Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering

ilustraciones

Autores:
Rojas Flórez, Mónica Liliana
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85013
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85013
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Aleación de alta entropía
Sputtering
Corrosión
HEAs
Anticorrosivas
High entropy alloy
Sputtering
Corrosion
HEAs
Anticorrosive
Materiales de construcción
Tecnología de materiales
Ensayo de materiales
Building materials
Materials engineering
Materials testing
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_205de5d77ed4808a0523f48431800946
oai_identifier_str oai:repositorio.unal.edu.co:unal/85013
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
dc.title.translated.eng.fl_str_mv Characterization of the corrosion resistance of high entropy multi- component CrNiMoTaW alloys deposited using the sputtering technique
title Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
spellingShingle Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Aleación de alta entropía
Sputtering
Corrosión
HEAs
Anticorrosivas
High entropy alloy
Sputtering
Corrosion
HEAs
Anticorrosive
Materiales de construcción
Tecnología de materiales
Ensayo de materiales
Building materials
Materials engineering
Materials testing
title_short Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
title_full Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
title_fullStr Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
title_full_unstemmed Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
title_sort Caracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputtering
dc.creator.fl_str_mv Rojas Flórez, Mónica Liliana
dc.contributor.advisor.spa.fl_str_mv Velasco Estrada, Leonardo
Olaya Flórez, Jhon Jairo
dc.contributor.author.spa.fl_str_mv Rojas Flórez, Mónica Liliana
dc.contributor.researchgroup.spa.fl_str_mv Information-guided design, automation, and nanotechnology iam-nano
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Aleación de alta entropía
Sputtering
Corrosión
HEAs
Anticorrosivas
High entropy alloy
Sputtering
Corrosion
HEAs
Anticorrosive
Materiales de construcción
Tecnología de materiales
Ensayo de materiales
Building materials
Materials engineering
Materials testing
dc.subject.proposal.spa.fl_str_mv Aleación de alta entropía
Sputtering
Corrosión
HEAs
Anticorrosivas
dc.subject.proposal.eng.fl_str_mv High entropy alloy
Sputtering
Corrosion
HEAs
Anticorrosive
dc.subject.unesco.spa.fl_str_mv Materiales de construcción
Tecnología de materiales
Ensayo de materiales
dc.subject.unesco.eng.fl_str_mv Building materials
Materials engineering
Materials testing
description ilustraciones
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-11-28T19:27:34Z
dc.date.available.none.fl_str_mv 2023-11-28T19:27:34Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85013
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85013
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Fundación Universa, “Más de 26 mil millones de pesos pierde la industria colombiana debido a la corrosión de materiales.” [Online]. Available: https://www.universia.net/co/actualidad/orientacion-academica/mas-26-milmillones-pesos-pierde-industria-colombiana-debido-corrosion-materiales1045848.html
J. Wadsworth, T. G. Nieh, and J. J. Stephens, “Recent advances in aerospace refractory metal alloys,” International Materials Reviews, vol. 33, no. 3, 1988.
R. E. Gold and D. L. Harrod, “Refractory metal alloys for fusion reactor applications,” Journal of Nuclear Materials, vol. 85–86, no. PART 2, pp. 805–815, 1979, doi: 10.1016/0022-3115(79)90359-3.
M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, “High Entropy Alloys. Fundamentals and Applications,” National Energy Technology, 2016. doi: 10.1007/978-3-319- 27013-5.
A. Gali and E. P. George, “Tensile properties of high and medium entropy alloys,” Intermetallics (Barking), vol. 39, pp. 74–78, 2013, doi: 10.1016/j.intermet.2013.03.018.
J. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv Eng Mater, vol. 6, no. 5, pp. 299– 303, 2004, doi: 10.1002/adem.200300567.
L. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro,” Universidad EAFIT, vol. 1, no. 1, pp. 11–92, 2017.
R. Ortiz, “Síntesis y caracterización de un recubrimiento Al-Si-N otenido a través del proceso de pulverización catódica reactiva variando el voltaje bias DC,” Universidad del Valle, p. 96, 2011.
B. R. Braeckman et al., “High entropy alloy thin films deposited by magnetron sputtering of powder targets,” Thin Solid Films, 2015, doi: 10.1016/j.tsf.2015.02.070.
T. K. Chen, T. T. Shun, J. W. Yeh, and M. S. Wong, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering,” vol. 189, pp. 193–200, 2004, doi: 10.1016/j.surfcoat.2004.08.023.
V. K. Soni, S. Sanyal, K. R. Rao, and S. K. Sinha, “A review on phase prediction in high entropy alloys,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 22. SAGE Publications Ltd, pp. 6268–6286, Nov. 01, 2021. doi: 10.1177/09544062211008935.
B. Xiao, W. Jia, H. Tang, J. Wang, and L. Zhou, “Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting,” J Mater Sci Technol, vol. 108, pp. 54–63, May 2022, doi: 10.1016/j.jmst.2021.07.041.
J. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.
J. Chen et al., “A review on fundamental of high entropy alloys with promising high– temperature properties,” Journal of Alloys and Compounds, vol. 760. Elsevier Ltd, pp. 15–30, Sep. 05, 2018. doi: 10.1016/j.jallcom.2018.05.067.
J. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci Rep, vol. 6, Nov. 2016, doi: 10.1038/srep37946.
L. Luo et al., “High-entropy alloys for solid hydrogen storage: a review,” International Journal of Hydrogen Energy. Elsevier Ltd, 2023. doi: 10.1016/j.ijhydene.2023.07.146.
S. K. Padamata, A. Yasinskiy, and V. Yanov, “Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review,” Metals (Basel), vol. 12, no. 2, pp. 1–17, 2022.
P. M. Martin, Deposition technologies for films and coatings, Second. Elsevier Inc., 2005.
“Diagram of the Sputtering Process,” The Global Source SEMICORE. [Online]. Available: https://www.semicore.com/news/67-reactive-sputtering-basics
Z. Zhang et al., “Recent research progress on high-entropy alloys as electrocatalytic materials,” J Alloys Compd, vol. 918, p. 165585, 2022, doi: 10.1016/j.jallcom.2022.165585.
A. Sarkar et al., “High entropy oxides for reversible energy storage,” Nat Commun, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-05774-5.
M. R. Chellali et al., “On the homogeneity of high entropy oxides: An investigation at the atomic scale,” Scr Mater, vol. 166, pp. 58–63, Jun. 2019, doi: 10.1016/j.scriptamat.2019.02.039.
J. W. Yeh, “Recent progress in high-entropy alloys,” Annales de Chimie: Science des Materiaux, vol. 31, no. 6, pp. 633–648, 2006, doi: 10.3166/acsm.31.633-648.
J. P. Couzinié and G. Dirras, “Body-centered cubic high-entropy alloys: From processing to underlying deformation mechanisms,” Materials Characterization, vol. 147. Elsevier Inc., pp. 533–544, Jan. 01, 2019. doi: 10.1016/j.matchar.2018.07.015.
J. Yeh, “Alloy Design Strategies and Future Trends in High-Entropy Alloys,” Department of Materials Science and Engineering, National Tsing Hua University, 2013, doi: 10.1007/s11837-013-0761-6.
B. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, “High-entropy alloys: basic concepts,” in High-Entropy Alloys, Elsevier, 2019, pp. 13–30. doi: 10.1016/b978-0-12-816067-1.00002-3.
J. W. Yeh, “Overview of high entropy alloys,” in High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, 2016, pp. 1–19. doi: 10.1007/978-3-319-27013-5_1.
J. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.
X. Liu et al., “A statistics-based study and machine-learning of stacking fault energies in HEAs,” J Alloys Compd, vol. 966, Dec. 2023, doi: 10.1016/j.jallcom.2023.171547.
Z. Lei, X. Liu, H. Wang, Y. Wu, S. Jiang, and Z. Lu, “Development of advanced materials via entropy engineering,” Scr Mater, vol. 165, pp. 164–169, May 2019, doi: 10.1016/j.scriptamat.2019.02.015.
L. L. Snead, D. T. Hoelzer, M. Rieth, and A. A. N. Nemith, “Refractory Alloys: Vanadium, niobium, molybdenum, tungsten,” in Structural Alloys for Nuclear Energy Applications, Elsevier, 2019, pp. 585–640. doi: 10.1016/B978-0-12-397046- 6.00013-7.
H. Y. Ha, T. H. Lee, J. H. Bae, and D. W. Chun, “Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels,” Metals (Basel), vol. 8, no. 8, Aug. 2018, doi: 10.3390/met8080653.
J. N. Wanklyn, “THE ROLE OF MOLYBDENUM IN THE CREVICE CORROSION OF STAINLESS STEELS*,” 1981.
R. C. Newman, “THE DISSOLUTION AND PASSIVATION KINETICS OF STAINLESS ALLOYS CONTAINING MOLYBDENUM-1. COULOMETRIC STUDIES OF Fe-Cr AND Fe-Cr-Mo ALLOYS,” 1985.
Â. Pe and R. Garcõ, Dynamic atomic force microscopy methods, vol. 47. 2002.
B. Cappella and M. Kappl, “Force measurements with the atomic force microscope : Technique , interpretation and applications,” vol. 59, pp. 1–152, 2005, doi: 10.1016/j.surfrep.2005.08.003.
E. Cheikh et al., “Investigación de los efectos de la asimetría Rsk y la curtosis Rku en el comportamiento tribológico en un ensayo pin-on-disc de superficies mecanizadas mediante procesos convencionales de fresado y torneado,” Investigación de materiales., vol. 24, no. 2, 2021.
E. C. Talibouya Ba, M. R. Dumont, P. S. Martins, R. M. Drumond, M. P. M. da Cruz, and V. F. Vieira, “Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes,” Materials Research, vol. 24, no. 2, pp. 1–14, 2021, doi: 10.1590/1980-5373-MR-2020-0435.
S. Zhao and S. Wen, “Microscopía electrónica de barrido,” pp. 1–14, 2021.
H. Sobre and C. Educaci, “Una breve introducción a SEM ( microscopía electrónica de barrido ),” SCIMED, vol. 44, no. 0, pp. 1–6.
M. Ipohorski and P. B. Bozzano, “Microscopía electrónica de barrido en la caracterización de materiales,” Cienc Invest, vol. 63, no. 3, pp. 43–53, 2013.
L. A. Benavides Castillo, “NANOTUBOS DE CARBONO APLICADOS AL ELECTRODO NEGATIVO DE UNA BATERÍA DE Ni/MH,” 2013.
F. García, “Síntesis y caracterización de materiales basados en aluminosilicato de Litio para aplicaciones con coeficiente de dilatación térmica controlado,” UNIVERSIDAD DE OVIEDO, 2018.
X. D. Techniques, “X-Ray Diffraction Techniques,” University of California, vol. 9, no. 12, pp. 331–362, 1986.
A. A. Bunaciu et al., “X-Ray Diffraction: Instrumentation and Applications,” Crit Rev Anal Chem, vol. 8347, 2015, doi: 10.1080/10408347.2014.949616.
A. Chauhan, “Powder XRD Technique and its Applications in Science and Technology,” J Anal Bioanal Tech, vol. 5, no. 6, 2014, doi: 10.4172/2155- 9872.1000212.
H. Khan, A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience, “Experimental methods in chemical engineering: X-ray diffraction spectroscopy— XRD,” Canadian Journal of Chemical Engineering, vol. 98, no. 6, pp. 1255–1266, 2020, doi: 10.1002/cjce.23747.
S. R. Falsafi, H. Rostamabadi, and S. M. Jafari, X-ray diffraction (XRD) of nanoencapsulated food ingredients. Elsevier Inc., 2020. doi: 10.1016/b978-0-12- 815667-4.00009-2.
J. Epp, X-Ray Diffraction (XRD) Techniques for Materials Characterization. Elsevier Ltd, 2016. doi: 10.1016/B978-0-08-100040-3.00004-3.
S. Fatimah, R. Ragadhita, D. F. Al Husaeni, and A. B. D. Nandiyanto, “How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method,” ASEAN Journal of Science and Engineering, vol. 2, no. 1, pp. 65–76, 2021, doi: 10.17509/ajse.v2i1.37647.
S. Nasrazadani and S. Hassani, “Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries,” Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, pp. 39–54, 2016, doi: 10.1016/B978-0-08-100117-2.00010-8.
C. Li, D. Wang, and L. Kong, “Application of Machine Learning Techniques in Mineral Classification for Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Images,” J Pet Sci Eng, vol. 200, no. December 2020, p. 108178, 2021, doi: 10.1016/j.petrol.2020.108178.
P. D. Ngo, “Energy Dispersive Spectroscopy,” Failure Analysis of Integrated Circuits, pp. 205–215, 1999, doi: 10.1007/978-1-4615-4919-2_12.
V. D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), no. X. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-814182-3.00021-3
D. R. Baer and S. Thevuthasan, Characterization of Thin Films and Coatings, Third Edit. Elsevier Ltd., 2009. doi: 10.1016/B978-0-8155-2031-3.00016-8.
K. Riles, “Recent searches for continuous gravitational waves,” Mod Phys Lett A, vol. 32, no. 39, pp. 1–23, 2017, doi: 10.1142/S021773231730035X.
S. Khan, S. Le Calvé, and D. Newport, “A review of optical interferometry techniques for VOC detection,” Sens Actuators A Phys, vol. 302, 2020, doi: 10.1016/j.sna.2019.111782.
P. HARIHARAN, Basics of Interferometry, Second Edi. Sydney, Australia: Academic Press is an imprint of Elsevier, 1386.
Z. Hu, “Characterization of Materials, Nanomaterials, and Thin Films by Nanoindentation,” in Microscopy Methods in Nanomaterials Characterization, Micro and Nano Technologies, 2017, pp. 165–239. doi: 10.1016/B978-0-323-46141- 2.00006-7.
U. Ramamurty and J. Il Jang, “Nanoindentation for probing the mechanical behavior of molecular crystals-a review of the technique and how to use it,” CrystEngComm, vol. 16, no. 1, pp. 12–23, 2014, doi: 10.1039/c3ce41266k.
X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Mater Charact, vol. 48, no. 1, pp. 11– 36, 2002, doi: 10.1016/S1044-5803(02)00192-4.
N. K. Mukhopadhyay and P. Paufler, “Micro- and nanoindentation techniques for mechanical characterisation of materials,” International Materials Reviews, vol. 51, no. 4, pp. 209–245, 2006, doi: 10.1179/174328006X102475.
G. Instruments, “Getting Started with Electrochemical Corrosion Measurement rev 2,” Gamry Instruments Inc, pp. 1–11, 2017.
Gamry, “Gamry EIS part 1 - The Basics of Electrochemical Impedance Spectroscopy,” Gamry Instruments, pp. 1–18, 2017.
C. Gabrielli and M. Keddam, “Review of applications of impedance and noise analysis to uniform and localized corrosion,” Corrosion, vol. 48, no. 10, pp. 796–811, 1992, doi: 10.5006/1.3315878.
G. W. Walter, “A review of impedance plot methods used for corrosion performance analysis of painted metals,” Corros Sci, vol. 26, no. 9, pp. 681–703, 1986, doi: 10.1016/0010-938X(86)90033-8.
Semicore Equipment Inc., “Sputtering Yield Rates.” Accessed: Dec. 19, 2021. [Online]. Available: https://www.semicore.com/reference/sputtering-yields-reference
V. Miranda López and V. Manuel López Hirata, “Microestructura y Propiedades Mecánicas de la Aleación AlCuMnNi de Alta Entropía,” Instituto Politécnico Nacional Fabricación, 2016.
H. D. V. Mejía, A. M. Echavarría, J. A. Calderón, and G. Gilberto Bejarano, “Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by DC magnetron sputtering,” J Alloys Compd, vol. 828, 2020, doi: 10.1016/j.jallcom.2020.154396.
J. Yang et al., “Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings,” Surf Coat Technol, vol. 441, no. April, p. 128502, 2022, doi: 10.1016/j.surfcoat.2022.128502.
S. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang, and J. W. Lee, “Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content,” Surf Coat Technol, vol. 403, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126351.
C. Tian, H. Cai, and Y. Xue, “Effect of Working Pressure on Tribological Properties of Ce-Ti/MoS2 Coatings Using Magnetron Sputter,” Coatings, vol. 12, no. 10, pp. 1– 15, 2022, doi: 10.3390/coatings12101576.
X. Liu, J. Kavanagh, A. Matthews, and A. Leyland, “The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings,” Surf Coat Technol, vol. 284, pp. 101–111, 2015, doi: 10.1016/j.surfcoat.2015.08.070.
H. Nourolahi, M. A. Bolorizadeh, and A. Behjat, “Light absorption with branched gold cauliflower-like nanostructure arrays,” Vacuum, vol. 123, pp. 29–34, 2016, doi: 10.1016/j.vacuum.2015.10.008.
H. Elmkhah, T. F. Zhang, A. Abdollah-zadeh, K. H. Kim, and F. Mahboubi, “Surface characteristics for the TieAleN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages,” J Alloys Compd, vol. 688, pp. 820–827, 2016, doi: 10.1016/j.jallcom.2016.07.013.
X. He, W. Liao, G. Wang, L. Zhong, and M. Li, “Evaluation of hydrodynamic lubrication performance of textured surface from the perspective of skewness and kurtosis,” Industrial Lubrication and Tribology, vol. 70, no. 5, pp. 829–837, 2018, doi: 10.1108/ILT-10-2016-0236.
L. Chang and Y. R. Jeng, “Effects of negative skewness of surface roughness on the contact and lubrication of nominally flat metallic surfaces,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 227, no. 6, pp. 559–569, 2013, doi: 10.1177/1350650112465365.
M. Taufik and P. K. Jain, “Laser assisted finishing process for improved surface finish of fused deposition modelled parts,” J Manuf Process, vol. 30, no. January 2018, pp. 161–177, 2017, doi: 10.1016/j.jmapro.2017.09.020.
J. A. Thornton, “High rate thick film growth,” Annual Review of Materials Science, vol. 7, p. 239, 1977.
T. C. Huang, S. Y. Hsu, Y. T. Lai, S. Y. Tsai, and J. G. Duh, “Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating,” Surf Coat Technol, vol. 425, no. 101, p. 127713, 2021, doi: 10.1016/j.surfcoat.2021.127713.
Y. F. Zhao et al., “Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu,” J Mater Sci Technol, vol. 116, pp. 199–213, 2022, doi: 10.1016/j.jmst.2021.10.036.
J. Yang et al., “Effect of Au-ion irradiation on the surface morphology, microstructure and mechanical properties of amorphous AlCrFeMoTi HEA coating,” Surf Coat Technol, vol. 418, no. March, p. 127252, 2021, doi: 10.1016/j.surfcoat.2021.127252.
L. Ma, F. Wiame, X. Chen, and X. Ma, “Effect of Nb on the surface composition of FeCrAl alloys after anodic polarization,” Mater Des, vol. 219, 2022, doi: 10.1016/j.matdes.2022.110728.
H. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, and L. Medvecky, “XPS characterization of SmNbO 4 and SmTaO 4 precursors prepared by sol-gel method,” Appl Surf Sci, vol. 473, no. December 2018, pp. 1–5, 2019, doi: 10.1016/j.apsusc.2018.12.143.
R. Hu, J. Du, Y. Zhang, Q. Ji, R. Zhang, and J. Chen, “Microstructure and corrosion properties of AlxCuFeNiCoCr(x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content,” J Alloys Compd, vol. 921, p. 165455, 2022, doi: 10.1016/j.jallcom.2022.165455.
S. Sarojini and R. Vanathi Vijayalakshmi, “XPS studies on silver ion conducting solid electrolyte SbI3-Ag2MoO4,” Mater Today Proc, no. xxxx, pp. 3–7, 2022, doi: 10.1016/j.matpr.2022.05.489.
MC Biesinger, “X-ray Photoelectron Spectroscopy (XPS) Reference Pages.” [Online]. Available: http://www.xpsfitting.com/
G. W. Strzelecki et al., “Multi-component low and high entropy metallic coatings synthesized by pulsed magnetron sputtering,” Surf Coat Technol, vol. 446, no. August, 2022, doi: 10.1016/j.surfcoat.2022.128802.
M. Dada, P. Popoola, N. Mathe, S. Adeosun, and S. Pityana, “Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation,” International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 339–345, 2021, doi: 10.1016/j.ijlmm.2021.04.002.
S. Zhao et al., “Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding,” Surf Coat Technol, vol. 417, no. December 2020, p. 127228, 2021, doi: 10.1016/j.surfcoat.2021.127228.
L. Lyu, J. Yang, M. Zhou, M. Yan, and J. Yang, “Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings,” Vacuum, vol. 209, no. August 2022, p. 111774, 2023, doi: 10.1016/j.vacuum.2022.111774.
P. Slepski, M. Szocinski, G. Lentka, and K. Darowicki, “Novel fast non-linear electrochemical impedance method for corrosion investigations,” Measurement (Lond), vol. 173, no. November 2020, p. 108667, 2021, doi: 10.1016/j.measurement.2020.108667.
F. B. Growcock and R. J. Jasinski, Impedance Spectroscopy. 1989. doi: 10.1021/bk1989-0396.ch036.
C. España, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas,” Universidad Nacional de Colombia, pp. 1–164, 2021.
P. Zhang et al., “A high corrosion resistant high entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting,” Mater Lett, vol. 324, no. May, p. 132728, 2022, doi: 10.1016/j.matlet.2022.132728.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85013/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85013/3/Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4%20U.FT.09.006.004%20-%20Monica%20Liliana%20Rojas%20Florez.pdf
https://repositorio.unal.edu.co/bitstream/unal/85013/2/M%c3%b3nica_Liliana_Rojas_Fl%c3%b3rez.pdf
https://repositorio.unal.edu.co/bitstream/unal/85013/4/M%c3%b3nica_Liliana_Rojas_Fl%c3%b3rez.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
8efe59d951930c90593edff200f23273
96355e209d49261a82973b64eb07c30c
30cda4d7ce7d4de85649d3852b1f4153
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089248099270656
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Velasco Estrada, Leonardo703c6ad958255e57d6da111667277932600Olaya Flórez, Jhon Jairo6742336e78cba204f151e59d8e612f56Rojas Flórez, Mónica Liliana3882aeb19fd25517e4e43436edcc5210600Information-guided design, automation, and nanotechnology iam-nano2023-11-28T19:27:34Z2023-11-28T19:27:34Z2023https://repositorio.unal.edu.co/handle/unal/85013Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa corrosión es responsable de causar grandes daños a las instalaciones industriales, tuberías y otras estructuras, por lo que se ha investigado constantemente para desarrollar diversas tecnologías para mitigar estos daños. Una de estas áreas de investigación es el uso de recubrimientos de materiales mediante aleaciones de alta entropía. Una aleación de alta entropía es aquella que está compuesta por cinco o más elementos en una composición aproximadamente equiatómica y tiene una entropía configuracional mayor o igual a 1.5R, donde R es la constante universal de los gases. En este trabajo, mediante la modalidad de colaboración científica, el Instituto Tecnológico de Karlsruhe - KIT de Alemania, realizó el proceso de deposición de los recubrimientos multicomponentes de aleación de alta entropía de CrNbMoTaW en el sustrato acero 316L con la técnica sputtering. El objetivo principal de este estudio fue investigar la resistencia a la corrosión, la composición química y otras propiedades del recubrimiento HEA variando el flujo de Ar y presión de trabajo en la deposición de la película nanoestructurada. Para los recubrimientos se utilizaron blancos de 99.99% de pureza con una distancia entre estos y el sustrato de 300mm ± 5. La microestructura de los recubrimientos se analizó mediante AFM (microscopia de fuerza atómica), SEM (microscopia electrónica de barrido), XRD (difracción de rayos X), XPS (espectroscopía de fotoemisión de rayos X), EDS (espectroscopía de energía dispersada) e interferometría. Se determinó el comportamiento de la resistencia a la corrosión mediante las técnicas de Velocidad de corrosión con la técnica Polarización Potenciodinámica Tafel y Espectroscopia de Impedancia Electroquímica (EIS), adicionalmente, para evaluar la dureza de los recubrimientos HEAs se realizaron analisis de dureza mediante pruebas de nanoindentación con punta de diamante Berkovich. Durante la investigación, se obtiene recubrimientos en conformidad a los requisitos de HEA, así mismo se lograron obtener comportamientos aproximados de resistencia a la corrosión del acero inoxidable 316L. (Texto tomado de la fuente).Corrosion is responsible for causing major damage to industrial facilities, pipelines, and other structures, which is why constant research has been carried out to develop various technologies to mitigate these damages. One of these research areas is the use of high-entropy alloys material coatings. A high-entropy alloy is one that is composed of five or more elements in approximately equiatomic composition and has a configurational entropy greater than or equal to 1.5R, where R is the universal gas constant. In this work, the Karlsruhe Institute of Technology - KIT of Germany, carried out the deposition process of high-entropy alloy CrNbMoTaW multicomponent coatings on the 316L steel substrate using the sputtering technique in a scientific collaboration. The main objective of this study was to investigate the corrosion resistance, chemical composition, and other properties of the HEA coating by varying the Ar flow and working pressure in the deposition of the nanostructured film. For the coatings, 99.99% pure targets were used with a distance between these and the substrate of 300mm ± 5. The microstructure of the coatings was analyzed by AFM (atomic force microscopy), SEM (scanning electron microscopy), XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), EDS (energy-dispersive spectroscopy), and interferometry. The behavior of the corrosion resistance was determined by the Electrochemical Impedance Spectroscopy (EIS) and Corrosion Rate techniques using Tafel Potentiodynamic Polarization, additionally, to evaluate the hardness of the HEA coatings, nanoindentation tests were performed using a Berkovich diamond tip. During the investigation, the coatings were found to conform to the HEA requirements, and approximate behaviors of corrosion resistance of stainless steel 316L were achieved.MaestríaMagíster en Ingeniería - Materiales y ProcesosIngeniería de superficiesxx, 103 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAleación de alta entropíaSputteringCorrosiónHEAsAnticorrosivasHigh entropy alloySputteringCorrosionHEAsAnticorrosiveMateriales de construcciónTecnología de materialesEnsayo de materialesBuilding materialsMaterials engineeringMaterials testingCaracterización de la resistencia a la corrosión de aleaciones multicomponentes de CrNbMoTaW de alta entropía depositados con la técnica de sputteringCharacterization of the corrosion resistance of high entropy multi- component CrNiMoTaW alloys deposited using the sputtering techniqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMFundación Universa, “Más de 26 mil millones de pesos pierde la industria colombiana debido a la corrosión de materiales.” [Online]. Available: https://www.universia.net/co/actualidad/orientacion-academica/mas-26-milmillones-pesos-pierde-industria-colombiana-debido-corrosion-materiales1045848.htmlJ. Wadsworth, T. G. Nieh, and J. J. Stephens, “Recent advances in aerospace refractory metal alloys,” International Materials Reviews, vol. 33, no. 3, 1988.R. E. Gold and D. L. Harrod, “Refractory metal alloys for fusion reactor applications,” Journal of Nuclear Materials, vol. 85–86, no. PART 2, pp. 805–815, 1979, doi: 10.1016/0022-3115(79)90359-3.M. C. Gao, J.-W. Yeh, P. K. Liaw, and Y. Zhang, “High Entropy Alloys. Fundamentals and Applications,” National Energy Technology, 2016. doi: 10.1007/978-3-319- 27013-5.A. Gali and E. P. George, “Tensile properties of high and medium entropy alloys,” Intermetallics (Barking), vol. 39, pp. 74–78, 2013, doi: 10.1016/j.intermet.2013.03.018.J. W. Yeh et al., “Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes,” Adv Eng Mater, vol. 6, no. 5, pp. 299– 303, 2004, doi: 10.1002/adem.200300567.L. Angarita, “Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro,” Universidad EAFIT, vol. 1, no. 1, pp. 11–92, 2017.R. Ortiz, “Síntesis y caracterización de un recubrimiento Al-Si-N otenido a través del proceso de pulverización catódica reactiva variando el voltaje bias DC,” Universidad del Valle, p. 96, 2011.B. R. Braeckman et al., “High entropy alloy thin films deposited by magnetron sputtering of powder targets,” Thin Solid Films, 2015, doi: 10.1016/j.tsf.2015.02.070.T. K. Chen, T. T. Shun, J. W. Yeh, and M. S. Wong, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering,” vol. 189, pp. 193–200, 2004, doi: 10.1016/j.surfcoat.2004.08.023.V. K. Soni, S. Sanyal, K. R. Rao, and S. K. Sinha, “A review on phase prediction in high entropy alloys,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 22. SAGE Publications Ltd, pp. 6268–6286, Nov. 01, 2021. doi: 10.1177/09544062211008935.B. Xiao, W. Jia, H. Tang, J. Wang, and L. Zhou, “Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting,” J Mater Sci Technol, vol. 108, pp. 54–63, May 2022, doi: 10.1016/j.jmst.2021.07.041.J. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.J. Chen et al., “A review on fundamental of high entropy alloys with promising high– temperature properties,” Journal of Alloys and Compounds, vol. 760. Elsevier Ltd, pp. 15–30, Sep. 05, 2018. doi: 10.1016/j.jallcom.2018.05.067.J. Gild et al., “High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics,” Sci Rep, vol. 6, Nov. 2016, doi: 10.1038/srep37946.L. Luo et al., “High-entropy alloys for solid hydrogen storage: a review,” International Journal of Hydrogen Energy. Elsevier Ltd, 2023. doi: 10.1016/j.ijhydene.2023.07.146.S. K. Padamata, A. Yasinskiy, and V. Yanov, “Magnetron Sputtering High-Entropy Alloy Coatings: A Mini-Review,” Metals (Basel), vol. 12, no. 2, pp. 1–17, 2022.P. M. Martin, Deposition technologies for films and coatings, Second. Elsevier Inc., 2005.“Diagram of the Sputtering Process,” The Global Source SEMICORE. [Online]. Available: https://www.semicore.com/news/67-reactive-sputtering-basicsZ. Zhang et al., “Recent research progress on high-entropy alloys as electrocatalytic materials,” J Alloys Compd, vol. 918, p. 165585, 2022, doi: 10.1016/j.jallcom.2022.165585.A. Sarkar et al., “High entropy oxides for reversible energy storage,” Nat Commun, vol. 9, no. 1, Dec. 2018, doi: 10.1038/s41467-018-05774-5.M. R. Chellali et al., “On the homogeneity of high entropy oxides: An investigation at the atomic scale,” Scr Mater, vol. 166, pp. 58–63, Jun. 2019, doi: 10.1016/j.scriptamat.2019.02.039.J. W. Yeh, “Recent progress in high-entropy alloys,” Annales de Chimie: Science des Materiaux, vol. 31, no. 6, pp. 633–648, 2006, doi: 10.3166/acsm.31.633-648.J. P. Couzinié and G. Dirras, “Body-centered cubic high-entropy alloys: From processing to underlying deformation mechanisms,” Materials Characterization, vol. 147. Elsevier Inc., pp. 533–544, Jan. 01, 2019. doi: 10.1016/j.matchar.2018.07.015.J. Yeh, “Alloy Design Strategies and Future Trends in High-Entropy Alloys,” Department of Materials Science and Engineering, National Tsing Hua University, 2013, doi: 10.1007/s11837-013-0761-6.B. S. Murty, J. W. Yeh, S. Ranganathan, and P. P. Bhattacharjee, “High-entropy alloys: basic concepts,” in High-Entropy Alloys, Elsevier, 2019, pp. 13–30. doi: 10.1016/b978-0-12-816067-1.00002-3.J. W. Yeh, “Overview of high entropy alloys,” in High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, 2016, pp. 1–19. doi: 10.1007/978-3-319-27013-5_1.J. Luo and N. Zhou, “High-entropy grain boundaries,” Commun Mater, vol. 4, no. 1, Dec. 2023, doi: 10.1038/s43246-023-00335-w.X. Liu et al., “A statistics-based study and machine-learning of stacking fault energies in HEAs,” J Alloys Compd, vol. 966, Dec. 2023, doi: 10.1016/j.jallcom.2023.171547.Z. Lei, X. Liu, H. Wang, Y. Wu, S. Jiang, and Z. Lu, “Development of advanced materials via entropy engineering,” Scr Mater, vol. 165, pp. 164–169, May 2019, doi: 10.1016/j.scriptamat.2019.02.015.L. L. Snead, D. T. Hoelzer, M. Rieth, and A. A. N. Nemith, “Refractory Alloys: Vanadium, niobium, molybdenum, tungsten,” in Structural Alloys for Nuclear Energy Applications, Elsevier, 2019, pp. 585–640. doi: 10.1016/B978-0-12-397046- 6.00013-7.H. Y. Ha, T. H. Lee, J. H. Bae, and D. W. Chun, “Molybdenum effects on pitting corrosion resistance of FeCrMnMoNC austenitic stainless steels,” Metals (Basel), vol. 8, no. 8, Aug. 2018, doi: 10.3390/met8080653.J. N. Wanklyn, “THE ROLE OF MOLYBDENUM IN THE CREVICE CORROSION OF STAINLESS STEELS*,” 1981.R. C. Newman, “THE DISSOLUTION AND PASSIVATION KINETICS OF STAINLESS ALLOYS CONTAINING MOLYBDENUM-1. COULOMETRIC STUDIES OF Fe-Cr AND Fe-Cr-Mo ALLOYS,” 1985.Â. Pe and R. Garcõ, Dynamic atomic force microscopy methods, vol. 47. 2002.B. Cappella and M. Kappl, “Force measurements with the atomic force microscope : Technique , interpretation and applications,” vol. 59, pp. 1–152, 2005, doi: 10.1016/j.surfrep.2005.08.003.E. Cheikh et al., “Investigación de los efectos de la asimetría Rsk y la curtosis Rku en el comportamiento tribológico en un ensayo pin-on-disc de superficies mecanizadas mediante procesos convencionales de fresado y torneado,” Investigación de materiales., vol. 24, no. 2, 2021.E. C. Talibouya Ba, M. R. Dumont, P. S. Martins, R. M. Drumond, M. P. M. da Cruz, and V. F. Vieira, “Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes,” Materials Research, vol. 24, no. 2, pp. 1–14, 2021, doi: 10.1590/1980-5373-MR-2020-0435.S. Zhao and S. Wen, “Microscopía electrónica de barrido,” pp. 1–14, 2021.H. Sobre and C. Educaci, “Una breve introducción a SEM ( microscopía electrónica de barrido ),” SCIMED, vol. 44, no. 0, pp. 1–6.M. Ipohorski and P. B. Bozzano, “Microscopía electrónica de barrido en la caracterización de materiales,” Cienc Invest, vol. 63, no. 3, pp. 43–53, 2013.L. A. Benavides Castillo, “NANOTUBOS DE CARBONO APLICADOS AL ELECTRODO NEGATIVO DE UNA BATERÍA DE Ni/MH,” 2013.F. García, “Síntesis y caracterización de materiales basados en aluminosilicato de Litio para aplicaciones con coeficiente de dilatación térmica controlado,” UNIVERSIDAD DE OVIEDO, 2018.X. D. Techniques, “X-Ray Diffraction Techniques,” University of California, vol. 9, no. 12, pp. 331–362, 1986.A. A. Bunaciu et al., “X-Ray Diffraction: Instrumentation and Applications,” Crit Rev Anal Chem, vol. 8347, 2015, doi: 10.1080/10408347.2014.949616.A. Chauhan, “Powder XRD Technique and its Applications in Science and Technology,” J Anal Bioanal Tech, vol. 5, no. 6, 2014, doi: 10.4172/2155- 9872.1000212.H. Khan, A. S. Yerramilli, A. D’Oliveira, T. L. Alford, D. C. Boffito, and G. S. Patience, “Experimental methods in chemical engineering: X-ray diffraction spectroscopy— XRD,” Canadian Journal of Chemical Engineering, vol. 98, no. 6, pp. 1255–1266, 2020, doi: 10.1002/cjce.23747.S. R. Falsafi, H. Rostamabadi, and S. M. Jafari, X-ray diffraction (XRD) of nanoencapsulated food ingredients. Elsevier Inc., 2020. doi: 10.1016/b978-0-12- 815667-4.00009-2.J. Epp, X-Ray Diffraction (XRD) Techniques for Materials Characterization. Elsevier Ltd, 2016. doi: 10.1016/B978-0-08-100040-3.00004-3.S. Fatimah, R. Ragadhita, D. F. Al Husaeni, and A. B. D. Nandiyanto, “How to Calculate Crystallite Size from X-Ray Diffraction (XRD) using Scherrer Method,” ASEAN Journal of Science and Engineering, vol. 2, no. 1, pp. 65–76, 2021, doi: 10.17509/ajse.v2i1.37647.S. Nasrazadani and S. Hassani, “Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries,” Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry, pp. 39–54, 2016, doi: 10.1016/B978-0-08-100117-2.00010-8.C. Li, D. Wang, and L. Kong, “Application of Machine Learning Techniques in Mineral Classification for Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy (SEM-EDS) Images,” J Pet Sci Eng, vol. 200, no. December 2020, p. 108178, 2021, doi: 10.1016/j.petrol.2020.108178.P. D. Ngo, “Energy Dispersive Spectroscopy,” Failure Analysis of Integrated Circuits, pp. 205–215, 1999, doi: 10.1007/978-1-4615-4919-2_12.V. D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), no. X. Elsevier Inc., 2019. doi: 10.1016/B978-0-12-814182-3.00021-3D. R. Baer and S. Thevuthasan, Characterization of Thin Films and Coatings, Third Edit. Elsevier Ltd., 2009. doi: 10.1016/B978-0-8155-2031-3.00016-8.K. Riles, “Recent searches for continuous gravitational waves,” Mod Phys Lett A, vol. 32, no. 39, pp. 1–23, 2017, doi: 10.1142/S021773231730035X.S. Khan, S. Le Calvé, and D. Newport, “A review of optical interferometry techniques for VOC detection,” Sens Actuators A Phys, vol. 302, 2020, doi: 10.1016/j.sna.2019.111782.P. HARIHARAN, Basics of Interferometry, Second Edi. Sydney, Australia: Academic Press is an imprint of Elsevier, 1386.Z. Hu, “Characterization of Materials, Nanomaterials, and Thin Films by Nanoindentation,” in Microscopy Methods in Nanomaterials Characterization, Micro and Nano Technologies, 2017, pp. 165–239. doi: 10.1016/B978-0-323-46141- 2.00006-7.U. Ramamurty and J. Il Jang, “Nanoindentation for probing the mechanical behavior of molecular crystals-a review of the technique and how to use it,” CrystEngComm, vol. 16, no. 1, pp. 12–23, 2014, doi: 10.1039/c3ce41266k.X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Mater Charact, vol. 48, no. 1, pp. 11– 36, 2002, doi: 10.1016/S1044-5803(02)00192-4.N. K. Mukhopadhyay and P. Paufler, “Micro- and nanoindentation techniques for mechanical characterisation of materials,” International Materials Reviews, vol. 51, no. 4, pp. 209–245, 2006, doi: 10.1179/174328006X102475.G. Instruments, “Getting Started with Electrochemical Corrosion Measurement rev 2,” Gamry Instruments Inc, pp. 1–11, 2017.Gamry, “Gamry EIS part 1 - The Basics of Electrochemical Impedance Spectroscopy,” Gamry Instruments, pp. 1–18, 2017.C. Gabrielli and M. Keddam, “Review of applications of impedance and noise analysis to uniform and localized corrosion,” Corrosion, vol. 48, no. 10, pp. 796–811, 1992, doi: 10.5006/1.3315878.G. W. Walter, “A review of impedance plot methods used for corrosion performance analysis of painted metals,” Corros Sci, vol. 26, no. 9, pp. 681–703, 1986, doi: 10.1016/0010-938X(86)90033-8.Semicore Equipment Inc., “Sputtering Yield Rates.” Accessed: Dec. 19, 2021. [Online]. Available: https://www.semicore.com/reference/sputtering-yields-referenceV. Miranda López and V. Manuel López Hirata, “Microestructura y Propiedades Mecánicas de la Aleación AlCuMnNi de Alta Entropía,” Instituto Politécnico Nacional Fabricación, 2016.H. D. V. Mejía, A. M. Echavarría, J. A. Calderón, and G. Gilberto Bejarano, “Microstructural and electrochemical properties of TiAlN(Ag,Cu) nanocomposite coatings for medical applications deposited by DC magnetron sputtering,” J Alloys Compd, vol. 828, 2020, doi: 10.1016/j.jallcom.2020.154396.J. Yang et al., “Influence of coating thickness on microstructure, mechanical and LBE corrosion performance of amorphous AlCrFeTiNb high-entropy alloy coatings,” Surf Coat Technol, vol. 441, no. April, p. 128502, 2022, doi: 10.1016/j.surfcoat.2022.128502.S. K. Bachani, C. J. Wang, B. S. Lou, L. C. Chang, and J. W. Lee, “Microstructural characterization, mechanical property and corrosion behavior of VNbMoTaWAl refractory high entropy alloy coatings: Effect of Al content,” Surf Coat Technol, vol. 403, Dec. 2020, doi: 10.1016/j.surfcoat.2020.126351.C. Tian, H. Cai, and Y. Xue, “Effect of Working Pressure on Tribological Properties of Ce-Ti/MoS2 Coatings Using Magnetron Sputter,” Coatings, vol. 12, no. 10, pp. 1– 15, 2022, doi: 10.3390/coatings12101576.X. Liu, J. Kavanagh, A. Matthews, and A. Leyland, “The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings,” Surf Coat Technol, vol. 284, pp. 101–111, 2015, doi: 10.1016/j.surfcoat.2015.08.070.H. Nourolahi, M. A. Bolorizadeh, and A. Behjat, “Light absorption with branched gold cauliflower-like nanostructure arrays,” Vacuum, vol. 123, pp. 29–34, 2016, doi: 10.1016/j.vacuum.2015.10.008.H. Elmkhah, T. F. Zhang, A. Abdollah-zadeh, K. H. Kim, and F. Mahboubi, “Surface characteristics for the TieAleN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages,” J Alloys Compd, vol. 688, pp. 820–827, 2016, doi: 10.1016/j.jallcom.2016.07.013.X. He, W. Liao, G. Wang, L. Zhong, and M. Li, “Evaluation of hydrodynamic lubrication performance of textured surface from the perspective of skewness and kurtosis,” Industrial Lubrication and Tribology, vol. 70, no. 5, pp. 829–837, 2018, doi: 10.1108/ILT-10-2016-0236.L. Chang and Y. R. Jeng, “Effects of negative skewness of surface roughness on the contact and lubrication of nominally flat metallic surfaces,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, vol. 227, no. 6, pp. 559–569, 2013, doi: 10.1177/1350650112465365.M. Taufik and P. K. Jain, “Laser assisted finishing process for improved surface finish of fused deposition modelled parts,” J Manuf Process, vol. 30, no. January 2018, pp. 161–177, 2017, doi: 10.1016/j.jmapro.2017.09.020.J. A. Thornton, “High rate thick film growth,” Annual Review of Materials Science, vol. 7, p. 239, 1977.T. C. Huang, S. Y. Hsu, Y. T. Lai, S. Y. Tsai, and J. G. Duh, “Effect of NiTi metallic layer thickness on scratch resistance and wear behavior of high entropy alloy (CrAlNbSiV) nitride coating,” Surf Coat Technol, vol. 425, no. 101, p. 127713, 2021, doi: 10.1016/j.surfcoat.2021.127713.Y. F. Zhao et al., “Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu,” J Mater Sci Technol, vol. 116, pp. 199–213, 2022, doi: 10.1016/j.jmst.2021.10.036.J. Yang et al., “Effect of Au-ion irradiation on the surface morphology, microstructure and mechanical properties of amorphous AlCrFeMoTi HEA coating,” Surf Coat Technol, vol. 418, no. March, p. 127252, 2021, doi: 10.1016/j.surfcoat.2021.127252.L. Ma, F. Wiame, X. Chen, and X. Ma, “Effect of Nb on the surface composition of FeCrAl alloys after anodic polarization,” Mater Des, vol. 219, 2022, doi: 10.1016/j.matdes.2022.110728.H. Brunckova, M. Kanuchova, H. Kolev, E. Mudra, and L. Medvecky, “XPS characterization of SmNbO 4 and SmTaO 4 precursors prepared by sol-gel method,” Appl Surf Sci, vol. 473, no. December 2018, pp. 1–5, 2019, doi: 10.1016/j.apsusc.2018.12.143.R. Hu, J. Du, Y. Zhang, Q. Ji, R. Zhang, and J. Chen, “Microstructure and corrosion properties of AlxCuFeNiCoCr(x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content,” J Alloys Compd, vol. 921, p. 165455, 2022, doi: 10.1016/j.jallcom.2022.165455.S. Sarojini and R. Vanathi Vijayalakshmi, “XPS studies on silver ion conducting solid electrolyte SbI3-Ag2MoO4,” Mater Today Proc, no. xxxx, pp. 3–7, 2022, doi: 10.1016/j.matpr.2022.05.489.MC Biesinger, “X-ray Photoelectron Spectroscopy (XPS) Reference Pages.” [Online]. Available: http://www.xpsfitting.com/G. W. Strzelecki et al., “Multi-component low and high entropy metallic coatings synthesized by pulsed magnetron sputtering,” Surf Coat Technol, vol. 446, no. August, 2022, doi: 10.1016/j.surfcoat.2022.128802.M. Dada, P. Popoola, N. Mathe, S. Adeosun, and S. Pityana, “Investigating the elastic modulus and hardness properties of a high entropy alloy coating using nanoindentation,” International Journal of Lightweight Materials and Manufacture, vol. 4, no. 3, pp. 339–345, 2021, doi: 10.1016/j.ijlmm.2021.04.002.S. Zhao et al., “Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding,” Surf Coat Technol, vol. 417, no. December 2020, p. 127228, 2021, doi: 10.1016/j.surfcoat.2021.127228.L. Lyu, J. Yang, M. Zhou, M. Yan, and J. Yang, “Microstructure, mechanical properties and lead-bismuth eutectic corrosion behavior of (AlCrFeTiMo)NO and (AlCrFeTiNb)NO high entropy metal sublattice ceramic coatings,” Vacuum, vol. 209, no. August 2022, p. 111774, 2023, doi: 10.1016/j.vacuum.2022.111774.P. Slepski, M. Szocinski, G. Lentka, and K. Darowicki, “Novel fast non-linear electrochemical impedance method for corrosion investigations,” Measurement (Lond), vol. 173, no. November 2020, p. 108667, 2021, doi: 10.1016/j.measurement.2020.108667.F. B. Growcock and R. J. Jasinski, Impedance Spectroscopy. 1989. doi: 10.1021/bk1989-0396.ch036.C. España, “Resistencia a la corrosión y al desgaste de películas delgadas de aceros inoxidables con y sin plata para aplicaciones biomédicas,” Universidad Nacional de Colombia, pp. 1–164, 2021.P. Zhang et al., “A high corrosion resistant high entropy alloys (HEAs) coatings with single BCC solid solution structure by laser remelting,” Mater Lett, vol. 324, no. May, p. 132728, 2022, doi: 10.1016/j.matlet.2022.132728.ConsejerosEstudiantesGrupos comunitariosInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85013/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51Licencia para publicación de obras en el Repositorio Institucional UNAL v4 U.FT.09.006.004 - Monica Liliana Rojas Florez.pdfLicencia para publicación de obras en el Repositorio Institucional UNAL v4 U.FT.09.006.004 - Monica Liliana Rojas Florez.pdfLicenciaapplication/pdf308343https://repositorio.unal.edu.co/bitstream/unal/85013/3/Licencia%20para%20publicaci%c3%b3n%20de%20obras%20en%20el%20Repositorio%20Institucional%20UNAL%20v4%20U.FT.09.006.004%20-%20Monica%20Liliana%20Rojas%20Florez.pdf8efe59d951930c90593edff200f23273MD53ORIGINALMónica_Liliana_Rojas_Flórez.pdfMónica_Liliana_Rojas_Flórez.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf4251137https://repositorio.unal.edu.co/bitstream/unal/85013/2/M%c3%b3nica_Liliana_Rojas_Fl%c3%b3rez.pdf96355e209d49261a82973b64eb07c30cMD52THUMBNAILMónica_Liliana_Rojas_Flórez.pdf.jpgMónica_Liliana_Rojas_Flórez.pdf.jpgGenerated Thumbnailimage/jpeg5409https://repositorio.unal.edu.co/bitstream/unal/85013/4/M%c3%b3nica_Liliana_Rojas_Fl%c3%b3rez.pdf.jpg30cda4d7ce7d4de85649d3852b1f4153MD54unal/85013oai:repositorio.unal.edu.co:unal/850132024-08-19 23:11:31.24Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=