Evaluation of thermoelectric generation systems under mismatching thermal conditions
ilustraciones, diagramas
- Autores:
-
Sanin Villa, Daniel
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84611
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Centrales termoeléctricas
Cogeneración de energía eléctrica y térmica
Steam power-plants
Cogeneration of electric power and heat
Thermoelectric generator
Mismatching thermal conditions
DC-DC Converter topologies
Thermal dependence of thermoelectrical properties
Generadores termoeléctrico
Condiciones no uniformes de temperatura
Topologías de convertidores DC-DC
Dependencia térmica de las propiedades termoeléctricas
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_2000d0fed90ab30e365ecec508489e6d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84611 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
dc.title.translated.spa.fl_str_mv |
Evaluación de sistemas termoeléctricos bajo condiciones térmicas no uniformes |
title |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
spellingShingle |
Evaluation of thermoelectric generation systems under mismatching thermal conditions 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Centrales termoeléctricas Cogeneración de energía eléctrica y térmica Steam power-plants Cogeneration of electric power and heat Thermoelectric generator Mismatching thermal conditions DC-DC Converter topologies Thermal dependence of thermoelectrical properties Generadores termoeléctrico Condiciones no uniformes de temperatura Topologías de convertidores DC-DC Dependencia térmica de las propiedades termoeléctricas |
title_short |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
title_full |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
title_fullStr |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
title_full_unstemmed |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
title_sort |
Evaluation of thermoelectric generation systems under mismatching thermal conditions |
dc.creator.fl_str_mv |
Sanin Villa, Daniel |
dc.contributor.advisor.none.fl_str_mv |
Chejne Jana, Farid Florez Escobar, Whady Felipe |
dc.contributor.author.none.fl_str_mv |
Sanin Villa, Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Física Teórica |
dc.contributor.orcid.spa.fl_str_mv |
Sanin Villa, Daniel [0000-0001-6853-340X] Chejne, Farid [0000-0003-0445-7609] Florez Escobar, Whady Felipe [0000-0003-3977-0371] |
dc.contributor.scopus.spa.fl_str_mv |
37089330000 Sanin Villa, Daniel [37089330000] |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Daniel-Sanin-Villa Sanin Villa, Daniel [https://www.researchgate.net/profile/Daniel-Sanin-Villa] |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com.co/citations?user=slUyYcwAAAAJ&hl=en Sanin Villa, Daniel [https://scholar.google.com.co/citations?user=slUyYcwAAAAJ&hl=en] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Centrales termoeléctricas Cogeneración de energía eléctrica y térmica Steam power-plants Cogeneration of electric power and heat Thermoelectric generator Mismatching thermal conditions DC-DC Converter topologies Thermal dependence of thermoelectrical properties Generadores termoeléctrico Condiciones no uniformes de temperatura Topologías de convertidores DC-DC Dependencia térmica de las propiedades termoeléctricas |
dc.subject.lemb.spa.fl_str_mv |
Centrales termoeléctricas Cogeneración de energía eléctrica y térmica |
dc.subject.lemb.eng.fl_str_mv |
Steam power-plants Cogeneration of electric power and heat |
dc.subject.proposal.eng.fl_str_mv |
Thermoelectric generator Mismatching thermal conditions DC-DC Converter topologies Thermal dependence of thermoelectrical properties |
dc.subject.proposal.spa.fl_str_mv |
Generadores termoeléctrico Condiciones no uniformes de temperatura Topologías de convertidores DC-DC Dependencia térmica de las propiedades termoeléctricas |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-29T18:26:00Z |
dc.date.available.none.fl_str_mv |
2023-08-29T18:26:00Z |
dc.date.issued.none.fl_str_mv |
2023-03-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84611 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84611 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
UNFCC (United Nations Framework Convention on Climate Change), “Paris Agreement (Spanish),” p. 29, 2015. M. Morini, M. Pinelli, P. R. Spina, and M. Venturini, “Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications,” Applied Energy, vol. 112, pp. 205–214, 2013. W. J. Du, Q. Yin, and L. Cheng, “Experiments on novel heat recovery systems on rotary kilns,” Applied Thermal Engineering, vol. 139, no. April, pp. 535–541, 2018. C. Haddad, C. Périlhon, A. Danlos, M. X. François, and G. Descombes, “Some efficient solutions to recover low and medium waste heat: Competitiveness of the thermoacoustic technology,” Energy Procedia, vol. 50, pp. 1056–1069, 2014. A. Montecucco, J. R. Buckle, and A. R. Knox, “Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices,” Applied Thermal Engineering, vol. 35, no. 1, pp. 177–184, 2012. X. D. Wang, Y. X. Huang, C. H. Cheng, D. Ta-Wei Lin, and C. H. Kang, “A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field,” energy, vol. 47, no. 1, pp. 488–497, 2012. Enn Velmre, “Thomas Johann Seebeck (1770–1831),” Estonian Journal of Engineering, vol. 13, no. 4, pp. 276–282, 2007. J. Stockolm, “Générateurs thermo-électriques,” pp. 15–21, 2003. M. Hamid Elsheikh et al., “A review on thermoelectric renewable energy: Principle parameters that affect their performance,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 337–355, 2014. E. Söylemez, E. Alpman, and A. Onat, “Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems,” International Journal of Refrigeration, vol. 95, pp. 93–107, 2018. Y. Wang, H. Zhang, H. Hao, and H. Li, “Performance assessment and parametric study of a hybrid system consisting of an alkali metal thermoelectric converter and an absorption refrigerator,” Energy Conversion and Management, vol. 188, no. November 2018, pp. 346–353, 2019. X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, “A review of thermoelectrics research - Recent developments and potentials for sustainable and renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 486–503, 2014. D. Champier, “Thermoelectric generators: A review of applications,” Energy Conversion and Management, vol. 140, pp. 167–181, 2017. L. Onsager, “Irreversible Processes,” Physical Review, pp. 183–196, 1930. I. Kirschner and P. Molnár, “Relation between Curie’s principle and Onsager’s reciprocity,” Acta Physica Hungarica, vol. 66, no. 1–4, pp. 277–287, 1989. D. Beretta et al., “Thermoelectrics: From history, a window to the future,” Materials Science and Engineering R: Reports, vol. 138, no. July 2018, pp. 210–255, 2019. F. Munera, “Desarrollo de un modelo matemático fenomenológico que permita simular el comportamiento de sistemas termoeléctricos,” p. 98, 2012. M. Zhang, Y. Tian, H. Xie, Z. Wu, and Y. Wang, “Influence of Thomson effect on the thermoelectric generator,” International Journal of Heat and Mass Transfer, vol. 137, pp. 1183–1190, 2019. S. C. Kaushik and S. Manikandan, “The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator,” Energy Conversion and Management, vol. 103, pp. 200–207, 2015. R. Lamba and S. C. Kaushik, “Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration,” Energy Conversion and Management, vol. 144, pp. 388–398, 2017. S. Tedeschi, J. Mehnen, N. Tapoglou, and R. Roy, “Secure IoT Devices for the Maintenance of Machine Tools,” Procedia CIRP, vol. 59, no. TESConf 2016, pp. 150–155, 2017. R. L. Cataldo and G. L. Bennett, “U . S . Space Radioisotope Power Systems and Applications : Past , Present and Future,” 2010. L. Shi, G. Shu, H. Tian, and S. Deng, “A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR),” Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 95–110, 2018. G. Shu, Z. Yu, H. Tian, P. Liu, and Z. Xu, “Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery,” Energy Conversion and Management, vol. 174, no. July, pp. 668–685, 2018. L. H. Zhi, P. Hu, L. X. Chen, and G. Zhao, “Parametric analysis and optimization of transcritical-subcritical dual-loop organic Rankine cycle using zeotropic mixtures for engine waste heat recovery,” Energy Conversion and Management, vol. 195, no. April, pp. 770–787, 2019. R. Ramírez, A. S. Gutiérrez, J. J. Cabello Eras, K. Valencia, B. Hernández, and J. Duarte Forero, “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines,” Journal of Cleaner Production, vol. 241, 2019. H. Khalil and H. Hassan, “Enhancement thermoelectric generators output power from heat recovery of chimneys by using flaps,” Journal of Power Sources, vol. 443, no. October, 2019. P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, “Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber,” Applied Energy, vol. 152. pp. 121–130, 2015. Q. Luo et al., “A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns,” Journal of Electronic Materials, vol. 44, no. 6, pp. 1750–1762, 2015. H. Kaibe, K. Makino, T. Kajihara, S. Fujimoto, and H. Hachiuma, “Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant,” AIP Conference Proceedings, vol. 1449, no. 2012, pp. 524–527, 2012. T. Kuroki et al., “Thermoelectric Generation Using Waste Heat in Steel Works,” pp. 4–9, 2014. T. Kuroki et al., “Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process,” 2015. T. Kajihara, K. Makino, Y. H. Lee, H. Kaibe, and H. Hachiuma, “Study of Thermoelectric Generation Unit for Radiant Waste Heat,” Materials Today: Proceedings, vol. 2, no. 2, pp. 804–813, 2015. 34. Microplet, “mva-002 @ www.micropelt.com,” 2020. [Online]. Available: http://www.micropelt.com/en/products/mva-002.html. Perpetua, “Getting Started | Perpetua Power Source Technologies, Inc.” [Online]. Available: https://perpetuapower.com/getting-started/. [Accessed: 14-Jun-2020]. Y. J. Kim et al., “High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator,” energy, vol. 162, pp. 526–533, 2018. D. Milić, A. Prijić, L. Vračar, and Z. Prijić, “Characterization of commercial thermoelectric modules for application in energy harvesting wireless sensor nodes,” Applied Thermal Engineering, vol. 121, pp. 74–82, 2017. M. Guan, K. Wang, D. Xu, and W. H. Liao, “Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes,” Energy Conversion and Management, vol. 138, pp. 30–37, 2017. V. Karthikeyan et al., “Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting,” Journal of Power Sources, vol. 455, no. December 2019, p. 227983, 2020. Y. Wang, Y. Shi, D. Mei, and Z. Chen, “Wearable thermoelectric generator for harvesting heat on the curved human wrist,” Applied Energy, vol. 205, no. July, pp. 710–719, 2017. M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, “Wearable thermoelectric generators for human body heat harvesting,” Applied Energy, vol. 182, pp. 518–524, 2016. J. Cao, J. D. Querales-Flores, S. Fahy, and I. Savić, “Thermally induced band gap increase and high thermoelectric figure of merit of N-type PbTe,” Materials Today Physics, vol. 12, 2020. Y. Wu, H. Zhang, and L. Zuo, “Thermoelectric energy harvesting for the gas turbine sensing and monitoring system,” Energy Conversion and Management, vol. 157, no. November 2017, pp. 215–223, 2018. L. Janak, Z. Ancik, J. Vetiska, and Z. Hadas, “Thermoelectric Generator Based on MEMS Module as an Electric Power Backup in Aerospace Applications,” Materials Today: Proceedings, vol. 2, no. 2, pp. 865–870, 2015. T. Kousksou, J. P. Bédécarrats, D. Champier, P. Pignolet, and C. Brillet, “Numerical study of thermoelectric power generation for an helicopter conical nozzle,” Journal of Power Sources, vol. 196, no. 8, pp. 4026–4032, 2011. N. R. Kristiansen and H. K. Nielsen, “Potential for usage of thermoelectric generators on ships,” Journal of Electronic Materials, vol. 39, no. 9, pp. 1746–1749, 2010. N. R. Kristiansen, G. J. Snyder, H. K. Nielsen, and L. Rosendahl, “Waste heat recovery from a marine waste incinerator using a thermoelectric generator,” Journal of Electronic Materials, vol. 41, no. 6, pp. 1024–1029, 2012. A. Nour Eddine, D. Chalet, X. Faure, L. Aixala, and P. Chessé, “Optimization and characterization of a thermoelectric generator prototype for marine engine application,” energy, vol. 143, pp. 682–695, 2018. W. Zhu et al., “Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials,” Chemical Engineering Journal, vol. 386, no. October 2019, 2020. G. Li et al., “Dramatically reduced lattice thermal conductivity of Mg 2 Si thermoelectric material from nanotwinning,” Acta Materialia, vol. 169, pp. 9–14, 2019. D. Qin et al., “High thermoelectric performance from high carrier mobility and reduced lattice thermal conductivity in Ba, Yb double-filled Skutterudites,” Materials Today Physics, vol. 8, pp. 128–137, 2019. T. Hori, “Role of geometry and surface roughness in reducing phonon mean free path and lattice thermal conductivity of modulated nanowires,” International Journal of Heat and Mass Transfer, vol. 156, 2020. L. Huang, J. Guo, Z. H. Ge, Y. Jiang, and J. Feng, “Significantly reduced lattice thermal conductivity and enhanced thermoelectric performance of In2O3 (ZnO) 3 ceramics by Ga2O3 doping,” Journal of Solid State Chemistry, vol. 281, no. October 2019, pp. 1–7, 2020. A. A. Balandin and D. L. Nika, “Phononics in low-dimensional materials Phonons – quanta of crystal lattice vibrations – reveal themselves in all,” Materials Today, vol. 15, no. 6, pp. 266–275, 2012. M. Rittiruam, A. Yangthaisong, and T. Seetawan, “Reduced lattice thermal conductivity of Ti-site substituted transition metals Ti1-XTMXNiSn: A quasi-harmonic Debye model study,” Chinese Journal of Physics, vol. 57, no. October 2018, pp. 393–402, 2019. Z. Zhang, S. Hu, T. Nakayama, J. Chen, and B. Li, “Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes,” Carbon, vol. 139, pp. 289–298, 2018. D. T. Crane and G. S. Jackson, “Optimization of cross flow heat exchangers for thermoelectric waste heat recovery,” Energy Conversion and Management, vol. 45, no. 9–10, pp. 1565–1582, 2004. J. Chen and C. Wu, “Analysis on the Performance of a Thermoelectric Generator,” vol. 122, no. June 2000, pp. 1999–2001, 2016. M. Culebras, A. M. Igual-Muñoz, C. Rodríguez-Fernández, M. I. Gómez-Gómez, C. Gómez, and A. Cantarero, “Manufacturing Te/PEDOT Films for Thermoelectric Applications,” ACS Applied Materials and Interfaces, vol. 9, no. 24, pp. 20826–20832, 2017. M. Sabarinathan et al., “Enhancement of power factor by energy filtering effect in hierarchical BiSbTe 3 nanostructures for thermoelectric applications,” Applied Surface Science, vol. 418, pp. 246–251, 2017. X. Ai, D. Hou, X. Liu, S. Gu, L. Wang, and W. Jiang, “Enhanced thermoelectric performance of PbTe-based nanocomposites through element doping and SiC nanoparticles dispersion,” Scripta Materialia, vol. 179, pp. 86–91, 2020. B. Cai, H. Hu, H. L. Zhuang, and J. F. Li, “Promising materials for thermoelectric applications,” Journal of Alloys and Compounds, vol. 806, pp. 471–486, 2019. C. Chang et al., “3D charge and 2D phonon transports leading to high out-of-plane ZT in N-type SnSe crystals,” Science, vol. 360, no. 6390, pp. 778–783, 2018. X. Y. Bed Poudel, Qing Hao, Yi Ma, Yucheng Lan, Austin Minnich, Bo Yu, J. L. Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, and R. Mildred S. Dresselhaus, Gang Chen, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, vol. 320, no. 634–638, 2008. W. Xie et al., “Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites,” Nano Letters, vol. 10, no. 9, pp. 3283–3289, 2010. T. Zhu et al., “Hot deformation induced bulk nanostructuring of unidirectionally grown P-type (Bi,Sb)2Te3 thermoelectric materials,” Journal of Materials Chemistry A, vol. 1, no. 38, pp. 11589–11594, 2013. S. il Kim et al., “Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics,” Science, vol. 348, no. 6230, pp. 109–114, 2015. K. T. Kim, T. S. Min, S. D. Kim, E. A. Choi, D. W. Kim, and S. Y. Choi, “Strain-mediated point defects in thermoelectric P-type bismuth telluride polycrystalline,” Nano Energy, vol. 55, no. October 2018, pp. 486–493, 2019. J. P. Heremans et al., “Enhancement of Thermoelectric of the Electronic Density of States,” Science, vol. 321, no. July, pp. 1457–1461, 2008. H. Sun et al., “Thermoelectric performance of single elemental doped N-type PbTe regulated by carrier concentration,” Journal of Alloys and Compounds, vol. 787, pp. 180–185, 2019. Z. Y. Li and J. F. Li, “Fine-Grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature,” Advanced Energy Materials, vol. 4, no. 2, pp. 1–8, 2014. B. Cai et al., “Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure,” Science China Materials, vol. 61, no. 9, pp. 1218–1224, 2018. Y. Wu et al., “Lattice Strain Advances Thermoelectrics,” Joule, vol. 3, no. 5, pp. 1276–1288, 2019. B. Yu et al., “Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites,” Nano Letters, vol. 12, no. 4, pp. 2077–2082, 2012. A. Usenko et al., “Scripta Materialia nanostructured spark plasma sintered alloys with embedded SiO2 nanoinclusions,” Scripta Maeterialia, vol. 127, pp. 63–67, 2017. O. E. G. Rogl , A. Grytsiv , P. Rogl , N. Peranio , E. Bauer , M. Zehetbauer, “N-type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT 2.0,” vol. 29, no. 2, pp. 209–214, 2014. W. Liu et al., “Convergence of conduction bands as a means of enhancing thermoelectric performance of N-type Mg 2Si 1-xSn x solid solutions,” Physical Review Letters, vol. 108, no. 16, 2012. Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, “High figures of merit and natural nanostructures in Mg2Si 0.4Sn0.6 based thermoelectric materials,” Applied Physics Letters, vol. 93, no. 10, pp. 0–4, 2008. H. Zhao et al., “Engineering the Thermoelectric Transport in Half-Heusler Materials through a Bottom-Up Nanostructure Synthesis,” Advanced Energy Materials, vol. 7, no. 18, pp. 1–11, 2017. G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, “Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties,” Nature Materials, vol. 3, no. 7, pp. 458–463, Jun. 2004. X. Chen et al., “Extraordinary thermoelectric performance in N-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure,” Nano Energy, vol. 52, no. June, pp. 246–255, 2018. W. Wei et al., “Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies,” Journal of the American Chemical Society, vol. 140, no. 1, pp. 499–505, Jan. 2018. R. Nunna et al., “Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs,” Energy and Environmental Science, vol. 10, no. 9, pp. 1928–1935, Sep. 2017. X. Chen et al., “Thin Film Thermoelectric Materials: Classification, Characterization, and Potential for Wearable Applications,” Coatings 2018, Vol. 8, Page 244, vol. 8, no. 7, p. 244, Jul. 2018, doi: 10.3390/COATINGS8070244. S. M. Yang, L. A. Chung, and H. R. Wang, “Review of polysilicon thermoelectric energy generators,” Sens Actuators A Phys, vol. 346, p. 113890, Oct. 2022, doi: 10.1016/J.SNA.2022.113890. J. C. A. do Nascimento, A. Kerrigan, P. J. Hasnip, and V. K. Lazarov, “Significant improvement of the Seebeck coefficient of Fe2VAl with antisite defects,” Mater Today Commun, vol. 31, p. 103510, Jun. 2022, doi: 10.1016/J.MTCOMM.2022.103510. N. Gao, B. Zhu, X. yu Wang, Y. Yu, and F. qiu Zu, “Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi0.4Sb1.6Te3 alloy via liquid-state manipulation,” Journal of Materials Science 2018 53:12, vol. 53, no. 12, pp. 9107–9116, Mar. 2018, doi: 10.1007/S10853-018-2209-4. Y. Saberi and S. A. Sajjadi, “A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys,” J Alloys Compd, vol. 904, p. 163918, May 2022, doi: 10.1016/J.JALLCOM.2022.163918. Y. Zhang and S. J. Park, “Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting,” Polymers 2019, Vol. 11, Page 909, vol. 11, no. 5, p. 909, May 2019, doi: 10.3390/POLYM11050909. W. Liu, X. Yan, G. Chen, and Z. Ren, “Recent advances in thermoelectric nanocomposites,” Nano Energy, vol. 1, no. 1, pp. 42–56, Jan. 2012, doi: 10.1016/J.NANOEN.2011.10.001. Y. Xiao et al., “Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25,” Chem, vol. 6, no. 2, pp. 523–537, Feb. 2020, doi: 10.1016/j.chempr.2020.01.002. H. T. Liu et al., “High-performance in N-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering,” Nano Energy, vol. 91, p. 106706, Jan. 2022, doi: 10.1016/J.NANOEN.2021.106706. G. Yang et al., “Enhanced thermoelectric performance and mechanical strength of N-type BiTeSe materials produced via a composite strategy,” Chemical Engineering Journal, vol. 428, p. 131205, Jan. 2022, doi: 10.1016/J.CEJ.2021.131205. X. Mo et al., “High thermoelectric performance at room temperature of N-type Mg3Bi2-based materials by Se doping,” Journal of Magnesium and Alloys, vol. 10, no. 4, pp. 1024–1032, Apr. 2022, doi: 10.1016/J.JMA.2020.11.023. L. Yang et al., “N-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance,” Nano Energy, vol. 31, pp. 105–112, Jan. 2017, doi: 10.1016/J.NANOEN.2016.11.027. M. H. Lee et al., “Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization-Delocalization Transition in N-type Bi-Doped PbTe/Ag 2 Te Nanocomposite,” ACS Nano, 2019, doi: 10.1021/ACSNANO.8B08579/SUPPL_FILE/NN8B08579_SI_002.PDF. Y. Lu, J. Y. Wang, and J. Pei, “Strategies to Enhance the Conductivity of N-type Polymer Thermoelectric Materials,” Chemistry of Materials, vol. 31, no. 17, pp. 6412–6423, Sep. 2019, doi: 10.1021/ACS.CHEMMATER.9B01422/ASSET/IMAGES/MEDIUM/CM-2019-01422W_0011.GIF. J. Liu et al., “Enhancing Molecular N-type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains,” Advanced Materials, vol. 30, no. 7, p. 1704630, Feb. 2018, doi: 10.1002/ADMA.201704630. S. Wang, G. Zuo, J. Kim, and H. Sirringhaus, “Progress of Conjugated Polymers as Emerging Thermoelectric Materials,” Prog Polym Sci, vol. 129, p. 101548, Jun. 2022, doi: 10.1016/J.PROGPOLYMSCI.2022.101548. M. Zhu et al., “Optimization of thermoelectric performances of conjugated polymers containing Trans-1,2-di(2-thienyl)ethylene subunits via structural modulation and doping engineering,” Org Electron, vol. 111, p. 106671, Dec. 2022, doi: 10.1016/J.ORGEL.2022.106671. C. Y. Yang et al., “A thermally activated and highly miscible dopant for N-type organic thermoelectrics,” Nature Communications 2020 11:1, vol. 11, no. 1, pp. 1–10, Jul. 2020, doi: 10.1038/s41467-020-17063-1. S. Lee et al., “Recent Progress in Organic Thermoelectric Materials and Devices,” Macromolecular Research 2020 28:6, vol. 28, no. 6, pp. 531–552, Jun. 2020, doi: 10.1007/S13233-020-8116-Y. L. Wang et al., “Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials,” Chem Asian J, vol. 11, no. 12, pp. 1804–1810, Jun. 2016, doi: 10.1002/ASIA.201600212. Y. Sun et al., “Flexible N-type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method,” Advanced Materials, vol. 28, no. 17, pp. 3351–3358, May 2016, doi: 10.1002/ADMA.201505922. Y. Li, C. Y. Gao, X. H. Fan, and L. M. Yang, “Two-step electrochemical modification for improving thermoelectric performance of polypyrrole films,” Synth Met, vol. 282, p. 116949, Dec. 2021, doi: 10.1016/J.SYNTHMET.2021.116949. M. Almasoudi et al., “Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance,” Polymer (Guildf), vol. 228, p. 123950, Jul. 2021, doi: 10.1016/J.POLYMER.2021.123950. R. Zhang et al., “Polyaniline doped with copper phthalocyanine disulfonic acid and their unique thermoelectric performance,” Polymer (Guildf), vol. 261, p. 125337, Nov. 2022, doi: 10.1016/J.POLYMER.2022.125337. A. Abd-Elsalam, H. O. Badr, A. A. Abdel-Rehim, and I. S. El-Mahallawi, “Structure and thermoelectric behavior of polyaniline-based/ CNT-composite,” Current Applied Physics, vol. 36, pp. 88–92, Apr. 2022, doi: 10.1016/J.CAP.2021.11.012. J. Huang, X. Liu, and Y. Du, “Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites,” Journal of Materiomics, vol. 8, no. 6, pp. 1213–1217, Nov. 2022, doi: 10.1016/J.JMAT.2022.05.005. L. Liu, J. Chen, L. Liang, L. Deng, and G. Chen, “A PEDOT:PSS thermoelectric fiber generator,” Nano Energy, vol. 102, p. 107678, Nov. 2022, doi: 10.1016/J.NANOEN.2022.107678. D. Liu et al., “Enhanced performance of SnSe/PEDOT: PSS composite films by MWCNTs for flexible thermoelectric power generator,” J Alloys Compd, vol. 898, p. 162844, Mar. 2022, doi: 10.1016/J.JALLCOM.2021.162844. X. Wang, H. Wang, and B. Liu, “Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting,” Polymers 2018, Vol. 10, Page 1196, vol. 10, no. 11, p. 1196, Oct. 2018, doi: 10.3390/POLYM10111196. J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, “Carbon-Nanotube-Based Thermoelectric Materials and Devices,” Advanced Materials, vol. 30, no. 11, p. 1704386, Mar. 2018, doi: 10.1002/ADMA.201704386. E. M. Elsehly et al., “Annealing effect on the thermoelectric properties of multiwall carbon nanotubes,” Physica E Low Dimens Syst Nanostruct, vol. 146, p. 115566, Jan. 2023, doi: 10.1016/J.PHYSE.2022.115566. S. C. Tzeng, T. M. Jeng, and Y. L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system,” International Communications in Heat and Mass Transfer, vol. 52, pp. 97–105, 2014. S. Twaha, J. Zhu, Y. Yan, and B. Li, “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement,” Renewable and Sustainable Energy Reviews, vol. 65, pp. 698–726, 2016. Z. Ge, L. Jin, and C. Yang, “Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field,” International Journal of Heat and Mass Transfer, vol. 85, pp. 158–165, 2015. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, “Comparison of different modeling approaches for thermoelectric elements,” Energy Conversion and Management, vol. 65, pp. 351–356, 2013. A. R. M. Siddique, R. Rabari, S. Mahmud, and B. van Heyst, “Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique,” energy, vol. 115, pp. 1081–1091, 2016. L. Chen, F. Meng, and F. Sun, “Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system,” Cryogenics, vol. 52, no. 1, pp. 58–65, 2012. W. H. Chen, P. H. Wu, X. D. Wang, and Y. L. Lin, “Power output and efficiency of a thermoelectric generator under temperature control,” Energy Conversion and Management, vol. 127, pp. 404–415, 2016. H. S. Lee, “The Thomson effect and the ideal equation on thermoelectric coolers,” energy, vol. 56, pp. 61–69, 2013. A. Chakraborty, B. B. Saha, S. Koyama, and K. C. Ng, “Thermodynamic modelling of a solid state thermoelectric cooling device: Temperature-entropy analysis,” International Journal of Heat and Mass Transfer, vol. 49, no. 19–20, pp. 3547–3554, 2006. A. Chakraborty and K. C. Ng, “Thermodynamic formulation of temperature-entropy diagram for the transient operation of a pulsed thermoelectric cooler,” International Journal of Heat and Mass Transfer, vol. 49, no. 11–12, pp. 1845–1850, 2006. E. Kanimba and Z. Tian, “A new dimensionless number for thermoelectric generator performance,” Applied Thermal Engineering, vol. 152, no. January, pp. 858–864, 2019. S. Kim, “Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators,” Applied Energy, vol. 102, pp. 1458–1463, 2013. S. Rana, B. Orr, A. Iqbal, L. C. Ding, A. Akbarzadeh, and A. Date, “Modelling and Optimization of Low-temperature Waste Heat Thermoelectric Generator System,” Energy Procedia, vol. 110, pp. 196–201, 2017. S. Mahmoudinezhad, A. Rezania, A. A. Ranjbar, and L. A. Rosendahl, “Transient behavior of the thermoelectric generators to the load change; an experimental investigation,” Energy Procedia, vol. 147, pp. 537–543, 2018. G. de Aloysio, G. D’Alessandro, and F. de Monte, “An analytical solution for the hyperbolic unsteady thermal behaviour of micro-thermoelectric coolers with a suddenly time-dependent heat generation,” International Journal of Heat and Mass Transfer, vol. 95, pp. 972–983, 2016. C. H. Cheng, S. Y. Huang, and T. C. Cheng, “A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers,” International Journal of Heat and Mass Transfer, vol. 53, no. 9–10, pp. 2001–2011, 2010. L. Musland and E. Flage-Larsen, “Thermoelectric transport calculations using the Landauer approach, ballistic quantum transport simulations, and the Buttiker approximation,” Computational Materials Science, vol. 132, pp. 146–157, 2017. O. Yamashita, “Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency,” Energy Conversion and Management, vol. 50, no. 8, pp. 1968–1975, 2009. D. Wee, “Uncertainty and sensitivity of the maximum power in thermoelectric generation with temperature-dependent material properties: An analytic polynomial chaos approach,” Energy Conversion and Management, vol. 157, no. November 2017, pp. 103–110, 2018. C. Ju, G. Dui, H. H. Zheng, and L. Xin, “Revisiting the temperature dependence in material properties and performance of thermoelectric materials,” energy, vol. 124, pp. 249–257, 2017. H. Lee, J. Sharp, D. Stokes, M. Pearson, and S. Priya, “Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties,” Applied Energy, vol. 211, no. November 2017, pp. 987–996, 2018. T. Zhang, “Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement,” Journal of Electronic Materials, vol. 44, no. 10, pp. 3612–3620, 2015. E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, “A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator,” Journal of Power Sources, vol. 365, pp. 266–272, 2017. A. Montecucco, J. Siviter, and A. R. Knox, “The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel,” Applied Energy, vol. 123, pp. 47–54, 2014. A. Belboula, R. Taleb, G. Bachir, and F. Chabni, “Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator,” Lecture Notes in Networks and Systems, vol. 62, no. December, pp. 329–338, 2019. D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions,” no. October, pp. 1614–1619, 2009. A. K. Podder, N. K. Roy, and H. R. Pota, “MPPT methods for solar PV systems: A critical review based on tracking nature,” IET Renewable Power Generation, vol. 13, no. 10, pp. 1615–1632, 2019. P. R. Satpathy and R. Sharma, “Power recovery and equalization in partially shaded photovoltaic strings by an efficient switched capacitor converter,” Energy Conversion and Management, vol. 203, no. September 2019, 2020. F. L. Tofoli, D. de Castro Pereira, and W. J. de Paula, “Comparative study of maximum power point tracking techniques for photovoltaic systems,” International Journal of Photoenergy, vol. 2015, no. April 2019, 2015. F. Belhachat and C. Larbes, “A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions,” Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 513–553, 2018. Z. B. Tang, Y. D. Deng, C. Q. Su, W. W. Shuai, and C. J. Xie, “A research on thermoelectric generator’s electrical performance under temperature mismatch conditions for automotive waste heat recovery system,” Case Studies in Thermal Engineering, vol. 5, pp. 143–150, 2015. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016. Sanin-Villa, D., Monsalve-Cifuentes, O. D., & del Rio, J. S. (2021). Early fever detection on COVID-19 infection using thermoelectric module generators. International Journal of Electrical and Computer Engineering (IJECE), 11(5), 3828–3837. https://doi.org/10.11591/IJECE.V11I5.PP3828-3837 M. Ge, Y. Zhao, Y. Li, W. He, L. Xie, and Y. Zhao, "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, vol. 244, p. 123202, Apr. 2022, doi: 10.1016/J.ENERGY.2022.123202. Y. Zhao, Y. Fan, W. Li, Y. Li, M. Ge, and L. Xie, "Experimental investigation of heat pipe thermoelectric generator," Energy Convers Manag, vol. 252, p. 115123, Jan. 2022, doi: 10.1016/J.ENCONMAN.2021.115123. A. G. Olabi et al., "Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems," International Journal of Thermofluids, vol. 16, p. 100249, Nov. 2022, doi: 10.1016/J.IJFT.2022.100249. D. Crane et al., "TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development," Journal of Electronic Materials 2012 42:7, vol. 42, no. 7, pp. 1582–1591, Nov. 2012, doi: 10.1007/S11664-012-2327-8. Q. Luo et al., "A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns," Journal of Electronic Materials 2014 44:6, vol. 44, no. 6, pp. 1750–1762, Dec. 2014, doi: 10.1007/S11664-014-3543-1. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and J. S. del Rio, "Early fever detection on COVID-19 infection using thermoelectric module generators," International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 3828–3837, Oct. 2021, doi: 10.11591/IJECE.V11I5.PP3828-3837. A. Zhang, D. Pang, B. Wang, and J. Wang, "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, vol. 262, p. 125621, Jan. 2023, doi: 10.1016/J.ENERGY.2022.125621. L. Anatychuk, L. Vikhor, M. Kotsur, R. Kobylianskyi, and T. Kadeniuk, "Optimal Control of Time Dependence of Temperature in Thermoelectric Devices for Medical Purposes," International Journal of Thermophysics 2018 39:9, vol. 39, no. 9, pp. 1–12, Aug. 2018, doi: 10.1007/S10765-018-2430-Z. L. G. Lafaurie Ponce, F. Chejne, L. M. Ramirez Aristeguieta, C. A. Gómez, and A. F. Múnera Cano, "Predicting a thermal stimulator's heating/cooling rate for medical applications," Appl Therm Eng, vol. 163, p. 114376, Dec. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.114376. C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao, "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Appl Energy, vol. 88, no. 12, pp. 5173–5179, Dec. 2011, doi: 10.1016/J.APENERGY.2011.07.033. M. Sanchez-Amaya, M. Bárcena-Soto, A. Rodríguez-López, R. Antaño-López, and E. R. Larios-Durán, "Sinusoidal temperature variation response associated with electrochemical Peltier heat as a transfer function approach," 2020, doi: 10.1016/j.elecom.2020.106769. L. G. Lafaurie-Ponce et al., "A Study of the Non-linear Thomson Effect Produced by Changing the Current in a Thermoelectric Cooler," JNET, vol. 47, no. 17–18, pp. 339–354, Oct. 2022, doi: 10.1515/JNET-2022-0037. A. Montecucco, J. R. Buckle, and A. R. Knox, "Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices," Appl Therm Eng, vol. 35, no. 1, pp. 177–184, Mar. 2012, doi: 10.1016/J.APPLTHERMALENG.2011.10.026. A. Ferrario, S. Boldrini, A. Miozzo, and M. Fabrizio, "Temperature dependent iterative model of thermoelectric generator including thermal losses in passive elements," Appl Therm Eng, vol. 150, pp. 620–627, Mar. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.01.031. S. Twaha, J. Zhu, Y. Yan, and B. Li, "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, vol. 65, pp. 698–726, 2016, doi: 10.1016/j.rser.2016.07.034. Z. Ge, L. Jin, and C. Yang, "Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field," Int J Heat Mass Transf, vol. 85, pp. 158–165, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.01.053. L. Chen, F. Meng, and F. Sun, "Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system," Cryogenics (Guildf), vol. 52, no. 1, pp. 58–65, 2012, doi: 10.1016/j.cryogenics.2011.10.007. A. R. M. Siddique, R. Rabari, S. Mahmud, and B. van Heyst, "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, vol. 115, pp. 1081–1091, 2016, doi: 10.1016/j.energy.2016.09.087. W. H. Chen, P. H. Wu, X. D. Wang, and Y. L. Lin, "Power output and efficiency of a thermoelectric generator under temperature control," Energy Convers Manag, vol. 127, pp. 404–415, 2016, doi: 10.1016/j.enconman.2016.09.039. H. S. Lee, "The Thomson effect and the ideal equation on thermoelectric coolers," Energy, vol. 56, pp. 61–69, 2013, doi: 10.1016/j.energy.2013.04.049. A. Chakraborty, B. B. Saha, S. Koyama, and K. C. Ng, "Thermodynamic modelling of a solid state thermoelectric cooling device: Temperature-entropy analysis," Int J Heat Mass Transf, vol. 49, no. 19–20, pp. 3547–3554, 2006, doi: 10.1016/j.ijheatmasstransfer.2006.02.047. E. Kanimba and Z. Tian, "A new dimensionless number for thermoelectric generator performance," Appl Therm Eng, vol. 152, no. January, pp. 858–864, 2019, doi: 10.1016/j.applthermaleng.2019.02.093. M. Zhang, Y. Tian, H. Xie, Z. Wu, and Y. Wang, “Influence of Thomson effect on the thermoelectric generator,” Int J Heat Mass Transf, vol. 137, pp. 1183–1190, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.03.155. T. Zhang, "Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement," Journal of Electronic Materials 2015 44:10, vol. 44, no. 10, pp. 3612–3620, Jun. 2015, doi: 10.1007/S11664-015-3875-5. S. Kim, "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Appl Energy, vol. 102, pp. 1458–1463, 2013, doi: 10.1016/j.apenergy.2012.09.006. S. Rana, B. Orr, A. Iqbal, L. C. Ding, A. Akbarzadeh, and A. Date, "Modelling and Optimization of Low-temperature Waste Heat Thermoelectric Generator System," Energy Procedia, vol. 110, pp. 196–201, 2017, doi: 10.1016/j.egypro.2017.03.127. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016. S. Mahmoudinezhad, A. Rezania, A. A. Ranjbar, and L. A. Rosendahl, "Transient behavior of the thermoelectric generators to the load change; an experimental investigation," Energy Procedia, vol. 147, pp. 537–543, 2018, doi: 10.1016/j.egypro.2018.07.068. G. de Aloysio, G. D'Alessandro, and F. de Monte, "An analytical solution for the hyperbolic unsteady thermal behaviour of micro-thermoelectric coolers with a suddenly time-dependent heat generation," Int J Heat Mass Transf, vol. 95, pp. 972–983, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.12.052. C. H. Cheng, S. Y. Huang, and T. C. Cheng, "A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers," Int J Heat Mass Transf, vol. 53, no. 9–10, pp. 2001–2011, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.12.056. O. Yamashita, "Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency," Energy Convers Manag, vol. 50, no. 8, pp. 1968–1975, 2009, doi: 10.1016/j.enconman.2009.04.019. D. Wee, "Uncertainty and sensitivity of the maximum power in thermoelectric generation with temperature-dependent material properties: An analytic polynomial chaos approach," Energy Convers Manag, vol. 157, no. November 2017, pp. 103–110, 2018, doi: 10.1016/j.enconman.2017.11.088. C. Ju, G. Dui, H. H. Zheng, and L. Xin, "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, vol. 124, pp. 249–257, 2017, doi: 10.1016/j.energy.2017.02.020. H. Lee, J. Sharp, D. Stokes, M. Pearson, and S. Priya, "Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties," Appl Energy, vol. 211, no. November 2017, pp. 987–996, 2018, doi: 10.1016/j.apenergy.2017.11.096. E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, "A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator," J Power Sources, vol. 365, pp. 266–272, Oct. 2017, doi: 10.1016/J.JPOWSOUR.2017.08.091. D. Sanin-Villa, "Recent Developments in Thermoelectric Generation: A Review," Sustainability 2022, Vol. 14, Page 16821, vol. 14, no. 24, p. 16821, Dec. 2022, doi: 10.3390/SU142416821. M. Zerroukat, H. Power, and C. S. Chen, "A numerical method for heat transfer problems using collocation and radial basis functions - Zerroukat - 1998 - International Journal for Numerical Methods in Engineering - Wiley Online Library," International Journal for numerical methods in Engineering, pp. 1263–1278, 1998. Accessed: Mar. 26, 2023. [Online]. Available: https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-I C. A. Micchelli, "Interpolation of scattered data: Distance matrices and conditionally positive definite functions," Constr Approx, vol. 2, no. 1, pp. 11–22, Dec. 1986, doi: 10.1007/BF01893414/METRICS. J. Wertz, E. J. Kansa, and L. Ling, "The role of the multiquadric shape parameters in solving elliptic partial differential equations," Computers & Mathematics with Applications, vol. 51, no. 8, pp. 1335–1348, Apr. 2006, doi: 10.1016/J.CAMWA.2006.04.009. C. S. Chen, C. M. Fan, and P. H. Wen, "The method of approximate particular solutions for solving certain partial differential equations," Numer Methods Partial Differ Equ, vol. 28, no. 2, pp. 506–522, Mar. 2012, doi: 10.1002/NUM.20631. B. Fornberg and E. Lehto, "Stabilization of RBF-generated finite difference methods for convective PDEs," J Comput Phys, vol. 230, no. 6, pp. 2270–2285, Mar. 2011, doi: 10.1016/J.JCP.2010.12.014. S. J. Liao, "On the general boundary element method," Eng Anal Bound Elem, vol. 21, no. 1, pp. 39–51, Jan. 1998, doi: 10.1016/S0955-7997(97)00108-2. D. Wee, "Analysis of thermoelectric energy conversion efficiency with linear and non-linear temperature dependence in material properties," Energy Convers Manag, vol. 52, no. 12, pp. 3383–3390, Nov. 2011, doi: 10.1016/J.ENCONMAN.2011.07.004. G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, "Comparison of different modeling approaches for thermoelectric elements," Energy Convers Manag, vol. 65, pp. 351–356, Jan. 2013, doi: 10.1016/J.ENCONMAN.2012.08.022. Daniel Sanin-Villa, Elkin Henao-Bravo, Carlos Ramos-Paja, and Farid Chejne, "Evaluation of power harvesting on DC-DC converters to extract the maximum power output from TEGs arrays under mismatching conditions," Journal of Operation and Automation in Power Engineering, 2023, Accessed: Dec. 25, 2022. [Online]. Available: https://joape.uma.ac.ir/ D. Sanin-Villa, L. F. Grisales-Noreña, and D. Montoya, "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master-Slave Strategy Based on Metaheuristics Techniques," Mathematics, Mar. 2023. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726, https://doi.org/10.1016/j.rser.2016.07.034. Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533, https://doi.org/10.1021/acs.chemrev.8b00573. Machacek, Z.; Walendziuk, W.; Sotola, V.; Slanina, Z.; Petras, R.; Schneider, M.; Masny, Z.; Idzkowski, A.; Koziorek, J. An Investigation of Thermoelectric Generators Used as Energy Harvesters in a Water Consumption Meter Application. Energies 2021, 14, 3768, https://doi.org/10.3390/en14133768. Cózar, I.R.; Pujol, T.; Massaguer, E.; Massaguer, A.; Montoro, L.; González, J.R.; Comamala, M.; Ezzitouni, S. Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators. Energies 2021, 14, 2232, https://doi.org/10.3390/en14082232. Albatati, F.; Attar, A. Analytical and Experimental Study of Thermoelectric Generator (Teg) System for Automotive Exhaust Waste Heat Recovery. Energies 2021, 14, 204, https://doi.org/10.3390/en14010204. Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents Electr. Eng. 2009, 2, 27–39, https://doi.org/10.2174/1874476110902010027. Kim, T.Y. Prediction of System-Level Energy Harvesting Characteristics of a Thermoelectric Generator Operating in a Diesel Engine Using Artificial Neural Networks. Energies 2021, 14, 2426, https://doi.org/10.3390/en14092426. Dzulkfli, M.S. Bin; Pesyridis, A.; Gohil, D. Thermoelectric Generation in Hybrid Electric Vehicles. Energies 2020, 13, 3742, https://doi.org/10.3390/en13143742. Nagayoshi, H.; Tokumisu, K.; Kajikawa, T. Evaluation of Multi MPPT Thermoelectric Generator System. In Proceedings of the 26th International Conference on Thermoelectrics, Jeju, Korea, 3–7 June 2007; pp. 318–321; https://doi.org/10.1109/ICT.2007.4569487. Cotfas, P.A.; Cotfas, D.T. Comprehensive Review of Methods and Instruments for Photovoltaic-Thermoelectric Generator Hybrid System Characterization. Energies 2020, 13, 6045, https://doi.org/10.3390/en13226045. Lashin, A.; Al Turkestani, M.; Sabry, M. Performance of a Thermoelectric Generator Partially Illuminated with Highly Concentrated Light. Energies 2020, 13, 3627, https://doi.org/10.3390/en13143627. Shure, L.I.; Harvey, J.S. Survey of Electric Power Plants for Space Applications; NASA. Philadelphia, PA, USA, 1965. Radioisotope Power Systems. Available online: https://rps.nasa.gov/ (accessed on 31 July 2021). Voyager, the Interstellar Mission. Available online: https://voyager.jpl.nasa.gov/mission/spacecraft/ (accessed on 31 July 2021). Montecucco, A.; Siviter, J.; Knox, A.R. The Effect of Temperature Mismatch on Thermoelectric Generators Electrically Connected in Series and Parallel. Appl. Energy 2014, 123, 47–54, https://doi.org/10.1016/j.apenergy.2014.02.030. Tang, Z.B.; Deng, Y.D.; Su, C.Q.; Shuai, W.W.; Xie, C.J. A Research on Thermoelectric Generator’s Electrical Performance under Temperature Mismatch Conditions for Automotive Waste Heat Recovery System. Case Stud. Therm. Eng. 2015, 5, 143–150, https://doi.org/10.1016/j.csite.2015.03.006. Hakim, A.; Lim, J.H. The Effect of Temperature Mismatch on Interconnected Thermoelectric Module for Power Generation. AIP Conf. Proc. 2020, 2233, 02009, https://doi.org/10.1063/5.0001549. Kidegho, G.; Njoka, F.; Muriithi, C.; Kinyua, R. Evaluation of Thermal Interface Materials in Mediating PV Cell Temperature Mismatch in PV–TEG Power Generation. Energy Rep. 2021, 7, 1636–1650, https://doi.org/10.1016/j.egyr.2021.03.015. Ruzaimi, A.S.S.; Hassan, W.Z.W.; Azis, N.; Ya’acob, M.E.; Elianddy, E.; Aimrun, W. Performance Analysis of Thermoelectric Generator Implemented on Non-Uniform Heat Distribution of Photovoltaic Module. Energy Rep. 2021, 7, 2379–2387, https://doi.org/10.1016/j.egyr.2021.04.029. Haxel, G.B.; James, B.H.; Greta, J.O. Rare Earth Elements—Critical Resources for High Technology; United States Department of the Interior Geological Survey: Reston, VA, USA, 2002; pp. 1–11. Champier, D. Thermoelectric Generators: A Review of Applications. Energy Convers. Manag. 2017, 140, 167–181, https://doi.org/10.1016/j.enconman.2017.02.070. Chen, S.; Ren, Z. Recent Progress of Half-Heusler for Moderate Temperature Thermoelectric Applications. Mater. Today 2013, 16, 387–395, https://doi.org/10.1016/j.mattod.2013.09.015. Leblanc, S.; Yee, S.K.; Scullin, M.L.; Dames, C.; Goodson, K.E. Material and Manufacturing Cost Considerations for Thermoelectrics. Renew. Sustain. Energy Rev. 2014, 32, 313–327, https://doi.org/10.1016/j.rser.2013.12.030. Lin, C.X.; Kiflemariam, R. Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow. Energies 2019, 12, 4052, https://doi.org/10.3390/en12214052. Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Del Rio, J.S. Early Fever Detection on COVID-19 Infection Using Thermoelectric Module Generators. Int. J. Electr. Comput. Eng. 2021, 11, 3828–3837, https://doi.org/10.11591/ijece.v11i5.pp3828-3837. Ramos-Paja, C.A.; Bastidas, J.D.; Saavedra-Montes, A.J.; Guinjoan-Gispert, F.; Goez, M. Mathematical Model of Total Cross-Tied Photovoltaic Arrays in Mismatching Conditions. In Proceedings of the IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), Barranquilla, Colombia, 1–2 November 2012; https://doi.org/10.1109/CWCAS.2012.6404068. Choi, T.; Kim, T.Y. Three-Zone Numerical Modeling Method for Predicting System-Level Waste Heat Recovery Performance of Thermoelectric Generator with Various Electrical Array Configurations. Energy Convers. Manag. 2021, 240, 114270, https://doi.org/10.1016/j.enconman.2021.114270. Wang, P.; Wang, K.F.; Wang, B.L.; Cui, Y.J. Modeling of Thermoelectric Generators with Effects of Side Surface Heat Convection and Temperature Dependence of Material Properties. Int. J. Heat Mass Transf. 2019, 133, 1145–1153, https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.006. Wee, D. Analysis of Thermoelectric Energy Conversion Efficiency with Linear and Nonlinear Temperature Dependence in Material Properties. Energy Convers. Manag. 2011, 52, 3383–3390, https://doi.org/10.1016/j.enconman.2011.07.004. Ju, C.; Dui, G.; Zheng, H.H.; Xin, L. Revisiting the Temperature Dependence in Material Properties and Performance of Thermoelectric Materials. Energy 2017, 124, 249–257, https://doi.org/10.1016/j.energy.2017.02.020. Thielen, M.; Sigrist, L.; Magno, M.; Hierold, C.; Benini, L. Human Body Heat for Powering Wearable Devices: From Thermal Energy to Application. Energy Convers. Manag. 2017, 131, 44–54, https://doi.org/10.1016/j.enconman.2016.11.005. Antonova, E.E.; Looman, D.C. Finite Elements for Thermoelectric Device Analysis in ANSYS. In Proceedings of the ICT 2005 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; pp. 200–203; https://doi.org/10.1109/ICT.2005.1519922. Chen, W.H.; Liao, C.Y.; Hung, C.I. A Numerical Study on the Performance of Miniature Thermoelectric Cooler Affected by Thomson Effect. Appl. Energy 2012, 89, 464–473, https://doi.org/10.1016/j.apenergy.2011.08.022. Oliveira, K.S.M.; Cardoso, R.P.; Hermes, C.J.L. Numerical Assessment of the Thermodynamic Performance of Thermoelectric Cells via Two-Dimensional Modelling. Appl. Energy 2014, 130, 280–288, https://doi.org/10.1016/j.apenergy.2014.05.050. Huang, M.J.; Yen, R.H.; Wang, A.B. The Influence of the Thomson Effect on the Performance of a Thermoelectric Cooler. Int. J. Heat Mass Transf. 2005, 48, 413–418, https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.040. Strasser, M.; Aigner, R.; Franosch, M.; Wachutka, G. Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining. Sens. Actuators A Phys. 2002, 97–98, 535–542, https://doi.org/10.1016/S0924-4247(01)00815-9. Abdel-Motaleb, I.M.; Syed, M.Q. Thermoelectric Devices: Principles and Future Trends. arXiv 2017, arXiv:1704.07742. Snyder, G.J.; Snyder, A.H. Figure of Merit ZT of a Thermoelectric Device Defined from Materials Properties. Energy Environ. Sci. 2017, 10, 2280–2283, https://doi.org/10.1039/c7ee02007d. Kasap, S. Thermoelectric Effects in Metals; The Department of Electrical and Computer Engineering: Saskatoon, Canada, 2001; pp. 1–11. Shnawah, D.A.; Sabri, M.F.M.; Badruddin, I.A.; Said, S.B.M.; Ariga, T.; Che, F.X. Effect of Ag Content and the Minor Alloying Element Fe on the Mechanical Properties and Microstructural Stability of Sn-Ag-Cu Solder Alloy under High-Temperature Annealing. J. Electron. Mater. 2013, 42, 470–484, https://doi.org/10.1007/s11664-012-2343-8. Liou, B.H.; Chen, C.M.; Horng, R.H.; Chiang, Y.C.; Wuu, D.S. Improvement of Thermal Management of High-Power GaN-Based Light-Emitting Diodes. Microelectron. Reliab. 2012, 52, 861–865, https://doi.org/10.1016/j.microrel.2011.04.002. Corning, D. SYLGARDTM 184 Silicone Elastomer Kit. Available online: https://www.dow.com/en-us/pdp.sylgard-184-silicone-elastomer-kit.01064291z.html (accessed on 30 July 2021). Wang, Y.; Shi, Y.; Mei, D.; Chen, Z. Wearable Thermoelectric Generator for Harvesting Heat on the Curved Human Wrist. Appl. Energy 2017, 205, 710–719, https://doi.org/10.1016/j.apenergy.2017.08.117. ANSYS Inc. ANSYS Workbench Product Release Notes 10.0; ANSYS Inc.: Canonsburg, PA, USA, 2005. Chen, Z.; Lin, M.Y.; Xu, G.D.; Chen, S.; Zhang, J.H.; Wang, M.M. Hydrothermal Synthesized Nanostructure Bi-Sb-Te Thermoelectric Materials. J. Alloys Compd. 2014, 588, 384–387, https://doi.org/10.1016/j.jallcom.2013.11.065. Mackey, J.; Dynys, F.; Sehirlioglu, A. Uncertainty Analysis for Common Seebeck and Electrical Resistivity Measurement Systems. Rev. Sci. Instrum. 2014, 85, 6, https://doi.org/10.1063/1.4893652. Mackey, J.; Dynys, F.; Sehirlioglu, A. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization; NASA: Akron, OH, USA, 2013; Volume 24. Mechanical APDL Modeling and Meshing Guide; ANSYS Inc.: Canonsburg, PA, USA, 2010; Volume 3304, pp. 724–746. ANSYS Mechanical APDL Modeling and Meshing Guide. ANSYS 2020 R1 Release; ANSYS Inc.: Canonsburg, PA, USA, 2020. European Thermodynamics Limited. Thermoelectric Generator Module GM250-449-10-12. Available online: https://media.digikey.com/pdf/Data Sheets/European Thermodynamics PDFs/GM250-449-10-12.pdf (accessed on 3 October 2021). Xiao, H.; Gou, X.; Yang, S. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System. J. Electron. Mater. 2011, 40, 1195–1201, https://doi.org/10.1007/s11664-011-1596-y. D. Sanin-Villa, “Recent Developments in Thermoelectric Generation: A Review,” Sustainability 2022, Vol. 14, Page 16821, vol. 14, no. 24, p. 16821, Dec. 2022, doi: 10.3390/SU142416821. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and J. S. Del Rio, “Early fever detection on COVID-19 infection using thermoelectric module generators,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 3828–3837, Oct. 2021, doi: 10.11591/IJECE.V11I5.PP3828-3837. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016. “TEG1-12611-6.0 - Tecteg Power Generator.com.” https://tecteg.com/product/teg1-12611-6-0/ (accessed May 06, 2023). S. Zhang and X. Liao, “The test structures to measure resistivity and contact resistance of poly-si for thermoelectric-photoelectric integrated generator,” Proceedings of the 14th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2019, pp. 443–446, Apr. 2019, doi: 10.1109/NEMS.2019.8915618. S. Dalola, M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, “Characterization of thermoelectric modules for powering autonomous sensors,” IEEE Trans Instrum Meas, vol. 58, no. 1, pp. 99–107, 2009, doi: 10.1109/TIM.2008.928405. H. J. Kim, J. R. Skuza, Y. Park, G. C. King, S. H. Choi, and A. Nagavalli, “System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics,” 2012, Accessed: May 06, 2023. [Online]. Available: http://www.sti.nasa.gov E. I. Ortiz-Rivera, A. Salazar-Llinas, and J. Gonzalez-Llorente, “A mathematical model for online electrical characterization of thermoelectric generators using the P-I curves at different temperatures,” Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, pp. 2226–2230, 2010, doi: 10.1109/APEC.2010.5433546. B. Precision, “DC Electronic Loads 8500 Series”, Accessed: May 06, 2023. [Online]. Available: www.bkprecision.com “MCH-305D DC Power Supply.pdf - Google Drive,” Jan. 2023. https://drive.google.com/file/d/0BzaKjvCRihgbME1OdzY4Q3ZBSU0/view?resourcekey=0-COBy8zumnHxR1orxF-3kaQ (accessed May 06, 2023). “Test Equipment Solutions Datasheet”, Accessed: May 06, 2023. [Online]. Available: www. Sanin-Villa, D. Recent Developments in Thermoelectric Generation: A Review. Sustainability 2022, 14, 16821. Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies, 2020, 13, 3606. Rjafallah, A.; Cotfas, D.T.; Cotfas, P.A. Legs Geometry Influence on the Performance of the Thermoelectric Module. Sustainability, 2022, 14, 15823. Koketsu, K.; Tanzawa, T. A Design of a Thermoelectric Energy Harvester for Minimizing Sensor Module Cost. Electronics 2022, 11, 3441. Cotfas, D.; Cotfas, P.; Mahmoudinezhad, S.; Louzazni, M. Critical factors and parameters for hybrid photovoltaic-thermoelectric systems; review. Appl. Therm. Eng. 2022, 215. Mwasilu, F.; Justo, J.J.; Kim, E.K.; Do, T.D.; Jung, J.W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516. Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Del Rio, J.S. Early fever detection on COVID-19 infection using thermoelectric module generators. Int. J. Electr. Comput. Eng 2021, 11, 3828–3837. Luo, D.; Liu, Z.; Yan, Y.; Li, Y.; Wang, R.; Zhang, L.; Yang, X. Recent advances in modeling and simulation of thermoelectric power generation. Energy Convers. Manag. 2022, 273, 116389. Xu, Y.; Xue, Y.; Cai, W.; Qi, H.; Li, Q. Experimental study on performances of flat-plate pulsating heat pipes coupled with thermoelectric generators for power generation. Int. J. Heat Mass Transf. 2023, 203, 123784. Jiang, H.; Fang, Q.; Xavier, T.F.; Hu, G.; Wang, H.; Suo, Y.; Ye, Y.; Li, G.; Zheng, Y.; Zhang, Z. A novel thermoelectric distiller integrated with water cooling circulation for alcohol distillation. Appl. Therm. Eng. 2023, 219, 119392. Xu, G.; Duan, Y.; Chen, X.; Ming, T.; Huang, X. Effects of thermal and electrical contact resistances on the performance of a multi-couple thermoelectric cooler with non-ideal heat dissipation. Appl. Therm. Eng. 2020, 169, 114933. Kim, C.N. Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Appl. Therm. Eng. 2018, 130, 408–417. Nesarajah, M.; Felgner, F.; Frey, G. Modeling and simulation of a thermoelectric energy harvesting system for control de- sign purposes. In Proceedings of the Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 170–177. Gachovska, T.K.; Hudgins, J.L.; Santi, E.; Bryant, A.; Palmer, P.R. Modeling bipolar power semiconductor devices. Synth. Lect. Power Electron. 2013, 4, 1–93. Yazdanshenas, E.; Rezania, A.; Karami Rad, M.; Rosendahl, L. Electrical response of thermoelectric generator to geometry variation under transient thermal boundary condition. J. Renew. Sustain. Energy 2018, 10, 064705. Torrecilla, M.C.; Montecucco, A.; Siviter, J.; Strain, A.; Knox, A.R. Transient response of a thermoelectric generator to load steps under constant heat flux. Appl. Energy 2018, 212, 293–303. Martinez, A.; de Garayo, S.D.; Aranguren, P.; Araiz, M.; Catalán, L. Simulation of thermoelectric heat pumps in nearly zero energy buildings: Why do all models seem to be right? Energy Convers. Manag. 2021, 235, 113992. Martinez, A.; de Garayo, S.D.; Aranguren, P.; Astrain, D. Assessing the reliability of current simulation of thermoelectric heat pumps for nearly zero energy buildings: Expected deviations and general guidelines. Energy Convers. Manag. 2019, 198, 111834. Li, W.; Paul, M.; Montecucco, A.; Siviter, J.; Knox, A.; Sweet, T.; Gao, M.; Baig, H.; Mallick, T.; Han, G.; et al. Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case Stud. Therm. Eng. 2017, 10, 63–72. Chen, W.H.; Wu, P.H.; Lin, Y.L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Appl. Energy 2018, 209, 211–223. Meng, J.H.; Zhang, X.X.; Wang, X.D. Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy 2014, 71, 367–376. Liu, Z.; Zhu, S.; Ge, Y.; Shan, F.; Zeng, L.; Liu, W. Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Appl. Energy 2017, 190, 540–552. Wen, Z.; Sun, Y.; Zhang, A.; Wang, B.; Wang, J.; Du, J. Performance analysis of a segmented annular thermoelectric generator. J. Electron. Mater. 2020, 49, 4830–4842. Ge, Y.; Liu, Z.; Sun, H.; Liu, W. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy 2018, 147, 1060–1069. Zhu, L.; Li, H.; Chen, S.; Tian, X.; Kang, X.; Jiang, X.; Qiu, S. Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renew. Energy 2020, 156, 710–718. Wang, X.; Henshaw, P.; Ting, D.S.K. Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO). Appl. Energy 2021, 294, 116952. Yin, E.; Li, Q. Multi-objective optimization of a concentrated spectrum splitting photovoltaic-thermoelectric hybrid system. Appl. Therm. Eng. 2023, 219, 119518. Sanin-Villa, D.; Henao-Bravo, E.; Ramos-Paja, C.; Chejne, F. Evaluation of Power Harvesting on DC-DC Converters to Ex- tract the Maximum Power Output from TEGs Arrays under Mismatching Conditions. J. Oper. Autom. Power Eng. 2023. https://doi.org/10.22098/joape.2023.11207.1836. Montano, J.; Tobón, A.; Villegas, J.; Durango, M. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. Int. J. Energy Environ. Eng. 2020, 11, 367–375. Restrepo-Cuestas, B.J.; Montano, J.; Ramos-Paja, C.A.; Trejos-Grisales, L.A.; Orozco-Gutierrez, M.L. Parameter estimation of the bishop photovoltaic model using a genetic algorithm. Appl. Sci. 2022, 12, 2927. Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703. Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type control: Indirect adaptive learning from set-point updates. IEEE Trans. Autom. Control. 2022. https://doi.org/10.1109/TAC.2022.3154347. Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control. 2021, 58, 373–387. Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control. 2021, 58, 373–387. Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. Rendón, R.A.G.; Ocampo, E.M.T.; Zuluaga, A.H.E. Técnicas Heurísticas y Metaheurísticas; Universidad Tecnológica de Pereira: Pereira, Colombia, 2015. C´ alasan, M.; Aleem, S.H.A.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716. Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. Montano, J.J.; Noreña, L.F.G.; Tobon, A.F.; Montoya, D.G. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat. Am. Trans. 2022, 20, 616–623. Grisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93. Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal design of PV Systems in electrical distribution networks by minimizing the annual equivalent operative costs through the discrete-continuous vortex search algorithm. Sensors 2022, 22, 851. Velásquez, L.; Posada, A.; Chica, E. Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine. Appl. Energy 2023, 330, 120357. 43. Dog˘ an, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145. Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Granada Echeverri, M.; Perea-Moreno, A.J. Optimal location and sizing of DGs in DC networks using a hybrid methodology based on the PPBIL algorithm and the VSA. Mathematics 2021, 9, 1913. Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 2016, 169, 1–12. Grisales-Noreña, L.F.; Cortés-Caicedo, B.; Alcalá, G.; Montoya, O.D. Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks. Mathematics 2023, 11, 387. Schubert, A.L.; Hagemann, D.; Voss, A.; Bergmann, K. Evaluating the model fit of diffusion models with the root mean square error of approximation. J. Math. Psychol. 2017, 77, 29–45. Karunasingha, D.S.K. Root mean square error or mean absolute error? Use their ratio as well. Inf. Sci. 2022, 585, 609–629. Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Henao-Bravo, E.E. Evaluation of Thermoelectric Generators under Mismatching Conditions. Energies 2021, 14, 8016. Wee, D. Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties. Energy Convers. Manag. 2011, 52, 3383–3390. Ju, C.; Dui, G.; Zheng, H.H.; Xin, L. Revisiting the temperature dependence in material properties and performance of thermoelectric materials. Energy 2017, 124, 249–257. TECTEG MFR. Div. of Thermal Electronics Corp. Specifications TEG Module TEG1-12611-6.0. 2022. Available online: https://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-6.0TEG-POWERGENERATOR-new.pdf (accessed on 9 January 2022). UNFCC (United Nations Framework Convention on Climate Change), “Paris Agreement (Spanish),” p. 29, 2015, [Online]. Available: http://unfccc.int/files/essential_background/convention/application/pdf/spanish_paris_agreement.pdf M. Morini, M. Pinelli, P. R. Spina, and M. Venturini, “Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications,” Appl Energy, vol. 112, pp. 205–214, 2013, doi: 10.1016/j.apenergy.2013.05.078. S. K. Bhukesh, A. Kumar, and S. K. Gaware, “Bismuth telluride (Bi2Te3) thermoelectric material as a transducer for solar energy application,” Mater Today Proc, vol. 26, pp. 3131–3137, 2019, doi: 10.1016/j.matpr.2020.02.646. M. Ge, Z. Wang, L. Liu, J. Zhao, and Y. Zhao, “Performance analysis of a solar thermoelectric generation (STEG) system with spray cooling,” Energy Convers Manag, vol. 177, no. April, pp. 661–670, 2018, doi: 10.1016/j.enconman.2018.10.016. M. A. Qasim, V. I. Velkin, and A. K. Hassan, “Seebeck Generators and Their Performance in Generating Electricity,” Journal of Operation and Automation in Power Engineering, vol. 10, no. 3, pp. 200–205, Sep. 2022, doi: 10.22098/joape.2022.9715.1677. A. Nozariasbmarz et al., “Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems,” Appl Energy, vol. 258, no. November 2019, 2020, doi: 10.1016/j.apenergy.2019.114069. E. Yin, Q. Li, and Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Convers Manag, vol. 143, pp. 188–202, 2017, doi: 10.1016/j.enconman.2017.04.004. R. Bjørk and K. K. Nielsen, “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system,” Solar Energy, vol. 120, pp. 187–194, 2015, doi: 10.1016/j.solener.2015.07.035. E. S. Mohamed, “Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions,” Appl Therm Eng, vol. 147, no. January 2018, pp. 661–674, 2019, doi: 10.1016/j.applthermaleng.2018.10.100. R. ben Cheikh, B. el Badsi, and A. Masmoudi, “Geothermal sources-based thermoelectric power generation: An attempt to enhance the rural electrification in southern Tunisia,” 2014 9th International Conference on Ecological Vehicles and Renewable Energies, EVER 2014, 2014, doi: 10.1109/EVER.2014.6844080. A. Barco, R. M. Ambrosi, H. R. Williams, and K. Stephenson, “Radioisotope power systems in space missions: Overview of the safety aspects and recommendations for the European safety case,” Journal of Space Safety Engineering, vol. 7, no. 2, pp. 137–149, 2020, doi: 10.1016/j.jsse.2020.03.001. A. Belboula, R. Taleb, G. Bachir, and F. Chabni, “Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator,” Lecture Notes in Networks and Systems, vol. 62, no. December, pp. 329–338, 2019, doi: 10.1007/978-3-030-04789-4_36. A. Montecucco and A. R. Knox, “Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators,” IEEE Trans Power Electron, vol. 30, no. 2, pp. 828–839, 2015, doi: 10.1109/TPEL.2014.2313294. S. Siouane, S. Jovanovic, and P. Poure, “Influence of contact thermal resistances on the Open Circuit Voltage MPPT method for Thermoelectric Generators,” 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016, doi: 10.1109/ENERGYCON.2016.7514002. P. Shiriaev, K. Shishov, and A. Osipkov, “Electrical network of the automotive multi-sectional thermoelectric generator with MPPT based device usage,” Mater Today Proc, vol. 8, pp. 642–651, 2019, doi: 10.1016/j.matpr.2019.02.064. K. Bunthern, B. Long, G. Christophe, D. Bruno, and M. Pascal, “Modeling and tuning of MPPT controllers for a thermoelectric generator,” 2014 1st International Conference on Green Energy, ICGE 2014, vol. 2, no. 3, pp. 220–226, 2014, doi: 10.1109/ICGE.2014.6835425. F. Li et al., “Adaptive rapid neural optimization: A data-driven approach to MPPT for centralized TEG systems,” Electric Power Systems Research, vol. 199, p. 107426, 2021, doi: 10.1016/j.epsr.2021.107426. M. Hamza Zafar, N. Mujeeb Khan, M. Mansoor, and A. Khan, “Towards green energy for sustainable development: Machine learning based MPPT approach for thermoelectric generator,” J Clean Prod, vol. 351, p. 131591, 2022, doi: 10.1016/j.jclepro.2022.131591. E. Naderi, S. J. Seyedshenava, and H. Shayeghi, “High Gain DC/DC Converter Implemented with MPPT Algorithm for DC Microgrid System ,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 3, pp. 213–222, Oct. 2023, doi: 10.22098/JOAPE.2023.10270.1731. B. Yang et al., “Fast atom search optimization based MPPT design of centralized thermoelectric generation system under heterogeneous temperature difference,” J Clean Prod, vol. 248, p. 119301, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119301. R. Dadi, K. Meenakshy, and S. K. Damodaran, “A Review on Secondary Control Methods in DC Microgrid,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 2, pp. 105–112, Aug. 2023, doi: 10.22098/JOAPE.2022.9157.1636. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016. M. TECTEG, “Specifications TEG Module TEG1-12611-6.0.” https://thermoelectric-generator.com/ B. Yang et al., “MPPT design of centralized thermoelectric generation system using adaptive compass search under non-uniform temperature distribution condition,” Energy Convers Manag, vol. 199, p. 111991, Nov. 2019, doi: 10.1016/J.ENCONMAN.2019.111991. Y. H. Liu, Y. H. Chiu, J. W. Huang, and S. C. Wang, “A novel maximum power point tracker for thermoelectric generation system,” Renew energy, vol. 97, pp. 306–318, Nov. 2016, doi: 10.1016/J.RENENE.2016.05.001. W. Zhu, X. Li, Y. Li, C. Xie, and Y. Shi, “Two-level energy harvesting strategy for multi-input thermoelectric energy system,” Energy Reports, vol. 8, pp. 4359–4372, Nov. 2022, doi: 10.1016/J.EGYR.2022.03.123. F. Li et al., “Adaptive rapid neural optimization: A data-driven approach to MPPT for centralized TEG systems,” Electric Power Systems Research, vol. 199, p. 107426, Oct. 2021, doi: 10.1016/J.EPSR.2021.107426. X. Liu et al., “Theoretical and experimental research on control strategy of maximum power point tracking for monolayer thermoelectric generator considering the degree of disturbance,” Energy Reports, vol. 8, pp. 15124–15143, Nov. 2022, doi: 10.1016/J.EGYR.2022.10.451. S. Vostrikov, A. Somov, and P. Gotovtsev, “Low temperature gradient thermoelectric generator: Modelling and experimental verification,” Appl Energy, vol. 255, no. July, 2019, doi: 10.1016/j.apenergy.2019.113786. D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016. R. W. Erikson and D. Maksimovic, Fundamentals of Power Electronics Second Edition, no. March. 1980. doi: 10.1177/0093854807307036. B. Panda, A. Sarkar, B. Panda, and P. K. Hota, “A comparative study of PI and fuzzy controllers for solar powered DC-DC boost converter,” Proceedings - 1st International Conference on Computational Intelligence and Networks, CINE 2015, pp. 47–51, 2015, doi: 10.1109/CINE.2015.19. P. Motsoeneng, J. Bamukunde, and S. Chowdhury, “Comparison of Perturb & Observe and Hill Climbing MPPT Schemes for PV Plant under Cloud Cover and Varying Load,” 2019 10th International Renewable Energy Congress, IREC 2019, no. Irec, pp. 1–6, 2019, doi: 10.1109/IREC.2019.8754532. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans Power Electron, vol. 20, no. 4, pp. 963–973, 2005, doi: 10.1109/TPEL.2005.850975. R. Thankakan and E. R. Samuel Nadar, “Investigation of thermoelectric generators connected in different configurations for micro-grid applications,” Int J Energy Res, vol. 42, no. 6, pp. 2290–2301, May 2018, doi: 10.1002/ER.4015. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xi, 73 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Sistemas Energéticos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84611/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/84611/4/Tesis.pdf https://repositorio.unal.edu.co/bitstream/unal/84611/5/Tesis.