Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2
ilustraciones, diagramas, tablas
- Autores:
-
Méndez Otálvaro, Edward Francisco
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80993
- Palabra clave:
- 570 - Biología::572 - Bioquímica
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines::547 - Química orgánica
Chemical inhibitors
Inhibidores químicos
Enzyme Inhibitors
Inhibidores enzimaticos
Descriptor molecular
HK2
Tamizaje virtual
Simulación molecular
QSAR
Virtual screening
Molecular descriptor
Molecular simulation
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_20020c9031582d75ae5b90bf65cb4e00 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80993 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
dc.title.translated.eng.fl_str_mv |
Virtual screening and computational binding free energy calculation of possible glucosamine-like inhibitors for the enzyme hexokinase 2 |
title |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
spellingShingle |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::547 - Química orgánica Chemical inhibitors Inhibidores químicos Enzyme Inhibitors Inhibidores enzimaticos Descriptor molecular HK2 Tamizaje virtual Simulación molecular QSAR Virtual screening Molecular descriptor Molecular simulation |
title_short |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
title_full |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
title_fullStr |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
title_full_unstemmed |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
title_sort |
Búsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2 |
dc.creator.fl_str_mv |
Méndez Otálvaro, Edward Francisco |
dc.contributor.advisor.none.fl_str_mv |
Barragán Ramírez, Daniel Alberto Lans Vargas, Isaías |
dc.contributor.author.none.fl_str_mv |
Méndez Otálvaro, Edward Francisco |
dc.contributor.researchgroup.spa.fl_str_mv |
Calorimetría y Termodinámica de Procesos Irreversibles |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::547 - Química orgánica |
topic |
570 - Biología::572 - Bioquímica 540 - Química y ciencias afines::541 - Química física 540 - Química y ciencias afines::547 - Química orgánica Chemical inhibitors Inhibidores químicos Enzyme Inhibitors Inhibidores enzimaticos Descriptor molecular HK2 Tamizaje virtual Simulación molecular QSAR Virtual screening Molecular descriptor Molecular simulation |
dc.subject.lemb.none.fl_str_mv |
Chemical inhibitors Inhibidores químicos Enzyme Inhibitors Inhibidores enzimaticos |
dc.subject.proposal.spa.fl_str_mv |
Descriptor molecular HK2 Tamizaje virtual Simulación molecular |
dc.subject.proposal.eng.fl_str_mv |
QSAR Virtual screening Molecular descriptor Molecular simulation |
description |
ilustraciones, diagramas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11 |
dc.date.accessioned.none.fl_str_mv |
2022-02-16T15:50:03Z |
dc.date.available.none.fl_str_mv |
2022-02-16T15:50:03Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80993 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80993 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahn, K. J.; Kim, J.; Yun, M.; Park, J. H.; Lee, J. D. BMB reports 2009, 42, 350–5. Nelson, D.; Cox, M. Lehninger Principles of Biochemistry; Macmillan Learning, 2017. Tanner, L. B.; Goglia, A. G.; Wei, M. H.; Sehgal, T.; Parsons, L. R.; Park, J. O.; White, E.; Toettcher, J. E.; Rabinowitz, J. D. Cell Systems 2018, 1–14. Lis, P.; Dylag, M.; Nied´zwiecka, K.; Ko, Y. H.; Pedersen, P. L.; Goffeau, A.; U laszewski, S. Molecules 2016, 21, 1–15. De Rosa, V.; Iommelli, F.; Monti, M.; Fonti, R.; Votta, G.; Stoppelli, M. P.; Del Vecchio, S. Clinical Cancer Research 2015, 21, 5110–5120. Behar, V.; Pahima, H.; Kozminsky-Atias, A.; Arbel, N.; Loeb, E.; Herzberg, M.; Becker, O. M. Journal of Investigative Dermatology 2018, 1–9. Fang, D.; Maldonado, E. N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation, 1st ed.; Elsevier Inc., 2018; Vol. 138. Rabbani, N.; Thornalley, P. J. Trends in Endocrinology and Metabolism 2019, 30, 419–431. Lin, H.; et al. ACS Medicinal Chemistry Letters 2016, 7, 217–222. Cherkasov, A.; et al. Journal of Medicinal Chemistry 2014, 57, 4977–5010. Verma, J.; Khedkar, V.; Coutinho, E. Current Topics in Medicinal Chemistry 2010, 10, 95–115. Arciniega, M.; Medina-franco, J. L. TIP Revista Especializada en Ciencias Químico-Biológicas 2019, 21, 65–87. Gutiérrez, M.; Vallejos, G. A.; Cortés, M. P.; Bustos, C. Chemical Biology and Drug Design 2019, 1–12. Arora, M.; Yennamalli, R. M.; Sen, T. Z. Bioenergy Research 2018, 11, 850–867. Lemkul, J. A. Living Journal of Computational Molecular Science 2018, In Press, 1–52. Lo, Y. C.; Rensi, S. E.; Torng, W.; Altman, R. B. Drug Discovery Today 2018, 23, 1538–1546. Hollingsworth, S. A.; Dror, R. O. Neuron 2018, 99, 1129–1143. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe Jr., E. W. Pharmacological Reviews 2014, 66, 334–395. Saini, R. D. Journal of Proteins and Proteomics 2017, 8, 205–217. Wilson, J. E. Journal of Experimental Biology 2003, 206, 2049–2057. Nawaz, M. H.; Ferreira, J. C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W. M. Bioscience Reports 2018, 38, BSR20171666. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic acids research 2000, 28, 235–242. Stierand, K.; Maaß, P. C.; Rarey, M. Bioinformatics 2006, 22, 1710–1716. Gardiner, N. J.; Wang, Z.; Luke, C.; Gott, A.; Price, S. A.; Fernyhough, P. Brain research 2007, 1175, 143–154. Mathupala, S.; Ko, Y.; Pedersen, P. Oncogene 2006, 25, 4777–4786. Patra, K. C.; Wang, Q.; Bhaskar, P. T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W. J.; Allen, E. L.; et al. Cancer cell 2013, 24, 213–228. Woldetsadik, A. D.; Vogel, M. C.; Rabeh, W. M.; Magzoub, M. FASEB Journal 2017, 31, 2168–21874. Pastorino, J. G.; Shulga, N.; Hoek, J. B. Journal of Biological Chemistry 2002, 277, 7610–7618. Majewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P. E.; Skeen, J. E.; Gottlob, K.; Chandel, N. S.; Thompson, C. B.; Robey, R. B.; Hay, N. Molecular cell 2004, 16, 819–830. John, S.; Weiss, J. N.; Ribalet, B. PloS one 2011, 6, e17674. Pascale, R. M.; Calvisi, D. F.; Simile, M. M.; Feo, C. F.; Feo, F. Cancers 2020, 12, 2819. Tao, L.; Wei, L.; Liu, Y.; Ding, Y.; Liu, X.; Zhang, X.; Wang, X.; Yao, Y.; Lu, J.; Wang, Q.; et al. Biochemical pharmacology 2017, 125, 12–25. Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Journal of Experimental and Clinical Cancer Research 2017, 36, 1–12. Bao, F.; Yang, K.; Wu, C.; Gao, S.; Wang, P.; Chen, L.; Li, H. Fitoterapia 2018, 125, 123–129. Miao, G.; Han, J.; Zhang, J.; Wu, Y.; Tong, G. Biological and Pharmaceutical Bulletin 2019, 42, 123–129. Wang, W.; Wu, Y.; Yang, K.; Wu, C.; Tang, R.; Li, H.; Chen, L. European Journal of Medicinal Chemistry 2019, 173, 282–293. Liu, Y.; Li, M.; Zhang, Y.; Wu, C.; Yang, K.; Gao, S.; Zheng, M.; Li, X.; Li, H.; Chen, L. Bioorganic chemistry 2020, 96, 103609. Zhang, X.-M.; Peng, A.-H.; Xie, W.-D.; Wang, M.; Zheng, D.; Feng, M.-K. Chemistry & Biodiversity 2020, 17, e2000140. Jiang, S.-H.; Dong, F.-Y.; Da, L.-T.; Yang, X.-M.; Wang, X.-X.; Weng, J.-Y.; Feng, L.; Zhu, L.-L.; Zhang, Y.-L.; Zhang, Z.-G.; et al. The FASEB Journal 2020, 34, 3943–3955. Zheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Pharmacological Research 2021, 164, 105367. DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Journal of Health Economics 2016, 47, 20–33. Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M. P.; Spjuth, O.; Nantasenamat, C. Journal of Cheminformatics 2020, 12, 9. Iglesias, J.; Saen-oon, S.; Soliva, R.; Guallar, V. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1367. Ganesan, A.; Coote, M. L.; Barakat, K. Drug discovery today 2017, 22, 249–269. Huang, S.-Y.; Grinter, S. Z.; Zou, X. Physical Chemistry Chemical Physics 2010, 12, 12899–12908. Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Physical Chemistry Chemical Physics 2020, 22, 3149–3159. Durán, A.; Zamora, I.; Pastor, M. Journal of chemical information and modeling 2009, 49, 2129–2138. Neves, B. J.; Braga, R. C.; Melo-Filho, C. C.; Moreira-Filho, J. T.; Muratov, E. N.; Andrade, C. H. Frontiers in pharmacology 2018, 9, 1275. Brown, N. Bioisosterism in Medicinal Chemistry; John Wiley & Sons, Ltd, 2012; Chapter 1, pp 1–14. Leach, A. R.; Gillet, V. J. An introduction to chemoinformatics; Springer, 2007. Nantasenamat, C.; Conceptual Map of Computational Drug Discovery; https://figshare.com/articles/figure/Conceptual_Map_of_Computational_Drug_Discovery/5979400/1; 2018. Khan, P. M.; Roy, K. Expert Opinion on Drug Discovery 2018, 13, 1075–1089. OECD Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, 2014. Martin, T. M.; Harten, P.; Young, D. M.; Muratov, E. N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Journal of chemical information and modeling 2012, 52, 2570–2578. Gramatica, P. QSAR & combinatorial science 2007, 26, 694–701. Leach, A. R.; Leach, A. R. Molecular modelling: principles and applications; Pearson education, 2001. Fan, J.; Fu, A.; Zhang, L. Quantitative Biology 2019, 1–7. Torres, P. H.; Sodero, A. C.; Jofily, P.; Silva-Jr, F. P. International journal of molecular sciences 2019, 20, 4574. Salmaso, V.; Moro, S. Frontiers in Pharmacology 2018, 9, 1–16. Pagadala, N. S.; Syed, K.; Tuszynski, J. Biophysical Reviews 2017, 9, 91–102. Kessel, A.; Ben-Tal, N. Introduction to proteins: structure, function, and motion; CRC Press, 2018. The Amber Project; History of the Amber Project; http://ambermd.org/History.php. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174. Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. Journal of computational chemistry 2004, 25, 1656–1676. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Others Journal of computational chemistry 2010, 31, 671–690. Jorgensen, W. L.; Tirado-Rives, J. Journal of the American Chemical Society 1988, 110, 1657–1666. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Journal of the American Chemical Society 1996, 118, 11225–11236. Lindahl; Abraham; Hess; van der Spoel; GROMACS 2021.2 Manual; 2021. https://doi.org/10.5281/zenodo.4723561. Frenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to applications; Elsevier, 2001; Vol. 1. Tuckerman, M. E.; Martyna, G. J. The Journal of Physical Chemistry B 2000, 104, 159–178. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z.; Hou, T. Chemical reviews 2019, 119, 9478–9508. Kumari, R.; Kumar, R.; Lynn, A. Journal of Chemical Information and Modeling 2014, 54, 1951–1962. Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. Journal of Chemical Theory and Computation 2012, 8, 3314–3321. Genheden, S.; Ryde, U. Expert Opinion on Drug Discovery 2015, 10, 449–461. Honig, B.; Nicholls, A. Science (New York, N.Y.) 1995, 268, 1144–1149. Weiser, J.; Shenkin, P. S.; Still, W. C. Journal of Computational Chemistry 1999, 20, 217–230. Case, D. A.; Darden, T.; Cheatham, T.; Simmerling, C.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R.; Zhang, W.; et al. University of California, San Francisco 2021, 30. Kassem, S.; Ahmed, M.; El-Sheikh, S.; Barakat, K. H. Journal of Molecular Graphics and Modelling 2015, 62, 105–117. Duan, L.; Liu, X.; Zhang, J. Z. Journal of the American Chemical Society 2016, 138, 5722–5728. Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J. Z.; Duan, L. Nanoscale 2020, 12, 10737–10750. Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J. Z.; Hou, T. Physical Chemistry Chemical Physics 2018, 20, 14450–14460. Fourches, D.; Muratov, E.; Tropsha, A. Journal of Chemical Information and Modeling 2010, 50, 1189–1204. Cavasotto, C. N.; Abagyan, R. A. Journal of molecular biology 2004, 337, 209–225. Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C. N.; Cossio, P. Scientific reports 2019, 9, 1–14. Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33–38. DeLano, W. L. CCP4 Newsletter On Protein Crystallography 2002, 40, 82–92. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem 2004, 25, 1605–1612. ChemAxon; MarvinSketch, Version 20.16 ; 2020. Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Journal of Cheminformatics 2012, 4, 17. Hehre, W. J.; Ohlinger, S.; Spartan’14 ; 2014. Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A. F.; Sanner, M. F.; Koch, A.; Forli, S. Journal of Chemical Theory and Computation 2021, 17, 1060–1073; PMID: 33403848. Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. Journal of computational chemistry 2009, 30, 2785–2791. Trott, O.; Olson, A. Journal of computational chemistry 2010, 31, 455–461. Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Journal of Chemical Information and Modeling 2013, 53, 1893–1904. Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. PLoS Computational Biology 2014, 10, 1–7. Korb, O.; Stützle, T.; Exner, T. E. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2006, 4150 LNCS, 247–258. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1-2, 19–25. Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. Journal of Chemical Theory and Computation 2021. R Core Team; R: A Language and Environment for Statistical Computing; 2014. Van Rossum, G.; Drake Jr, F. L. Python tutorial ; Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995. O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Journal of Cheminformatics 2011, 3, 1–14. Sushko, I.; et al. Journal of Cheminformatics 2011, 3, 85764. Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, 223–228. Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. PubChem: Integrated Platform of Small Molecules and Biological Activities; Elsevier B.V., 2008; Vol. 4. Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. Journal of Chemical Information and Modeling 2012, 52, 1757–1768. Ropp, P. J.; Spiegel, J. O.; Walker, J. L.; Green, H.; Morales, G. A.; Milliken, K. A.; Ringe, J. J.; Durrant, J. D. Journal of Cheminformatics 2019, 11, 1–13. Bas, D. C.; Rogers, D. M.; Jensen, J. H. Proteins: Structure, Function and Genetics 2008, 73, 765–783. Chen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallographica Section D: Biological Crystallography 2010, 66, 12–21. Eastman, P.; et al. Journal of Chemical Theory and Computation 2013, 9, 461–469; PMID: 23316124. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Journal of Molecular Graphics and Modelling 2006, 25, 247–260. Sousa Da Silva, A. W.; Vranken, W. F. BMC Research Notes 2012, 5, 1–8. Meanwell, N. A. Journal of medicinal chemistry 2011, 54, 2529–2591. Hammett, L. P. Journal of the American Chemical Society 1937, 59, 96–103. Hansch, C.; Fujita, T. Journal of the American Chemical Society 1964, 86, 1616–1626. Kier, L. B. Molecular pharmacology 1967, 3, 487–494. Roy, K.; Kar, S.; Das, R. N. A primer on QSAR/QSPR modeling: fundamental concepts; Springer, 2015. Tishbirani, R. Journal of the Royal Statistical Society. Series B (Methodological) 1996, 58, 267–288. Algamal, Z. Y.; Lee, M. H.; Al-Fakih, A. M.; Aziz, M. Journal of Chemometrics 2015, 29, 547–556. Rasmussen, M. A.; Bro, R. Chemometrics and Intelligent Laboratory Systems 2012, 119, 21–31. Kuhn, M. Journal of Statistical Software, Articles 2008, 28, 1–26. Lee, L. C.; Liong, C. Y.; Jemain, A. A. Analyst 2018, 143, 3526–3539. Teisseyre, P.; K lopotek, R. A.; Mielniczuk, J. Computational Statistics 2016, 31, 943–972. Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, W223–W228. Dror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Journal of chemical information and modeling 2009, 49, 2333–2343. Smith, D. H.; Carhart, R. E.; Venkataraghavan, R. Journal of Chemical Information and Computer Sciences 1985, 25, 64–73. Bissantz, C.; Kuhn, B.; Stahl, M. Journal of Medicinal Chemistry 2010, 53, 5061–5084. Renner, S.; Fechner, U.; Schneider, G. Alignment-Free Pharmacophore Patterns – A Correlation-Vector Approach; John Wiley & Sons, 2006. Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references; John Wiley & Sons, 2009; Vol. 41. Bondi, A. The Journal of Physical Chemistry 1964, 68, 441–451. Mecozzi, S.; Rebek, J., Jr. Chemistry – A European Journal 1998, 4, 1016–1022. Mann, A. In The Practice of Medicinal Chemistry (Third Edition), third edition ed.; Wermuth, C. G., Ed.; Academic Press: New York, 2008; pp 363–379. Labute, P. Journal of Molecular Graphics and Modelling 2000, 18, 464–477. Haynes, W. M. CRC handbook of chemistry and physics; CRC press, 2014. Brinck, T.; Murray, J. S.; Politzer, P. The Journal of Chemical Physics 1993, 98, 4305–4306. Koopmans, T. Physica 1934, 1, 104–113. Prajapati, P.; Pandey, J.; Tandon, P.; Sinha, K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 206, 246–253. Chen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Chum, M. P.; Chen, K.; Jiang, H. Journal of Combinatorial Chemistry 2005, 7, 398–406. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Advanced drug delivery reviews 1997, 23, 3–25. Galloway, W. R.; Isidro-Llobet, A.; Spring, D. R. Nature communications 2010, 1, 1–13. Leeson, P. D.; Springthorpe, B. Nature reviews Drug discovery 2007, 6, 881–890. Tropsha, A.; Gramatica, P.; Gombar, V. K. QSAR and Combinatorial Science 2003, 22, 69–77. Alexander, D. L.; Tropsha, A.; Winkler, D. A. Journal of Chemical Information and Modeling 2015, 55, 1316–1322. Todeschini, R.; Ballabio, D.; Grisoni, F. Journal of Chemical Information and Modeling 2016, 56, 1905–1913. Tropsha, A. Molecular Informatics 2010, 29, 476–488. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. Journal of molecular biology 1982, 161, 269–288. Kontoyianni, M. In Proteomics for drug discovery; Springer, 2017; pp 255–266. Kontoyianni, M.; Sokol, G. S.; MCclellan, L. M. Journal of computational chemistry 2005, 26, 11–22. Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. The journal of chemical physics 1953, 21, 1087–1092. Alder, B. J.; Wainwright, T. E. The Journal of Chemical Physics 1959, 31, 459–466. Gibson, J.; Goland, A. N.; Milgram, M.; Vineyard, G. Physical Review 1960, 120, 1229. Rahman, A. Physical review 1964, 136, A405. Karplus, M. Angewandte Chemie International Edition 2014, 53, 9992–10005. Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Journal of medicinal chemistry 2012, 55, 6582–6594. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Journal of computational chemistry 2000, 21, 132–146. Makeneni, S.; Thieker, D. F.; Woods, R. J. Journal of chemical information and modeling 2018, 58, 605–614. Stjernschantz, E.; Oostenbrink, C. Biophysical journal 2010, 98, 2682–2691. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. The Journal of chemical physics 1983, 79, 926–935. Páll, S.; Hess, B. Computer Physics Communications 2013, 184, 2641–2650. Darden, T.; York, D.; Pedersen, L. The Journal of chemical physics 1993, 98, 10089–10092. Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. Journal of computational chemistry 1997, 18, 1463–1472. Bussi, G.; Donadio, D.; Parrinello, M. The Journal of chemical physics 2007, 126, 014101. Hoover, W. G. Physical review A 1985, 31, 1695. Parrinello, M.; Rahman, A. Journal of Applied physics 1981, 52, 7182–7190. Yung-Chi, C.; Prusoff, W. H. Biochemical pharmacology 1973, 22, 3099–3108. Kruskal, W. H.; Wallis, W. A. Journal of the American statistical Association 1952, 47, 583–621. Games, P. A.; Howell, J. F. Journal of Educational Statistics 1976, 1, 113–125. Efron, B.; Tibshirani, R. J. An introduction to the bootstrap; CRC press, 1994. Gowers, R. J.; Linke, M.; Barnoud, J.; Reddy, T. J. E.; Melo, M. N.; Seyler, S. L.; Domanski, J.; Dotson, D. L.; Buchoux, S.; Kenney, I. M.; et al.; MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; Tech. Rep.; Los Alamos National Lab.(LANL), Los Alamos, NM (United States); 2019. Cengel, Y. A.; Boles, M. A.; Kanoglu, M. Thermodynamics: an engineering approach; McGraw-hill New York, 2011; Vol. 5. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 164 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Maestría en Ciencias - Química |
dc.publisher.department.spa.fl_str_mv |
Escuela de química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80993/3/1152698890.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/80993/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/80993/5/1152698890.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
80cbc813d41aaacb2dd2454ff3101525 8153f7789df02f0a4c9e079953658ab2 56388602386e4e2a8bb922951c9cf8e2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089499207008256 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barragán Ramírez, Daniel Albertodbb5947eb81e7b9976d404433e5932eaLans Vargas, Isaías000373cf4d94681b568fdf55503c2efbMéndez Otálvaro, Edward Francisco61199f75a0b7c15dbb70338d26294717Calorimetría y Termodinámica de Procesos Irreversibles2022-02-16T15:50:03Z2022-02-16T15:50:03Z2021-11https://repositorio.unal.edu.co/handle/unal/80993Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasLa hexoquinasa 2 (HK2) es una enzima con importancia terapéutica humana debido a su relación con des órdenes metabólicos como la diabetes y el desarrollo de células cancerosas (efecto Warburg), por tanto, debemos implementar estrategias para obtener inhibidores efectivos frente a ella. Se ha reportado en la literatura experimental, una serie de glucosaminas 2,6 disustituidas con capacidad de inhibir HK2. En esta tesis desarrollamos una estrategia computacional para identificar compuestos análogos a la glucosamina con potencial afinidad por HK2 utilizando como entrada la información estructural y actividad in vitro del reporte antes mencionado. Para ello realizamos un tamizaje virtual de una base de datos pública mediante relaciones cuantitativas estructura-actividad (QSAR), modelos farmacofóricos y acoplamiento (docking) molecular. Generamos cinco modelos QSAR con una correlación razonable entre las propiedades fisicoquímicas y la actividad biológica experimental (R2P ≥ 0,6. σ2 ≥ 0,6. RMSEP < 2,0 y 0,2 ≤ R2 LOO ≤ 0,6) e identificamos tres moléculas con potencial actividad inhibitoria contra la HK2 (3, 6 y 139 en la numeración de este trabajo). Calculamos la afinidad de estos ligandos mediante simulaciones de dinámica molecular acopladas al método MM-PB(GB)SA. La afinidad de la molécula 3 hacia HK2 es de 6,91 (5,98; 7,85) Kcal mol−1, la de la molécula 6 de -4,11 (-5,04; -3,17) Kcal mol−1 y la de la molécula 139 de 0,49 (-0,44; 1,43) Kcal mol−1. Estas afinidades se encuentran dentro de un rango de energías apropiado a un control negativo y positivo [-16,12 (-17,06; -15,18) Kcal mol−1 y 3,59 (2,66; 4,53) Kcal mol−1], con significancia estadística. La estrategia es confiable para identificar moléculas similares a la glucosamina con potencial capacidad inhibitoria para este sistema, dado que a través de tres estrategias distintas (QSAR, farmacóforo y docking molecular) conseguimos el mismo grupo de moléculas. Además, los resultados se complementan en su aproximación, ya que por un lado el farmacóforo generaliza las características fisicoquímicas idóneas de los ligandos presentadas por los QSAR; y por el otro, el docking molecular tiene en cuenta las interacciones con el receptor, permitiendo mejorar las limitaciones de cada método. Finalmente, describimos un modo de acción para el ligando 6 que se rige mayormente por interacción hidrofóbica, correspondiendo a un mecanismo alternativo presentado por el control positivo, el cual contrasta por presentar en su mayoría interacciones de tipo puente de hidrogeno con el receptor (en su contribución entálpica). (Texto tomado de la fuente)Hexokinase 2 (HK2) is an enzyme with human therapeutic importance due to its relationship with metabolic disorders such as diabetes and cancer cell growing (Warburg effect), therefore, we must implement strategies to obtain effective inhibitors against it. Recently, a series of 2,6-disubstituted glucosamines with the ability to inhibit HK2 have been reported in the experimental literature. In this thesis we developed a computational strategy to identify glucosamine analogues with potential affinity for HK2 using as input the structural information and in vitro activity from the aforementioned report. For this purpose, we performed a virtual screening of a public database using quantitative structure-activity relationships (QSAR), pharmacophoric models and molecular docking. We generated five QSAR models with reasonable correlation between physicochemical properties and experimental biological activity (R2 P ≥ 0,6. σ 2 ≥ 0,6. RMSEP < 2,0 y 0,2 ≤ R2 LOO ≤ 0,6) and identified three molecules with potential inhibitory activity against HK2 (3, 6 and 139 in the numbering of this work). We calculated the affinity of these ligands by molecular dynamics simulations coupled to the MM-PB(GB)SA method. The affinity of molecule 3 toward HK2 is 6,91 (5,98; 7,85) Kcal mol−1 , that of molecule 6 is -4,11 (-5,04; -3,17) Kcal mol−1 and that of molecule 139 is 0,49 (-0,44; 1,43) Kcal mol−1 . These affinities are within a range of energies appropriate to a negative and positive control [-16,12 (-17,06; -15,18) Kcal mol−1 and 3,59 (2,66; 4,53) Kcal mol−1 ], with statistical significance. The strategy is reliable for identifying glucosamine-like molecules with potential inhibitory capacity for this system, since through three different strategies (QSAR, pharmacophore and molecular docking) we obtained the same group of molecules. Moreover, the results complement each other in their approach, since on the one hand the pharmacophore generalizes the ideal physicochemical characteristics of the ligands presented by the QSARs; and on the other hand, molecular docking takes into account the interactions with the receptor, allowing us to improve the limitations of each method. Finally, we describe a mode of action for ligand 6 that is mostly governed by hydrophobic interaction, corresponding to an alternative mechanism presented by the positive control, which contrasts by presenting mostly hydrogen bridge type interactions with the receptor (in its enthalpic contribution).MaestríaMagíster en Ciencias - QuímicaModelamiento computacional de sistemas fisicoquímicosÁrea Curricular en Ciencias Naturalesxxi, 164 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - QuímicaEscuela de químicaFacultad de CienciasUniversidad Nacional de Colombia - Sede Medellín570 - Biología::572 - Bioquímica540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines::547 - Química orgánicaChemical inhibitorsInhibidores químicosEnzyme InhibitorsInhibidores enzimaticosDescriptor molecularHK2Tamizaje virtualSimulación molecularQSARVirtual screeningMolecular descriptorMolecular simulationBúsqueda virtual y cálculo computacional de la energía libre de unión de posibles inhibidores análogos a la glucosamina para la enzima hexoquinasa 2Virtual screening and computational binding free energy calculation of possible glucosamine-like inhibitors for the enzyme hexokinase 2Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhn, K. J.; Kim, J.; Yun, M.; Park, J. H.; Lee, J. D. BMB reports 2009, 42, 350–5.Nelson, D.; Cox, M. Lehninger Principles of Biochemistry; Macmillan Learning, 2017.Tanner, L. B.; Goglia, A. G.; Wei, M. H.; Sehgal, T.; Parsons, L. R.; Park, J. O.; White, E.; Toettcher, J. E.; Rabinowitz, J. D. Cell Systems 2018, 1–14.Lis, P.; Dylag, M.; Nied´zwiecka, K.; Ko, Y. H.; Pedersen, P. L.; Goffeau, A.; U laszewski, S. Molecules 2016, 21, 1–15.De Rosa, V.; Iommelli, F.; Monti, M.; Fonti, R.; Votta, G.; Stoppelli, M. P.; Del Vecchio, S. Clinical Cancer Research 2015, 21, 5110–5120.Behar, V.; Pahima, H.; Kozminsky-Atias, A.; Arbel, N.; Loeb, E.; Herzberg, M.; Becker, O. M. Journal of Investigative Dermatology 2018, 1–9.Fang, D.; Maldonado, E. N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation, 1st ed.; Elsevier Inc., 2018; Vol. 138.Rabbani, N.; Thornalley, P. J. Trends in Endocrinology and Metabolism 2019, 30, 419–431.Lin, H.; et al. ACS Medicinal Chemistry Letters 2016, 7, 217–222.Cherkasov, A.; et al. Journal of Medicinal Chemistry 2014, 57, 4977–5010.Verma, J.; Khedkar, V.; Coutinho, E. Current Topics in Medicinal Chemistry 2010, 10, 95–115.Arciniega, M.; Medina-franco, J. L. TIP Revista Especializada en Ciencias Químico-Biológicas 2019, 21, 65–87.Gutiérrez, M.; Vallejos, G. A.; Cortés, M. P.; Bustos, C. Chemical Biology and Drug Design 2019, 1–12.Arora, M.; Yennamalli, R. M.; Sen, T. Z. Bioenergy Research 2018, 11, 850–867.Lemkul, J. A. Living Journal of Computational Molecular Science 2018, In Press, 1–52.Lo, Y. C.; Rensi, S. E.; Torng, W.; Altman, R. B. Drug Discovery Today 2018, 23, 1538–1546.Hollingsworth, S. A.; Dror, R. O. Neuron 2018, 99, 1129–1143.Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe Jr., E. W. Pharmacological Reviews 2014, 66, 334–395.Saini, R. D. Journal of Proteins and Proteomics 2017, 8, 205–217.Wilson, J. E. Journal of Experimental Biology 2003, 206, 2049–2057.Nawaz, M. H.; Ferreira, J. C.; Nedyalkova, L.; Zhu, H.; Carrasco-López, C.; Kirmizialtin, S.; Rabeh, W. M. Bioscience Reports 2018, 38, BSR20171666.Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic acids research 2000, 28, 235–242.Stierand, K.; Maaß, P. C.; Rarey, M. Bioinformatics 2006, 22, 1710–1716.Gardiner, N. J.; Wang, Z.; Luke, C.; Gott, A.; Price, S. A.; Fernyhough, P. Brain research 2007, 1175, 143–154.Mathupala, S.; Ko, Y.; Pedersen, P. Oncogene 2006, 25, 4777–4786.Patra, K. C.; Wang, Q.; Bhaskar, P. T.; Miller, L.; Wang, Z.; Wheaton, W.; Chandel, N.; Laakso, M.; Muller, W. J.; Allen, E. L.; et al. Cancer cell 2013, 24, 213–228.Woldetsadik, A. D.; Vogel, M. C.; Rabeh, W. M.; Magzoub, M. FASEB Journal 2017, 31, 2168–21874.Pastorino, J. G.; Shulga, N.; Hoek, J. B. Journal of Biological Chemistry 2002, 277, 7610–7618.Majewski, N.; Nogueira, V.; Bhaskar, P.; Coy, P. E.; Skeen, J. E.; Gottlob, K.; Chandel, N. S.; Thompson, C. B.; Robey, R. B.; Hay, N. Molecular cell 2004, 16, 819–830.John, S.; Weiss, J. N.; Ribalet, B. PloS one 2011, 6, e17674.Pascale, R. M.; Calvisi, D. F.; Simile, M. M.; Feo, C. F.; Feo, F. Cancers 2020, 12, 2819.Tao, L.; Wei, L.; Liu, Y.; Ding, Y.; Liu, X.; Zhang, X.; Wang, X.; Yao, Y.; Lu, J.; Wang, Q.; et al. Biochemical pharmacology 2017, 125, 12–25.Li, W.; Zheng, M.; Wu, S.; Gao, S.; Yang, M.; Li, Z.; Min, Q.; Sun, W.; Chen, L.; Xiang, G.; Li, H. Journal of Experimental and Clinical Cancer Research 2017, 36, 1–12.Bao, F.; Yang, K.; Wu, C.; Gao, S.; Wang, P.; Chen, L.; Li, H. Fitoterapia 2018, 125, 123–129.Miao, G.; Han, J.; Zhang, J.; Wu, Y.; Tong, G. Biological and Pharmaceutical Bulletin 2019, 42, 123–129.Wang, W.; Wu, Y.; Yang, K.; Wu, C.; Tang, R.; Li, H.; Chen, L. European Journal of Medicinal Chemistry 2019, 173, 282–293.Liu, Y.; Li, M.; Zhang, Y.; Wu, C.; Yang, K.; Gao, S.; Zheng, M.; Li, X.; Li, H.; Chen, L. Bioorganic chemistry 2020, 96, 103609.Zhang, X.-M.; Peng, A.-H.; Xie, W.-D.; Wang, M.; Zheng, D.; Feng, M.-K. Chemistry & Biodiversity 2020, 17, e2000140.Jiang, S.-H.; Dong, F.-Y.; Da, L.-T.; Yang, X.-M.; Wang, X.-X.; Weng, J.-Y.; Feng, L.; Zhu, L.-L.; Zhang, Y.-L.; Zhang, Z.-G.; et al. The FASEB Journal 2020, 34, 3943–3955.Zheng, M.; Wu, C.; Yang, K.; Yang, Y.; Liu, Y.; Gao, S.; Wang, Q.; Li, C.; Chen, L.; Li, H. Pharmacological Research 2021, 164, 105367.DiMasi, J. A.; Grabowski, H. G.; Hansen, R. W. Journal of Health Economics 2016, 47, 20–33.Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M. P.; Spjuth, O.; Nantasenamat, C. Journal of Cheminformatics 2020, 12, 9.Iglesias, J.; Saen-oon, S.; Soliva, R.; Guallar, V. Wiley Interdisciplinary Reviews: Computational Molecular Science 2018, 8, e1367.Ganesan, A.; Coote, M. L.; Barakat, K. Drug discovery today 2017, 22, 249–269.Huang, S.-Y.; Grinter, S. Z.; Zou, X. Physical Chemistry Chemical Physics 2010, 12, 12899–12908.Wang, Z.; Sun, H.; Shen, C.; Hu, X.; Gao, J.; Li, D.; Cao, D.; Hou, T. Physical Chemistry Chemical Physics 2020, 22, 3149–3159.Durán, A.; Zamora, I.; Pastor, M. Journal of chemical information and modeling 2009, 49, 2129–2138.Neves, B. J.; Braga, R. C.; Melo-Filho, C. C.; Moreira-Filho, J. T.; Muratov, E. N.; Andrade, C. H. Frontiers in pharmacology 2018, 9, 1275.Brown, N. Bioisosterism in Medicinal Chemistry; John Wiley & Sons, Ltd, 2012; Chapter 1, pp 1–14.Leach, A. R.; Gillet, V. J. An introduction to chemoinformatics; Springer, 2007.Nantasenamat, C.; Conceptual Map of Computational Drug Discovery; https://figshare.com/articles/figure/Conceptual_Map_of_Computational_Drug_Discovery/5979400/1; 2018.Khan, P. M.; Roy, K. Expert Opinion on Drug Discovery 2018, 13, 1075–1089.OECD Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, 2014.Martin, T. M.; Harten, P.; Young, D. M.; Muratov, E. N.; Golbraikh, A.; Zhu, H.; Tropsha, A. Journal of chemical information and modeling 2012, 52, 2570–2578.Gramatica, P. QSAR & combinatorial science 2007, 26, 694–701.Leach, A. R.; Leach, A. R. Molecular modelling: principles and applications; Pearson education, 2001.Fan, J.; Fu, A.; Zhang, L. Quantitative Biology 2019, 1–7.Torres, P. H.; Sodero, A. C.; Jofily, P.; Silva-Jr, F. P. International journal of molecular sciences 2019, 20, 4574.Salmaso, V.; Moro, S. Frontiers in Pharmacology 2018, 9, 1–16.Pagadala, N. S.; Syed, K.; Tuszynski, J. Biophysical Reviews 2017, 9, 91–102.Kessel, A.; Ben-Tal, N. Introduction to proteins: structure, function, and motion; CRC Press, 2018.The Amber Project; History of the Amber Project; http://ambermd.org/History.php.Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174.Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. Journal of computational chemistry 2004, 25, 1656–1676.Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Others Journal of computational chemistry 2010, 31, 671–690.Jorgensen, W. L.; Tirado-Rives, J. Journal of the American Chemical Society 1988, 110, 1657–1666.Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Journal of the American Chemical Society 1996, 118, 11225–11236.Lindahl; Abraham; Hess; van der Spoel; GROMACS 2021.2 Manual; 2021. https://doi.org/10.5281/zenodo.4723561.Frenkel, D.; Smit, B. Understanding molecular simulation: from algorithms to applications; Elsevier, 2001; Vol. 1.Tuckerman, M. E.; Martyna, G. J. The Journal of Physical Chemistry B 2000, 104, 159–178.Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z.; Hou, T. Chemical reviews 2019, 119, 9478–9508.Kumari, R.; Kumar, R.; Lynn, A. Journal of Chemical Information and Modeling 2014, 54, 1951–1962.Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. Journal of Chemical Theory and Computation 2012, 8, 3314–3321.Genheden, S.; Ryde, U. Expert Opinion on Drug Discovery 2015, 10, 449–461.Honig, B.; Nicholls, A. Science (New York, N.Y.) 1995, 268, 1144–1149.Weiser, J.; Shenkin, P. S.; Still, W. C. Journal of Computational Chemistry 1999, 20, 217–230.Case, D. A.; Darden, T.; Cheatham, T.; Simmerling, C.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R.; Zhang, W.; et al. University of California, San Francisco 2021, 30.Kassem, S.; Ahmed, M.; El-Sheikh, S.; Barakat, K. H. Journal of Molecular Graphics and Modelling 2015, 62, 105–117.Duan, L.; Liu, X.; Zhang, J. Z. Journal of the American Chemical Society 2016, 138, 5722–5728.Huang, K.; Luo, S.; Cong, Y.; Zhong, S.; Zhang, J. Z.; Duan, L. Nanoscale 2020, 12, 10737–10750.Sun, H.; Duan, L.; Chen, F.; Liu, H.; Wang, Z.; Pan, P.; Zhu, F.; Zhang, J. Z.; Hou, T. Physical Chemistry Chemical Physics 2018, 20, 14450–14460.Fourches, D.; Muratov, E.; Tropsha, A. Journal of Chemical Information and Modeling 2010, 50, 1189–1204.Cavasotto, C. N.; Abagyan, R. A. Journal of molecular biology 2004, 337, 209–225.Palacio-Rodríguez, K.; Lans, I.; Cavasotto, C. N.; Cossio, P. Scientific reports 2019, 9, 1–14.Humphrey, W.; Dalke, A.; Schulten, K. Journal of Molecular Graphics 1996, 14, 33–38.DeLano, W. L. CCP4 Newsletter On Protein Crystallography 2002, 40, 82–92.Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem 2004, 25, 1605–1612.ChemAxon; MarvinSketch, Version 20.16 ; 2020.Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Journal of Cheminformatics 2012, 4, 17.Hehre, W. J.; Ohlinger, S.; Spartan’14 ; 2014.Santos-Martins, D.; Solis-Vasquez, L.; Tillack, A. F.; Sanner, M. F.; Koch, A.; Forli, S. Journal of Chemical Theory and Computation 2021, 17, 1060–1073; PMID: 33403848.Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. Journal of computational chemistry 2009, 30, 2785–2791.Trott, O.; Olson, A. Journal of computational chemistry 2010, 31, 455–461.Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Journal of Chemical Information and Modeling 2013, 53, 1893–1904.Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. PLoS Computational Biology 2014, 10, 1–7.Korb, O.; Stützle, T.; Exner, T. E. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2006, 4150 LNCS, 247–258.Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1-2, 19–25.Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. Journal of Chemical Theory and Computation 2021.R Core Team; R: A Language and Environment for Statistical Computing; 2014.Van Rossum, G.; Drake Jr, F. L. Python tutorial ; Centrum voor Wiskunde en Informatica Amsterdam, The Netherlands, 1995.O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Journal of Cheminformatics 2011, 3, 1–14.Sushko, I.; et al. Journal of Cheminformatics 2011, 3, 85764.Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, 223–228.Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. PubChem: Integrated Platform of Small Molecules and Biological Activities; Elsevier B.V., 2008; Vol. 4.Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. Journal of Chemical Information and Modeling 2012, 52, 1757–1768.Ropp, P. J.; Spiegel, J. O.; Walker, J. L.; Green, H.; Morales, G. A.; Milliken, K. A.; Ringe, J. J.; Durrant, J. D. Journal of Cheminformatics 2019, 11, 1–13.Bas, D. C.; Rogers, D. M.; Jensen, J. H. Proteins: Structure, Function and Genetics 2008, 73, 765–783.Chen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. Acta Crystallographica Section D: Biological Crystallography 2010, 66, 12–21.Eastman, P.; et al. Journal of Chemical Theory and Computation 2013, 9, 461–469; PMID: 23316124.Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Journal of Molecular Graphics and Modelling 2006, 25, 247–260.Sousa Da Silva, A. W.; Vranken, W. F. BMC Research Notes 2012, 5, 1–8.Meanwell, N. A. Journal of medicinal chemistry 2011, 54, 2529–2591.Hammett, L. P. Journal of the American Chemical Society 1937, 59, 96–103.Hansch, C.; Fujita, T. Journal of the American Chemical Society 1964, 86, 1616–1626.Kier, L. B. Molecular pharmacology 1967, 3, 487–494.Roy, K.; Kar, S.; Das, R. N. A primer on QSAR/QSPR modeling: fundamental concepts; Springer, 2015.Tishbirani, R. Journal of the Royal Statistical Society. Series B (Methodological) 1996, 58, 267–288.Algamal, Z. Y.; Lee, M. H.; Al-Fakih, A. M.; Aziz, M. Journal of Chemometrics 2015, 29, 547–556.Rasmussen, M. A.; Bro, R. Chemometrics and Intelligent Laboratory Systems 2012, 119, 21–31.Kuhn, M. Journal of Statistical Software, Articles 2008, 28, 1–26.Lee, L. C.; Liong, C. Y.; Jemain, A. A. Analyst 2018, 143, 3526–3539.Teisseyre, P.; K lopotek, R. A.; Mielniczuk, J. Computational Statistics 2016, 31, 943–972.Schneidman-Duhovny, D.; Dror, O.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Nucleic acids research 2008, 36, W223–W228.Dror, O.; Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H. J. Journal of chemical information and modeling 2009, 49, 2333–2343.Smith, D. H.; Carhart, R. E.; Venkataraghavan, R. Journal of Chemical Information and Computer Sciences 1985, 25, 64–73.Bissantz, C.; Kuhn, B.; Stahl, M. Journal of Medicinal Chemistry 2010, 53, 5061–5084.Renner, S.; Fechner, U.; Schneider, G. Alignment-Free Pharmacophore Patterns – A Correlation-Vector Approach; John Wiley & Sons, 2006.Todeschini, R.; Consonni, V. Molecular descriptors for chemoinformatics: volume I: alphabetical listing/volume II: appendices, references; John Wiley & Sons, 2009; Vol. 41.Bondi, A. The Journal of Physical Chemistry 1964, 68, 441–451.Mecozzi, S.; Rebek, J., Jr. Chemistry – A European Journal 1998, 4, 1016–1022.Mann, A. In The Practice of Medicinal Chemistry (Third Edition), third edition ed.; Wermuth, C. G., Ed.; Academic Press: New York, 2008; pp 363–379.Labute, P. Journal of Molecular Graphics and Modelling 2000, 18, 464–477.Haynes, W. M. CRC handbook of chemistry and physics; CRC press, 2014.Brinck, T.; Murray, J. S.; Politzer, P. The Journal of Chemical Physics 1993, 98, 4305–4306.Koopmans, T. Physica 1934, 1, 104–113.Prajapati, P.; Pandey, J.; Tandon, P.; Sinha, K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 206, 246–253.Chen, G.; Zheng, S.; Luo, X.; Shen, J.; Zhu, W.; Liu, H.; Gui, C.; Zhang, J.; Zheng, M.; Chum, M. P.; Chen, K.; Jiang, H. Journal of Combinatorial Chemistry 2005, 7, 398–406.Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Advanced drug delivery reviews 1997, 23, 3–25.Galloway, W. R.; Isidro-Llobet, A.; Spring, D. R. Nature communications 2010, 1, 1–13.Leeson, P. D.; Springthorpe, B. Nature reviews Drug discovery 2007, 6, 881–890.Tropsha, A.; Gramatica, P.; Gombar, V. K. QSAR and Combinatorial Science 2003, 22, 69–77.Alexander, D. L.; Tropsha, A.; Winkler, D. A. Journal of Chemical Information and Modeling 2015, 55, 1316–1322.Todeschini, R.; Ballabio, D.; Grisoni, F. Journal of Chemical Information and Modeling 2016, 56, 1905–1913.Tropsha, A. Molecular Informatics 2010, 29, 476–488.Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. Journal of molecular biology 1982, 161, 269–288.Kontoyianni, M. In Proteomics for drug discovery; Springer, 2017; pp 255–266.Kontoyianni, M.; Sokol, G. S.; MCclellan, L. M. Journal of computational chemistry 2005, 26, 11–22.Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. The journal of chemical physics 1953, 21, 1087–1092.Alder, B. J.; Wainwright, T. E. The Journal of Chemical Physics 1959, 31, 459–466.Gibson, J.; Goland, A. N.; Milgram, M.; Vineyard, G. Physical Review 1960, 120, 1229.Rahman, A. Physical review 1964, 136, A405.Karplus, M. Angewandte Chemie International Edition 2014, 53, 9992–10005.Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Journal of medicinal chemistry 2012, 55, 6582–6594.Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950–1958.Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Journal of computational chemistry 2004, 25, 1157–1174.Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Journal of computational chemistry 2000, 21, 132–146.Makeneni, S.; Thieker, D. F.; Woods, R. J. Journal of chemical information and modeling 2018, 58, 605–614.Stjernschantz, E.; Oostenbrink, C. Biophysical journal 2010, 98, 2682–2691.Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. The Journal of chemical physics 1983, 79, 926–935.Páll, S.; Hess, B. Computer Physics Communications 2013, 184, 2641–2650.Darden, T.; York, D.; Pedersen, L. The Journal of chemical physics 1993, 98, 10089–10092.Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. Journal of computational chemistry 1997, 18, 1463–1472.Bussi, G.; Donadio, D.; Parrinello, M. The Journal of chemical physics 2007, 126, 014101.Hoover, W. G. Physical review A 1985, 31, 1695.Parrinello, M.; Rahman, A. Journal of Applied physics 1981, 52, 7182–7190.Yung-Chi, C.; Prusoff, W. H. Biochemical pharmacology 1973, 22, 3099–3108.Kruskal, W. H.; Wallis, W. A. Journal of the American statistical Association 1952, 47, 583–621.Games, P. A.; Howell, J. F. Journal of Educational Statistics 1976, 1, 113–125.Efron, B.; Tibshirani, R. J. An introduction to the bootstrap; CRC press, 1994.Gowers, R. J.; Linke, M.; Barnoud, J.; Reddy, T. J. E.; Melo, M. N.; Seyler, S. L.; Domanski, J.; Dotson, D. L.; Buchoux, S.; Kenney, I. M.; et al.; MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations; Tech. Rep.; Los Alamos National Lab.(LANL), Los Alamos, NM (United States); 2019.Cengel, Y. A.; Boles, M. A.; Kanoglu, M. Thermodynamics: an engineering approach; McGraw-hill New York, 2011; Vol. 5.EstudiantesInvestigadoresMaestrosORIGINAL1152698890.2022.pdf1152698890.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf31739534https://repositorio.unal.edu.co/bitstream/unal/80993/3/1152698890.2022.pdf80cbc813d41aaacb2dd2454ff3101525MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80993/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1152698890.2022.pdf.jpg1152698890.2022.pdf.jpgGenerated Thumbnailimage/jpeg5076https://repositorio.unal.edu.co/bitstream/unal/80993/5/1152698890.2022.pdf.jpg56388602386e4e2a8bb922951c9cf8e2MD55unal/80993oai:repositorio.unal.edu.co:unal/809932024-08-03 23:10:01.253Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |