, Abbas S, Zhang W, Shaji RV, Ahmed R, et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13(3):269-82.Abraham A, Devasia AJ, Varatharajan S, Karathedath S, Balasubramanian P, Mathews V. Effect of cytosine arabinoside metabolizing enzyme expression on drug toxicity in acute myeloid leukemia. Ann Hematol. 2015;94(5):883-5.Chottiner EG, Shewach DS, Datta NS, Ashcraft E, Gribbin D, Ginsburg D, et al. Cloning and expression of human deoxycytidine kinase cDNA. Proceedings of the National Academy of Sciences. 1991;88(4):1531.Online Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.Roumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.Voso MT, D'Alo F, Putzulu R, Mele L, Scardocci A, Chiusolo P, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood. 2002;100(8):2703-7.Davies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, Radloff GA, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol. 2001;19(5):1279-87.Rondón González F, Barreto G. Estructura genética, ancestralidad y su relación con los estudios en salud humana. Médicas UIS. 2013;26(1).Yunis JJ, Yunis EJ, Yunis E. MHC Class II haplotypes of Colombian Amerindian tribes. Genet Mol Biol. 2013;36(2):158-66.Pereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.Yunis JJ, Acevedo LE, Campo DS, Yunis EJ. Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomedica. 2013;33(3):459-67.Usme-Romero S, Alonso M, Hernandez-Cuervo H, Yunis EJ, Yunis JJ. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia. Genet Mol Biol. 2013;36(2):149-57.Yunis JJ, Yunis EJ, Yunis E. Genetic relationship of the Guambino, Paez, and Ingano Amerindians of southwest Colombia using major histocompatibility complex class II haplotypes and blood groups. Hum Immunol. 2001;62(9):970-8.Yunis JJ, Ossa H, Salazar M, Delgado MB, Deulofeut R, de la Hoz A, et al. Major histocompatibility complex class II alleles and haplotypes and blood groups of four Amerindian tribes of northern Colombia. Hum Immunol. 1994;41(4):248-58.Banklau C, Jindadamrongwech S, Sawangpanich R, Apibal S, Hongeng S, Paisooksantivatana K, et al. Effect of genetic alterations of cytarabine- metabolizing enzymes in childhood acute lymphoblastic leukemia. Hematol Oncol Stem Cell Ther. 2010;3(3):103-8.Geppert M, Baeta M, Núñez C, Martínez-Jarreta B, Zweynert S, Cruz OW, et al. Hierarchical Y-SNP assay to study the hidden diversity and phylogenetic relationship of native populations in South America. Forensic Sci Int Genet. 2011;5(2):100-4.Excoffier LaHELL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources; 2010. p. 564-7.Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources; 2008. p. 103-6.Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59.Dent A. Earl BMv. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources; 2012. p. 359-61.Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611-20.Mogollón Olivares F, Moncada Madero J, Casas-Vargas A, Zea Montoya S, Suárez Medellín D, Gusmão L, et al. Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. Am J Phys Anthropol. 2020;173(3):437-47.Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.Piacentini S, Polimanti R, Porreca F, Martínez-Labarga C, De Stefano GF, Fuciarelli M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol Biol Rep. 2011;38(2):1225-30.Yunis JJ, Acevedo LE, Campo DS, Yunis EJ. Population data of Y-STR minimal haplotypes in a sample of Caucasian-Mestizo and African descent individuals of Colombia. Forensic Sci Int. 2005;151(2-3):307-13.Yunis JJ, Garcia O, Baena A, Arboleda G, Uriarte I, Yunis E. Population frequency for the short tandem repeat loci D18S849, D3S1744, and D12S1090 in Caucasian-Mestizo and African descent populations of Colombia. J Forensic Sci. 2000;45(2):429-31.Norris ET, Rishishwar L, Wang L, Conley AB, Chande AT, Dabrowski AM, et al. Assortative Mating on Ancestry-Variant Traits in Admixed Latin American Populations. Front Genet. 2019;10:359.Wheeler HE, Gamazon ER, Stark AL, O'Donnell PH, Gorsic LK, Huang RS, et al. Genome-wide meta-analysis identifies variants associated with platinating agent susceptibility across populations. Pharmacogenomics J. 2013;13(1):35-43.Kim DH, Park JY, Sohn SK, Lee NY, Baek JH, Jeon SB, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer. 2006;118(9):2195-201.Gréen H, Falk IJ, Lotfi K, Paul E, Hermansson M, Rosenquist R, et al. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharmacogenomics J. 2012;12(2):111-8.Megías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, et al. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(2):109-18.He H, Yin J, Li X, Zhang Y, Xu X, Zhai M, et al. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur J Clin Pharmacol. 2015;71(3):293-302.Megías-Vericat JE, Martínez-Cuadrón D, Herrero MJ, Rodríguez-Veiga R, Solana-Altabella A, Boluda B, et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2021;62(3):659-68.Mahlknecht U, Dransfeld CL, Bulut N, Kramer M, Thiede C, Ehninger G, et al. SNP analyses in cytarabine metabolizing enzymes in AML patients and their impact on treatment response and patient survival: identification of CDA SNP C-451T as an independent prognostic parameter for survival. Leukemia. 23. England2009. p. 1929-32.Parmar S, Seeringer A, Denich D, Gärtner F, Pitterle K, Syrovets T, et al. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics. 2011;12(4):503-14.Medina-Sanson A, Ramirez-Pacheco A, Moreno-Guerrero SS, Dorantes-Acosta EM, Sanchez-Preza M, Reyes-Lopez A. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia. Biomed Res Int. 2015;2015:309491.Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Martínez-Cuadrón D, et al. Influence of cytarabine metabolic pathway polymorphisms in acute myeloid leukemia induction treatment. Leuk Lymphoma. 2017;58(12):2880-94.Carpi FM, Vincenzetti S, Ubaldi J, Pucciarelli S, Polzonetti V, Micozzi D, et al. CDA gene polymorphisms and enzyme activity: genotype-phenotype relationship in an Italian-Caucasian population. Pharmacogenomics. 2013;14(7):769-81.Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 2004;14(11):759-68.Adema AD, Zuurbier L, Floor K, Hubeek I, Kaspers GJ, Albertoni F, et al. Cellular resistance against troxacitabine in human cell lines and pediatric patient acute myeloid leukemia blast cells. Nucleosides Nucleotides Nucleic Acids. 2006;25(9-11):981-6.Xie XT, Jiang SY, Li BS, Yang LL. [Relationship between the expression of the genes encoding the key enzymes for cytarabine metabolism and the pharmacokinetics of cytarabine in the treatment of childhood acute leukemia with high-dose cytarabine]. Zhonghua Er Ke Za Zhi. 2008;46(4):276-80.Hubeek I, Stam RW, Peters GJ, Broekhuizen R, Meijerink JP, van Wering ER, et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 2005;93(12):1388-94.Bartholomae S, Gruhn B, Debatin KM, Zimmermann M, Creutzig U, Reinhardt D, et al. Coexpression of Multiple ABC-Transporters is Strongly Associated with Treatment Response in Childhood Acute Myeloid Leukemia. Pediatr Blood Cancer. 2016;63(2):242-7.Andrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, Dos Santos-Bueno FV, Vianna DT, et al. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol. 2021;11:642744.Den Boer ML, Pieters R, Kazemier KM, Janka-Schaub GE, Henze G, Creutzig U, et al. Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br J Haematol. 1999;104(2):321-7.Weich N, Nuñez MC, Galimberti G, Elena G, Acevedo S, Larripa I, et al. Polymorphic variants of GSTM1, GSTT1, and GSTP1 genes in childhood acute leukemias: A preliminary study in Argentina. Hematology. 2015;20(9):511-6.Davies SM, Robison LL, Buckley JD, Radloff GA, Ross JA, Perentesis JP. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children's Cancer Group study. Cancer Epidemiol Biomarkers Prev. 2000;9(6):563-6.Rojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, et al. Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010;143(1):13-20.Xavier C, Builes JJ, Gomes V, Ospino JM, Aquino J, Parson W, et al. Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. PloS one. 2015;10(3):e0120155-e.Ossa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PLoS One. 2016;11(10):e0164414.Noguera MC, Schwegler A, Gomes V, Briceño I, Alvarez L, Uricoechea D, et al. Colombia's racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol. 2014;41(5):453-9.Ibarra A, Freire-Aradas A, Martínez M, Fondevila M, Burgos G, Camacho M, et al. Comparison of the genetic background of different Colombian populations using the SNPforID 52plex identification panel. Int J Legal Med. 2014;128(1):19-25.Pinto-Merino Á, Labrador J, Zubiaur P, Alcaraz R, Herrero MJ, Montesinos P, et al. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics. 2022;14(3).EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86783/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis Doctoral Luz Karime Yunis.pdfTesis Doctoral Luz Karime Yunis.pdfTesis de Doctorado en Oncologíaapplication/pdf2891627https://repositorio.unal.edu.co/bitstream/unal/86783/2/Tesis%20Doctoral%20Luz%20Karime%20Yunis.pdf4554660e893e97d7dc5b3b4c912b554eMD52THUMBNAILTesis Doctoral Luz Karime Yunis.pdf.jpgTesis Doctoral Luz Karime Yunis.pdf.jpgGenerated Thumbnailimage/jpeg3959https://repositorio.unal.edu.co/bitstream/unal/86783/3/Tesis%20Doctoral%20Luz%20Karime%20Yunis.pdf.jpg099c804cd314e29dcbe20c92383b5b5aMD53unal/86783oai:repositorio.unal.edu.co:unal/867832024-09-03 23:04:35.97Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=