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5941e2092b046181cc2ec50e93e73a5d a67b0df2fb697001cdab7687815b351d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090259291439104 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Jana, Farid2a98e42794da260a3d5d39fd8f16175eFlorez Escobar, Whady Felipe57c6dfee500155c498806a1de676d5d5Sanin Villa, Daniel2e4f7228fd62aaa201f0d3bd117c699cGrupo de Física TeóricaSanin Villa, Daniel [0000-0001-6853-340X]Chejne, Farid [0000-0003-0445-7609]Florez Escobar, Whady Felipe [0000-0003-3977-0371]37089330000Sanin Villa, Daniel [37089330000]https://www.researchgate.net/profile/Daniel-Sanin-VillaSanin Villa, Daniel [https://www.researchgate.net/profile/Daniel-Sanin-Villa]https://scholar.google.com.co/citations?user=slUyYcwAAAAJ&hl=enSanin Villa, Daniel [https://scholar.google.com.co/citations?user=slUyYcwAAAAJ&hl=en]2023-08-29T18:26:00Z2023-08-29T18:26:00Z2023-03-31https://repositorio.unal.edu.co/handle/unal/84611Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThis document presents a methodological analysis for designing and evaluating thermal energy harvesting systems that employ thermoelectric generator (TEG) arrays under mismatching thermal conditions. The study aims to achieve three specific objectives. Firstly, a mathematical model is developed that considers the thermal dependence of thermoelectrical properties and heat losses to evaluate a thermoelectric module (TEM). This model is crucial to understanding the performance of the TEG array under varying thermal conditions. Secondly, different DC-DC converter topologies are proposed to extract the maximum power output from TEG arrays under mismatching conditions. The objective is to determine an efficient way to extract energy from the TEG arrays under different thermal conditions, thereby improving their efficiency. Finally, the study simulates and evaluates the proposed methodology using experimental data from commercial TEG arrays under different thermal conditions. This step is essential in verifying the accuracy and effectiveness of the proposed methodological analysis. By using experimental data, the study hopes to ensure that their methodology is effective in practical applications. The proposed methodology has the potential to contribute significantly to the field of renewable energy by providing an effective solution to the problem of thermal energy harvesting under mismatching conditions with TEG systems.Este documento presenta un análisis metodológico para el diseño y evaluación de sistemas de recolección de energía térmica que emplean arreglos de generadores termoeléctricos (TEG) bajo condiciones de temperatura no uniformes. Esta tesis presenta el desarrollo de tres objetivos: En primer lugar, se desarrolla un modelo matemático que considera la dependencia térmica de las propiedades termoeléctricas y las pérdidas de calor para evaluar un módulo termoeléctrico (TEM). Este modelo es fundamental para comprender el rendimiento de la matriz TEG bajo diferentes condiciones térmicas. En segundo lugar, se proponen diferentes topologías de convertidores DC-DC para extraer la máxima producción de energía de las matrices TEG bajo condiciones térmicas desajustadas. El objetivo es determinar una forma eficiente de extraer energía de las matrices TEG bajo diferentes condiciones térmicas, mejorando así su eficiencia. Finalmente, el estudio simula y evalúa la metodología propuesta utilizando datos experimentales de arreglos TEG comerciales bajo diferentes condiciones térmicas. Este paso es esencial para verificar la precisión y efectividad del análisis metodológico propuesto. Al utilizar datos experimentales, el estudio espera asegurar que su metodología sea efectiva en aplicaciones prácticas. La metodología propuesta tiene el potencial de contribuir significativamente al campo de la energía renovable al proporcionar una solución efectiva al problema de recuperación de energía térmica bajo condiciones no uniformes de temperatura mediante sistemas TEG. (Texto tomado de la fuente)DoctoradoDoctor en IngenieríaGravitación CuánticaÁrea curricular de Ingeniería Química e Ingeniería de Petróleosxi, 73 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaCentrales termoeléctricasCogeneración de energía eléctrica y térmicaSteam power-plantsCogeneration of electric power and heatThermoelectric generatorMismatching thermal conditionsDC-DC Converter topologiesThermal dependence of thermoelectrical propertiesGeneradores termoeléctricoCondiciones no uniformes de temperaturaTopologías de convertidores DC-DCDependencia térmica de las propiedades termoeléctricasEvaluation of thermoelectric generation systems under mismatching thermal conditionsEvaluación de sistemas termoeléctricos bajo condiciones térmicas no uniformesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDRedColLaReferenciaUNFCC (United Nations Framework Convention on Climate Change), “Paris Agreement (Spanish),” p. 29, 2015.M. Morini, M. Pinelli, P. R. Spina, and M. Venturini, “Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications,” Applied Energy, vol. 112, pp. 205–214, 2013.W. J. Du, Q. Yin, and L. Cheng, “Experiments on novel heat recovery systems on rotary kilns,” Applied Thermal Engineering, vol. 139, no. April, pp. 535–541, 2018.C. Haddad, C. Périlhon, A. Danlos, M. X. François, and G. Descombes, “Some efficient solutions to recover low and medium waste heat: Competitiveness of the thermoacoustic technology,” Energy Procedia, vol. 50, pp. 1056–1069, 2014.A. Montecucco, J. R. Buckle, and A. R. Knox, “Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices,” Applied Thermal Engineering, vol. 35, no. 1, pp. 177–184, 2012.X. D. Wang, Y. X. Huang, C. H. Cheng, D. Ta-Wei Lin, and C. H. Kang, “A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field,” energy, vol. 47, no. 1, pp. 488–497, 2012.Enn Velmre, “Thomas Johann Seebeck (1770–1831),” Estonian Journal of Engineering, vol. 13, no. 4, pp. 276–282, 2007.J. Stockolm, “Générateurs thermo-électriques,” pp. 15–21, 2003.M. Hamid Elsheikh et al., “A review on thermoelectric renewable energy: Principle parameters that affect their performance,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 337–355, 2014.E. Söylemez, E. Alpman, and A. Onat, “Experimental analysis of hybrid household refrigerators including thermoelectric and vapour compression cooling systems,” International Journal of Refrigeration, vol. 95, pp. 93–107, 2018.Y. Wang, H. Zhang, H. Hao, and H. Li, “Performance assessment and parametric study of a hybrid system consisting of an alkali metal thermoelectric converter and an absorption refrigerator,” Energy Conversion and Management, vol. 188, no. November 2018, pp. 346–353, 2019.X. F. Zheng, C. X. Liu, Y. Y. Yan, and Q. Wang, “A review of thermoelectrics research - Recent developments and potentials for sustainable and renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 486–503, 2014.D. Champier, “Thermoelectric generators: A review of applications,” Energy Conversion and Management, vol. 140, pp. 167–181, 2017.L. Onsager, “Irreversible Processes,” Physical Review, pp. 183–196, 1930.I. Kirschner and P. Molnár, “Relation between Curie’s principle and Onsager’s reciprocity,” Acta Physica Hungarica, vol. 66, no. 1–4, pp. 277–287, 1989.D. Beretta et al., “Thermoelectrics: From history, a window to the future,” Materials Science and Engineering R: Reports, vol. 138, no. July 2018, pp. 210–255, 2019.F. Munera, “Desarrollo de un modelo matemático fenomenológico que permita simular el comportamiento de sistemas termoeléctricos,” p. 98, 2012.M. Zhang, Y. Tian, H. Xie, Z. Wu, and Y. Wang, “Influence of Thomson effect on the thermoelectric generator,” International Journal of Heat and Mass Transfer, vol. 137, pp. 1183–1190, 2019.S. C. Kaushik and S. Manikandan, “The influence of Thomson effect in the energy and exergy efficiency of an annular thermoelectric generator,” Energy Conversion and Management, vol. 103, pp. 200–207, 2015.R. Lamba and S. C. Kaushik, “Thermodynamic analysis of thermoelectric generator including influence of Thomson effect and leg geometry configuration,” Energy Conversion and Management, vol. 144, pp. 388–398, 2017.S. Tedeschi, J. Mehnen, N. Tapoglou, and R. Roy, “Secure IoT Devices for the Maintenance of Machine Tools,” Procedia CIRP, vol. 59, no. TESConf 2016, pp. 150–155, 2017.R. L. Cataldo and G. L. Bennett, “U . S . Space Radioisotope Power Systems and Applications : Past , Present and Future,” 2010.L. Shi, G. Shu, H. Tian, and S. Deng, “A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR),” Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 95–110, 2018.G. Shu, Z. Yu, H. Tian, P. Liu, and Z. Xu, “Potential of the transcritical Rankine cycle using CO2-based binary zeotropic mixtures for engine’s waste heat recovery,” Energy Conversion and Management, vol. 174, no. July, pp. 668–685, 2018.L. H. Zhi, P. Hu, L. X. Chen, and G. Zhao, “Parametric analysis and optimization of transcritical-subcritical dual-loop organic Rankine cycle using zeotropic mixtures for engine waste heat recovery,” Energy Conversion and Management, vol. 195, no. April, pp. 770–787, 2019.R. Ramírez, A. S. Gutiérrez, J. J. Cabello Eras, K. Valencia, B. Hernández, and J. Duarte Forero, “Evaluation of the energy recovery potential of thermoelectric generators in diesel engines,” Journal of Cleaner Production, vol. 241, 2019.H. Khalil and H. Hassan, “Enhancement thermoelectric generators output power from heat recovery of chimneys by using flaps,” Journal of Power Sources, vol. 443, no. October, 2019.P. Aranguren, D. Astrain, A. Rodríguez, and A. Martínez, “Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber,” Applied Energy, vol. 152. pp. 121–130, 2015.Q. Luo et al., “A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns,” Journal of Electronic Materials, vol. 44, no. 6, pp. 1750–1762, 2015.H. Kaibe, K. Makino, T. Kajihara, S. Fujimoto, and H. Hachiuma, “Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant,” AIP Conference Proceedings, vol. 1449, no. 2012, pp. 524–527, 2012.T. Kuroki et al., “Thermoelectric Generation Using Waste Heat in Steel Works,” pp. 4–9, 2014.T. Kuroki et al., “Research and Development for Thermoelectric Generation Technology Using Waste Heat from Steelmaking Process,” 2015.T. Kajihara, K. Makino, Y. H. Lee, H. Kaibe, and H. Hachiuma, “Study of Thermoelectric Generation Unit for Radiant Waste Heat,” Materials Today: Proceedings, vol. 2, no. 2, pp. 804–813, 2015.34. Microplet, “mva-002 @ www.micropelt.com,” 2020. [Online]. Available: http://www.micropelt.com/en/products/mva-002.html.Perpetua, “Getting Started | Perpetua Power Source Technologies, Inc.” [Online]. Available: https://perpetuapower.com/getting-started/. [Accessed: 14-Jun-2020].Y. J. Kim et al., “High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator,” energy, vol. 162, pp. 526–533, 2018.D. Milić, A. Prijić, L. Vračar, and Z. Prijić, “Characterization of commercial thermoelectric modules for application in energy harvesting wireless sensor nodes,” Applied Thermal Engineering, vol. 121, pp. 74–82, 2017.M. Guan, K. Wang, D. Xu, and W. H. Liao, “Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes,” Energy Conversion and Management, vol. 138, pp. 30–37, 2017.V. Karthikeyan et al., “Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting,” Journal of Power Sources, vol. 455, no. December 2019, p. 227983, 2020.Y. Wang, Y. Shi, D. Mei, and Z. Chen, “Wearable thermoelectric generator for harvesting heat on the curved human wrist,” Applied Energy, vol. 205, no. July, pp. 710–719, 2017.M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, “Wearable thermoelectric generators for human body heat harvesting,” Applied Energy, vol. 182, pp. 518–524, 2016.J. Cao, J. D. Querales-Flores, S. Fahy, and I. Savić, “Thermally induced band gap increase and high thermoelectric figure of merit of N-type PbTe,” Materials Today Physics, vol. 12, 2020.Y. Wu, H. Zhang, and L. Zuo, “Thermoelectric energy harvesting for the gas turbine sensing and monitoring system,” Energy Conversion and Management, vol. 157, no. November 2017, pp. 215–223, 2018.L. Janak, Z. Ancik, J. Vetiska, and Z. Hadas, “Thermoelectric Generator Based on MEMS Module as an Electric Power Backup in Aerospace Applications,” Materials Today: Proceedings, vol. 2, no. 2, pp. 865–870, 2015.T. Kousksou, J. P. Bédécarrats, D. Champier, P. Pignolet, and C. Brillet, “Numerical study of thermoelectric power generation for an helicopter conical nozzle,” Journal of Power Sources, vol. 196, no. 8, pp. 4026–4032, 2011.N. R. Kristiansen and H. K. Nielsen, “Potential for usage of thermoelectric generators on ships,” Journal of Electronic Materials, vol. 39, no. 9, pp. 1746–1749, 2010.N. R. Kristiansen, G. J. Snyder, H. K. Nielsen, and L. Rosendahl, “Waste heat recovery from a marine waste incinerator using a thermoelectric generator,” Journal of Electronic Materials, vol. 41, no. 6, pp. 1024–1029, 2012.A. Nour Eddine, D. Chalet, X. Faure, L. Aixala, and P. Chessé, “Optimization and characterization of a thermoelectric generator prototype for marine engine application,” energy, vol. 143, pp. 682–695, 2018.W. Zhu et al., “Enhanced thermoelectric performance through optimizing structure of anionic framework in AgCuTe-based materials,” Chemical Engineering Journal, vol. 386, no. October 2019, 2020.G. Li et al., “Dramatically reduced lattice thermal conductivity of Mg 2 Si thermoelectric material from nanotwinning,” Acta Materialia, vol. 169, pp. 9–14, 2019.D. Qin et al., “High thermoelectric performance from high carrier mobility and reduced lattice thermal conductivity in Ba, Yb double-filled Skutterudites,” Materials Today Physics, vol. 8, pp. 128–137, 2019.T. Hori, “Role of geometry and surface roughness in reducing phonon mean free path and lattice thermal conductivity of modulated nanowires,” International Journal of Heat and Mass Transfer, vol. 156, 2020.L. Huang, J. Guo, Z. H. Ge, Y. Jiang, and J. Feng, “Significantly reduced lattice thermal conductivity and enhanced thermoelectric performance of In2O3 (ZnO) 3 ceramics by Ga2O3 doping,” Journal of Solid State Chemistry, vol. 281, no. October 2019, pp. 1–7, 2020.A. A. Balandin and D. L. Nika, “Phononics in low-dimensional materials Phonons – quanta of crystal lattice vibrations – reveal themselves in all,” Materials Today, vol. 15, no. 6, pp. 266–275, 2012.M. Rittiruam, A. Yangthaisong, and T. Seetawan, “Reduced lattice thermal conductivity of Ti-site substituted transition metals Ti1-XTMXNiSn: A quasi-harmonic Debye model study,” Chinese Journal of Physics, vol. 57, no. October 2018, pp. 393–402, 2019.Z. Zhang, S. Hu, T. Nakayama, J. Chen, and B. Li, “Reducing lattice thermal conductivity in schwarzites via engineering the hybridized phonon modes,” Carbon, vol. 139, pp. 289–298, 2018.D. T. Crane and G. S. Jackson, “Optimization of cross flow heat exchangers for thermoelectric waste heat recovery,” Energy Conversion and Management, vol. 45, no. 9–10, pp. 1565–1582, 2004.J. Chen and C. Wu, “Analysis on the Performance of a Thermoelectric Generator,” vol. 122, no. June 2000, pp. 1999–2001, 2016.M. Culebras, A. M. Igual-Muñoz, C. Rodríguez-Fernández, M. I. Gómez-Gómez, C. Gómez, and A. Cantarero, “Manufacturing Te/PEDOT Films for Thermoelectric Applications,” ACS Applied Materials and Interfaces, vol. 9, no. 24, pp. 20826–20832, 2017.M. Sabarinathan et al., “Enhancement of power factor by energy filtering effect in hierarchical BiSbTe 3 nanostructures for thermoelectric applications,” Applied Surface Science, vol. 418, pp. 246–251, 2017.X. Ai, D. Hou, X. Liu, S. Gu, L. Wang, and W. Jiang, “Enhanced thermoelectric performance of PbTe-based nanocomposites through element doping and SiC nanoparticles dispersion,” Scripta Materialia, vol. 179, pp. 86–91, 2020.B. Cai, H. Hu, H. L. Zhuang, and J. F. Li, “Promising materials for thermoelectric applications,” Journal of Alloys and Compounds, vol. 806, pp. 471–486, 2019.C. Chang et al., “3D charge and 2D phonon transports leading to high out-of-plane ZT in N-type SnSe crystals,” Science, vol. 360, no. 6390, pp. 778–783, 2018.X. Y. Bed Poudel, Qing Hao, Yi Ma, Yucheng Lan, Austin Minnich, Bo Yu, J. L. Dezhi Wang, Andrew Muto, Daryoosh Vashaee, Xiaoyuan Chen, and R. Mildred S. Dresselhaus, Gang Chen, “High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys,” Science, vol. 320, no. 634–638, 2008.W. Xie et al., “Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites,” Nano Letters, vol. 10, no. 9, pp. 3283–3289, 2010.T. Zhu et al., “Hot deformation induced bulk nanostructuring of unidirectionally grown P-type (Bi,Sb)2Te3 thermoelectric materials,” Journal of Materials Chemistry A, vol. 1, no. 38, pp. 11589–11594, 2013.S. il Kim et al., “Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics,” Science, vol. 348, no. 6230, pp. 109–114, 2015.K. T. Kim, T. S. Min, S. D. Kim, E. A. Choi, D. W. Kim, and S. Y. Choi, “Strain-mediated point defects in thermoelectric P-type bismuth telluride polycrystalline,” Nano Energy, vol. 55, no. October 2018, pp. 486–493, 2019.J. P. Heremans et al., “Enhancement of Thermoelectric of the Electronic Density of States,” Science, vol. 321, no. July, pp. 1457–1461, 2008.H. Sun et al., “Thermoelectric performance of single elemental doped N-type PbTe regulated by carrier concentration,” Journal of Alloys and Compounds, vol. 787, pp. 180–185, 2019.Z. Y. Li and J. F. Li, “Fine-Grained and nanostructured AgPbmSbTem+2 alloys with high thermoelectric figure of merit at medium temperature,” Advanced Energy Materials, vol. 4, no. 2, pp. 1–8, 2014.B. Cai et al., “Enhanced thermoelectric performance of Na-doped PbTe synthesized under high pressure,” Science China Materials, vol. 61, no. 9, pp. 1218–1224, 2018.Y. Wu et al., “Lattice Strain Advances Thermoelectrics,” Joule, vol. 3, no. 5, pp. 1276–1288, 2019.B. Yu et al., “Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites,” Nano Letters, vol. 12, no. 4, pp. 2077–2082, 2012.A. Usenko et al., “Scripta Materialia nanostructured spark plasma sintered alloys with embedded SiO2 nanoinclusions,” Scripta Maeterialia, vol. 127, pp. 63–67, 2017.O. E. G. Rogl , A. Grytsiv , P. Rogl , N. Peranio , E. Bauer , M. Zehetbauer, “N-type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT 2.0,” vol. 29, no. 2, pp. 209–214, 2014.W. Liu et al., “Convergence of conduction bands as a means of enhancing thermoelectric performance of N-type Mg 2Si 1-xSn x solid solutions,” Physical Review Letters, vol. 108, no. 16, 2012.Q. Zhang, J. He, T. J. Zhu, S. N. Zhang, X. B. Zhao, and T. M. Tritt, “High figures of merit and natural nanostructures in Mg2Si 0.4Sn0.6 based thermoelectric materials,” Applied Physics Letters, vol. 93, no. 10, pp. 0–4, 2008.H. Zhao et al., “Engineering the Thermoelectric Transport in Half-Heusler Materials through a Bottom-Up Nanostructure Synthesis,” Advanced Energy Materials, vol. 7, no. 18, pp. 1–11, 2017.G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, “Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties,” Nature Materials, vol. 3, no. 7, pp. 458–463, Jun. 2004.X. Chen et al., “Extraordinary thermoelectric performance in N-type manganese doped Mg3Sb2 Zintl: High band degeneracy, tuned carrier scattering mechanism and hierarchical microstructure,” Nano Energy, vol. 52, no. June, pp. 246–255, 2018.W. Wei et al., “Achieving High Thermoelectric Figure of Merit in Polycrystalline SnSe via Introducing Sn Vacancies,” Journal of the American Chemical Society, vol. 140, no. 1, pp. 499–505, Jan. 2018.R. Nunna et al., “Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs,” Energy and Environmental Science, vol. 10, no. 9, pp. 1928–1935, Sep. 2017.X. Chen et al., “Thin Film Thermoelectric Materials: Classification, Characterization, and Potential for Wearable Applications,” Coatings 2018, Vol. 8, Page 244, vol. 8, no. 7, p. 244, Jul. 2018, doi: 10.3390/COATINGS8070244.S. M. Yang, L. A. Chung, and H. R. Wang, “Review of polysilicon thermoelectric energy generators,” Sens Actuators A Phys, vol. 346, p. 113890, Oct. 2022, doi: 10.1016/J.SNA.2022.113890.J. C. A. do Nascimento, A. Kerrigan, P. J. Hasnip, and V. K. Lazarov, “Significant improvement of the Seebeck coefficient of Fe2VAl with antisite defects,” Mater Today Commun, vol. 31, p. 103510, Jun. 2022, doi: 10.1016/J.MTCOMM.2022.103510.N. Gao, B. Zhu, X. yu Wang, Y. Yu, and F. qiu Zu, “Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi0.4Sb1.6Te3 alloy via liquid-state manipulation,” Journal of Materials Science 2018 53:12, vol. 53, no. 12, pp. 9107–9116, Mar. 2018, doi: 10.1007/S10853-018-2209-4.Y. Saberi and S. A. Sajjadi, “A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys,” J Alloys Compd, vol. 904, p. 163918, May 2022, doi: 10.1016/J.JALLCOM.2022.163918.Y. Zhang and S. J. Park, “Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting,” Polymers 2019, Vol. 11, Page 909, vol. 11, no. 5, p. 909, May 2019, doi: 10.3390/POLYM11050909.W. Liu, X. Yan, G. Chen, and Z. Ren, “Recent advances in thermoelectric nanocomposites,” Nano Energy, vol. 1, no. 1, pp. 42–56, Jan. 2012, doi: 10.1016/J.NANOEN.2011.10.001.Y. Xiao et al., “Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25,” Chem, vol. 6, no. 2, pp. 523–537, Feb. 2020, doi: 10.1016/j.chempr.2020.01.002.H. T. Liu et al., “High-performance in N-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering,” Nano Energy, vol. 91, p. 106706, Jan. 2022, doi: 10.1016/J.NANOEN.2021.106706.G. Yang et al., “Enhanced thermoelectric performance and mechanical strength of N-type BiTeSe materials produced via a composite strategy,” Chemical Engineering Journal, vol. 428, p. 131205, Jan. 2022, doi: 10.1016/J.CEJ.2021.131205.X. Mo et al., “High thermoelectric performance at room temperature of N-type Mg3Bi2-based materials by Se doping,” Journal of Magnesium and Alloys, vol. 10, no. 4, pp. 1024–1032, Apr. 2022, doi: 10.1016/J.JMA.2020.11.023.L. Yang et al., “N-type Bi-doped PbTe Nanocubes with Enhanced Thermoelectric Performance,” Nano Energy, vol. 31, pp. 105–112, Jan. 2017, doi: 10.1016/J.NANOEN.2016.11.027.M. H. Lee et al., “Synergetic Enhancement of Thermoelectric Performance by Selective Charge Anderson Localization-Delocalization Transition in N-type Bi-Doped PbTe/Ag 2 Te Nanocomposite,” ACS Nano, 2019, doi: 10.1021/ACSNANO.8B08579/SUPPL_FILE/NN8B08579_SI_002.PDF.Y. Lu, J. Y. Wang, and J. Pei, “Strategies to Enhance the Conductivity of N-type Polymer Thermoelectric Materials,” Chemistry of Materials, vol. 31, no. 17, pp. 6412–6423, Sep. 2019, doi: 10.1021/ACS.CHEMMATER.9B01422/ASSET/IMAGES/MEDIUM/CM-2019-01422W_0011.GIF.J. Liu et al., “Enhancing Molecular N-type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains,” Advanced Materials, vol. 30, no. 7, p. 1704630, Feb. 2018, doi: 10.1002/ADMA.201704630.S. Wang, G. Zuo, J. Kim, and H. Sirringhaus, “Progress of Conjugated Polymers as Emerging Thermoelectric Materials,” Prog Polym Sci, vol. 129, p. 101548, Jun. 2022, doi: 10.1016/J.PROGPOLYMSCI.2022.101548.M. Zhu et al., “Optimization of thermoelectric performances of conjugated polymers containing Trans-1,2-di(2-thienyl)ethylene subunits via structural modulation and doping engineering,” Org Electron, vol. 111, p. 106671, Dec. 2022, doi: 10.1016/J.ORGEL.2022.106671.C. Y. Yang et al., “A thermally activated and highly miscible dopant for N-type organic thermoelectrics,” Nature Communications 2020 11:1, vol. 11, no. 1, pp. 1–10, Jul. 2020, doi: 10.1038/s41467-020-17063-1.S. Lee et al., “Recent Progress in Organic Thermoelectric Materials and Devices,” Macromolecular Research 2020 28:6, vol. 28, no. 6, pp. 531–552, Jun. 2020, doi: 10.1007/S13233-020-8116-Y.L. Wang et al., “Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials,” Chem Asian J, vol. 11, no. 12, pp. 1804–1810, Jun. 2016, doi: 10.1002/ASIA.201600212.Y. Sun et al., “Flexible N-type High-Performance Thermoelectric Thin Films of Poly(nickel-ethylenetetrathiolate) Prepared by an Electrochemical Method,” Advanced Materials, vol. 28, no. 17, pp. 3351–3358, May 2016, doi: 10.1002/ADMA.201505922.Y. Li, C. Y. Gao, X. H. Fan, and L. M. Yang, “Two-step electrochemical modification for improving thermoelectric performance of polypyrrole films,” Synth Met, vol. 282, p. 116949, Dec. 2021, doi: 10.1016/J.SYNTHMET.2021.116949.M. Almasoudi et al., “Optimization preparation of one-dimensional polypyrrole nanotubes for enhanced thermoelectric performance,” Polymer (Guildf), vol. 228, p. 123950, Jul. 2021, doi: 10.1016/J.POLYMER.2021.123950.R. Zhang et al., “Polyaniline doped with copper phthalocyanine disulfonic acid and their unique thermoelectric performance,” Polymer (Guildf), vol. 261, p. 125337, Nov. 2022, doi: 10.1016/J.POLYMER.2022.125337.A. Abd-Elsalam, H. O. Badr, A. A. Abdel-Rehim, and I. S. El-Mahallawi, “Structure and thermoelectric behavior of polyaniline-based/ CNT-composite,” Current Applied Physics, vol. 36, pp. 88–92, Apr. 2022, doi: 10.1016/J.CAP.2021.11.012.J. Huang, X. Liu, and Y. Du, “Fabrication of free-standing flexible and highly efficient carbon nanotube film/PEDOT: PSS thermoelectric composites,” Journal of Materiomics, vol. 8, no. 6, pp. 1213–1217, Nov. 2022, doi: 10.1016/J.JMAT.2022.05.005.L. Liu, J. Chen, L. Liang, L. Deng, and G. Chen, “A PEDOT:PSS thermoelectric fiber generator,” Nano Energy, vol. 102, p. 107678, Nov. 2022, doi: 10.1016/J.NANOEN.2022.107678.D. Liu et al., “Enhanced performance of SnSe/PEDOT: PSS composite films by MWCNTs for flexible thermoelectric power generator,” J Alloys Compd, vol. 898, p. 162844, Mar. 2022, doi: 10.1016/J.JALLCOM.2021.162844.X. Wang, H. Wang, and B. Liu, “Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting,” Polymers 2018, Vol. 10, Page 1196, vol. 10, no. 11, p. 1196, Oct. 2018, doi: 10.3390/POLYM10111196.J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, “Carbon-Nanotube-Based Thermoelectric Materials and Devices,” Advanced Materials, vol. 30, no. 11, p. 1704386, Mar. 2018, doi: 10.1002/ADMA.201704386.E. M. Elsehly et al., “Annealing effect on the thermoelectric properties of multiwall carbon nanotubes,” Physica E Low Dimens Syst Nanostruct, vol. 146, p. 115566, Jan. 2023, doi: 10.1016/J.PHYSE.2022.115566.S. C. Tzeng, T. M. Jeng, and Y. L. Lin, “Parametric study of heat-transfer design on the thermoelectric generator system,” International Communications in Heat and Mass Transfer, vol. 52, pp. 97–105, 2014.S. Twaha, J. Zhu, Y. Yan, and B. Li, “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement,” Renewable and Sustainable Energy Reviews, vol. 65, pp. 698–726, 2016.Z. Ge, L. Jin, and C. Yang, “Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field,” International Journal of Heat and Mass Transfer, vol. 85, pp. 158–165, 2015.G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, “Comparison of different modeling approaches for thermoelectric elements,” Energy Conversion and Management, vol. 65, pp. 351–356, 2013.A. R. M. Siddique, R. Rabari, S. Mahmud, and B. van Heyst, “Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique,” energy, vol. 115, pp. 1081–1091, 2016.L. Chen, F. Meng, and F. Sun, “Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system,” Cryogenics, vol. 52, no. 1, pp. 58–65, 2012.W. H. Chen, P. H. Wu, X. D. Wang, and Y. L. Lin, “Power output and efficiency of a thermoelectric generator under temperature control,” Energy Conversion and Management, vol. 127, pp. 404–415, 2016.H. S. Lee, “The Thomson effect and the ideal equation on thermoelectric coolers,” energy, vol. 56, pp. 61–69, 2013.A. Chakraborty, B. B. Saha, S. Koyama, and K. C. Ng, “Thermodynamic modelling of a solid state thermoelectric cooling device: Temperature-entropy analysis,” International Journal of Heat and Mass Transfer, vol. 49, no. 19–20, pp. 3547–3554, 2006.A. Chakraborty and K. C. Ng, “Thermodynamic formulation of temperature-entropy diagram for the transient operation of a pulsed thermoelectric cooler,” International Journal of Heat and Mass Transfer, vol. 49, no. 11–12, pp. 1845–1850, 2006.E. Kanimba and Z. Tian, “A new dimensionless number for thermoelectric generator performance,” Applied Thermal Engineering, vol. 152, no. January, pp. 858–864, 2019.S. Kim, “Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators,” Applied Energy, vol. 102, pp. 1458–1463, 2013.S. Rana, B. Orr, A. Iqbal, L. C. Ding, A. Akbarzadeh, and A. Date, “Modelling and Optimization of Low-temperature Waste Heat Thermoelectric Generator System,” Energy Procedia, vol. 110, pp. 196–201, 2017.S. Mahmoudinezhad, A. Rezania, A. A. Ranjbar, and L. A. Rosendahl, “Transient behavior of the thermoelectric generators to the load change; an experimental investigation,” Energy Procedia, vol. 147, pp. 537–543, 2018.G. de Aloysio, G. D’Alessandro, and F. de Monte, “An analytical solution for the hyperbolic unsteady thermal behaviour of micro-thermoelectric coolers with a suddenly time-dependent heat generation,” International Journal of Heat and Mass Transfer, vol. 95, pp. 972–983, 2016.C. H. Cheng, S. Y. Huang, and T. C. Cheng, “A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers,” International Journal of Heat and Mass Transfer, vol. 53, no. 9–10, pp. 2001–2011, 2010.L. Musland and E. Flage-Larsen, “Thermoelectric transport calculations using the Landauer approach, ballistic quantum transport simulations, and the Buttiker approximation,” Computational Materials Science, vol. 132, pp. 146–157, 2017.O. Yamashita, “Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency,” Energy Conversion and Management, vol. 50, no. 8, pp. 1968–1975, 2009.D. Wee, “Uncertainty and sensitivity of the maximum power in thermoelectric generation with temperature-dependent material properties: An analytic polynomial chaos approach,” Energy Conversion and Management, vol. 157, no. November 2017, pp. 103–110, 2018.C. Ju, G. Dui, H. H. Zheng, and L. Xin, “Revisiting the temperature dependence in material properties and performance of thermoelectric materials,” energy, vol. 124, pp. 249–257, 2017.H. Lee, J. Sharp, D. Stokes, M. Pearson, and S. Priya, “Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties,” Applied Energy, vol. 211, no. November 2017, pp. 987–996, 2018.T. Zhang, “Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement,” Journal of Electronic Materials, vol. 44, no. 10, pp. 3612–3620, 2015.E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, “A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator,” Journal of Power Sources, vol. 365, pp. 266–272, 2017.A. Montecucco, J. Siviter, and A. R. Knox, “The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel,” Applied Energy, vol. 123, pp. 47–54, 2014.A. Belboula, R. Taleb, G. Bachir, and F. Chabni, “Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator,” Lecture Notes in Networks and Systems, vol. 62, no. December, pp. 329–338, 2019.D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions,” no. October, pp. 1614–1619, 2009.A. K. Podder, N. K. Roy, and H. R. Pota, “MPPT methods for solar PV systems: A critical review based on tracking nature,” IET Renewable Power Generation, vol. 13, no. 10, pp. 1615–1632, 2019.P. R. Satpathy and R. Sharma, “Power recovery and equalization in partially shaded photovoltaic strings by an efficient switched capacitor converter,” Energy Conversion and Management, vol. 203, no. September 2019, 2020.F. L. Tofoli, D. de Castro Pereira, and W. J. de Paula, “Comparative study of maximum power point tracking techniques for photovoltaic systems,” International Journal of Photoenergy, vol. 2015, no. April 2019, 2015.F. Belhachat and C. Larbes, “A review of global maximum power point tracking techniques of photovoltaic system under partial shading conditions,” Renewable and Sustainable Energy Reviews, vol. 92, no. April, pp. 513–553, 2018.Z. B. Tang, Y. D. Deng, C. Q. Su, W. W. Shuai, and C. J. Xie, “A research on thermoelectric generator’s electrical performance under temperature mismatch conditions for automotive waste heat recovery system,” Case Studies in Thermal Engineering, vol. 5, pp. 143–150, 2015.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016.Sanin-Villa, D., Monsalve-Cifuentes, O. D., & del Rio, J. S. (2021). Early fever detection on COVID-19 infection using thermoelectric module generators. International Journal of Electrical and Computer Engineering (IJECE), 11(5), 3828–3837. https://doi.org/10.11591/IJECE.V11I5.PP3828-3837M. Ge, Y. Zhao, Y. Li, W. He, L. Xie, and Y. Zhao, "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, vol. 244, p. 123202, Apr. 2022, doi: 10.1016/J.ENERGY.2022.123202.Y. Zhao, Y. Fan, W. Li, Y. Li, M. Ge, and L. Xie, "Experimental investigation of heat pipe thermoelectric generator," Energy Convers Manag, vol. 252, p. 115123, Jan. 2022, doi: 10.1016/J.ENCONMAN.2021.115123.A. G. Olabi et al., "Potential applications of thermoelectric generators (TEGs) in various waste heat recovery systems," International Journal of Thermofluids, vol. 16, p. 100249, Nov. 2022, doi: 10.1016/J.IJFT.2022.100249.D. Crane et al., "TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development," Journal of Electronic Materials 2012 42:7, vol. 42, no. 7, pp. 1582–1591, Nov. 2012, doi: 10.1007/S11664-012-2327-8.Q. Luo et al., "A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns," Journal of Electronic Materials 2014 44:6, vol. 44, no. 6, pp. 1750–1762, Dec. 2014, doi: 10.1007/S11664-014-3543-1.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and J. S. del Rio, "Early fever detection on COVID-19 infection using thermoelectric module generators," International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 3828–3837, Oct. 2021, doi: 10.11591/IJECE.V11I5.PP3828-3837.A. Zhang, D. Pang, B. Wang, and J. Wang, "Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting," Energy, vol. 262, p. 125621, Jan. 2023, doi: 10.1016/J.ENERGY.2022.125621.L. Anatychuk, L. Vikhor, M. Kotsur, R. Kobylianskyi, and T. Kadeniuk, "Optimal Control of Time Dependence of Temperature in Thermoelectric Devices for Medical Purposes," International Journal of Thermophysics 2018 39:9, vol. 39, no. 9, pp. 1–12, Aug. 2018, doi: 10.1007/S10765-018-2430-Z.L. G. Lafaurie Ponce, F. Chejne, L. M. Ramirez Aristeguieta, C. A. Gómez, and A. F. Múnera Cano, "Predicting a thermal stimulator's heating/cooling rate for medical applications," Appl Therm Eng, vol. 163, p. 114376, Dec. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.114376.C. T. Hsu, G. Y. Huang, H. S. Chu, B. Yu, and D. J. Yao, "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Appl Energy, vol. 88, no. 12, pp. 5173–5179, Dec. 2011, doi: 10.1016/J.APENERGY.2011.07.033.M. Sanchez-Amaya, M. Bárcena-Soto, A. Rodríguez-López, R. Antaño-López, and E. R. Larios-Durán, "Sinusoidal temperature variation response associated with electrochemical Peltier heat as a transfer function approach," 2020, doi: 10.1016/j.elecom.2020.106769.L. G. Lafaurie-Ponce et al., "A Study of the Non-linear Thomson Effect Produced by Changing the Current in a Thermoelectric Cooler," JNET, vol. 47, no. 17–18, pp. 339–354, Oct. 2022, doi: 10.1515/JNET-2022-0037.A. Montecucco, J. R. Buckle, and A. R. Knox, "Solution to the 1-D unsteady heat conduction equation with internal Joule heat generation for thermoelectric devices," Appl Therm Eng, vol. 35, no. 1, pp. 177–184, Mar. 2012, doi: 10.1016/J.APPLTHERMALENG.2011.10.026.A. Ferrario, S. Boldrini, A. Miozzo, and M. Fabrizio, "Temperature dependent iterative model of thermoelectric generator including thermal losses in passive elements," Appl Therm Eng, vol. 150, pp. 620–627, Mar. 2019, doi: 10.1016/J.APPLTHERMALENG.2019.01.031.S. Twaha, J. Zhu, Y. Yan, and B. Li, "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, vol. 65, pp. 698–726, 2016, doi: 10.1016/j.rser.2016.07.034.Z. Ge, L. Jin, and C. Yang, "Microfluidic concentration of sample solutes using Joule heating effects under a combined AC and DC electric field," Int J Heat Mass Transf, vol. 85, pp. 158–165, 2015, doi: 10.1016/j.ijheatmasstransfer.2015.01.053.L. Chen, F. Meng, and F. Sun, "Effect of heat transfer on the performance of thermoelectric generator-driven thermoelectric refrigerator system," Cryogenics (Guildf), vol. 52, no. 1, pp. 58–65, 2012, doi: 10.1016/j.cryogenics.2011.10.007.A. R. M. Siddique, R. Rabari, S. Mahmud, and B. van Heyst, "Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique," Energy, vol. 115, pp. 1081–1091, 2016, doi: 10.1016/j.energy.2016.09.087.W. H. Chen, P. H. Wu, X. D. Wang, and Y. L. Lin, "Power output and efficiency of a thermoelectric generator under temperature control," Energy Convers Manag, vol. 127, pp. 404–415, 2016, doi: 10.1016/j.enconman.2016.09.039.H. S. Lee, "The Thomson effect and the ideal equation on thermoelectric coolers," Energy, vol. 56, pp. 61–69, 2013, doi: 10.1016/j.energy.2013.04.049.A. Chakraborty, B. B. Saha, S. Koyama, and K. C. Ng, "Thermodynamic modelling of a solid state thermoelectric cooling device: Temperature-entropy analysis," Int J Heat Mass Transf, vol. 49, no. 19–20, pp. 3547–3554, 2006, doi: 10.1016/j.ijheatmasstransfer.2006.02.047.E. Kanimba and Z. Tian, "A new dimensionless number for thermoelectric generator performance," Appl Therm Eng, vol. 152, no. January, pp. 858–864, 2019, doi: 10.1016/j.applthermaleng.2019.02.093.M. Zhang, Y. Tian, H. Xie, Z. Wu, and Y. Wang, “Influence of Thomson effect on the thermoelectric generator,” Int J Heat Mass Transf, vol. 137, pp. 1183–1190, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.03.155.T. Zhang, "Effects of Temperature-Dependent Material Properties on Temperature Variation in a Thermoelement," Journal of Electronic Materials 2015 44:10, vol. 44, no. 10, pp. 3612–3620, Jun. 2015, doi: 10.1007/S11664-015-3875-5.S. Kim, "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Appl Energy, vol. 102, pp. 1458–1463, 2013, doi: 10.1016/j.apenergy.2012.09.006.S. Rana, B. Orr, A. Iqbal, L. C. Ding, A. Akbarzadeh, and A. Date, "Modelling and Optimization of Low-temperature Waste Heat Thermoelectric Generator System," Energy Procedia, vol. 110, pp. 196–201, 2017, doi: 10.1016/j.egypro.2017.03.127.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016.S. Mahmoudinezhad, A. Rezania, A. A. Ranjbar, and L. A. Rosendahl, "Transient behavior of the thermoelectric generators to the load change; an experimental investigation," Energy Procedia, vol. 147, pp. 537–543, 2018, doi: 10.1016/j.egypro.2018.07.068.G. de Aloysio, G. D'Alessandro, and F. de Monte, "An analytical solution for the hyperbolic unsteady thermal behaviour of micro-thermoelectric coolers with a suddenly time-dependent heat generation," Int J Heat Mass Transf, vol. 95, pp. 972–983, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.12.052.C. H. Cheng, S. Y. Huang, and T. C. Cheng, "A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers," Int J Heat Mass Transf, vol. 53, no. 9–10, pp. 2001–2011, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.12.056.O. Yamashita, "Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency," Energy Convers Manag, vol. 50, no. 8, pp. 1968–1975, 2009, doi: 10.1016/j.enconman.2009.04.019.D. Wee, "Uncertainty and sensitivity of the maximum power in thermoelectric generation with temperature-dependent material properties: An analytic polynomial chaos approach," Energy Convers Manag, vol. 157, no. November 2017, pp. 103–110, 2018, doi: 10.1016/j.enconman.2017.11.088.C. Ju, G. Dui, H. H. Zheng, and L. Xin, "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, vol. 124, pp. 249–257, 2017, doi: 10.1016/j.energy.2017.02.020.H. Lee, J. Sharp, D. Stokes, M. Pearson, and S. Priya, "Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties," Appl Energy, vol. 211, no. November 2017, pp. 987–996, 2018, doi: 10.1016/j.apenergy.2017.11.096.E. Kanimba, M. Pearson, J. Sharp, D. Stokes, S. Priya, and Z. Tian, "A modeling comparison between a two-stage and three-stage cascaded thermoelectric generator," J Power Sources, vol. 365, pp. 266–272, Oct. 2017, doi: 10.1016/J.JPOWSOUR.2017.08.091.D. Sanin-Villa, "Recent Developments in Thermoelectric Generation: A Review," Sustainability 2022, Vol. 14, Page 16821, vol. 14, no. 24, p. 16821, Dec. 2022, doi: 10.3390/SU142416821.M. Zerroukat, H. Power, and C. S. Chen, "A numerical method for heat transfer problems using collocation and radial basis functions - Zerroukat - 1998 - International Journal for Numerical Methods in Engineering - Wiley Online Library," International Journal for numerical methods in Engineering, pp. 1263–1278, 1998. Accessed: Mar. 26, 2023. [Online]. Available: https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1263::AID-NME431>3.0.CO;2-IC. A. Micchelli, "Interpolation of scattered data: Distance matrices and conditionally positive definite functions," Constr Approx, vol. 2, no. 1, pp. 11–22, Dec. 1986, doi: 10.1007/BF01893414/METRICS.J. Wertz, E. J. Kansa, and L. Ling, "The role of the multiquadric shape parameters in solving elliptic partial differential equations," Computers & Mathematics with Applications, vol. 51, no. 8, pp. 1335–1348, Apr. 2006, doi: 10.1016/J.CAMWA.2006.04.009.C. S. Chen, C. M. Fan, and P. H. Wen, "The method of approximate particular solutions for solving certain partial differential equations," Numer Methods Partial Differ Equ, vol. 28, no. 2, pp. 506–522, Mar. 2012, doi: 10.1002/NUM.20631.B. Fornberg and E. Lehto, "Stabilization of RBF-generated finite difference methods for convective PDEs," J Comput Phys, vol. 230, no. 6, pp. 2270–2285, Mar. 2011, doi: 10.1016/J.JCP.2010.12.014.S. J. Liao, "On the general boundary element method," Eng Anal Bound Elem, vol. 21, no. 1, pp. 39–51, Jan. 1998, doi: 10.1016/S0955-7997(97)00108-2.D. Wee, "Analysis of thermoelectric energy conversion efficiency with linear and non-linear temperature dependence in material properties," Energy Convers Manag, vol. 52, no. 12, pp. 3383–3390, Nov. 2011, doi: 10.1016/J.ENCONMAN.2011.07.004.G. Fraisse, J. Ramousse, D. Sgorlon, and C. Goupil, "Comparison of different modeling approaches for thermoelectric elements," Energy Convers Manag, vol. 65, pp. 351–356, Jan. 2013, doi: 10.1016/J.ENCONMAN.2012.08.022.Daniel Sanin-Villa, Elkin Henao-Bravo, Carlos Ramos-Paja, and Farid Chejne, "Evaluation of power harvesting on DC-DC converters to extract the maximum power output from TEGs arrays under mismatching conditions," Journal of Operation and Automation in Power Engineering, 2023, Accessed: Dec. 25, 2022. [Online]. Available: https://joape.uma.ac.ir/D. Sanin-Villa, L. F. Grisales-Noreña, and D. Montoya, "Material Property Characterization and Parameter Estimation of Thermoelectric Generator by Using a Master-Slave Strategy Based on Metaheuristics Techniques," Mathematics, Mar. 2023.Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A Comprehensive Review of Thermoelectric Technology: Materials, Applications, Modelling and Performance Improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726, https://doi.org/10.1016/j.rser.2016.07.034.Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533, https://doi.org/10.1021/acs.chemrev.8b00573.Machacek, Z.; Walendziuk, W.; Sotola, V.; Slanina, Z.; Petras, R.; Schneider, M.; Masny, Z.; Idzkowski, A.; Koziorek, J. An Investigation of Thermoelectric Generators Used as Energy Harvesters in a Water Consumption Meter Application. Energies 2021, 14, 3768, https://doi.org/10.3390/en14133768.Cózar, I.R.; Pujol, T.; Massaguer, E.; Massaguer, A.; Montoro, L.; González, J.R.; Comamala, M.; Ezzitouni, S. Effects of Module Spatial Distribution on the Energy Efficiency and Electrical Output of Automotive Thermoelectric Generators. Energies 2021, 14, 2232, https://doi.org/10.3390/en14082232.Albatati, F.; Attar, A. Analytical and Experimental Study of Thermoelectric Generator (Teg) System for Automotive Exhaust Waste Heat Recovery. Energies 2021, 14, 204, https://doi.org/10.3390/en14010204.Ismail, B.I.; Ahmed, W.H. Thermoelectric Power Generation Using Waste-Heat Energy as an Alternative Green Technology. Recent Patents Electr. Eng. 2009, 2, 27–39, https://doi.org/10.2174/1874476110902010027.Kim, T.Y. Prediction of System-Level Energy Harvesting Characteristics of a Thermoelectric Generator Operating in a Diesel Engine Using Artificial Neural Networks. Energies 2021, 14, 2426, https://doi.org/10.3390/en14092426.Dzulkfli, M.S. Bin; Pesyridis, A.; Gohil, D. Thermoelectric Generation in Hybrid Electric Vehicles. Energies 2020, 13, 3742, https://doi.org/10.3390/en13143742.Nagayoshi, H.; Tokumisu, K.; Kajikawa, T. Evaluation of Multi MPPT Thermoelectric Generator System. In Proceedings of the 26th International Conference on Thermoelectrics, Jeju, Korea, 3–7 June 2007; pp. 318–321; https://doi.org/10.1109/ICT.2007.4569487.Cotfas, P.A.; Cotfas, D.T. Comprehensive Review of Methods and Instruments for Photovoltaic-Thermoelectric Generator Hybrid System Characterization. Energies 2020, 13, 6045, https://doi.org/10.3390/en13226045.Lashin, A.; Al Turkestani, M.; Sabry, M. Performance of a Thermoelectric Generator Partially Illuminated with Highly Concentrated Light. Energies 2020, 13, 3627, https://doi.org/10.3390/en13143627.Shure, L.I.; Harvey, J.S. Survey of Electric Power Plants for Space Applications; NASA. Philadelphia, PA, USA, 1965.Radioisotope Power Systems. Available online: https://rps.nasa.gov/ (accessed on 31 July 2021).Voyager, the Interstellar Mission. Available online: https://voyager.jpl.nasa.gov/mission/spacecraft/ (accessed on 31 July 2021).Montecucco, A.; Siviter, J.; Knox, A.R. The Effect of Temperature Mismatch on Thermoelectric Generators Electrically Connected in Series and Parallel. Appl. Energy 2014, 123, 47–54, https://doi.org/10.1016/j.apenergy.2014.02.030.Tang, Z.B.; Deng, Y.D.; Su, C.Q.; Shuai, W.W.; Xie, C.J. A Research on Thermoelectric Generator’s Electrical Performance under Temperature Mismatch Conditions for Automotive Waste Heat Recovery System. Case Stud. Therm. Eng. 2015, 5, 143–150, https://doi.org/10.1016/j.csite.2015.03.006.Hakim, A.; Lim, J.H. The Effect of Temperature Mismatch on Interconnected Thermoelectric Module for Power Generation. AIP Conf. Proc. 2020, 2233, 02009, https://doi.org/10.1063/5.0001549.Kidegho, G.; Njoka, F.; Muriithi, C.; Kinyua, R. Evaluation of Thermal Interface Materials in Mediating PV Cell Temperature Mismatch in PV–TEG Power Generation. Energy Rep. 2021, 7, 1636–1650, https://doi.org/10.1016/j.egyr.2021.03.015.Ruzaimi, A.S.S.; Hassan, W.Z.W.; Azis, N.; Ya’acob, M.E.; Elianddy, E.; Aimrun, W. Performance Analysis of Thermoelectric Generator Implemented on Non-Uniform Heat Distribution of Photovoltaic Module. Energy Rep. 2021, 7, 2379–2387, https://doi.org/10.1016/j.egyr.2021.04.029.Haxel, G.B.; James, B.H.; Greta, J.O. Rare Earth Elements—Critical Resources for High Technology; United States Department of the Interior Geological Survey: Reston, VA, USA, 2002; pp. 1–11.Champier, D. Thermoelectric Generators: A Review of Applications. Energy Convers. Manag. 2017, 140, 167–181, https://doi.org/10.1016/j.enconman.2017.02.070.Chen, S.; Ren, Z. Recent Progress of Half-Heusler for Moderate Temperature Thermoelectric Applications. Mater. Today 2013, 16, 387–395, https://doi.org/10.1016/j.mattod.2013.09.015.Leblanc, S.; Yee, S.K.; Scullin, M.L.; Dames, C.; Goodson, K.E. Material and Manufacturing Cost Considerations for Thermoelectrics. Renew. Sustain. Energy Rev. 2014, 32, 313–327, https://doi.org/10.1016/j.rser.2013.12.030.Lin, C.X.; Kiflemariam, R. Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow. Energies 2019, 12, 4052, https://doi.org/10.3390/en12214052.Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Del Rio, J.S. Early Fever Detection on COVID-19 Infection Using Thermoelectric Module Generators. Int. J. Electr. Comput. Eng. 2021, 11, 3828–3837, https://doi.org/10.11591/ijece.v11i5.pp3828-3837.Ramos-Paja, C.A.; Bastidas, J.D.; Saavedra-Montes, A.J.; Guinjoan-Gispert, F.; Goez, M. Mathematical Model of Total Cross-Tied Photovoltaic Arrays in Mismatching Conditions. In Proceedings of the IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS), Barranquilla, Colombia, 1–2 November 2012; https://doi.org/10.1109/CWCAS.2012.6404068.Choi, T.; Kim, T.Y. Three-Zone Numerical Modeling Method for Predicting System-Level Waste Heat Recovery Performance of Thermoelectric Generator with Various Electrical Array Configurations. Energy Convers. Manag. 2021, 240, 114270, https://doi.org/10.1016/j.enconman.2021.114270.Wang, P.; Wang, K.F.; Wang, B.L.; Cui, Y.J. Modeling of Thermoelectric Generators with Effects of Side Surface Heat Convection and Temperature Dependence of Material Properties. Int. J. Heat Mass Transf. 2019, 133, 1145–1153, https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.006.Wee, D. Analysis of Thermoelectric Energy Conversion Efficiency with Linear and Nonlinear Temperature Dependence in Material Properties. Energy Convers. Manag. 2011, 52, 3383–3390, https://doi.org/10.1016/j.enconman.2011.07.004.Ju, C.; Dui, G.; Zheng, H.H.; Xin, L. Revisiting the Temperature Dependence in Material Properties and Performance of Thermoelectric Materials. Energy 2017, 124, 249–257, https://doi.org/10.1016/j.energy.2017.02.020.Thielen, M.; Sigrist, L.; Magno, M.; Hierold, C.; Benini, L. Human Body Heat for Powering Wearable Devices: From Thermal Energy to Application. Energy Convers. Manag. 2017, 131, 44–54, https://doi.org/10.1016/j.enconman.2016.11.005.Antonova, E.E.; Looman, D.C. Finite Elements for Thermoelectric Device Analysis in ANSYS. In Proceedings of the ICT 2005 24th International Conference on Thermoelectrics, Clemson, SC, USA, 19–23 June 2005; pp. 200–203; https://doi.org/10.1109/ICT.2005.1519922.Chen, W.H.; Liao, C.Y.; Hung, C.I. A Numerical Study on the Performance of Miniature Thermoelectric Cooler Affected by Thomson Effect. Appl. Energy 2012, 89, 464–473, https://doi.org/10.1016/j.apenergy.2011.08.022.Oliveira, K.S.M.; Cardoso, R.P.; Hermes, C.J.L. Numerical Assessment of the Thermodynamic Performance of Thermoelectric Cells via Two-Dimensional Modelling. Appl. Energy 2014, 130, 280–288, https://doi.org/10.1016/j.apenergy.2014.05.050.Huang, M.J.; Yen, R.H.; Wang, A.B. The Influence of the Thomson Effect on the Performance of a Thermoelectric Cooler. Int. J. Heat Mass Transf. 2005, 48, 413–418, https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.040.Strasser, M.; Aigner, R.; Franosch, M.; Wachutka, G. Miniaturized Thermoelectric Generators Based on Poly-Si and Poly-SiGe Surface Micromachining. Sens. Actuators A Phys. 2002, 97–98, 535–542, https://doi.org/10.1016/S0924-4247(01)00815-9.Abdel-Motaleb, I.M.; Syed, M.Q. Thermoelectric Devices: Principles and Future Trends. arXiv 2017, arXiv:1704.07742.Snyder, G.J.; Snyder, A.H. Figure of Merit ZT of a Thermoelectric Device Defined from Materials Properties. Energy Environ. Sci. 2017, 10, 2280–2283, https://doi.org/10.1039/c7ee02007d.Kasap, S. Thermoelectric Effects in Metals; The Department of Electrical and Computer Engineering: Saskatoon, Canada, 2001; pp. 1–11.Shnawah, D.A.; Sabri, M.F.M.; Badruddin, I.A.; Said, S.B.M.; Ariga, T.; Che, F.X. Effect of Ag Content and the Minor Alloying Element Fe on the Mechanical Properties and Microstructural Stability of Sn-Ag-Cu Solder Alloy under High-Temperature Annealing. J. Electron. Mater. 2013, 42, 470–484, https://doi.org/10.1007/s11664-012-2343-8.Liou, B.H.; Chen, C.M.; Horng, R.H.; Chiang, Y.C.; Wuu, D.S. Improvement of Thermal Management of High-Power GaN-Based Light-Emitting Diodes. Microelectron. Reliab. 2012, 52, 861–865, https://doi.org/10.1016/j.microrel.2011.04.002.Corning, D. SYLGARDTM 184 Silicone Elastomer Kit. Available online: https://www.dow.com/en-us/pdp.sylgard-184-silicone-elastomer-kit.01064291z.html (accessed on 30 July 2021).Wang, Y.; Shi, Y.; Mei, D.; Chen, Z. Wearable Thermoelectric Generator for Harvesting Heat on the Curved Human Wrist. Appl. Energy 2017, 205, 710–719, https://doi.org/10.1016/j.apenergy.2017.08.117.ANSYS Inc. ANSYS Workbench Product Release Notes 10.0; ANSYS Inc.: Canonsburg, PA, USA, 2005.Chen, Z.; Lin, M.Y.; Xu, G.D.; Chen, S.; Zhang, J.H.; Wang, M.M. Hydrothermal Synthesized Nanostructure Bi-Sb-Te Thermoelectric Materials. J. Alloys Compd. 2014, 588, 384–387, https://doi.org/10.1016/j.jallcom.2013.11.065.Mackey, J.; Dynys, F.; Sehirlioglu, A. Uncertainty Analysis for Common Seebeck and Electrical Resistivity Measurement Systems. Rev. Sci. Instrum. 2014, 85, 6, https://doi.org/10.1063/1.4893652.Mackey, J.; Dynys, F.; Sehirlioglu, A. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization; NASA: Akron, OH, USA, 2013; Volume 24.Mechanical APDL Modeling and Meshing Guide; ANSYS Inc.: Canonsburg, PA, USA, 2010; Volume 3304, pp. 724–746.ANSYS Mechanical APDL Modeling and Meshing Guide. ANSYS 2020 R1 Release; ANSYS Inc.: Canonsburg, PA, USA, 2020.European Thermodynamics Limited. Thermoelectric Generator Module GM250-449-10-12. Available online: https://media.digikey.com/pdf/Data Sheets/European Thermodynamics PDFs/GM250-449-10-12.pdf (accessed on 3 October 2021).Xiao, H.; Gou, X.; Yang, S. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System. J. Electron. Mater. 2011, 40, 1195–1201, https://doi.org/10.1007/s11664-011-1596-y.D. Sanin-Villa, “Recent Developments in Thermoelectric Generation: A Review,” Sustainability 2022, Vol. 14, Page 16821, vol. 14, no. 24, p. 16821, Dec. 2022, doi: 10.3390/SU142416821.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and J. S. Del Rio, “Early fever detection on COVID-19 infection using thermoelectric module generators,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 5, pp. 3828–3837, Oct. 2021, doi: 10.11591/IJECE.V11I5.PP3828-3837.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016.“TEG1-12611-6.0 - Tecteg Power Generator.com.” https://tecteg.com/product/teg1-12611-6-0/ (accessed May 06, 2023).S. Zhang and X. Liao, “The test structures to measure resistivity and contact resistance of poly-si for thermoelectric-photoelectric integrated generator,” Proceedings of the 14th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2019, pp. 443–446, Apr. 2019, doi: 10.1109/NEMS.2019.8915618.S. Dalola, M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, “Characterization of thermoelectric modules for powering autonomous sensors,” IEEE Trans Instrum Meas, vol. 58, no. 1, pp. 99–107, 2009, doi: 10.1109/TIM.2008.928405.H. J. Kim, J. R. Skuza, Y. Park, G. C. King, S. H. Choi, and A. Nagavalli, “System to Measure Thermal Conductivity and Seebeck Coefficient for Thermoelectrics,” 2012, Accessed: May 06, 2023. [Online]. Available: http://www.sti.nasa.govE. I. Ortiz-Rivera, A. Salazar-Llinas, and J. Gonzalez-Llorente, “A mathematical model for online electrical characterization of thermoelectric generators using the P-I curves at different temperatures,” Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, pp. 2226–2230, 2010, doi: 10.1109/APEC.2010.5433546.B. Precision, “DC Electronic Loads 8500 Series”, Accessed: May 06, 2023. [Online]. Available: www.bkprecision.com“MCH-305D DC Power Supply.pdf - Google Drive,” Jan. 2023. https://drive.google.com/file/d/0BzaKjvCRihgbME1OdzY4Q3ZBSU0/view?resourcekey=0-COBy8zumnHxR1orxF-3kaQ (accessed May 06, 2023).“Test Equipment Solutions Datasheet”, Accessed: May 06, 2023. [Online]. Available: www.Sanin-Villa, D. Recent Developments in Thermoelectric Generation: A Review. Sustainability 2022, 14, 16821.Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies, 2020, 13, 3606.Rjafallah, A.; Cotfas, D.T.; Cotfas, P.A. Legs Geometry Influence on the Performance of the Thermoelectric Module. Sustainability, 2022, 14, 15823.Koketsu, K.; Tanzawa, T. A Design of a Thermoelectric Energy Harvester for Minimizing Sensor Module Cost. Electronics 2022, 11, 3441.Cotfas, D.; Cotfas, P.; Mahmoudinezhad, S.; Louzazni, M. Critical factors and parameters for hybrid photovoltaic-thermoelectric systems; review. Appl. Therm. Eng. 2022, 215.Mwasilu, F.; Justo, J.J.; Kim, E.K.; Do, T.D.; Jung, J.W. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renew. Sustain. Energy Rev. 2014, 34, 501–516.Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Del Rio, J.S. Early fever detection on COVID-19 infection using thermoelectric module generators. Int. J. Electr. Comput. Eng 2021, 11, 3828–3837.Luo, D.; Liu, Z.; Yan, Y.; Li, Y.; Wang, R.; Zhang, L.; Yang, X. Recent advances in modeling and simulation of thermoelectric power generation. Energy Convers. Manag. 2022, 273, 116389.Xu, Y.; Xue, Y.; Cai, W.; Qi, H.; Li, Q. Experimental study on performances of flat-plate pulsating heat pipes coupled with thermoelectric generators for power generation. Int. J. Heat Mass Transf. 2023, 203, 123784.Jiang, H.; Fang, Q.; Xavier, T.F.; Hu, G.; Wang, H.; Suo, Y.; Ye, Y.; Li, G.; Zheng, Y.; Zhang, Z. A novel thermoelectric distiller integrated with water cooling circulation for alcohol distillation. Appl. Therm. Eng. 2023, 219, 119392.Xu, G.; Duan, Y.; Chen, X.; Ming, T.; Huang, X. Effects of thermal and electrical contact resistances on the performance of a multi-couple thermoelectric cooler with non-ideal heat dissipation. Appl. Therm. Eng. 2020, 169, 114933.Kim, C.N. Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Appl. Therm. Eng. 2018, 130, 408–417.Nesarajah, M.; Felgner, F.; Frey, G. Modeling and simulation of a thermoelectric energy harvesting system for control de- sign purposes. In Proceedings of the Proceedings of the 16th International Conference on Mechatronics-Mechatronika 2014, Brno, Czech Republic, 3–5 December 2014; pp. 170–177.Gachovska, T.K.; Hudgins, J.L.; Santi, E.; Bryant, A.; Palmer, P.R. Modeling bipolar power semiconductor devices. Synth. Lect. Power Electron. 2013, 4, 1–93.Yazdanshenas, E.; Rezania, A.; Karami Rad, M.; Rosendahl, L. Electrical response of thermoelectric generator to geometry variation under transient thermal boundary condition. J. Renew. Sustain. Energy 2018, 10, 064705.Torrecilla, M.C.; Montecucco, A.; Siviter, J.; Strain, A.; Knox, A.R. Transient response of a thermoelectric generator to load steps under constant heat flux. Appl. Energy 2018, 212, 293–303.Martinez, A.; de Garayo, S.D.; Aranguren, P.; Araiz, M.; Catalán, L. Simulation of thermoelectric heat pumps in nearly zero energy buildings: Why do all models seem to be right? Energy Convers. Manag. 2021, 235, 113992.Martinez, A.; de Garayo, S.D.; Aranguren, P.; Astrain, D. Assessing the reliability of current simulation of thermoelectric heat pumps for nearly zero energy buildings: Expected deviations and general guidelines. Energy Convers. Manag. 2019, 198, 111834.Li, W.; Paul, M.; Montecucco, A.; Siviter, J.; Knox, A.; Sweet, T.; Gao, M.; Baig, H.; Mallick, T.; Han, G.; et al. Multiphysics simulations of thermoelectric generator modules with cold and hot blocks and effects of some factors. Case Stud. Therm. Eng. 2017, 10, 63–72.Chen, W.H.; Wu, P.H.; Lin, Y.L. Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm. Appl. Energy 2018, 209, 211–223.Meng, J.H.; Zhang, X.X.; Wang, X.D. Multi-objective and multi-parameter optimization of a thermoelectric generator module. Energy 2014, 71, 367–376.Liu, Z.; Zhu, S.; Ge, Y.; Shan, F.; Zeng, L.; Liu, W. Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Appl. Energy 2017, 190, 540–552.Wen, Z.; Sun, Y.; Zhang, A.; Wang, B.; Wang, J.; Du, J. Performance analysis of a segmented annular thermoelectric generator. J. Electron. Mater. 2020, 49, 4830–4842.Ge, Y.; Liu, Z.; Sun, H.; Liu, W. Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm. Energy 2018, 147, 1060–1069.Zhu, L.; Li, H.; Chen, S.; Tian, X.; Kang, X.; Jiang, X.; Qiu, S. Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renew. Energy 2020, 156, 710–718.Wang, X.; Henshaw, P.; Ting, D.S.K. Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO). Appl. Energy 2021, 294, 116952.Yin, E.; Li, Q. Multi-objective optimization of a concentrated spectrum splitting photovoltaic-thermoelectric hybrid system. Appl. Therm. Eng. 2023, 219, 119518.Sanin-Villa, D.; Henao-Bravo, E.; Ramos-Paja, C.; Chejne, F. Evaluation of Power Harvesting on DC-DC Converters to Ex- tract the Maximum Power Output from TEGs Arrays under Mismatching Conditions. J. Oper. Autom. Power Eng. 2023. https://doi.org/10.22098/joape.2023.11207.1836.Montano, J.; Tobón, A.; Villegas, J.; Durango, M. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. Int. J. Energy Environ. Eng. 2020, 11, 367–375.Restrepo-Cuestas, B.J.; Montano, J.; Ramos-Paja, C.A.; Trejos-Grisales, L.A.; Orozco-Gutierrez, M.L. Parameter estimation of the bishop photovoltaic model using a genetic algorithm. Appl. Sci. 2022, 12, 2927.Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703.Chi, R.; Li, H.; Shen, D.; Hou, Z.; Huang, B. Enhanced P-type control: Indirect adaptive learning from set-point updates. IEEE Trans. Autom. Control. 2022. https://doi.org/10.1109/TAC.2022.3154347.Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control. 2021, 58, 373–387.Roman, R.C.; Precup, R.E.; Petriu, E.M. Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems. Eur. J. Control. 2021, 58, 373–387.Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633.Rendón, R.A.G.; Ocampo, E.M.T.; Zuluaga, A.H.E. Técnicas Heurísticas y Metaheurísticas; Universidad Tecnológica de Pereira: Pereira, Colombia, 2015.C´ alasan, M.; Aleem, S.H.A.; Zobaa, A.F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function. Energy Convers. Manag. 2020, 210, 112716.Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.Montano, J.J.; Noreña, L.F.G.; Tobon, A.F.; Montoya, D.G. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat. Am. Trans. 2022, 20, 616–623.Grisales-Noreña, L.F.; Rosales-Muñoz, A.A.; Cortés-Caicedo, B.; Montoya, O.D.; Andrade, F. Optimal Operation of PV Sources in DC Grids for Improving Technical, Economical, and Environmental Conditions by Using Vortex Search Algorithm and a Matrix Hourly Power Flow. Mathematics 2023, 11, 93.Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal design of PV Systems in electrical distribution networks by minimizing the annual equivalent operative costs through the discrete-continuous vortex search algorithm. Sensors 2022, 22, 851.Velásquez, L.; Posada, A.; Chica, E. Surrogate modeling method for multi-objective optimization of the inlet channel and the basin of a gravitational water vortex hydraulic turbine. Appl. Energy 2023, 330, 120357.43. Dog˘ an, B.; Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm. Inf. Sci. 2015, 293, 125–145.Grisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Granada Echeverri, M.; Perea-Moreno, A.J. Optimal location and sizing of DGs in DC networks using a hybrid methodology based on the PPBIL algorithm and the VSA. Mathematics 2021, 9, 1913.Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 2016, 169, 1–12.Grisales-Noreña, L.F.; Cortés-Caicedo, B.; Alcalá, G.; Montoya, O.D. Applying the Crow Search Algorithm for the Optimal Integration of PV Generation Units in DC Networks. Mathematics 2023, 11, 387.Schubert, A.L.; Hagemann, D.; Voss, A.; Bergmann, K. Evaluating the model fit of diffusion models with the root mean square error of approximation. J. Math. Psychol. 2017, 77, 29–45.Karunasingha, D.S.K. Root mean square error or mean absolute error? Use their ratio as well. Inf. Sci. 2022, 585, 609–629.Sanin-Villa, D.; Monsalve-Cifuentes, O.D.; Henao-Bravo, E.E. Evaluation of Thermoelectric Generators under Mismatching Conditions. Energies 2021, 14, 8016.Wee, D. Analysis of thermoelectric energy conversion efficiency with linear and nonlinear temperature dependence in material properties. Energy Convers. Manag. 2011, 52, 3383–3390.Ju, C.; Dui, G.; Zheng, H.H.; Xin, L. Revisiting the temperature dependence in material properties and performance of thermoelectric materials. Energy 2017, 124, 249–257.TECTEG MFR. Div. of Thermal Electronics Corp. Specifications TEG Module TEG1-12611-6.0. 2022. Available online: https://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-6.0TEG-POWERGENERATOR-new.pdf (accessed on 9 January 2022).UNFCC (United Nations Framework Convention on Climate Change), “Paris Agreement (Spanish),” p. 29, 2015, [Online]. Available: http://unfccc.int/files/essential_background/convention/application/pdf/spanish_paris_agreement.pdfM. Morini, M. Pinelli, P. R. Spina, and M. Venturini, “Optimal allocation of thermal, electric and cooling loads among generation technologies in household applications,” Appl Energy, vol. 112, pp. 205–214, 2013, doi: 10.1016/j.apenergy.2013.05.078.S. K. Bhukesh, A. Kumar, and S. K. Gaware, “Bismuth telluride (Bi2Te3) thermoelectric material as a transducer for solar energy application,” Mater Today Proc, vol. 26, pp. 3131–3137, 2019, doi: 10.1016/j.matpr.2020.02.646.M. Ge, Z. Wang, L. Liu, J. Zhao, and Y. Zhao, “Performance analysis of a solar thermoelectric generation (STEG) system with spray cooling,” Energy Convers Manag, vol. 177, no. April, pp. 661–670, 2018, doi: 10.1016/j.enconman.2018.10.016.M. A. Qasim, V. I. Velkin, and A. K. Hassan, “Seebeck Generators and Their Performance in Generating Electricity,” Journal of Operation and Automation in Power Engineering, vol. 10, no. 3, pp. 200–205, Sep. 2022, doi: 10.22098/joape.2022.9715.1677.A. Nozariasbmarz et al., “Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems,” Appl Energy, vol. 258, no. November 2019, 2020, doi: 10.1016/j.apenergy.2019.114069.E. Yin, Q. Li, and Y. Xuan, “Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system,” Energy Convers Manag, vol. 143, pp. 188–202, 2017, doi: 10.1016/j.enconman.2017.04.004.R. Bjørk and K. K. Nielsen, “The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system,” Solar Energy, vol. 120, pp. 187–194, 2015, doi: 10.1016/j.solener.2015.07.035.E. S. Mohamed, “Development and performance analysis of a TEG system using exhaust recovery for a light diesel vehicle with assessment of fuel economy and emissions,” Appl Therm Eng, vol. 147, no. January 2018, pp. 661–674, 2019, doi: 10.1016/j.applthermaleng.2018.10.100.R. ben Cheikh, B. el Badsi, and A. Masmoudi, “Geothermal sources-based thermoelectric power generation: An attempt to enhance the rural electrification in southern Tunisia,” 2014 9th International Conference on Ecological Vehicles and Renewable Energies, EVER 2014, 2014, doi: 10.1109/EVER.2014.6844080.A. Barco, R. M. Ambrosi, H. R. Williams, and K. Stephenson, “Radioisotope power systems in space missions: Overview of the safety aspects and recommendations for the European safety case,” Journal of Space Safety Engineering, vol. 7, no. 2, pp. 137–149, 2020, doi: 10.1016/j.jsse.2020.03.001.A. Belboula, R. Taleb, G. Bachir, and F. Chabni, “Comparative Study of Maximum Power Point Tracking Algorithms for Thermoelectric Generator,” Lecture Notes in Networks and Systems, vol. 62, no. December, pp. 329–338, 2019, doi: 10.1007/978-3-030-04789-4_36.A. Montecucco and A. R. Knox, “Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators,” IEEE Trans Power Electron, vol. 30, no. 2, pp. 828–839, 2015, doi: 10.1109/TPEL.2014.2313294.S. Siouane, S. Jovanovic, and P. Poure, “Influence of contact thermal resistances on the Open Circuit Voltage MPPT method for Thermoelectric Generators,” 2016 IEEE International Energy Conference, ENERGYCON 2016, 2016, doi: 10.1109/ENERGYCON.2016.7514002.P. Shiriaev, K. Shishov, and A. Osipkov, “Electrical network of the automotive multi-sectional thermoelectric generator with MPPT based device usage,” Mater Today Proc, vol. 8, pp. 642–651, 2019, doi: 10.1016/j.matpr.2019.02.064.K. Bunthern, B. Long, G. Christophe, D. Bruno, and M. Pascal, “Modeling and tuning of MPPT controllers for a thermoelectric generator,” 2014 1st International Conference on Green Energy, ICGE 2014, vol. 2, no. 3, pp. 220–226, 2014, doi: 10.1109/ICGE.2014.6835425.F. Li et al., “Adaptive rapid neural optimization: A data-driven approach to MPPT for centralized TEG systems,” Electric Power Systems Research, vol. 199, p. 107426, 2021, doi: 10.1016/j.epsr.2021.107426.M. Hamza Zafar, N. Mujeeb Khan, M. Mansoor, and A. Khan, “Towards green energy for sustainable development: Machine learning based MPPT approach for thermoelectric generator,” J Clean Prod, vol. 351, p. 131591, 2022, doi: 10.1016/j.jclepro.2022.131591.E. Naderi, S. J. Seyedshenava, and H. Shayeghi, “High Gain DC/DC Converter Implemented with MPPT Algorithm for DC Microgrid System ,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 3, pp. 213–222, Oct. 2023, doi: 10.22098/JOAPE.2023.10270.1731.B. Yang et al., “Fast atom search optimization based MPPT design of centralized thermoelectric generation system under heterogeneous temperature difference,” J Clean Prod, vol. 248, p. 119301, Mar. 2020, doi: 10.1016/J.JCLEPRO.2019.119301.R. Dadi, K. Meenakshy, and S. K. Damodaran, “A Review on Secondary Control Methods in DC Microgrid,” Journal of Operation and Automation in Power Engineering, vol. 11, no. 2, pp. 105–112, Aug. 2023, doi: 10.22098/JOAPE.2022.9157.1636.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016.M. TECTEG, “Specifications TEG Module TEG1-12611-6.0.” https://thermoelectric-generator.com/B. Yang et al., “MPPT design of centralized thermoelectric generation system using adaptive compass search under non-uniform temperature distribution condition,” Energy Convers Manag, vol. 199, p. 111991, Nov. 2019, doi: 10.1016/J.ENCONMAN.2019.111991.Y. H. Liu, Y. H. Chiu, J. W. Huang, and S. C. Wang, “A novel maximum power point tracker for thermoelectric generation system,” Renew energy, vol. 97, pp. 306–318, Nov. 2016, doi: 10.1016/J.RENENE.2016.05.001.W. Zhu, X. Li, Y. Li, C. Xie, and Y. Shi, “Two-level energy harvesting strategy for multi-input thermoelectric energy system,” Energy Reports, vol. 8, pp. 4359–4372, Nov. 2022, doi: 10.1016/J.EGYR.2022.03.123.F. Li et al., “Adaptive rapid neural optimization: A data-driven approach to MPPT for centralized TEG systems,” Electric Power Systems Research, vol. 199, p. 107426, Oct. 2021, doi: 10.1016/J.EPSR.2021.107426.X. Liu et al., “Theoretical and experimental research on control strategy of maximum power point tracking for monolayer thermoelectric generator considering the degree of disturbance,” Energy Reports, vol. 8, pp. 15124–15143, Nov. 2022, doi: 10.1016/J.EGYR.2022.10.451.S. Vostrikov, A. Somov, and P. Gotovtsev, “Low temperature gradient thermoelectric generator: Modelling and experimental verification,” Appl Energy, vol. 255, no. July, 2019, doi: 10.1016/j.apenergy.2019.113786.D. Sanin-Villa, O. D. Monsalve-Cifuentes, and E. E. Henao-Bravo, “Evaluation of Thermoelectric Generators under Mismatching Conditions,” Energies 2021, Vol. 14, Page 8016, vol. 14, no. 23, p. 8016, Dec. 2021, doi: 10.3390/EN14238016.R. W. Erikson and D. Maksimovic, Fundamentals of Power Electronics Second Edition, no. March. 1980. doi: 10.1177/0093854807307036.B. Panda, A. Sarkar, B. Panda, and P. K. Hota, “A comparative study of PI and fuzzy controllers for solar powered DC-DC boost converter,” Proceedings - 1st International Conference on Computational Intelligence and Networks, CINE 2015, pp. 47–51, 2015, doi: 10.1109/CINE.2015.19.P. Motsoeneng, J. Bamukunde, and S. Chowdhury, “Comparison of Perturb & Observe and Hill Climbing MPPT Schemes for PV Plant under Cloud Cover and Varying Load,” 2019 10th International Renewable Energy Congress, IREC 2019, no. Irec, pp. 1–6, 2019, doi: 10.1109/IREC.2019.8754532.N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans Power Electron, vol. 20, no. 4, pp. 963–973, 2005, doi: 10.1109/TPEL.2005.850975.R. Thankakan and E. R. Samuel Nadar, “Investigation of thermoelectric generators connected in different configurations for micro-grid applications,” Int J Energy Res, vol. 42, no. 6, pp. 2290–2301, May 2018, doi: 10.1002/ER.4015.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84611/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALTesis.pdfTesis.pdfTesis de Doctorado en Ingenieríaapplication/pdf6013511https://repositorio.unal.edu.co/bitstream/unal/84611/4/Tesis.pdf5941e2092b046181cc2ec50e93e73a5dMD54THUMBNAILTesis.pdf.jpgTesis.pdf.jpgGenerated Thumbnailimage/jpeg4732https://repositorio.unal.edu.co/bitstream/unal/84611/5/Tesis.pdf.jpga67b0df2fb697001cdab7687815b351dMD55unal/84611oai:repositorio.unal.edu.co:unal/846112023-08-29 23:04:16.615Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |