Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm
An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm was implemented to update the weights of the network. 43800 data points of...
- Autores:
-
Lazzús, Juan A
Salfate, Ignacio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/63587
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/63587
http://bdigital.unal.edu.co/64033/
- Palabra clave:
- 55 Ciencias de la tierra / Earth sciences and geology
Wind speed
time series forecasting
artificial neural network
particle swarm optimization
meteorological data
Velocidad del viento
predicción de series de tiempo
redes neuronales artificiales
optimización de enjambre de particulas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_1fec97365d11b9bf0dce8fa4776cf0cb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/63587 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
title |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
spellingShingle |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm 55 Ciencias de la tierra / Earth sciences and geology Wind speed time series forecasting artificial neural network particle swarm optimization meteorological data Velocidad del viento predicción de series de tiempo redes neuronales artificiales optimización de enjambre de particulas |
title_short |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
title_full |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
title_fullStr |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
title_full_unstemmed |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
title_sort |
Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm |
dc.creator.fl_str_mv |
Lazzús, Juan A Salfate, Ignacio |
dc.contributor.author.spa.fl_str_mv |
Lazzús, Juan A Salfate, Ignacio |
dc.subject.ddc.spa.fl_str_mv |
55 Ciencias de la tierra / Earth sciences and geology |
topic |
55 Ciencias de la tierra / Earth sciences and geology Wind speed time series forecasting artificial neural network particle swarm optimization meteorological data Velocidad del viento predicción de series de tiempo redes neuronales artificiales optimización de enjambre de particulas |
dc.subject.proposal.spa.fl_str_mv |
Wind speed time series forecasting artificial neural network particle swarm optimization meteorological data Velocidad del viento predicción de series de tiempo redes neuronales artificiales optimización de enjambre de particulas |
description |
An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm was implemented to update the weights of the network. 43800 data points of wind speed were used (years 2003- 2007), and the past values of wind speed, relative humidity, and air temperature were used as input parameters, considering that these meteorogical parameters are more readily available around the globe. Several neural network architectures were studied, and the optimum architecture was determined by adding neurons in systematic form and evaluating the root mean square error (RMSE) during the learning process. The results show that the meteorological variables used as input parameters, have influential effects on the good training and predicting capabilities of the chosen network, and that the hybrid neural network can forecast the hourly wind speed with acceptable accuracy, such as: RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 and R2 =0.97 for 24-hours-ahead wind speed prediction, and RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 for 48-hours-ahead wind speed prediction. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-01-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T21:55:41Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T21:55:41Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2339-3459 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/63587 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/64033/ |
identifier_str_mv |
ISSN: 2339-3459 |
url |
https://repositorio.unal.edu.co/handle/unal/63587 http://bdigital.unal.edu.co/64033/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/esrj/article/view/50337 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research Journal Earth Sciences Research Journal |
dc.relation.references.spa.fl_str_mv |
Lazzús, Juan A and Salfate, Ignacio (2017) Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm. Earth Sciences Research Journal, 21 (1). pp. 29-35. ISSN 2339-3459 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geociencia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/63587/1/50337-327282-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/63587/2/50337-327282-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
841c9342ec9343eea3c98f14357b4d9c f8b715a5ea121979b2cb6d2dede978d9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090143803375616 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lazzús, Juan A3b80379b-5b78-4483-89c6-0d26ed7b2203300Salfate, Ignacio6aa55186-36f1-4c21-8919-d5baa6ecfe7d3002019-07-02T21:55:41Z2019-07-02T21:55:41Z2017-01-01ISSN: 2339-3459https://repositorio.unal.edu.co/handle/unal/63587http://bdigital.unal.edu.co/64033/An artificial neural network was used for forecasting of long-term wind speed data (24 and 48 hours ahead) in La Serena City (Chile). In order to obtain a more effective correlation and prediction, a particle swarm algorithm was implemented to update the weights of the network. 43800 data points of wind speed were used (years 2003- 2007), and the past values of wind speed, relative humidity, and air temperature were used as input parameters, considering that these meteorogical parameters are more readily available around the globe. Several neural network architectures were studied, and the optimum architecture was determined by adding neurons in systematic form and evaluating the root mean square error (RMSE) during the learning process. The results show that the meteorological variables used as input parameters, have influential effects on the good training and predicting capabilities of the chosen network, and that the hybrid neural network can forecast the hourly wind speed with acceptable accuracy, such as: RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 and R2 =0.97 for 24-hours-ahead wind speed prediction, and RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 for 48-hours-ahead wind speed prediction.Una red neuronal artificial fue utilizada para la predicción de datos de la velocidad de viento a largo plazo (24 y 48 horas en adelanto) en la Ciudad de La Serena (Chile). Para obtener una efectiva correlación y predición, se implementó una optimización de enjambre de particulas para actualizar los pesos de la red. Se emplearon 43800 datos de velocidad de viento (años 2003-2007), y los valores pasados de velocidad del viento, humedad relativa y temperatura del aire fueron utilizados como parámetros de entrada, considerando que estos parámetros meteorológicos se encuentran fácilmente disponibles en todo el mundo. Se estudiaron varias arquitecturas de redes neuronales y la arquitectura optima se determine añadiendo neuronas de forma sistemática y evaluando la raíz del error cuadrático medio (RMSE) durante el proceso de aprendizaje. Los resultados muestran que las variables meteorológicas utilizadas como parámetros de entrada, tienen un efecto positivo sobre el correcto entrenamiento y capacidades predictivas de la red, y que la red neural híbrida puede pronosticar la velocidad del viento horaria con una precisión aceptable, como un RMSE=0.81 [m·s−1], MSE=0.65 [m·s−1] 2 y R2 =0.97 para la predicción de la velocidad del viento de 24 horas en adelanto, y un RMSE=0.78, MSE=0.634 [m·s−1] 2 and R2 =0.97 para la predicción de la velocidad del viento de 48 horas en adelanto.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Geocienciahttps://revistas.unal.edu.co/index.php/esrj/article/view/50337Universidad Nacional de Colombia Revistas electrónicas UN Earth Sciences Research JournalEarth Sciences Research JournalLazzús, Juan A and Salfate, Ignacio (2017) Long-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithm. Earth Sciences Research Journal, 21 (1). pp. 29-35. ISSN 2339-345955 Ciencias de la tierra / Earth sciences and geologyWind speedtime series forecastingartificial neural networkparticle swarm optimizationmeteorological dataVelocidad del vientopredicción de series de tiemporedes neuronales artificialesoptimización de enjambre de particulasLong-term prediction of wind speed in La Serena City (Chile) using hybrid neural network-particle swarm algorithmArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL50337-327282-1-PB.pdfapplication/pdf1134072https://repositorio.unal.edu.co/bitstream/unal/63587/1/50337-327282-1-PB.pdf841c9342ec9343eea3c98f14357b4d9cMD51THUMBNAIL50337-327282-1-PB.pdf.jpg50337-327282-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg7289https://repositorio.unal.edu.co/bitstream/unal/63587/2/50337-327282-1-PB.pdf.jpgf8b715a5ea121979b2cb6d2dede978d9MD52unal/63587oai:repositorio.unal.edu.co:unal/635872023-04-22 23:05:32.496Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |